
Ann Math Artif Intell
DOI 10.1007/s10472-006-9034-1

Stochastic process semantics for dynamical grammars

Eric Mjolsness · Guy Yosiphon

© Springer Science + Business Media B.V. 2007

Abstract We define a class of probabilistic models in terms of an operator algebra
of stochastic processes, and a representation for this class in terms of stochastic
parameterized grammars. A syntactic specification of a grammar is formally mapped
to semantics given in terms of a ring of operators, so that composition of grammars
corresponds to operator addition or multiplication. The operators are generators for
the time-evolution of stochastic processes. The dynamical evolution occurs in con-
tinuous time but is related to a corresponding discrete-time dynamics. An expansion
of the exponential of such time-evolution operators can be used to derive a variety
of simulation algorithms. Within this modeling framework one can express data
clustering models, logic programs, ordinary and stochastic differential equations,
branching processes, graph grammars, and stochastic chemical reaction kinetics. The
mathematical formulation connects these apparently distant fields to one another
and to mathematical methods from quantum field theory and operator algebra. Such
broad expressiveness makes the framework particularly suitable for applications in
machine learning and multiscale scientific modeling.

Keywords stochastic processes · operator algebra · dynamical systems ·
multiscale modeling · probabilistic inference · machine learning

Mathematics Subject Classifications (2000) 68T30 · 68T37

E. Mjolsness (B) · G. Yosiphon
Donald Bren School of Information and Computer Science,
University of California, Irvine, CA 92697-3425, USA
e-mail: emj@uci.edu

G. Yosiphon
e-mail: gyosipho@uci.edu

E. Mjolsness, G. Yosiphon

1 Introduction

Probabilistic models of application domains are central to pattern recognition,
machine learning, and scientific modeling in various fields. Consequently, unifying
frameworks are likely to be fruitful for one or more of these fields. There are
also more technical motivations for pursuing the unification of diverse model types.
In multiscale modeling, models of the same system at different scales can have
fundamentally different characteristics (e.g. deterministic vs. stochastic) and yet must
be placed in a single modeling framework. In machine learning, automated search
over a wide variety of model types may be of great advantage. General-purpose
modeling languages can also provide software support for the creation of relevant
mathematical models. In this paper we propose that Stochastic Parameterized
Grammars (SPGs) and their generalization to Dynamical Grammars (DGs) can
formally specify dynamical system models within such a unifying framework. These
models may be variable-structure dynamical systems, in the sense that the dynamics
governs the number of system objects and their relationships over time, in addition to
governing the object state variables. To create such a flexible modeling language, we
will define mathematically both the syntax and the semantics of a formal modeling
language based on grammar-like collections of rewrite rules.

The essential idea is that there is a “pool” of fully specified parameter-bearing
terms such as {bacterium(x), macrophage(y), redbloodcell(z)} where x, y and z might
be position vectors. A grammar can include rules such as

{bacterium(x), macrophage(y)} → macrophage(y) with ρ(‖x − y‖)

which specify the probability per unit time, ρ, that the macrophage ingests and
destroys the bacterium as a function of the distance ‖x − y‖ between their centers.
Sets of such rules are a natural way to specify many processes. They may have
more than one term on the left hand side, making them “context sensitive” rather
than “context-free.” We will define the semantics of grammars composed of such
rules by mapping them to stochastic processes in both continuous time (Section 3.4)
and discrete time (Section 3.6), and relating the two definitions (Section 3.8). A
key feature of the semantic maps is that they are naturally defined in terms of
an algebraic ring of time evolution operators: they map operator addition and
multiplication into independent or strongly dependent compositions of stochastic
processes, respectively.

The stochastic process semantics defined here is a mathematical, algebraic object.
It is independent of any particular simulation algorithm, though we will discuss
(Section 3.7.2) a powerful technique for generating simulation algorithms. The
natural continuous-time semantics (Section 3.4) is related to the somewhat more
involved discrete-time semantics (Section 3.6) by several propositions in (Section
3.8). We will demonstrate (Section 5.1) the interpretation of certain subclasses of
SPGs as a logic programming language. Other applications that will be demonstrated
are to data clustering (Section 4.1), chemical reaction kinetics (Section 4.2), graph
grammars (Section 5.2), string grammars (Section 5.2.2), systems of ordinary diffe-
rential equations (Section 5.3), and systems of stochastic differential equations
(Section 5.3).

The present paper is a revised and expanded version of the summary in [1].

Stochastic process semantics for dynamical grammars

1.1 Related work

Other frameworks describing model classes that may overlap with those described
here are numerous. They range from diagrammatic or textual notations for models,
to full-scale programming languages, to mathematical objects that describe classes
of dynamical systems. The features possessed by some of these frameworks in
common with SPGs and DGs include: time-varying model structure and number of
variables; straightforward expression of probabilistic and stochastic models; straight-
forward expression of graph grammars; continuous and/or discrete time; straightfor-
ward expression of logic; type polymorphism; geometry through chain complexes;
and operator algebra dynamics, among many other useful characteristics. We offer a
tentative classification and comparison as follows.

Dynamical systems frameworks include ordinary differential equation systems,
stochastic differential equations, and partial differential equations, all of which are
continuous in time and state spaces and constant in their structure; spatial birth and
death processes [2], multitype and spatial branching processes [3] and marked point
processes [4] which have continuous time but discrete state-transitions including
changes in their number of variables; and cellular automata and branching pro-
cesses [5] with discrete time and states. The continuous-time dynamical systems
among these mathematical objects can be expressed using time evolution operators
[6], as we will do for SPGs. However, they do not come with a formal language that
straightforwardly embodies the expressive power of logic, nor do they come with the
powerful model composition operations (such as parallel rule lists and subgrammar
calls) that such a formal language can provide. In addition the semantics of SPGs
are not limited to branching processes, but can also express multiple-input/multiple-
output events as well as topology-changing processes such as graph grammars.

In Artificial Intelligence (AI), there has been considerable work to extend the
Bayes Network (BN) [7] framework in order to handle time-dependence and dy-
namic model structure. The Continuous Time Bayesian Networks of [8] are a form
of BN that expresses a graphical decomposition of a Markov Chain rate table. These
networks cannot model a dynamical system structure as can SPGs. The Dynamical
Bayesian Network [9] is an extension of BNs for iterative time evolution processes.
DBNs depict the probabilistic relations between variables within a time-slice and be-
tween adjacent time slices. However, DBNs can only represent a fixed size structures,
meaning that objects cannot be created or annihilated. Another limitation of DBNs is
that they can represent only discrete temporal processes. In a DBN, time is depicted
in terms of fixed intervals and therefore systems which are composed of processes
that evolve with different time granularities or systems that obtain evidence over
irregular time intervals become intractable for simulation and inference.

The Relational Dynamic Bayesian Networks framework [10] extends DBN’s to
first order logic domains so as to deal with creation of objects over time and with
dynamical structure. Another language for representing probabilistic dynamical sys-
tems is BLOG [11]. Both of these frameworks can represent only discrete-time pro-
cesses. Also there is no composition-preserving mapping like "c/d from syntax to
an operator algebra semantics defined for BNs, DBNs, RDBNs, BLOG, or any of
the following frameworks; nor is there any relationship derived between continuous-
time and discrete-time semantics, as there is for SPGs. In their syntax, only SPGs and
MGS (see below) support a polymorphic type system.

E. Mjolsness, G. Yosiphon

A different paradigm is represented by Probabilistic Constraint Nets (PCN) [12]
which extends Constraint Networks to model uncertainty over time. PCNs generalize
DBNs since they are not restricted to discrete time structure. But as with DBNs,
PCNs cannot represent the dynamics and evolution over the number of objects in a
system.

Arising in other parts of computer science, the L-systems [13] and MGS [14]
frameworks were developed for modeling of biological processes. They both define
transformation rules similar to SPGs. However the semantics of these frameworks
are defined in terms of simulation algorithms rather than a parallel mathematical
semantics as with SPGs. L-systems were extended to include differential equation
dynamics as “differential L-systems” [15], but this extension was still deterministic.
A similar integration of deterministic grammars and gene regulation networks was
proposed as a framework for modeling biological development in [16]. MGS has an
expressive capability missing in SPGs and DGs: the built-in ability to represent geom-
etry by d-dimensional topological complexes. Graph grammars provide an avenue to
future inclusion of this capability within SPGs.

Process calculi, which were introduced for the study of concurent computation,
have also been adapted for applications in biology. Phillips and Cardelli [17]
presented an abstract machine mechanism, to perform stochastic simulations from
stochastic pi-calculus (SPC) models. The SPG framework is more flexible in its se-
mantics since it is not bound to any specified stochastic simulation technique as
is the SPC abstract machine, which is based on the Gillespie stochastic simulation
algorithm. Moreover, the SPC abstract machine has no extension for handling objects
with continuously-changing parameters as do Dynamical Grammars.

One graphical formalism developed for the analysis of concurrent computation
is the Petri Net (PN) [18] which depicts the structure of a distributed system as a
directed bipartite graph. This framework models the creation and annihilation of
objects by a set of “tokens” which are transmitted between “place” nodes by the
firing of “transition” nodes. There are many generalizations of PNs such as Col-
ored PNs [19] or Predicate/Transition Nets [20] that enhance PN with First Order
Logic predicates. Since the execution of most forms of PNs is nondeterministic, the
most relevant PN extensions are the stochastic or stochastic-colored PNs [21] that
augment PNs with rates of execution. Nevertheless, the syntax of stochastic PNs
does not contain features such as rule variables, firing rate functions, obliviousness in
such firing rates, and type polymorphism as do SPGs, and PNs are defined only for
discontinuous state transitions.

The composition-preserving mapping "c/d (introduced in Section 3) from the syn-
tax of a powerful modeling language to an operator algebra semantics, and the use
of the Time-Ordered Product Expansion to derive a variety of simulation algorithms
for such semantics as proposed here, appear to be novel.

1.2 Notation

In the rest of the paper we will use the following definition of a version of the
Heaviside function # from Boolean values to integers as follows:

#(P) ≡
{

1 if Predicate P is true
0 otherwise

. (1)

Stochastic process semantics for dynamical grammars

Also the Kronecker delta function δK(a, b) or δab is

δK(a, b) = #(a = b) =
{

1 if x = y
0 otherwise

and δ(x, y) = δ(x − y) is the Dirac delta (generalized) function appropriate to a par-
ticular measure µ on the measure space V. The two definitions coincide for a count-
able discrete measure space.

In addition to the standard set-builder notation {x|P(x)} for defining the members
of a set based on a predicate P, we will build ordered sets or lists in a similar way using
square brackets. Thus [x(i)||i ∈ I], or more generally [x(i)|P(x(i), i)||i ∈ I] (read as
“x(i) such that P(x(i), i) ordered by I”) imposes the image of a preexisting ordering
of the index set I (such as the ordering of natural numbers if I ⊆ N) onto any
elements x(i) selected for inclusion by the predicate P, and thus denotes a set to-
gether with a total ordering. For example, the d-tuple [xk||k ∈ {1, ..., d}] denotes the
components of the vector x. It may be abbreviated as [xk]. Multiple ordering indices
are defined recursively or lexically, so for example a “2D Array” [Mij|| i, j ∈ I] is an
ordered set of ordered sets, [[Mij||i ∈ I] || j ∈ I] . It may be abbreviated as [Mij].

2 Syntax definition

In this section we define the syntax of SPGs and of their extension to Dynamical
Grammars. SPG semantics will be defined in Section 3, and examples in the rest of
the paper.

2.1 Examples

Consider the rewrite rule

A1(x1), A2(x2), ..., An(xn) → B1(y1), B2(y2), ..., Bm(ym) with ρ([xi], [y j]) (2)

Here Ak and Bl are terms that denote elements τa of a set T = {τa|a ∈ A}, indexed
by elements a ∈ A of some totally ordered set A. Members of T are distinct symbols
called types, all different from one another. The reason (2) is written using terms
Ak and Bl rather than directly using the types τa is that different terms A and/or B
may denote repeated appearances of the same type τa. The terms are each optionally
followed by parenthesized expressions for parameters xi or y j, chosen from a base
language LP defined below. A term followed by such a parenthesized parameter (or
parameter vector) xi is called a parameterized term. We will frequently abbreviate
this notation for terms, using “τa(xi)” to denote a parameterized term of type τa with
a parameter whose value is given by xi. The terms Ai on the left hand side (the LHS)
can appear in any order, as can the terms B j on the right hand side (the RHS) of the
rule. The intended meaning of the “A1(x1), ..., An(xn) → B1(y1), ..., Bm(ym)” part
of this rule is that all the parameterized terms A are instantaneously converted or
transformed into the parameterized terms B at some time t. At that moment in time,
the rule is said to fire.

Also in (2), ρ is a nonnegative function, assumed to be denoted by an expression
in a base language LR defined below, and also assumed to be an element of a vector
space F of real-valued functions. Its arguments consist of all the parameters from

E. Mjolsness, G. Yosiphon

all the parameterized terms on both sides of the rule, LHS and RHS, listed in a
standardized order induced by the order on A (not the arbitrary order induced by the
order of the As and Bs within the rule RHS and LHS.) Informally, ρ is interpreted
as a nonnegative probability rate: the independent probability per unit time that any
possible instantiation of the rule will fire if its left hand side precondition remains
continuously satisfied for a small time interval. This interpretation will be formalized
in the semantics.

As an example of a rule,

HydrogenAtom(x), HydrogenAtom(y) → HydrogenMolecule(z)

with f (||x − y||) exp(−
(
||x − z||2 + ||y − z||2

)
/2σ 2) (3)

might describe a chemical reaction complete with atomic position vectors x,y and z.
An example of a stochastic parameterized grammar built out of rules like

(2) or (3) is the following:

grammar (discrete-time) binaryclustergen (nodeset(x) → {node(xi)}) {
nodeset(x) → node(x) with q0

nodeset(x) → node(x), child(x) with q1

nodeset(x) → node(x), child(x), child(x) with q2

child(y) → nodeset(x) with φ(x, y)

}

Informally, the elements of this grammar are a header line and a body within
brackets consisting of four rules on separate lines. The order of the rules does not
affect the meaning of the grammar, in the semantics to be defined in Section 3.
The header line begins with the keyword grammar (keywords are typeset in bold)
followed optionally by a parenthesized directive (here, “(discrete-time)”) that de-
termines whether the continuous-time semantics or the discrete-time semantics is
to be used, in case that is not obvious from the context. These two alternative se-
mantic maps are defined and interrelated in Section 3. Then comes the name of
the grammar (here, “binaryclustergen”) followed optionally by a parenthesized rule,
the “header rule” (here nodeset(x) → {node(xi)}) whose LHS specifies the inputs of
the grammar (the parameterized term “nodeset(x)”) which provides the initial condi-
tion for an otherwise empty collection or “pool” of parameterized terms (defined in
Section 3.1), and whose RHS specifies the outputs of the grammar (a set of “node”
terms indexed by i and bearing parameter xi), which may or may not include the
complete contents of the pool of parameterized terms (here it only includes “node”
terms and not “nodeset” or “child” terms).

In the body of binaryclustergen, firing any of the first three rules allows a node-
set term to be replaced with one parent node and zero, one, or two child nodes,
respectively; the rule and hence the number of children is chosen with probabili-
ties proportional to qn, normalized if necessary. Firing the last rule, on the other
hand, replaces a “child” term with a “nodeset” term with a conditional distribution
φ(x|y) ≡ φ(x, y)/

∫
φ(x, y)dx proportional to φ(x, y) (e.g. a Gaussian in x − y) on

the child parameter vector x given the parent parameter vector y.
At any given discrete time there may be many possible instantiations of the LHS

of each rule that could fire. If distributions qn and φ(x, y) are each already normal-
ized, instantiations of the first three rules have the same total probability of firing as

Stochastic process semantics for dynamical grammars

instantiations of the last rule. Whether they are normalized or not, qn is the relative
probability for nodeset(x) to be the LHS of each of the first three rules when they
fire, and ((y) =

∫
φ(x, y)dx is the relative probability for child(y) to be the LHS

of the last rule when it fires. Thus, the relative probabilities of firing the rules, and
of firing them with different possible left hand sides, is determined by the same
probability rate functions that determine the relative probabilities of the various
possible right hand side rule outputs of a given rule (here, the parameter x in φ(x, y)).
Depending on [qn], this grammar may or may not terminate in a finite number of rule
firings and a finite final collection of nodes. In this particular grammar, explicit graph
links between children and parents are not created but that is also possible using the
Object ID mechanism described below (Section 2.4.2).

2.2 Rule syntax

Next we formalize the language LP that constrains the parameterized terms in rules
such as (2), and the languageLR that constrains the rates. This will define the minimal
allowed syntax for rules. Also we informally outline the intended semantics for a set
of keywords including with, subject to and others.

We now define LP. Each parameterized term Ai(xi) or B j(y j) is of type τa and its
parameters xi take values in an associated (ordered) Cartesian product set Va of da
factor spaces chosen (possibly with repetition) from a set of base spaces D = {Dβ |β ∈
B}. Each Dβ is a measure space with measure µβ . Particular Dβ may for example be
isomorphic to the integers Z with counting measure, or the real numbers R with

Lebesgue measure. The ordered choice of spaces Dβ in Va =
da∏

k=1
Dβ=γ (ak) constitutes

the type signature [γak ∈ B|1 ! k ! da] of the type τa.
Polymorphic argument type signatures are supported by defining a derived type

signature [σab ∈ {0, 1}||a, b ∈ A], based on elementary factor space compatibilities
[σ̃akβ ≡ (Dβ ⊆ Dγ (ak)) ∈ {T, F}||1 ! k ! da,β ∈ B]. For example we can regard Z as
a subset of R. Then we can define the overall ability to cast type b as a subtype of
type a using the 0/1-valued matrix σab :

δab ≤ σab ≤ #(∃mappingl(k, b)| ∧1≤k≤da σ̃akγ (bl(k,b))) (4)

where

σ̃akβ ≡
(
Dβ ⊆ Dγ (ak)

)

The simplest case is trivial polymorphism of types to themselves: σab = δab , using the
Kronecker delta notation for the identity matrix. Type polymorphism is intended to
affect both rule-matching (Section 3.4 below) and subgrammar calls (Section 2.4.1
below).

Correspondingly, parameter expressions xi are tuples of length da, such that each
component xik is either a constant in the space Dβ=γ (ak), or a variable Xc(c ∈ C) that
is restricted to taking values in that same space Dβ(c). The variables that appear in a
rule this way may be repeated any number of times in parameter expressions xi or
y j within a rule, providing only that all components xik take values in the same space
Dβ=γ (ak). A substitution θ : c *→ Dβ(c) of values for variables Xc assigns the same
value to all appearances of each variable Xc within a rule. Hence each parameter

E. Mjolsness, G. Yosiphon

expression xi takes values in a fixed tuple space Va under any substitution θ . This
defines the language LP.

We now constrain the language LR. Each nonnegative function ρ([xi], [y j]) is a
probability rate: the independent probability per unit time that any particular instan-
tiation of the rule will fire, assuming its precondition remains continuously satisfied
for a small interval of time. It is a function only of the parameter values denoted by
[xi] and [y j], and not of time. Each ρ is denoted by an expression in a base language
LR that is closed under addition and multiplication and contains a countable field of
constants, dense in R, such as the rationals or the algebraic numbers. For example
LR could allow for standard operations such as algebraic expressions built from
constants and variables by +, -, *, /, ^p for p ∈ R, exp, log, and tuple concatenation
and projection operations, where these are defined on the relevant spaces Dβ . ρ is
assumed to be a nonnegative-valued function in a Banach space F(V) of real-valued
functions defined on the Cartesian product space V of all the value spaces Va(i) of
the terms appearing in the rule, taken in a standardized order such as nondecreasing
order of type index ∈ A on the left hand side followed by nondecreasing order of
type index a on the right hand side of the rule.

Thus if a(i) is the type of the ith LHS term and a′(j) is the type of the j’th RHS
term, the argument ordering is induced by a slight generalization of the ordered set
notation of Section 1.2 :

ρr

([
xi|a(i) ∈ A||i ∈ IL

]
,
[
y j|a′(j) ∈ A|| j ∈ IR

])

Terms xi and xi′ that share the same type a(i)=a(i′) are ordered arbitrarily among
themselves, and the function ρr must be symmetric with respect to permutations of
such terms. For example (3) is symmetric with respect to interchange of x and y, but
not x or y with z.

Provided LR is expressive enough, it is possible to factor ρr([xi], [y j]) within LR
as a product ρr=ρ

pure
r ([xi])Prr([y j]|[xi]) of a conditional distribution on output para-

meters given input parameters Prr([y j]|[xi]) and a total probability rate ρ
pure
r ([xi]) as

a function of input parameters only. This factoring may be a useful step for SPG
implementations.

With these definitions we can use a more compact notation by eliminating the
A’s and B’s, which denote types, in favor of the types themselves. (The expression
τi(xi) is a parameterized term, which can match to a parameter-bearing object or
term instance in the pool of such objects or terms, defined in Section 3.1. The fine
distinction between a parameterized term in a rule and a parameter-bearing term
instance in the pool of terms is often omitted.) The problem is that a particular
type τi may appear in a rule any finite number of times, and indeed a particular
parameterized term τi(xi) may appear any finite number of times. So we use multisets
{...τa(i)(xi)...}∗ (in which the same object τa(i)(xi) may appear as the value of a term for
several different values of the index i) for both the LHS and RHS (Left Hand Side
and Right Hand Side) of a rule. The asterisk subscript on the brackets means that
the object is a multiset rather than a set. If IL and IR are index sets, we may use set-
builder notation {element(i)| Predicate(i)} as a meta-language to write a general form
for rules with fixed number of RHS and LHS elements:

{
τa(i)(xi)|i ∈ IL

}
∗ →

{
τa′(j)(y j)| j ∈ IR

}
∗ with ρr([xi] , [y j]) (5)

Stochastic process semantics for dynamical grammars

Here the same object τa(i)(xi) may appear as the value of several different values
of the index i under the mappings i *→ (a(i), xi) and/or i *→ (a′(i), yi). Note that
the multisets of terms in both RHS and LHS are intrinsically unordered, but the
components of a vector parameter within a term are ordered. Either LHS or RHS can
be the null multisets, denoted as “Ø”. Finally we introduce the shorthand notation
τi = τa(i) and τ ′

j = τa′(j), and revert to the standard informal notation {} for multisets;
then we may informally write

{τi(xi)} →
{
τ ′

j(y j)
}

with ρr([xi] , [y j]) (6)

In addition to the with clause of a rule following the LHS→RHS rule header,
several other alternative clauses can be used as follows. “under E(x, y)” is translated
into “with exp(−E(x, y))/Z (x)” where Z (x) is the normalizing Boltzmann distrib-
ution partition function corresponding to E(y), holding x constant. Equality con-
straints “subject to f (x, y)” is translated into “with δ(f (x, y))” where δ is an
appropriate Dirac or Kronecker delta function that enforces a constraint f (x, y) = 0.
(Inequality constraints such as “subject to f (x, y) ≶ 0” and Boolean combinations
thereof, may be translated similarly using the #(P) function of (1) above). A conve-
nient synonym for “subject to” is “where”. Clauses of the form “via ,” and “substi-
tuting ,”, which will be defined in Section 3.5, are used in order to call a grammar
within a grammar as a subroutine or macro, respectively. A rule may have multiple
clauses of the same or different keyword; each clause contributes a multiplicative
factor to the overall firing rate ρ. In the absence of any clause ρ defaults to unity, for
consistency with this multiplicative convention.

The set-builder metalanguage for describing the form of SPG rules is also conve-
nient for specifiying multiple similar rules in a rule schema, all of which belong to a
grammar. For example we would like to admit a rule schema that could replace the
first three rules in the binaryclustergen grammar:

nodeset(x) → node(x), {child(x)|1 ! i ! n} with q(n) subject to 0 ! n ! 2

This can be done by extending the rule language with a set-builder language LS
as follows: All sets are promoted to multisets; nested multisets (multisets whose
elements are multisets) are allowed but flattened to a single level, which is the LHS
or RHS multiset; unbound parameters in set-builder notation (such as n above) are
treated in the semantics as if the rule were a rule schema expanded out into many
copies of the rule with all possible combinations of values substituted in. Of course if
the sublanguage LS is taken to be trivial, no set-builder notation is allowed and all pa-
rameterized terms must be enumerated explicitly. The sublanguages LP, LR, and LS
are “parameters” of a full SPG language and characteristics of any implementation
of it.

2.3 Grammar syntax

A Stochastic Parameterized Grammar (SPG) , consists of (minimally) a collection
of such rules with common type set T , common base space set D, type signature
specification σ , term language LP, probability rate language LR, and set-builder
language LS.

As in the example of Section 2.1, the header line of a grammar begins with the key-
word grammar followed optionally by a parenthesized directive (“(continuous-time)”

E. Mjolsness, G. Yosiphon

or “(discrete-time)”) that determines whether continuous-time semantics, discrete-
time semantics, or some other semantics is to be used. Then comes the name of
the grammar followed optionally by a parenthesized rule, the header rule whose
LHS specifies the inputs of the grammar which provides the initial condition for an
otherwise empty pool of parameterized terms, and whose RHS specifies the return-
able outputs of the grammar. Thus the optional global “rule header” (LHS→RHS)
determines which terms will be considered input and output, as will be described in
more detail in Section 3.5 and Section 4 below. Following the rule header comes the
grammar body consisting of “{” followed by an unordered list of rules, each on one
or more separate lines, followed by a terminating “}”. The unordered list is to be
interpreted mathematically as a multiset of rules, so that the union of rulesets pre-
serves the total multiplicities of any rules they have in common. This interpretation is
required for compositionality of semantics, though rarely would the same rule appear
twice in a human-generated grammar, and such multiplicities could just be absorbed
into the probability rate functions. After defining the semantics of such grammars,
it may be possible to invent “semantically equivalent” classes of SPGs (as defined
in Section 5.2.1) which have the same semantics but a different type system, or have
richer sublanguages LP (perhaps including some of the operations allowed in LR),
LR, and LS, or other variants.

2.4 Advanced grammar syntax

This section is not essential for all SPG applications.

2.4.1 Syntax of subgrammar calls

A rule of the form

{
τa(i)(xi)|i ∈ IL

}
→

{
τa′(j)(y j)| j ∈ IR

}
via ,̃ (7)

occurring within another calling grammar , or even within the called grammar ,̃, is
how one continuous-time grammar can “call” another one in the manner of a subrou-
tine. Because term multisets are unordered, there is no positional notation to specify
the mapping of terms and types between calling grammar and called grammar. So any
parameterized terms in ,’s rule header that are to be associated with different type
names (different elements of T) in the two grammars, should be mapped explicitly.

Consider calling an SPG named ,̃ with header

grammar ,̃
({

τb(i)(xi)|i ∈ ĨL

}
→

{
τb ′(j)(y j)| j ∈ ĨR

})

The syntax for mapping of parameterized terms in a via call to this grammar is a set
of 1:1 term mapping rules:

{
τa(i) (xi) |i ∈ IL

}
→

{
τa′(j)

(
y j
)
| j ∈ IR

}

via ,̃
({
τa(i) (xi) → τb(i) (ϕi (xi)) |i ∈ IL

}
→

{
τb ′(j)

(
y j
)

→ τa′(j)
(
ϕ̃ j

(
y j
))

| j ∈ ĨR

})

(8)

Stochastic process semantics for dynamical grammars

or less formally

{τi(xi)} →
{
τ ′

j(y j)
}

via ,̃
({τi(xi) → σi(ϕi(xi))} →

{
σ ′

j(y j) → τ ′
j(ϕ̃ j(y j))

})
.

Each set of one-to-one rules (LHS and RHS arguments to ,) can themselves provide
a one-to-one or many-to-one type substitution tables in the form of 0/1-valued ma-
trices M(1)

ba and M̃(1)
ab . In addition argument conversion functions {ϕi|i ∈ IL}, {ϕ̃ j| j ∈

ĨR} must be provided if necessary by expressions in LR to map the correct spaces: ϕi :
Va(i) *→ Vb(i) and ϕ̃i : Vb ′(j) *→ Va′(j). These could just be identity mappings, permuta-
tions, or subpermutations (that drop some components) of the respective argument
lists if compatible with the value spaces, for example in accordance with (4) for
polymorphic types.

The essential idea is that a transformation from {τi} to {τ ′
j} can be established by

straightforwardly mapping τi to σi, calling another grammar to transform from σi(xi)

to σ ′
j(y j), and then straightforwardly argument conversion mapping σ ′

j to τ ′
j. The

straightforward argument conversion mappings ϕi and ϕ̃ j are associated with tables
of allowed type translations. These tables can be summarized as sparse 0/1-valued
matrices M(1) and M̃(1) for which 1 · M ! 1 and 1 · M̃ ! 1. These type translations
could also be one-to-many, but that would require an extra step in the semantics
of stochastically choosing the translation of each type in the semantics of calling a
grammar, which we do not define in Section 3.

To the syntax-specified type conversions we may also add any other conversions
allowed automatically by type polymorphism matrix σab ≥ δab defined in Section 2.2,
using matrix multiplication to state the constraints for sufficiency of automatic con-
version pathways:

M(2)
ba ≤

∑

cd

σbd M(1)
dcσca and

∑

b

M(2)
ba ! 1

M̃(2)
ab ≤

∑

cd

σac M̃(1)
cd σdb and

∑

a

M̃(2)
ab ! 1

Any single or multiple inheritance type-conversion algorithm that satisfies these in-
equalities is allowed; it is always possible to satisfy them since σab ≥ δab and one
could enforce exact type matches M(2) = M(1) and M̃(2) = M̃(1) on the calling syntax.
In this way we encode subgrammar argument polymorphism using the M and M̃
matrices.

Any types not occurring in the translation tables are not to be shared between
calling and called grammars ,̃ and ,̃. Thus a final step of processing M is to have
it push all remaining types onto an inaccessible stack, and for M̃ to pop the stack.
Conceptually, represent a larger pool vector space by the vector concantenation (,̃
pool, , and all other calling grammar pools). Then the resulting type translation
table is

M = M(3) =
(

M(2) 0
I − diag(1 · M(2)) 0

)
; M̃ = M̃(3) =

(
M̃(2) I

0 0

)
;

thus,

M̃M =
(

M̃(2)M(2) + I − diag(1 · M(2)) 0
0 0

)
!

(
I 0
0 0

)
, elementwise.

E. Mjolsness, G. Yosiphon

In this way we also encode nonoverlapping subgrammar contexts using the M and M̃
matrices.

As a syntactic convenience, it frequently happens that types names are to be
mapped into themselves. In those cases the inner arrow of the one-to-one mappings
can be omitted, as for i ∈ IL1 and j ∈ IR1 below:

... via ,̃
({{

τa(i)(xi)|i ∈ IL1
}
,
{
τa(i)(xi) → τb(i)(xi)|i ∈ IL2

}}

→
{{
τb ′(j)(y j)| j ∈ IR1

}
,
{
τb ′(j)(y j) → τa′(j)(y j)| j ∈ IR2

}})
(9)

(again using the convention of “flattening” nested sets in RHS and LHS) or even
skipped entirely (as in (7) above). If all terms are syntactically mapped into them-
selves, M(1) = I but the polymorphism (M(2)) and pool separation (M(3)) steps are
still in operation.

As in Section 2.2, a single rule could have both via and with or other clauses, in
which case their firing rates are multiplied. For possibly nonconverging SPGs the via
call can add an extra time argument, so that the syntax of (7) can be “...via ,̃(t)”.

Another form of reference between grammars is more analogous to the “macros”
than subroutines in a programming language: it is similar to inserting the called
grammar rules into the calling grammar for possible one-at-a-time rule firings. In this
case the syntax uses the clause “substituting ,̃”, possibly sped up or slowed down by
an optional “with ρ(x)” clause. The syntax of “substituting ,̃” analogous to (7) is

{
τa(i)(xi)|i ∈ IL

}
→

{
τa′(j)(y j)| j ∈ IR

}
substituting ,̃ (10)

and likewise for (8) and (9). But unlike a macro, the RHS→LHS syntax constrains
the substituting grammar ,̃’s inputs and outputs, again using the M and M̃ type
translation tables in matrix form. The semantics of rules using via and substituting
will be defined in Section 3.5, assuming that type translation table matrices M and M̃
have been defined as above.

2.4.2 Syntax of object identifiers (OIDs)

Consider the grammar syntax

grammar (discrete-time) binaryclustertreegen (nodeset(x; Null) → {node(xi)}) {
nodeset(x; G) → P := node(x; G), {child(x; P)|1 ! i ! n}

with q(n) subject to 0 ! n ! 2
child(y; P) → nodeset(x; P) with φ(x|y)

}

This is a variant of binaryclustergen that generates terms with Object Identifiers
which act as pointers from child nodes to parent nodes. The novel syntactic form
required for parameterized terms using OIDs is

P := τa(i)(xi; LP)

where P is an OID and LP is an OID or a vector of OID’s. In Section 5.2 will show
how the semantics of SPGs without OIDs can be extended to the semantics of SPGs
with OIDs, by mapping the syntax of the latter to the syntax of the former.

Stochastic process semantics for dynamical grammars

2.4.3 Set-builder quantifiers

A practically useful SPG syntax is the NotExists (!i) quantifier. It prevents a LHS
match if the pool contains any parameterized terms of the specified type. As an
example, the following rule will be matched only to nodes that have no outgoing
edges (thus, only to leaves in a tree structure):

{
node(i, x),

{
! j edge(i, j)

}}
→ leaf(i, x) with f (x)

The semantics of this quantifier and an example are exhibited in Section 5.1.
It can also be useful to allow an unspecified number of objects on the LHS by

means of a universal For-All (∀i) quantifier, which matches to the set of all parame-
terized terms in the pool that fit the pattern. For example the following rule should
remove simultaneously all the edges outgoing from node i, with a probability rate
function depending on the node’s location:

{
node(i, x),

{
∀ j edge(i, j)

}}
→ node(i, x) with f (x)

The universal quantifier raises theoretical difficulties for operator semantics that we
will pose (Section 5.1.1) but not solve in this paper.

2.5 Dynamical grammars and implementation

2.5.1 Dynamical grammar syntax

Dynamical Grammars are defined as a generalization of Stochastic Parameterized
Grammars that include rules with solving clauses:

{τi(xi)|i ∈ IL} → {τi(xi)|i ∈ IL} solving
{

dxi

dt
= Fi(

[
x j| j ∈ IL

]
)|i ∈ IL

}
(11)

where the square brackets in the argument to Fi refer to ordered rather than un-
ordered function arguments, and each Fi is an expression in LR denoting a function
in F(V). Such clauses may be used in order to express dynamics of variables that
evolve continuously over time. The continuous dynamics can be modeled by Ordi-
nary Differential Equations (ODEs, as in differential L-systems [11]), Partial Differ-
ential Equations (PDEs), and Stochastic Differential Equations (SDEs). The ODE
case is illustrated above. Their semantics will be defined in terms of the semantics
of grammars containing with clauses, along with extra time-evolution operators, in
Section 5.3. In this way, Dynamical Grammars can specify members of a very general
class of dynamical systems.

2.5.2 Implementation

We have created a preliminary implementation of an interpreter for most of this
syntax in the form of a Mathematica notebook called “Plenum”, which draws samples
according to the continuous-time semantics of Section 3 below. The current imple-
mentation includes with, under, subject to, solving, !, and ∀, and a limited form of
via, but not substituting or type polymorphism.

E. Mjolsness, G. Yosiphon

3 Semantic maps

We provide a semantics function "c(,) as an algebraic construction that results in
a dynamical system in the form of a stochastic process, if it exists, or a special “un-
defined” element if the stochastic process doesn’t exist (Sections 3.1 and 3.4 below).
The stochastic process is defined by a very high-dimensional differential equation
(the master equation) for the evolution of a probability distribution in continuous
time. On the other hand we will also provide a semantics function "d(,) that results
in a discrete-time stochastic process for the same grammar, in the form of an operator
that evolves the probability distribution forward by one discrete rule-firing event
(Sections 3.1 and 3.6 below). In each case the stochastic process specifies the time
evolution of a probability distribution over the contents of a “pool” of grounded
parameterized terms τa(xa) each of which can be present in the pool with any allowed
multiplicity from zero (not present) to nmax

a . We will relate these two alternative
“meanings” of an SPG, "c(,) in continuous time and "d(,) in discrete time, in
Section 3.8.

Both semantic maps are given in terms of operator algebra. Starting with the
grammar we construct a linear mapping from a probability distribution over states
at one time to a function proportional to the probability distribution over states at
a later time. The mapping is constructed by algebraic operations (operator addition
and multiplication, and scalar-operator multiplication) from more elementary linear
mappings. To do so we need to define the states.

3.1 System states and master equation

A pool state or state of the pool of term instances is defined as a nonnegative-integer-
valued function n : V → Z∗ = {0, 1, 2, ...}. It is the “number of copies” na(xa) ∈ {0, 1,

2, ...} of each parameterized term τa(xa) that is grounded (has no variable symbols
Xc), for any combination (a, xa) ∈ V = ∐

a∈A
a ⊗ Va of a type index a ∈ A and a para-

meter value xa ∈ Va. We may denote this pool state by {na(x)}, as a shorthand for
such functions. The pool itself may be identified with the set {(a, xa, na(xa))|na(xa)) 0=
0}, i.e. those term instances that are present in a pool state. Each type τa may be
assigned a maximum possible value n(max)

a for all na(xa), commonly ∞ (no constraint
on copy numbers) or 1 (so na(xa) ∈ {0, 1} which means each term-value combination
is simply present or absent). The system state or state of the full system at time t
is defined as a probability distribution on all possible values of this (already large)
pool state: Pr({na(xa)|(a, xa) ∈ V}; t) ≡ Pr({na(xa)}; t). The probability distribution
concentrated on one particular pool state {na(xa)} is called a pure state of the dy-
namical system and denoted |{na(xa)}〉. A probability distribution that is not a pure
state is called a mixed state of the system.

For continuous-time we define the semantics "c(,) of our grammar as the unique
solution, if one exists, of the following differential equation:

d
dt

Pr({na(x)} ; t) =
∑

{ma(x)}
H{n}{m} Pr({ma(x)} ; t), i.e. in matrix notation

d
dt

Pr(t) = H · Pr(t) (12)

Stochastic process semantics for dynamical grammars

starting from any initial condition Pr(0). This is called the master equation [22]; see
also [6]. It has the formal solution

Pr(t) = exp(tH) · Pr(0). (13)

There may not be a unique solution of the master equation for all times t > 0,
then we define the definition limit for , and Pr(0) as the least upper bound T ∈
[0,+∞] of times T ′ ∈ [0,+∞) for which there is a unique solution for all times
t ∈ [0, T ′] starting from initial condition Pr(0) . T exists and is at least zero since
the initial condition itself is the unique solution on [0, 0] = {0}. Furthermore for
every nonnegative integer k, there is a unique solution on [0, (1 − 1/k) × T]. For
each initial condition Pr(0), we define "c(,) to be (a) the common unique solution
on t ∈ [0, T) = ⋃∞

k=1[0, (1 − 1/k) × T]; concatenated with (b) a special “not really
defined” symbol (such as “⊥”) thereafter for t ∈ [T, +∞]. We do not attempt to
maintain “partial definedness” for mixed states that include nonzero weights for pure
states for which the master equation has a unique solution at time t as well as pure
states for which the master equation has no unique solution at time t, so this is a
fairly conservative definition of "c(,). The operator H will be defined in Section 3.4,
completing the definition of "c(,).

For discrete-time semantics "d(,) there is some probability update map U which
acts on probability vectors, in a manner designated by “◦”, to evolve them forward
by one rule-firing time step. Then after k discrete time steps or rule-firings the prob-
ability is:

Pr(k) = U ◦ ...U ◦ Pr(0) ≡ Uk ◦ Pr(0) (14)

which, taken over all k # 0 and Pr({na(x)}; 0), defines "d(,). The operator U will
be defined in Section 3.6, completing the definition of "d(,). Both H and U will be
determined by an operator Ĥ computed from the SPG syntax.

In both continuous-time and discrete cases the long-time evolution of the sys-
tem may converge to a limiting distribution, e.g. "∗

c (,) · Pr(0) = limt→∞ Pr({na(x)}; t),
which is a key feature of the semantics. But we do not define the semantics "c/d(,)

as being only this long-time limit even if it exists. Thus semantics-preserving trans-
formations of grammars are fixedpoint-preserving transformations of grammars but
the converse may not be true.

Fortunately, even though the mathematical objects just defined are large, they
are completely determined by the generators H and Ĥ which in turn are simply
composed from elementary operators acting on the space of such probability dis-
tributions. Indeed they are elements, or limits of elements, of the operator polyno-
mial ring R[{Bα}] defined over a set of basis operators {Bα} in terms of operator
addition, scalar multiplication, and noncommutative operator multiplication. These
basis operators {Bα} provide elementary manipulations of the copy numbers na(x).
The operator algebra is meaningful: operator addition corresponds to composition
of parallel processes, nonnegative scalar multiplication corresponds to speeding up
or slowing down a process (as is done in the product of scalar rate functions from
different clauses in a single rule), and operator multiplication corresponds to the
obligatory co-occurrence of the constituent events that define a process, in immediate
succession. Commutation relations between operators describe the exact extent to
which the order of event occurrence matters.

E. Mjolsness, G. Yosiphon

3.2 Probabilistic Fock spaces

As a foundation, the function space that probability distributions Pr({na(xa)}) occupy
may be formalized as follows. (This subsection is not essential to understanding the
applications presented later.)

From Section 2.2 we know that each value space Va is a measure space, with a
σ -algebra σa of “events” on which probability is to be defined. A probability distrib-
ution on a measure space X (such as Va in Section 2.2) is just a nonnegative measure
P on the σ -algebra for which P(X) = 1. We now construct a probabilistic version of
a many-particle “symmetric Fock space” following [23]. For any nonnegative integer
na we can define the set of states that have a total of na “copies” of grounded para-
meterized term τa(xa), as the permutation-symmetrization of the Cartesian product
of na copies of Va:

fa(na) =
(

na⊗

m=1

Va

)

/S(na) .

Here S(n) is the symmetric group on n items. The division sign produces equivalence
classes of Cartesian-product members that differ only by a permutation of na items.
The idea here is that instantiated terms don’t have individual identities aside from
the values of their parameters; two terms of the same type and value are equivalent.
A new σ -algebra is induced on the space fa(na) by the Cartesian product operation
and another new σ -algebra is induced by the symmetrization operation. Next, any
finite nonnegative number na of terms are allowed in a disjoint union of measure
spaces fa(na), and the construction is repeated in a cross product over for all term
types a:

fa =
∞⊕

na=0

fa(na) and f =
⊗

a

fa

Now f is a measure space (since it has an induced σ -algebra) and thus defines a
probabilistic Fock space F as the set of probability distributions defined on f . In this
way we arrive at a symmetric Fock space for probability distributions. It is compara-
ble to the usual construction in quantum mechanics which produces a Hilbert space
of probability amplitude functions for many-particle systems, except that probability
distributions do not require the Hilbert space framework as quantum amplitudes
do. This probabilistic version of a Fock space is suitable for defining probability
distributions over the sets of copy numbers that label pure states |{na(xa)}〉.

3.3 Operator algebra

The simplest basis operators {Bα} are elementary creation operators {âa(x)|a ∈ A ∧
x ∈ Va} and annihilation operators {aa(x)|a ∈ A ∧ x ∈ Va} that increase or decrease
each copy number na(x) in a particular way (reviewed in [24]):

âa(x)| {nb (y)}
〉

= | {nb (y) + δK(a, b)δ(x, y)}〉 (15)

aa(x)| {nb (y)}〉 = na(x)| {nb (y) − δK(a, b)δ(x, y)}〉 (16)

Stochastic process semantics for dynamical grammars

where δK(a, b) is the Kronecker delta function (defined in Section 1.2). These two
operator types then generate Na(x) = âa(x)aa(x)

Na(x)| {nb (y)}〉 = âa(x)aa(x)| {nb (y)}
〉
= na(x)| {nb (y)}

〉
,

and they satisfy

[
aa(x), âb (y)

]
≡ commutator of a and â ≡ aa(x)âb (y) − âb (y)aa(x)

= 0 if a 0= b or x 0= y.

We can write these operators â, a as finite or infinite dimensional matrices de-
pending on the maximum copy number n(max)

a for type τa. If n(max)
a =1 (for a fermionic

term), and we if omit the type and value subscripts which are all assumed equal and
discrete below, then

â =
(

0 0
1 0

)
, a =

(
0 1
0 0

)

{
a, â

}
≡ anticommutator of a and â ≡ aâ + âa

=
(

1 0
0 1

)
= I; âa = N ≡

(
0 0
0 1

)
.

These 2 × 2 matrices can be interpreted as follows. They operate on the two-
dimensional vector space of probabilities (p(0), p(1)) that the number of objects
present is n = 0 or n = 1. They do not in general conserve total probability, so this
is the positive orthant of a two-dimensional space. The operator a moves all the
probability p(n = 1) to the n = 0 state, i.e. destroys an object, and it simply eliminates
the original probability p(n = 0) from the system:

a
(

q
p

)
=

(
0 1
0 0

)(
q
p

)
=

(
p
0

)

Similarly â creates an object but doesn’t conserve probability. Probability conserva-
tion will be restored using more complex operators built out of these fundamental
ones. Here and below, the matrix rows and columns are indexed by number n of
indistinguishable objects (number of copies of an object of a given type a and para-
meter x) immediately before and after an operator is applied.

Likewise if n(max)
a =∞ (for a bosonic term),

â =





0 0 0 0 · · ·
1 0 0 0
0 1 0 0
0 0 1 0
...

. . .
. . .




= δn,m+1 and a =





0 1 0 0 · · ·
0 0 2 0
0 0 0 3

0 0 0 0
. . .

...
. . .




= mδn+1,m,

E. Mjolsness, G. Yosiphon

and

[
a, â

]
≡

(
aâ − âa

)
= I =





1 0 0 0 · · ·
0 1 0 0
0 0 1 0
0 0 0 1
...

. . .




; âa = Na ≡





0 0 0 0 · · ·
0 1 0 0
0 0 2 0
0 0 0 3
...

. . .




.

By truncating these matrices to finite size n(max) < ∞ we may compute that for some
polynomial Q(N|n(max)) of degree n(max)-1 in N with rational coefficients,

[
a, â

]
= I + NQ(N|n(max)).

Eg. if n(max)=1 then Q = −2; if n(max)=∞ then Q = 0. If the parameters x are contin-
uous e.g. real-valued, then the general commutator relation becomes

[
a(x), â(y)

]
= δ(x − y)[I + NQ(N|n(max))] (17)

where δ is again the Dirac delta (generalized) function appropriate to the (product)
measure µ on the relevant value space V.

For any measure space of parameter values x, and for any n(max), the set of all
operators of the form a(x) and â(x) generate an algebra over the real numbers by
scalar multiplication and operator–operator addition and multiplication. This algebra
is associative. The commutators listed above (in (17)) suffice to derive commutator
expressions for all pairs of operators in this algebra; thus they provide a specifica-
tion of the Lie algebra associated with the operator algebra, in which all operator
triples satisfy the Jacobi identity [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0. The im-
portance of the commutator for dynamical system applications is that it characterizes
the nature of the noncommutation and hence interdependence (or interference) of
different kinds of time-evolution operators that occur in the same dynamical system,
as will be illustrated in Section 3.7.1. (Anticommutators play an analogous role in
“Lie superalgebras” that arise in supersymmetric particle theories and elsewhere
in physics, and are potentially important since we frequently use the special case
n(max) = 1.) Thus, commutators and commutation relations are fundamental to the
operator formulation of dynamical systems.

3.4 Continuous-time semantics

For a grammar rule number “r” of the form of (5) we define the operator that first
(instantaneously) destroys all parameterized terms on the LHS and then (immedia-
tely and instantaneously) creates all parameterized terms on the RHS. This happens
independently of time or other terms in the pool. Assuming that the parameter
expressions x, y contain no variables Xc, the effect of this event is:

Ôr = ρr([xi] , [y j])




∏

i∈rhs(r)

âa(i)(xi)








∏

j∈lhs(r)

ab(j)(y j)



 (18)

Stochastic process semantics for dynamical grammars

The operators within each of the two products above commute, so their order
within each product is arbitrary. If there are variables {Xc}, we must sum or integrate
over all their possible values in

⊗
c

Dβ(c):

Ôr =
∫

Dβ(1)

...

∫

Dβ(c)

...

(
∏

c

dµβ(c)(Xc)

)

ρr
(
[xi({Xc})] ,

[
y j({Xc})

])

×




∏

i∈rhs(r)

âa(i)(xi({Xc}))








∏

j∈lhs(r)

ab(j)(y j({Xc}))



 (19)

Thus, syntactic variable-binding has the semantics of multiple integration. This is the
same result one would get if each rule with variables were replaced with a (finite,
countable, or uncountably infinite) set of rules with all possible values substituted in
for all the variables, with firing rates weighted by the relevant measure, and running
in parallel.

For the same reason, nontrivial polymorphism of rule input types (Section 2.2)
may be supported using summation over all possible subtypes d of each rule input
type b(j), for which σb(j)d = 1, as follows:

Ôr =
∫

Dβ(1)

...

∫

Dβ(c)

...

(
∏

c

dµβ(c)(Xc)

)

ρr
(
[xi({Xc})] ,

[
y j({Xc})

])

×





∏

i∈rhs(r)

âa(i)(xi({Xc}))










∏

j∈lhs(r)

[
∑

d

σb(j)dad(y j({Xc}))
]

 . (20)

Again summation gives the same semantics as rule replication would. If σ is the
identity matrix, this equation reduces to (20).

Constructed this way, the semantics for each rule is oblivious in that every possible
rule firing has a probability per unit time which does not depend on the number
of other possible rule firings of the same or different rules. The increasing integer
entries of the annihilation operators ensure this property. This is also true of chemical
reaction networks but not, for example, of multi-token Petri net transitions. For
example a rule that requires as input exactly two copies of a given parameterless
term τa, finds its probability rate function multiplied by na(na − 1) ≡ (na)2 (from two
powers of the annihilation operator) which is proportional to

(na
2

)
, the number of

ways those two inputs can be chosen from the pool. Thus the probability per possible
instantiated rule firing is independent of na, and likewise for other term numbers nb .

Likewise for a rule with k identical inputs, the annihilation operator monomial
(âa)

k gives a factor of na!/(na − k)! ≡ (na)k to the total firing rate, which is propor-
tional to the number of ways of choosing k unordered inputs from the pool

(na
k

)
. The

proportionality factor of k!, like ρr([xi], [y j]), is an intrinsic property of the rule r and
independent of the pool size na; thus we define ρr in (18) so that it already contains
this factor. This definition is a matter of convention, but our choice of convention
also has the advantage of reproducing the chemical Law of Mass Action for large na,
with ρr and not ρr/k! as the reaction rate for reaction r, thus agreeing with chemical
usage (see Section 4.2) in this important limit.

E. Mjolsness, G. Yosiphon

A monotonic rule has all of its LHS terms appear also on the RHS, so that nothing
is destroyed, in which case

Ôr = ρr([xi] , [y j])




∏

i∈rhs(r)\lhs(r)

âa(i)(xi)








∏

j∈lhs(r)

Nb(j)(y j)



 . (21)

Unfortunately the foregoing expressions for Ôr don’t conserve probability
because probability inflow to new states (described by Ôr) must be balanced by
outflow from current state (diagonal matrix elements). The following operator does
conserve probability:

Or = Ôr − diag(1T · Ôr) ≡ Ôr − Dr

For (18), assuming discrete parameters y, we may simply calculate Dr in terms of
(N)n ≡ N(N − I) (N − 2I) ... (N − (n − 1) I) = N!/ (N − nI)! :

Dr = ρr([xi] , [y j])




∏

b∈A,y∈Vb

(Nb (y))|{ j| j∈lhs(r)∧(b(j)=b)∧(y j=y)}|



 (22)

Note that lower bounds on nonzero Dr elements are determined by ρ.
For the entire grammar the time evolution operator is simply a sum of the gener-

ators for each rule:

H =
∑

r

Or =
∑

r

Ôr −
∑

r

Dr ≡ Ĥ − D . (23)

This superposition implements the basic principle that every possible rule firing is
an exponential process, all happening in parallel until a firing occurs. Note that (18,
19) and Ĥ = ∑

r
Ôr are encompassed by the polynomial ring R[{Bα}] where the basis

operators include all creation and annihilation operators. Ring addition (as in (23)
or (20)) corresponds to independently firing processes, such as arise from different
rules in the same grammar. Ring operator multiplication (as in (18)) corresponds to
obligatory event co-occurrence.

Equation 23 completes the definition of "(c) from Section 3.1.
Thus, SPGs have an “operational semantics” (the solution of the master equa-

tion for time evolution operators) that is also “compositional”, since the syntactic
union or concatenation of rules (or multisets of rules) in a SPG corresponds to com-
position of semantics by operator addition in (23). Operator multiplication is used
to construct the time evolution operator for each rule. The compositionality of the
semantics may be related to its asynchronicity: the operator semantics doesn’t in
general impose a unique preferred execution order on rule-firing events.

3.4.1 Relation to fixed points

The Ergodic Theorem gives conditions under which a stochastic process will con-
verge to a limiting distribution. It is tempting in that case to take the semantics to
be the limiting distribution rather than the much larger object that is the family of
approaches to equilibrium depending on the initial distribution. However, it would

Stochastic process semantics for dynamical grammars

be less general than to keep the full semantics and apply an application-dependent
projection operation afterwards.

3.4.2 Relation to quantum mechanics

If t → it =
√

−1t and

â =





0 0 0 0 · · ·
1 0 0 0
0

√
2 0 0

0 0
√

3 0
...

. . .
. . .




= √

nδn,m+1 and a =





0 1 0 0 · · ·
0 0

√
2 0

0 0 0
√

3

0 0 0 0
. . .

...
. . .




= √

mδn+1,m,

then we recover the particle number basis for time-evolution operators in quantum
mechanical dynamics. The same commutation algebra [a, â] = I holds, for nmax = ∞.
In this way SPG syntax can be given another continuous-time semantics as a quantum
mechanical system. However, the construction of Fock spaces is slightly different,
requiring Hilbert spaces [23], and the standard interpretation of the state vector
in terms of probability is different and loses quantum phase information, so the
mapping to discrete-time algorithms (undertaken below for the standard stochastic
process semantics) becomes more problematic. We may call an SPG with continuous-
time quantum semantics a “quantum grammar” and specify quantum semantics with
a semantics directive (Section 2.3) by using header syntax of the form “grammar
(quantum) ...” . Currently no implementation of this SPG semantics exists.

3.5 Semantics of subgrammar calls

This section is not essential for all SPG applications.
Suppose SPG , calls SPG ,̃ using a via clause. In Section 2.4.1 we have defined

the type translation matrices M and M̃. If the limiting distribution "∗
c (,̃) exists for all

initial states Pr(0), it defines a new operator B∗(,̃) = limt→∞ exp tH(,̃). It is possible
to project this operator onto a subspace for which na(x) = 0 for all but a few term
types τa, using subspace projection operators P({τa(i)|i ∈ IL}) and P̃({τa′(j)| j ∈ ĨR})
on types {τa(i)} that are induced by the (much smaller) 1:1 or many:1 type substitution
tables Mba and M̃ab specified using the syntactic forms of Section 2.4.1:

Ôr =
(

P̃
({
τa′(j)| j ∈ IR

}))
B∗(,̃)

(
P
({
τa(i)|i ∈ IL

}))

B∗(,) = limt→∞ exp tH(,) (24)

where P is obtained from M by

P
({
τa(i)|i ∈ IL

})
=

∑

i∈IL

∫

Va(i)

∑

b

Mba S ((b ,ϕi(xi)) , (a(i), xi)) dxi

using the shift operator

S(B, A)nBnA
= δnBnA =

(
0 0
I 0

)

E. Mjolsness, G. Yosiphon

where B = (b , y ∈ Vb) and A = (a, x ∈ Va) . Likewise for M̃ and P̃ using the reverse
shift operator ST .

This time evolution operator Or can be used to define the semantics of a rule of
the form

{
τa(i)(xi)|i ∈ IL

}
→

{
τa′(j)(y j)| j ∈ IR

}
via ,̃ (25)

within the calling grammar ,. This is how one continuous-time grammar can “call”
another one in the manner of a subroutine. Argument substitution in the calling
mechanism is defined by the projection operator P above. A single rule could have
both with and via clauses, in which case the two firing rates are multiplied. For
nonconverging SPGs, one can project to the probability distribution on states after
a definite elapsed time t using the operator B(,̃|t) = exp tH(,̃) in place of B∗(,̃) in
(24). In this case the syntax of (25) is “...via ,̃(t)”.

Another form of reference between grammars is more analogous to the “macros”
than subroutines in a programming language. In this case the syntax uses the clause
“substituting ,”, possibly sped up or slowed down by an optional “with ρ(x)” clause.
The semantics of “substituting ,̃” is

Ôr = ρ(x)
(

P̃
({

τa′(j)| j ∈ ĨR

}))
H(,̃)

(
P
({
τa(i)|i ∈ IL

}))
(26)

where as usual ρ defaults to 1. Thus the “substituting ,” clause implies use of the
distribution after just one step in ,. All interactions between super-grammar and
sub-grammar, whether mediated by “via” or “substituting” clauses, are restricted by
the subgrammar’s rule header.

The current semantics for both via and substituting supports only acyclic grammar
calls. This means that a grammar with recursive calls does not have a well defined
stochastic process semantics. We plan to expand the semantics for cyclic calls in
future work.

3.6 Discrete-time SPG semantics

The operator Ĥ describes the flow of probability per unit of continuous time, over an
infinitesimal continuous-time interval, into new states that result from a single rule-
firing of any type. We seek a related semantics for the same SPG in discrete time.

If we start in the state p0 = |{ma(xa)}〉 (a pure state of the pool of parameterized
terms) and condition the probability distribution at later times t > 0 on a single
rule having fired, thereby setting aside the probability weight for all other possibil-
ities, the resulting distribution p1 on pool states should be proportional to Ĥ · p0

with a proportionality constant that ensures normalization. So if the nth component
of p1 is:

[
p1

]
n ≡ Prdiscrete

(
| {na(xa)}〉

∣∣∣∣k = 1, | {ma(xa)}〉)
)

then we could define the discrete-time dynamics using

p1 =
(

Ĥ · p0

)
/
(

1 · Ĥ · p0

)
if 1 · Ĥ · p0 0= 0. (27)

Stochastic process semantics for dynamical grammars

Since p0 is a pure state, the l’th component of p0 is [p0]l = δ(l, m) and the nth
component of this expression is equal to

∑
l

Ĥn,l ∗
[

p0
]

l

∑
n′

∑
l

Ĥn′,l ∗
[

p0
]

l

= Ĥn,m
∑
n′

Ĥn′,m

=
∑

l

(

Ĥn,l/

(
∑

n′
Ĥn′,l

))
([

p0
]

l

)
=

[
Ĥ · diag(1 · Ĥ)

−1 · p0

]

n
.

The problem with this definition is the possibility of dividing by zero when the pure
(pool) state is also a terminal state (for which Ĥ · p0 = 0), so that no probability flows
out of it.

3.6.1 Principal discrete-time semantics

To avoid division by zero in the definition of "d(,), we first define

H̃(ω) = Ĥ + ω diag(#(1 · Ĥ = 0)) and D̃(ω) = diag(1 · H̃(ω)) (28)

for some fixed, real-valued ω # 0 (here # is applied elementwise), and

[
D′(D)

]
nm =

{
1/Dnn if n = m and Dnn 0= 0
0 otherwise

(29)

By this definition of the “prime” operation, for diagonal matrices D′′ = D. Note that
the continuous-time dynamics is unaffected by the value of ω:

H = Ĥ − D = H̃ − D̃ (30)

Now we can define the first rule-firing update

p1 = H̃ · D̃′ · p0, where D̃(H̃) = diag(1 · H̃) (31)

which is the same as (27) for nonterminal pure states, but for terminal states either
results in p1 = 0 (if ω=0) or p1 = p0(for ω > 0); A terminal state either has its prob-
ability vector vanish or stay fixed upon further update, depending on the value of the
fixed parameter ω. This update is now in a form that can be iterated as a linear map,
even if it is applied to a potentially mixed state such as p1, and hence can be iterated
and interpreted as a stochastic algorithm:

pk = H̃ · D̃′ · pk−1 =
(

H̃ · D̃′
)k

· p0 for k ∈ N. (32)

This expression directly specifies a discrete-time execution algorithm. It represents
a Markov chain if ω > 0. To see that, sort pool states into nonterminal states followed
by terminal states and write H̃ and D̃ in (nonterminal, terminal) block form:

H̃ =
(

H̃11 0
H̃21 ωI

)
; D̃ =

(
diag(1 · H̃1) 0

0 ωI

)
; (33)

E. Mjolsness, G. Yosiphon

and

D̃′ =
(

diag
(

1 · H̃1

)−1
0

0 I/ω

)

; H̃ · D̃′ =
(

H̃11 · diag(1 · H̃1)
−1

0

H̃21 · diag(1 · H̃1)
−1

I

)

(34)

Then 1 · H̃ · D̃′=1 and (32) represents a Markov chain for ω > 0. In the ω > 0 case,
further updates beyond the terminal state simply leave the probability unchanged
([H̃ · D̃′]22 = I); it is as if there were an extra rule that fires to no effect. These
updates may be called pseudo-events. Equations (30) and (33) and (34) show that
the actual value of ω > 0 is irrelevant to continuous-time and discrete-time dynamics
respectively, so we are free to pick some arbitrary nonnegative value scaled by some
property of Ĥ (since ω has units of frequency or inverse time). But we are also free
to retain the adjustability of ω, which is the strategy adopted here.

If ω=0 the update formula of (32) is still interpretable as a stochastic algorithm,
which halts upon reaching a terminal state, even though it is not a Markov chain:

H̃ = Ĥ =
(

Ĥ11 0
Ĥ21 0

)

; D̃ =
(

diag(1 · Ĥ1) 0
0 0

)
; (35)

and

D̃′ =
(

diag(1 · Ĥ1)
−1

0
0 0

)

; H̃ · D̃′ =
(

Ĥ11 · diag(1 · Ĥ1)
−1

0

Ĥ21 · diag(1 · Ĥ1)
−1

0

)

= ĤD (36)

The distribution pk as a function of step number (k) on possible execution traces
is defined as the discrete-time semantics "d(,), even if total “probability” decreases
with iterations due to terminal states. A disadvantage of the semantics in theω=0 case
is that in subsequent iterations the probability state vector pk carries no information
about which terminal state the system ended up in.

Termination probabilities pk(7) (a new scalar, not a vector like pk, at each step
k) may be included in the ω=0 case so that total probability is conserved, by the
following equivalent formulation which is an affine map but not a Markov chain:




pk+1

pk+1(7)

1



 =




Ĥ · D′ 0 0

−1 · Ĥ · D′ 0 1
0 0 1








pk

pk(7)

1










pk = Ĥ · D′ · pk−1 =
(

Ĥ · D′
)k

· p0

pk(7) = 1 − Ĥ · D′ · pk−1 = 1 −
(

Ĥ · D′
)k

· p0





(37)

We may consider the formal symbol “7” to be a new halted pool state (the discrete-
time successor to all terminal states including itself) which is treated specially by the
discrete-time semantics and not needed by the continuous-time semantics. But this
interpretation is not essential to the discrete-time semantics of (32).

Of course if there are no terminal pool states, then these variations are equivalent:
"d(,,ω > 0) = "d(,,ω = 0) . These variations may be called the principal discrete-
time Markovian semantics (33-34) and the principal discrete-time halting semantics
(35-36 or 37), respectively, and the principal discrete-time semantics ((32))

Stochastic process semantics for dynamical grammars

collectively. They both provide linear or affine maps U that may be substituted into
(14), to complete the definition of "d.

3.6.2 Alternative discrete-time semantics

We may also define the alternative discrete-time semantics " ′
d(,) for k rule firings

as follows. For a second rule firing, we assume there are no terminal states and we
iterate the form of (27) (now applied to both pure and mixed states) rather than (31):

p2 = Ĥ · p1(
1 · Ĥ · p1

) =
Ĥ ·

[(
Ĥ · p0

)
/
(

1 · Ĥ · p0

)]

(
1 · Ĥ ·

[(
Ĥ · p0

)
/
(

1 · Ĥ · p0

)]) =

=

(
Ĥ ·

(
Ĥ · p0

))
/
(

1 · Ĥ · p0

)

(
1 · Ĥ ·

(
Ĥ · p0

))
/
(

1 · Ĥ · p0

) =
(

Ĥ2 · p0

)
/
(

1 · Ĥ2 · p0

)

Iterating, the state of the discrete-time grammar after k rule firing steps is given
by the normalized version of Ĥk · p0:

pk =
(

Ĥk · p0

)
/
(

1 · Ĥk · p0

)
(38)

where Ĥ = ∑
r

Ôr as before. This expression depends on a normalization constant

ck = 1/(1 · Ĥk · p0). The normalizing division is analogous to the normalizing sub-
traction in the exponent of the continuous-time semantics. For unbounded operators
of infinite dimension this normalization can be state-dependent and hence dependent
on n, so there is no constant k such that for all k ck = αk. (An example with ck 0= αk

will be given in Section 4.1.1). This is an important distinction between the alternative
discrete semantics and the ω > 0 Markov Chain models, for which there exist such a
constant α = c1.

The two semantic maps "d(,) ((32)) and " ′
d(,) ((38)) agree in the special case

in which k = 1 and p0 is a pure nonterminal state. Unlike (32), (38) is nonlinear
(and non-affine) in p0 and hence more difficult to implement as an iterative sampling
algorithm.

3.7 Simulation/execution algorithms

To convert the operator for a stochastic process into an algorithm for drawing sam-
ples from that process, one must transform the starting probability (which in simu-
lations is usually a delta function corresponding to a pure state) by the exponential
operator exp(tH), and produce samples from the resulting distribution. There are
several standard approaches to computing and/or sampling this operator exponen-
tial. One that appears to be underexploited in the design of algorithms is the time-
ordered product expansion of Section 3.7.2.

The goal of obtaining a stochastic algorithm can be served by deriving Markov
Chains or more generally (as in the previous section) one or more affine maps on
probability vectors that, when iterated by matrix multiplication in specified combi-
nations, converge to the target distribution. This in turn can be done by equating or
approximating the exponential exp(tH) with a polynomial in various operators with

E. Mjolsness, G. Yosiphon

nonnegative coefficients that can be interpreted or transformed into probabilities.
Here we discuss several ways to expand out the exponential function on operators
into useful operator polynomials from which stochastic algorithms may in turn be
derived. Further details are provided in the Appendices.

3.7.1 Euler, Trotter, and BCH formulae

The operator exponential exp(tH) in (13) has a the Taylor series expansion, which in
turn implies Euler’s formula:

exp(tH) = limk→∞

[
I + t

k
H
]k

= limk→∞

[

I + t
k

∑

r

Or

]k

This formula may be used to sample from the distribution p(t) as follows: sample
from the initial distribution p(0)=p0 (which is often a delta function), and at each
infinitesimal time step t/k, execute one of the rules according to their infinitesimal
probabilities (after scaling by t/k) or, if none are selected, do nothing. So for large
finite k this operator polynomial, derived from Euler’s formula for the exponential,
can be interpreted as an inefficient algorithm corresponding to the Forward Euler
method of solving ordinary differential equations. Both have first-order error as a
function of 1/k.

More efficient, higher-order methods are possible using the Trotter product for-
mula as follows:

exp[t(H0 + H1)] = limk→∞

[
I + t

k
(H0 + H1)

]k

= limk→∞

[(
I + t

k
H0

)(
I + t

k
H1

)]k

= limk→∞
[
e(t/k)H0 e(t/k)H1

]k
.

Now, the sampling algorithm allows alternation of two different processes H0 and
H1. It is an analog of “operator splitting” [25], [26] in numerical integration, in which
versions of the Baker–Campbell–Hausdorff (BCH) formula [27]

exp (tH0) exp (tH1) = exp
(

tH0 + tH1 + t2

2
[H0, H1] + t3

12
[H0, [H0, H1]]

− t3

12
[H1, [H0, H1]] + O(t4)

)
(39)

can be used to derive higher-order simulation algorithms such as that used for ex-
ample in [28]. Of course, if [H0, H1] = 0 then the BCH formula becomes trivial be-
cause in that special case exponentiation distributes over addition: exp(tH0 + tH1) =
exp(tH0) exp(tH1).

More advanced methods such as the Gillespie stochastic simulation algorithm
(suitably generalized to handle parameterized types using the factorization
ρr([xi], [y j])=ρpure

r ([xi])Prr([y j]|[xi])) can be derived from the Time-Ordered Product
expansion.

Stochastic process semantics for dynamical grammars

3.7.2 Time-Ordered Product Expansion (TOPE)

A valuable tool for studying such stochastic processes in physics is the Time-Ordered
Product Expansion [29, 30]. We use the following form (derived in Appendix A1):

exp (tH) · p0 = exp (t (H0 + H1)) · p0

=
∞∑

k=0

[∫ t

0
dt1

∫ t

t1
dt2 · · ·

∫ t

tk−1

dtk exp((t − tk) H0)

× H1 exp ((tk − tk−1) H0) · · · H1 exp(t1 H0)

]
· p0 (40)

where H0 is a solvable or easily computable part of H, so the exponentials exp(tH0)

can be computed or sampled more easily than exp(tH). See Appendix A1 for an ele-
mentary probabilistic derivation of this form. This expression can be used to generate
Feynman diagram expansions, in which k denotes the number of interaction vertices
in a graph representing a multi-object history [24]. If we apply (40) with

H1 = Ĥ and H0 = −D

we derive the Gillespie algorithm for simulating chemical reaction networks [31],
which can now be applied to SPGs. The Gillespie algorithm operates by sampling
“the next reaction to occur” according to a multinomial distribution which is ex-
pressed by our Ĥ. The algorithm then samples “the time to wait for the next reaction”
according to an exponential distribution corresponding to the exp(−tD) term. This
derivation of a widely-used stochastic algorithm is explained in more detail at the
end of Appendix A1. With SPGs we need to consider also the possibility of terminal
states, in which case one may alternatively use

H1 = H̃(ω) and H0 = −D̃(ω).

However many other decompositions of H are possible, one of which is used in
Section 5.3 below. Because the operators H can be decomposed in many ways, there
are many valid simulation algorithms for each stochastic process. The particular for-
mulation of the Time-Ordered Product Expansion used in (40) has the advantage of
being recursively self-applicable.

Thus, (40) entails a systematic approach to the creation of novel simulation
algorithms.

3.8 Relation between continuous- and discrete-time semantic maps

In the SPG semantics approach we start with continuous-time stochastic dynam-
ics and specialize to discrete-time (this section) and/or deterministic dynamics. The
following three propositions relate the resulting continuous-time and discrete-time
semantics.

Proposition 1 Given the stochastic parameterized grammar (SPG) rule syntax of (5)

(a) There is a semantic function "c mapping from any continuous-time stochastic
parameterized grammar , via a time evolution operator H(Ĥ(,)) to a joint
probability density function on the parameter values and birth/death times of

E. Mjolsness, G. Yosiphon

grammar terms, conditioned on the total elapsed time, t. For any initial probabi-
lity distribution p0, there is a maximal Tdef(p0) ∈ [0,+∞] such that for all times
on t ∈ [0, Tdef), "c(,)(t) · p0 is a probability density and is the unique solution of
the master equation on that interval.

(b) There is a semantic function "d mapping any discrete-time stochastic parame-
terized grammar , via a time evolution operator H̃(,,ω) to a joint probability
density function on the parameter values and birth/death times of grammar terms,
conditioned on the total discrete time defined as number of rule firings, k. It
depends on whether a global real-valued parameter ω # 0 is =0 or >0; for ω > 0
it is a Markov chain.

Proof of Proposition 1

(a) Section 3.1 and Section 3.4. The definition of Tdef(p0) in Section 3.1 as the least
upper bound of times T ′ # 0 for which there is a unique solution of the master
equation for all times t ∈ [0, T ′] starting from initial condition p0, implies that
there also exists such a solution on [0, Tdef) = ∪0<T ′<Tdef [0, T ′]. Suppose this Tdef
were not maximal as claimed in (a). Then there would exist some T∗ > Tdef for
which the master equation has a unique solution on [0, T∗), an interval which
properly contains [0, Tdef). Then there would exist a unique solution on the
subinterval [0, T ′ = (T∗ + Tdef)/2]. Tdef being an upper bound of such T ′values,
we have (T∗ + Tdef)/2 ! Tdef which implies T∗ ! Tdef, in contradiction to T∗ >

Tdef.
(b) Section 3.1 and Section 3.6. 9:

We have a defined probability Prcontinuous({na(x)}|t)≡Prcontinuous(·|t) for t∈ [0, Tdef);
formally it is exp(tH) · p0 which can be calculated by the TOPE of Section 3.7.2.
We would like to compute the probability Prcontinuous(·|k) given k rule-firings, and
compare it with Prdiscrete(·|k). Both of these k-step probabilities need further defin-
inition which we now provide. To remove the dependence on t for large times in
Prcontinuous(·|t), we need a prior distribution Prcontinuous(t) which is uninformative ex-
cept at large times for which exp(−D0t) ∼= 0 and any bias introduced by the prior on
t is unimportant.

Definition 1 Define the continuous-time k-event probability as the density "c(,)(t)
multiplied by the uniform distribution of times t from 0 to some T < Tdef(p0), inte-
grated over t from 0 to T and then conditioned on k firings the last of which occurred
at exactly time t; it is denoted Prcontinuous(·|k, τk = t − tk = 0, T, p0) where tk is the
time of the k’th rule firing. In equations:

q(t) =
{

1/T if t ∈ [0, T]
0 otherwise

= #(0 ! t ! T)/T

Prcontinuous(·, τ0, ..., τk, k|T, p0)

≡
∫ ∞

0
dtPrcontinuous(·, τ0, ..., τk, k|t, p0)q(t)

=
∫ T

0
dtPrcontinuous(·, τ0, ..., τk, k|t, p0)q(t)

Stochastic process semantics for dynamical grammars

(integration over time t, where τ j = t j+1 − t j= j’th time difference between rule fir-
ings). Also

Prcontinuous(·, τk = 0, k|T, p0)

=
∫ ∞

0
dτ0 · · ·

∫ ∞

0
dτk−1Prcontinuous(·, τ0, ..., τk−1, τk = 0, k|T, p0)

(last firing happens exactly at time tk = t, and others are unconstrainted) and

Prcontinuous(·|k, τk = 0, T, p0) = Prcontinuous(·, τk = 0, k|T, p0)

Prcontinuous(τk = 0, k|T, p0)

(conditioned on k=number of rule-firings).

Definition 2 Define the discrete-time k-event probability as discrete-time density
"d(,), conditioned on k and on the absence of a halt by step k (i.e. not reaching a ter-
minal state in the caseω = 0 by step k-1), denoted Prdiscrete(·|not halted, k events, p0).

Prdiscrete(·|not halted, k events, p0) = Prdiscrete(·, not halted|k events, p0)

Prdiscrete(not halted|k events)

Definition 3 Define the continuous-time k-liveness probability as the same probabil-
ity time integral as in Definition 1, but joint rather than conditional in k, summed
over all pool states. It is denoted Prcontinuous(τk = 0, k|T, p0):

Prcontinuous(τk = 0, k|T, p0) = 1 · Prcontinuous(·, τk = 0, k|T, p0).

Definition 4 Define the discrete-time k-liveness probability as the discrete-time
probability "d(,) of not halting after k events, denoted Prdiscrete(not halted|k events):

Prdiscrete(not halted|k events) = 1 · Prdiscrete(·, not halted|k events, p0).

Definition 5 Choose any γ ∈(0, 1). For any a, b >0, define “a<b” in Proposition 2
below to mean a/b < γ .

Proposition 2 Suppose that SPG , involves only discrete-valued parameters, and that
the nonzero elements of diag(H̃) are bounded below by δ > 0 (so that either ω = δ or
ω # 0). If 0 < T < Tdef(p0) and 0 < ε < 1/e and ε < 1 and

Tδ = k| log(ε/k)|
(

=⇒ ε = ke−kδ/k since log(1/ε) > 1
)
,

then

(a) Either both the continuous-time k-liveness probability Prcontinuous(τk = 0, k|T, p0)

is zero and the discrete-time k-liveness probability Prdiscrete(not halted|k events)

E. Mjolsness, G. Yosiphon

is zero, or they are both nonzero and Prcontinuous(·|k, τk = 0, T, p0) approximates
Prdiscrete(·|not halted, k events, p0) with relative error O(ε):

Prcontinuous(·|k, τk = 0, T, p0) ∼= Prdiscrete(·|not halted, k events, p0).

In particular if Tdef(p0)=+∞ and the liveness probabilities are nonzero, then the
T → ∞ limit of the continuous-time k-event probability vector is equal to the
discrete-time k-event probability vector:

limT→∞Prcontinuous(·|k, τk = 0, T, p0) = Prdiscrete(·|not halted, k events, p0);

Also
(b) If , has no terminal pool states and involves only discrete-valued parameters,

and if ω = 0, then there exists another grammar ,′(,) derived from , such that
without using any prior distribution on t, and under the same assumptions on T,
δ and k as in (a) above, with a relative approximation error of O(ε)

Prcontinuous,′(·|k, t = T, p0) = p∗
k(t = T) ∼= Prdiscrete,(·|not halted, k events, p0).

Proof of Proposition 2

(a) Equation 40 (the TOPE) is the starting point; it is established in Appendix A1.
Then from Appendix A2, under the stated conditions,

Case I: Prcontinuous(τk = 0, k|T, p0) = 0: Then τk = t − tk and

Prcontinuous(τk = 0, k|T, p0) = 0 = Prdiscrete(not halted|k events)

Case II: Prcontinuous(τk = 0, k|T, p0) > 0: If ω 0= 0, with a relative approxima-
tion error of O(ε),

Prcontinuous(·|k, τk = 0, T, p0) ∼= Prdiscrete(·|k, p0)

If ω = 0 with a relative approximation error of O(ε),

Prcontinuous(·|k, τk = 0, T, p0) ∼= Prdiscrete(·|not halted, k events, p0).

This is also true of the case ω 0= 0 since in that case there is zero
probability of halting and Prdiscrete(·|k, p0) = Prdiscrete(·|not halted,

k events, p0).

(b) Appendix A3. 9:
Notes :

1 In the limit T → 0, the inequalities postulated in Proposition 2 cannot all
be satisfied and no approximation follows in (a) or (b).

2 Equation 22 of Section 3.4 allows us to evaluate δ for some SPGs.

Proposition 3 For any SPG , if there are no terminal states and if Tdef(p0) > 0, then
the short-time limit of the density "c(,) conditioned on t as t → 0 and conditioned on
k is equal to the alternative discrete-time semantics " ′

d(,) after k steps.

Stochastic process semantics for dynamical grammars

Proof of Proposition 3 Appendix A4. 9:

Corollary 1 The diagram of Fig. 1 commutes.

3.9 Discussion: morphisms of SPGs

Given a new kind of mathematical object (here, SPGs or DGs) it is generally produc-
tive in mathematics to consider the transformations or “morphisms” of such objects
(mappings from one object to another or to itself) that preserve key properties.
Examples include transformational geometry (groups acting on lines and points),
homomorphisms acting on groups, and functors acting on categories. In the case of
SPGs, two possibilities for the preserved property are salient. First, an SPG syntac-
tic transformation , → ,′ could preserve the semantics "(,) = "(,′) either fully
or just in fixed point form: "∗(,) = "∗(,′). Still more relaxed would be a crite-
rion that preserved some projection PO of the (possibly fixed point) semantics onto
an observed subspace O: PO"

(∗)(,) = PO"
(∗)(,′), for example that defined by a

grammar’s header rule. Preserving the full semantics, without projection, would be
required of a simulation algorithm.

As a second possibility, an inference algorithm could reverse input and output (as
defined by the header rule) but preserve the joint probability distribution Pr(in, out)
on input and output random variables, by using Bayes’ rule,

Pr,(out, internal|in) Pr(in) = Pr(in, internal, out)

= PrInference(in, internal|out) Pr(out)

where (in, internal, out) are collections of parameterized terms that are inputs to,
internal to, and outputs from the grammar , respectively. Thus, the header rule for
an inverse or inference grammar is a global arrow-reversal of the header rule of the
generative grammar.

One approach to creating inference algorithms is to reverse the arrows locally on
the individual grammar rules, changing the probability rate functions as well, so as

Fig. 1 Commutative diagram for continuous-time and discrete-time semantics. Here k = number of
rule firings, t= continuous time, S = a map from continuous-time to discrete-time probabilities asso-
ciated with large integration times T (Proposition 2a, 2b) or small evaluation times t (Proposition 3)
in the continuous-time semantics

E. Mjolsness, G. Yosiphon

to implement one step of an iterative algorithm whose fixed point is the inference
distribution PrInference. In this way a rule r such as

input(x) → output(y) with ρforward Prr(y|x)

is replaced by a reversed rule r′ such as

output(y) → input(x) with ρreverse Prr′(x|y),

possibly together with new rules for iteration. An example of such an algorithm
will be shown in Section 4.1.3. A similar approach, taken in [32], is known as “arc
reversal” in Bayesian Networks (BNs). By a series of arc transformation a BN is
transformed to an equivalent network in which the “evidence” appears in the root
nodes and therefore is available for inference tasks. Such arc transformations may
be prohibitively expensive for large BNs, especially in Dynamic Bayesian Networks
(DBNs) which are used for modeling stochastic temporal processes. Nevertheless, it
was shown by [33] that even localized arc reversals in each time slice of a DBN can
boost the performance of an inference algorithm based on Monte Carlo methods.
In its application to SPGs, this approach would necessarily generalize from finite-
dimensional to arbitrary-infinite-dimensional Monte Carlo Markov Chain-like sam-
pling algorithms.

4 Examples

4.1 Cluster trees

Here is a simple cluster-generating grammar that generalizes binaryclustergen by
allowing any number of elements per cluster:

grammar (discrete-time) clustergen (nodeset(x) → {node(xi)}) {
nodeset(x) → node(x), {child(x)|1 ! i ! n} with q(n) subject to n # 0.
child(y) → nodeset(x) with φ(x|y)

}

Such generative data cluster models have considerable utility for problem formula-
tion in pattern recognition, image analysis, and machine learning. Since there is only
one term on each LHS, the grammar is “context free.” Its behavior is shown in Fig. 2.
We take it to define the probabilistic model of a context free feature tree, T (q,φ).

Fig. 2 Two feature trees
generated by the clustergen
stochastic parameterized
grammar. a Pr = q(1)
q(2)2q(0)3 ×φ(x1|x)
φ(x11|x1)φ(x12|x1)
×φ(x111|x11)φ(x112|x11).
b Pr = q(3)q(2)q(1)q(0)4

×φ(x1|x)φ(x2|x)φ(x3|x)
×φ(x11|x1)φ(x12|x1)φ(x21|x2)

Stochastic process semantics for dynamical grammars

4.1.1 Context-free grammars

Here is the alternative discrete-time semantics " ′
d(,) of T (q,φ) (omitting for sim-

plicity the node labels x, and just keeping the tree structure):

Ĥ =
∞∑

k=0

q(k)âka = g(â)a H = g(â)a − N (41)

Ĥ2 = g(â)
2a2 + g(â)g′(â)a

Ĥ3 = g
(
â
)3a3 + 3

(
g
(
â
))2g′ (â

)
a2 + g

(
â
) (

g′ (â
))2a +

(
g
(
â
))2g′′ (â

)
a; ... (42)

where

g(z) =
∞∑

n=0

znq(n) and g(1) =
∞∑

n=0

q(n) = 1

In this model, every power of Ĥ, and the continuous-time evolution exp tH, can
be formally expressed and computed using efficient power series operations (com-
position and reversion) on generating functions. With generating functions f (x),
operators (a, â) are represented by (∂x, x×) respectively. Then Ĥ *→ [g(x)∂x], and
H *→ [(g(x) − x)∂x]. Defining

J(x; x0) =
∫ x

x0

du
g(u) − u

and K(x; x0) =
∫ x

x0

du
g(u)

(43)

Then, considering J(x; x0) to be a function of just its first argument x,

d
dJ

= dx
dJ

d
dx

= 1
dJ/dx

d
dx

←! H

and

etH f (x) *→ et(d/dJ) f (J−1(J(x))) = f (J−1(t + J(x))) (44)

by Taylor’s theorem in the form eα∂x f (x) = f (x + α). Thus we need only calculate
J−1(t + J(x)) using power series reversion and composition. [1] (Section III.3
eq. (7)) provides a different derivation. A similar calculation holds for discrete-time
semantics (42) using K, so that

esĤ f (x) *→ f (K−1(s + K(x))) = f
(

x + sg(x) + s2

2
g(x)g′(x)

+ s3

3!
(

g(x)
(
g′(x)

)2 + (g(x))2g′′(x)
)

+ ...

)

= f (x) + sg(x)∂x f (x) + ... ←!
(
I + sg(â)a + ...

)
f (x),

(45)

from which we can recalculate (42). In either case the grammar is tractable because
clustergen is a context-free grammar: there is only one term on the left hand side of
each rule. Thus, both the continuous-time and discrete-time semantics can be at least
formally solved in this special case.

E. Mjolsness, G. Yosiphon

Example Ĥ = ρ(1 + c2â2)a where ρ = 1/(1 + c2), represents a birth–death process
with one birth or death event per discrete time step. Each possible birth or death
event is oblivious of the all others in its continuous-time firing rate. Then the alter-
native discrete-time semantics has K(x) = arctan(cx)/(ρc), so esĤ|1〉 *→ (tan(sρc) +
cx)/[c(1 − cx tan(sρc))]. Therefore 1 · esĤ|1〉 = (tan(sρc) + c)/[c(1 − c tan(sρc))], which
has singularities at finite s and therefore is not equal to eαs for any α. So in this case,
1 · Ĥn|1〉 0= αn.

In continuous time for c = 1, this model also has a simple solution: J−1(t + J(x)) =
t+2x−tx
t+2−tx = t

2+t +
∞∑

n=1

4tn−1

(2+t)n+1 xn.

Example If q has a normalized power-law distribution:

q(n) =
{

p0 n = 0
(1 − p0) n−α/ζ(α) n > 0

then g(z) = p0 + (1 − p0)Liα(z)/ζ(α) (where Liα(z) is the polylogarithm function)
and the continuous-time and alternative discrete-time dynamics are given formally
by the integrals

J(x; x0) =
∫ x

x0

dz
p0 − z + (1 − p0) Liα(z)/ζ(α)

and

K(x; x0) =
∫ x

x0

dz
p0 + (1 − p0) Liα(z)/ζ(α)

But these integrals, unlike those of the previous example, do not appear in integral
tables and may not have analytic solutions in terms of commonly studied special
functions.

4.1.2 Clustering algorithms

The following grammar is equivalent to clustergen, in its conditional distribution
Pr({node(xI)|1 ! I ! N}|N), of interest because it is a resource-bounded version of
clustergen and its discrete-time semantics is essentially the resource-bounded feature
tree model T (N, q,φ). It constitutes a valid grammar transformation of clustergen:

grammar (discrete-time) rseqclustergen (nodeset(x, N) → {node(xi)}) {
nodeset(x, N) → node(x), children(x, n, N − 1)|1 ! i ! n} with r(n|N)

children(x, n, N) → child(x, N′), children(x, n − 1, N − N′) with R(N′|n, N)

children(x, 0, N) → ∅
child(y, N) → nodeset(x, N) with φ(x|y)

}

The resource-bounded cluster generator, rseqclustergen, is important since using
clustergen to sample bounded size feature cluster trees for many different distribu-
tions (different q(n) functions in the unbounded feature tree model T (q,φ)) can
be very inefficient or even intractable, as was found in simulations. For example,
when q(0)=0 the probability that a clustergen grammar simulation will converge to
a cluster tree of finite size vanishes. The functions R and r can be computed with

Stochastic process semantics for dynamical grammars

reasonable efficiency by reversion of series using generating functions [34], though
clearly analytic solutions yield yet more efficient algorithms when available.

A currently popular approach to clustering models is by way of Dirichlet processes.
The stick-breaking construction of a Dirichlet process can be expressed with this
discrete-time grammar (following [35]):

grammar (discrete-time) DP (start(N) → {cluster(i, θk,πk)|1 ! k < ∞}) {
start(N) → cluster′(0, 0, 0, 1, 0)

cluster′(k, θk,βk,5k,πk) → cluster(k, θk,πk),

cluster′(k + 1, θk+1,βk+1,5k+1,πk+1)

with βk+1 Beta(·|1,α) = (,(1 + α)/,(α))(βk+1)
α−1

with G0(θk)

where πk+1 = βk+15k
where 5k+1 = (1 − βk+1)5k

}

Then the Chinese Restaurant process for cluster generation is:

grammar (discrete-time) CRP (start(N) → {sample(x)|1 ! k ! N}) {
start(N) → samples(N), {cluster(k, θk,πk)|1 ! k < ∞} via DP
samples(N), C = {cluster(i, θk,πk)|1 ! k < ∞} → samples(N − 1), C,

sample′(θk)

with πk
subject to N > 0

sample′(θ̂) → sample(x) with p(·|θ̂)
}

The clustergen grammars can be specialized and limited so as to function in a very
similar manner to DP and CRP above, with a Binomial–Beta substituted for the Beta
distribution [34]. However, clustergen determines a more general family of distribu-
tions. For example one can control the histogram of cluster sizes.

Thus,

Proposition 4 There is a serial context-free grammar ,tree whose asymptotic
probability distribution is that of the context-free feature tree T (q,φ), and another
context-free grammar ,rl−tree whose asymptotic probability distribution is that of the
resource-limited context-free feature tree T (N, q,φ).

4.1.3 “Arrow reversal” inference algorithm for hierarchical clustering

This section presents an inference scheme for an SPG based on Monte Carlo tech-
niques. Here we do not attempt to strictly ‘reverse’ the production rules but rather
transform them to association rules that weigh the matching between precondition
elements and the outcome elements. We assume that the number of latent (hidden)
objects of each type is known in advance, and therefore the search is only over a
subspace of the pool configurations. Expanding the search to unknown number of
latent objects is a question for future work.

E. Mjolsness, G. Yosiphon

The inference scheme will be demonstrated by using a data clustering example.
The data-generator grammar produces a hierarchical tree structure of clusters where
the bottom level nodes are the data items. The cluster distributions are Gaussians
and generate a limited number of objects according to the cluster size control factor
(S − s) in the rate function, which serves to ensure that each cluster eventually gets
exactly S children. Note that the cluster size limit, S, can be varied according to the
cluster level.

grammar data-generator (start(x̂) → {cluster(x, σ, l, s), item(x̃)}) {
start(x̂) → cluster(x̂, σ̂ , 0, 0)

cluster(x, σ, l, s) → {cluster(x, σ, l, s + 1), cluster[x′, σ/V, l + 1, 0]}
with (S − s) ∗ N(x′; x, σ)

subject to l < L
cluster(x, σ, L, s) → {cluster(x, σ, L, s + 1), item(x′)}

with (S − s) ∗ N(x′; x, σ)

}

The inference algorithm for data-generator is given in a form of another stochastic
grammar, cluster-Infer. The input for this grammar is an initialized cluster tree and
the observed data items as the lowest level clusters. The main part of the inference
grammar is the match-subcluster subgrammar that uses the same forward rule of
data-generator in order to match the subclusters to the clusters in the level above
and then regenerate them. Once a cluster in a given level has been matched to
offspring subclusters and a parent supercluster, then the conditional probability of
its location given their locations is readily available and Gaussian. There are two
choices, either to jump to the most likely position which is the mean (compute-new-
mean1) or to make a stochastic move in the conditional distribution (compute-new-
mean2) resembling a Gibbs sampling [36] algorithm. data-generator iterates between
matching and parameter re-estimation steps over the cluster tree for every inner level
until convergence (see Fig. 3).

Related algorithms for data clustering such as K-means [37] and the EM algorithm
[38] work similarly by iterating between the two stages of cluster-item matching and
cluster locations recalculation. Although both algorithms are defined for a single

Fig. 3 Output of
data-generator grammar
execution for two level
cluster tree (L = 2)

-10 -7.5 -5 -2.5 2.5 5

-15

-10

-5

5

10

Stochastic process semantics for dynamical grammars

level clustering tree, they can easily be generalized to a multilevel hierarchical clus-
tering tree. The main differences between the inference grammar and these algo-
rithms is that they are deterministic in both steps and it is unclear how to incorporate
in them the cluster size control factor (S − s).

For brevity, we define the following “macros” which are used in the grammar:

clusters[l] := {cluster[x, σ, l, s,χ]} // the set of cluster elements in level l

clustersB[l] := {clusterB[x, σ, l, s,χ]} // the set of clusterB elements in level l

The usage of these set-defining macros is allowed in the following inference gram-
mars since the cluster tree has a finite height and finite size at each level; these
parameters are given as input and remain fixed during the simulation. Therefore,
a grammar rule that uses clusters[l] and clustersB[l] set macros can be handled as if
they were rule schemas which are expanded into copies of the rule for every level in
the cluster tree.

The following grammars also illustrate the use of special types to partially serial-
ize an intrinsically parallel computing framework. We use both Mathematica style
comments “(*. . . *)” and C++ style comments “//. . . ”.

grammar cluster-Infer({start, cluster(x, σ,l, s), item(x̂)}→ {cluster(x̃, σ,l, s), item(x̂)}) {
start → Step[1, L − 1]
StepF[s, l] → Step[s + 1, l]
{Step[1, l], clusters[l], clustersB[l]} → {StepF[1, l], clusters[l]} via initialize

(* match children to the clusters *)
{Step[2, l], clusters[l], clusters[l + 1]} → {StepF[2, l], clusters[l],

clustersB[l + 1]}
via match-subcluster
(* match the clusters to their parents *)

{Step[3, l], clusters[l − 1], clusters[l]} → {StepF[3, l],
clusters[l − 1], clustersB[l]}

via match-subcluster
{Step[4, l], clustersB[l]} → {StepF[4, l], clusters[l]}

via compute-new-mean
(* return to the start *)

Step[5, l] → Step[1, Mod[l − 1, L]]// return to the start
}
grammar match-subcluster ({Step[s, l], clusters[l], clusters[l + 1]}→ {StepF[s, l],

clusters[l], clustersB[l + 1]}){
{cluster[x, σ, l, s,χ], cluster[x′, σ ′, l + 1, s′,χ ′]} →

{cluster[x, σ, l, s + 1,χ + x′], clusterB[x′, σ ′, l + 1, s′ + 1,χ ′ + x]}
with (S − s) ∗ N(x′; x, σ)

(* alternative without S *)
// with N(x′; x, σ)

Step[s, l] → StepF[s, l]
}
grammar initialize ({Step[s, l], clusters[l], clustersB[l]} → {StepF[s, l], clusters[l]}){

clusterB[x, σ, l, s,χ] → cluster[x, σ, l, 0, 0]
cluster[x, σ, l, s,χ] → cluster[x, σ, l, 0, 0]
Step[s, l] → StepF[s, l]

E. Mjolsness, G. Yosiphon

Fig. 4 Linear Assignment
(LA): Horizontal axis is the
number of iterations of the
inference grammar where an
iteration is an update over all
the cluster tree, while the
vertical axis is the LA distance.
The measurements are
averaged over 50 experiments,
in which there were three
clusters of three subclusters
partitioning 200 data points
total 2 4 6 8 10 12

0.5

0.6

0.7

0.8

0.9

}
grammar compute-new-mean ({Step[s, l], clustersB[l]} → {StepF[s, l], clusters[l]}){

(*first version (most probable move) *)
clusterB[x, σ, l, s,χ] → cluster[χs , σ, l, 0, 0] with 1

(*second version (stochastic move) *)
//clusterB[x, σ, l, s,χ] → cluster[x̃, σ, l, 0, 0] with x̃ ∼ N(χs , σ)

Step[s, l] → StepF[s, l]
}

We conducted experiments to verify the accuracy of the inference grammar by
generating data sets using data-generator and comparing the partitions of the real
clusters to the inferred ones. Following the methodology presented in [39], the two
partitions were matched by finding the optimal pairing using their confusion matrix
and the Linear Assignment (LA) measure was calculated to quantify the similiarity
between the partitions. In addition, we have measured another comparison index
between the partitions, the Normalized Mutual Information (NMI) , which is also
described in detail in [39]. Three configurations of the inference grammar were com-
pared and the results are shown in Figs. 4 and 5. The default grammar configuration
with the first version (most probable move) of compute-new-mean and using the
cluster size control factor, which is clearly superior, is represented by the solid line.
The dotted line represents the results when the cluster size control factor is not used

Fig. 5 Normalized Mutual
Information (NMI): same
as figure above for the
NMI index

2 4 6 8 10 12

0.5

0.6

0.7

0.8

0.9

Stochastic process semantics for dynamical grammars

and the dashed line represents the results when the second version (stochastic move)
of compute-new-mean is used instead.

4.2 Biochemical reaction networks

Given the chemical reaction network syntax

{
m(r)

a Aa|1 ! a ! Amax
} k(r)−→

{
n(r)

b Ab |1 ! a ! Amax

}
, (46)

we can eliminate the non-SPG syntax of integer-valued “stoichiometric” multiplici-
ties m(r)

a and n(r)
b on the chemical inputs and outputs, by defining an index mapping

a(i) =
Amax∑

c=1

c#

(
c−1∑

d=1

m(r)
d < i !

c∑

d=1

m(r)
d

)

=






1 if 0 < i ! m(r)
1

2 if m(r)
1 < i ! m(r)

1 + m(r)
2

... ...

a if
a−1∑
c=1

m(r)
c < i !

a∑
c=1

m(r)
c

... ...

and likewise for b(j) as a function of {n(r)
b }. Then (46) can be translated to the follow-

ing equivalent grammar syntax for the multisets of parameterless terms
{

τa(i)|0 < i !
Amax∑

c=1

m(r)
c

}

∗
→

{

τa′(j)|0 < j !
Amax∑

c=1

n(r)
c

}

∗
with k(r)

whose semantics is the time-evolution generator

Ôr = k(r)




∏

i∈rhs(r)

âa(i)








∏

j∈lhs(r)

ab(j)



 . (47)

This generator is equivalent to the stochastic process model of mass-action kinetics
for the chemical reaction network (46).

As an example,

2H + 1O
k−→ 1H2 O

maps to

{H, H, O} → H2 O with k .

In this application, the Time Ordered Product Expansion with H1 = Ĥ and H0 =
−D represents a sampling algorithm that is essentially the same as the Gillespie
Stochastic Simulation Algorithm.

4.3 Multicellular systems and biological development

Two examples will establish the applicability of the Dynamical Grammars modeling
framework to variable-structure systems arising in biology at the multicellular scale.

E. Mjolsness, G. Yosiphon

4.3.1 Arabidopsis

The growing tip (shoot apical meristem) of the vascular plant Arabidopsis thaliana
provides an illustrative example of a variable-structure dynamical system at three
different scales: the molecular, cellular, and organ levels. At the molecular level,
the primary molecules are auxin (a plant growth hormone) and PIN1 (a membrane-
bound auxin efflux carrier or “pump”). In a simple model [40], protein PIN1 in the
membrane of cell i bounding cell j acts as a catalyst in removing auxin molecules
from cell i (modeled with annihilation) and simultaneously inserting them into cell j
(creation). Reciprocally, auxin acts on PIN1, directing its incorporation into the near-
est membrane compartments of neighboring cells and (optionally) locally enhancing
its synthesis. The reactions in this positive feedback loop can be simplified as:

{
PIN1[i, j]

auxin[i] =⇒ auxin[j],
auxin[i]

∅ =⇒ PIN1[i],
auxin[j]

PIN1[i] =⇒ PIN1[i, j],

PIN1[i, j] → ∅, PIN1[i, j] → PIN1[i]
}
,

where for example

PIN1[i, j]
auxin[i] =⇒ auxin[j] =

{
auxin[i], PIN1[i, j] → Complex1[i, j], Complex1[i, j]
→ auxin[i], PIN1[i, j], Complex1[i, j] → auxin[j], PIN1[i, j]

}

At the cell level, cells have internal state including the above reactions and also cell
mass and position. When mass exceeds a threshold, cell divide. Mass influences the
resting length of elastic springs connecting neighboring cells which determine their
positions. Positions determine which cells are neighbors, therefore which regulatory
subnetworks are connected. There is variable structure both in the objects (cells) and
their relationships (communicating neighbors; lineage trees of cell ancestry).

Figure 6 shows the dynamical pattern of auxin (yellow/blue scale) evolving over
time, from a very similar model as detailed in [40]. Emergent phenomena are the
auxin peaks that form off center and move out radially to make room for new peaks.
The peaks are hypothesized to determine the position of the primordia for new
floral meristems in the phyllotactic pattern of flowers, leaves and branches for the

Fig. 6 SAM, top view, three time slices. Color = auxin concentration. Emergent peaks correspond
to floral meristem primordia [Images courtesy of Henrik Jönsson.]

Stochastic process semantics for dynamical grammars

above-ground part of the plant. The variable-structure objects at this scale are the
primordia.

The variable structure dynamics illustrated by this model is not analytically tractable
but is expressible at each of three levels (the molecular, cellular, and organ levels)
using the dynamical grammars formalism. The ability of a cell to divide and interact
with its neighbors gives rise, at a coarser spatial and temporal scale, to the ability
of a shoot apical meristem to branch and create the floral meristems. This example
indicates the potential relevance of Dynamical Grammar framework for multiscale
modeling in biology.

4.3.2 Anabaena

As a second example of application to multicellular biological modeling, a model
[41] of filamentous cyanobacteria Anabaena catenula has been fully reimplemented
within our “Plenum” prototype implementation of a Dynamical Grammar modeling
language, with added stochasticity in the criterion for cell division. The model re-
quires both discrete-time and continuous-duration rules. We used the Time Ordered
Product expansion (Section 3.7.2) to derive a simulation algorithm for this case. A
typical state of the system is shown in Fig. 7b.

Fig. 7 Simulation snapshots
from the Anabaena model:
The light and dark gray bars
represent vegetative cells, and
the black bars represent
heterocyst cells. A cell’s signal
concentration c is signified by
both the bar height and the
gray level, while the bar width
represents the cell’s length.
System’s state after k = a 40
and b 80 iterations. The
simulation was initiated with
only three vegetative cells.
Note the new heterocyst at the
location near 17. The distance
between the heterocyst cells,
both in length and in number
of separating cells, remains
relatively constant despite cell
divisions and continuous
growth

5 10 15 20

2.5

5

7.5

10

12.5

15

10 20 30 40

2.5

5

7.5

10

12.5

15

E. Mjolsness, G. Yosiphon

In the Anabaena model, cells are attached to two neighboring cells forming a
row structure which can be modeled by a simple graph (actually a one-dimensional
linked list). We will use the notation of a graph grammar that is formally defined
by reduction in Section 5.2. The w := C(l, c; (w1, w2)) notation assigns an object
reference to the variable w, the Object Identifier (OID). C is the cell object which has
four parameters: l is the cell length , c is the compound concentration, and (w1, w2)

are the OID references to the left and right neighbors. A cell with OID w can be of
two types: V(w), vegetative, or H(w), heterocyst. When an object is used by a rule but
left unchanged, we abbreviate and mention only the object identifier (w) in the RHS,
as can be seen in the first rule.

Defining the soft threshold function (for small ε):

σ (x) = κ

1 + e−x/ε
A

{
κ if x ≥ 0
0 otherwise

we write the grammar

grammar Anabaena {
(*continuous change in vegetative cell’s concentration and length,

depending on neighbors’ parameters*)
{w1 := C(l1, c1; (w0, w)),w := C(l, c; (w1, w2)),

w2 := C(l2, c2; (w,w3)), V(w)}
→ {w1, C(l, c; (w1, w2)), w2, V(w)}
solving { dc

dt = η(c1 + c2 − 2c) − µc, dl
dt = λl}

(*split a vegetative cell into two vegetative cells ,
if its length is longer than :. Connect the new cells to neighbors*)

{w := C(l, c; (w1, w2)), V(w)} → {w11 := C(kl, c; (w1, w12)),

w12 := C((1 − k)l, c; (w11, w2)), V(w11), V(w12)}
with σ (l − :)

(*change a vegetative cell into heterocyst if the concentration
level drops below certain level*)

{w := C(l, c; (w1, w2)), V(w)} → {w := C(l, c; (w1, w2)), H(w)}
with σ (ψ − c)

(*continuous change in heterocyst cell concentration and length*)
{w := C(l, c; (w1, w2)), H(w)} → {w := C(l, c; (w1, w2)), H(w)}

solving { dl
dt = ψ ∗ (: − l), dc

dt = ϕ ∗ (K − c)}
}

As defined by the grammar rules, vegetative cells’ signal concentration c is contin-
uously changing according to the ODE dc/dt = η(c1 + c2 − 2c) − µc which combines
diffusion and decay. The vegetative cell elongates according to an exponential rate λ
until it reaches a threshold length somewhere near the threshold value :, and then
it divides into two vegetative cells. A transformation into a heterocyst cell occurs
when the vegetative cell reaches a signal concentration somewhere near the thresh-
old valueψ . A heterocyst cell’s length and concentration level converge exponentialy
to the limiting values : and K as described by the ODEs in the last rule. Note also
the use of terms C, V and H to implement a simple type hierarchy, with C as base
type for V and H.

Stochastic process semantics for dynamical grammars

4.3.3 Population biology

To cement the case that SPGs can be used to model dynamics at a wide variety of
scales, we observe that common population biology models, both deterministic and
stochastic, can be expressed very concisely using biochemical reaction notation as
in Section 4.2. For example in the epidemiological susceptible-infected-susceptible
(SIS) model [42] there are two types of individuals, S=susceptible (but uninfected)
and I=infected. The processes or reactions are infection and recovery:

S, I → I, I with ρi //infection

I → S with ρr //recovery

The pool state is (nI, nS = N − nI) and the time evolution operator is Ĥ =
ρiâ2

IaSaI + ρrâSaI . Using the conservation law nS = ntotal − nI , we may reduce di-
mensionality by projecting out nS from the pool state space, which is accomplished
by mapping

aS *→ NS = diag(nS) = diag(ntotal) − diag(nI) = ntotal II − NI,

where II is the identity matrix in the nI space. Likewise âS *→ I and n(max)
I *→ ntotal.

Then Ĥ *→ Ȟ = ρiâI NI(I − NI/ntotal) + ρraI , which still has all nonnegative entries
for nI ! N. From the commutation relations we calculate Ȟ = ρi(1 − 1/ntotal)â2

IaI −
(ρi/ntotal)â3

IaI
2 + ρraI . This could be formally interpreted in terms of birth and death

rules (first and third terms of Ȟ) for a single type as in Section 4.1.1, together with an
unusual negative-probability rate rule “I, I → I, I, I with − ρi/ntotal”, in some as-yet
undefined generalization of (18). But such an interpretation of Ȟ is not essential.

5 Reductions

A number of other frameworks and formalisms can be reduced to SPGs as just
defined. We give a sampling here.

5.1 Logic programs and cardinality operators

Consider a logic program (e.g. in pure Prolog) consisting of Horn clauses of positive
literals

p1 ∧ ... ∧ pn ⇒ q, n # 0.

Axioms have n = 0. We can translate each such clause into a monotonic SPG rule

p1, ..., pn → q, p1, ..., pn (48)

where each different literal pi or q denotes an unparameterized type τa with na ∈
{0, ...nmax

a } = {0, 1}. Since there is no with clause, the rule firing rates default to ρ = 1.
The corresponding time-evolution operator is monotonic as in (21):

Ĥ =
∑

r

Ôr =
∑

r




∏

i∈rhs(r)\lhs(r)

âa(i)








∏

j∈lhs(r)

Nb(j)



 (49)

E. Mjolsness, G. Yosiphon

Here Nb(j) = âb(j)ab(j) removes and then replaces all the pi’s. As before, the operators
within each product commute.

The semantics of the logic program is its least model or minimal interpretation. It
can be computed (Knaster–Tarski theorem) by starting with no literals in the “pool”
and repeatedly drawing all their consequences according to the logic program. This
is equivalent to converging to a fixed point "∗(,) · |0〉 of the grammar consisting of
rules in the form of (48).

Of course this convergence may not happen in a finite time. Just as for SPGs like
clustergen (Section 4.1), the fixed point "∗(,) · |0〉 may not be reachable with a finite
number of rule-firings if for example every equilibrium distribution has support on
infinitely many terms (and each rule only adds finitely many terms to a finite initial
condition such as |0〉), or if there is no equilibrium distribution.

More general clauses include negative literals ¬r on the LHS:

p1 ∧ ... ∧ pn ∧ ¬r1 ∧ ... ∧ ¬rm ⇒ q, n, m # 0 (50)

or even more general cardinality constraint atoms 0 ! l ! |S| = ∑
i∈A

#(pi) ! u ! ∞
[43], where S = {i|pi}. For negative literals, l=u=0, the more general SPG concept is
the NotExists (!i) quantifier of Section 2.4.3. It prevents a match if the pool contains
any parameterized terms of the specified type. This constraint cannot be expressed
in operator algebra for bosonic terms (nmax = ∞) using polynomials in creation and
annihilation operators alone, but it can be expressed by enlarging the basis operator
set {Bα} to include

Zi =





1 0 0 · · ·
0 0 0
0 0 0
...

. . .




for nmax = ∞; Zi =

(
1 0
0 0

)
= Ii − Ni for nmax = 1

for each parameterized term indexed by i (e.g by i = r1 through rm above). The
semantics of nonexistence expressions can then be built out of (potentially large)

products of “zero” operators Zi for different i’s, for example a factor of
m∏

k=1
Zrk for

the ¬rk negative literals in (50). Another approach to detecting zero copy number,
entirely within a biochemical reaction network, occurs in [51].

Atoms with function symbols may be admitted using parameterized terms τa(x).

5.1.1 Set cardinality operators and universal quantifier

Other cardinality constraints of the form 0 ! l ! |S| ! u ! ∞ can be expressed in
operator algebra by again enlarging the basis operator set {Bα} beyond the basic
creation and annihilation operators. For example the cardinality of a set S of positive
literals {pi|i ∈ A} is computed by the diagonal operator

NS = log2

⊗

i∈A

(Ii + #(pi)Ni)

(where # is defined by (1)). Both Ii and Ni are diagonal matrices in each subspace
i. Here we are using nmax

a = 1, log2(1 or 2) = 0 or 1 and log
∏ = ∑

log to implement
the cardinality operator NS as follows. Each factor of the cross product is diagonal, so

Stochastic process semantics for dynamical grammars

the entire cross-product is also diagonal, so (a) its elements are products of the factor
elements, each equal to 1 or 2, hence cross-product elements are equal to powers
of 2, and (b) the logarithm is applied elementwise (for diagonal operators). Taking
this elementwise logarithm gives us zero or one power(s) of 2 for each element of
the cross product diagonal. This just counts the number of factors of 2 rather than
1 in the cross product over i, which is the number of i’s for which the predicate
pi = (i ∈ S) is true, which is the cardinality of S. So NS is a diagonal operator whose
elements are the cardinalities of S in different pure states. Thus for any pure state
P, we have the vector equation NS · P = (|S| in state P)P and therefore the scalar
equation 1 · NS · P = (|S| in state P). This result is a straightforward generalization
of the ordinary cardinality operator Ni for a single type τi, for which 1 · Ni · P =
(|terms τi| in state P). If P is a mixed state we get averages 〈·〉P over the distribution
P instead:

1 · Ni · P = 〈|terms τi|〉P and 1 · NS · P = 〈|S|〉P.

A further elementwise thresholding function can be applied element-by-element
to the nonzero diagonal terms of such an operator:

θlu(n) ≡ #(l ! n ! u)

from which we finally deduce the desired operator expression θlu(NS), which for any
pure or mixed state P satisfies

1 · θlu(NS) · P =
〈

#(l ! |S| =
∑

i∈A

#(pi) ! u)

〉

P

.

Neither of the operator→operator functions log2(·) or θlu(·) have polynomial expan-
sions, so neither NS nor θlu(NS) are in the operator polynomial ring generated by
creation and annihilation operators alone. Possibly, sufficient approximations are.

The universal quantifier of Section 2.4.3 may be viewed as an extreme version
of a cardinality operator: it should find all elements of a set specified in the LHS
of a rule, and (temporarily) annihilate them. It appears to be yet more difficult to
translate into operator algebra, since a naive rendition using (18) would involve a
product of annihilation operators each raised to the power of the current number of
objects of a given type: ai

Ni to remove all “Ni” occurrences of a parameterized term
τi, prior to restoring some or all of them with suitable creation operators. In the case
of a null RHS, this expression may be given meaning as follows: a|n〉 = n|n − 1〉, so
ak|n〉 = (n)k|n − k〉, so an|n〉 = n!|0〉 and

âNi
i →




0 1! 2! 3! ...

0 0 0 0
0 0 0 0



 = |ni = 0〉
(

nmax∑

n=0

ni!〈ni = n|
)

However, nonnull RHS’s will require further work.

5.2 Semantics of object identifiers (OIDs) and graph grammars

Graph grammars are composed of local rewrite rules for graphs (see for example
[44]). We now express a class of graph grammars in terms of SPGs. A precursor ex-
ample for graph grammars is the Anabaena model in which the graph nodes represent

E. Mjolsness, G. Yosiphon

cells and the edges are connections between adjacent cells. Pointers between objects
exist in the Anabaena grammar from Section 4.3.2, where cell objects are connected
to neighboring cell objects in a row. For example, the second rule in the Anabaena
model which divides a vegetative cell in two is:

{w := C(l, c; (w1, w2)), V(w)}
→ {w11 := C(kl, c; (w1, w12)), w12 := C((1 − k) l, c; (w11, w2)), V(w11), V(w12)}

This rule can be converted automatically into the following form, which does not use
special syntax for Object Identifiers:

{C(w, l, c, w1, w2), V(w), OIDGen(NextOID)}
→ {C(NextOID, kl, c, w1, NextOID + 1), C(NextOID + 1,

(1 − k) l, c, NextOID, w2) , V(w11), V(w12), OIDGen(NextOID + 2)}

Thus the w := C(...) notation associates a unique new object reference to the variable
w, the Object Identifier.

The following syntax introduces Object Identifier (OID) labels Li for each para-
meterized term, and allows labelled terms to point to one another through a graph
of such labels. The graph is related to two subgraphs of neighborhood indices N(i, σ)

and N′(j, σ) specific to the input and output sides of a rule. Like types or variables,
the label symbols appearing in a rule are chosen from an alphabet {Lλ|λ ∈ :}. Unlike
types but like variables Xc, the label symbols Lλ(i) actually denote unique values
in some discrete domain such as the nonnegative integers, thus serving as unique
addresses or object identifiers.

A graph grammar rule is of the form, for some nonnegative-integer-valued func-
tions N(i, σ), N′(j, σ), and one-to-one nonnegative-integer-valued functions λ(i) and
λ′(i) for which (λ(i) = λ(j)) ⇒ (i = j), (λ′(i) = λ′(j)) ⇒ (i = j):

{
Lλ(i) := τi

(
xa(i);

[
LN(i,σ)||σ ∈ 1..σmax

a(i)

])
|i ∈ I

}

→
{

Lλ(i)|i ∈ I1 ⊆ I
}

∪
{

Lλ′(j) := τ j

(
x′

a′(j);
[

LN′(j,σ)||σ ∈ 1..σmax
a′(j)

])
| j ∈ J

}

with ρr

({
x′

a′(j)

}
|
{

xa(i)
})

(compare to (5)). Note that the fanout of the graph is limited by σ cur
i ! σmax

a(i) . Let

I = I1 ∪ I2 and I1 ∩ I2 = ∅

J1 =
{

j ∈ J ∧
(
∃i ∈ I2|λ(i) = λ′(j)

)}

J2 =
{

j ∈ J ∧
(
!i ∈ I2|λ(i) = λ′(j)

)}

I3 =
{
i ∈ I2 ∧

(
! j ∈ J1|λ(i) = λ′(j) ⊆ I2

)}

This syntax may be translated to an ordinary non-graph grammar rule. The in-
put objects indexed by I are divided into those which don’t change at all (I1) and
those which change (I2) including those which disappear (I3). The output objects
are divided into the unchanged inputs (I1), the modified input objects (J1), the novel

Stochastic process semantics for dynamical grammars

output objects (J2), and a record of the destroyed input objects (I3). The translation
is as follows (where NextOID is a variable, and OIDGen and Null are types reserved
for the translation):

{
τa(i)

(
Lλ(i), xa(i),

[
LN(i,σ)||σ ∈ 1..σ cur

i

])
|i ∈ I

}
, OIDGen(NextOID)

→
{
τa(i)

(
Lλ(i), xa(i),

[
LN(i,σ)||σ ∈ 1..σ cur

i

])
|i ∈ I1

}

∪
{
τa′(j)

(
Lλ′(j), x′

a′(j),
[

LN′(j,σ)||σ ∈ 1..σ cur
j

])
[| j ∈ J1] ∧

[
i ∈ I2

]
∧

(
λ(i) = λ′(j)

)}

∪
{
τa′(j)

(
Lλ′(j), x′

a′(j),
[

LN′(j,σ)||σ ∈ 1..σ cur
j

])
| j ∈ J2

}

∪
{
Null(Lλ(i))|i ∈ I3

}

∪ {OIDGen(NextOID + |J2|)}

with ρr

({
x′

a′(j)

}
|
{

xa(i)
}) ∏

j∈J2

δK(Lλ′(j), NextOID + |{ j′ ∈ J2| j′ < j}|)

which already has a defined semantics "c/d. Note that all set membership tests can
be done at translation time because they do not use information that is only avail-
able dynamically during the grammar evolution. Optionally we may also add a rule
schema (one rule per type, τa) to eliminate any dangling pointers:

τa
(
Lλ(1), x,

[
LN(1,σ)||σ ∈ 1..σ cur

1

])
, Null(Lλ(2))

→ τa
(
Lλ(1), x,

[
LN(1,σ)|N(1, σ) 0= λ(2)||σ ∈ 1..σ cur

1

])
, Null(Lλ(2))

with ρcleanup

∑

σ∈1..σmax

δK(LN(1,σ), Lλ(2))

As a practical matter, the assignment of unique OID’s to new RHS terms could
be handled in a less global (hence less serialized) and more distributed way than
in the foregoing translation to SPGs. For any rule firing, each newly created RHS
term could inherit a uniquely altered OID from one of the LHS terms arbitrarily
designated as its parent. For example parent terms could keep track of the number
of such “OIDchildren” they have had, and each new child could be labelled with
childOID=ζ (parent OID, #OIDchildren). If ζ is a hash function then there would be
a small chance of OID conflict, as a tradeoff for having all OIDs fit inside a constant-
sized address space. If ζ represents the concatenation of integer strings, there can
be no conflicts but the OID size can grow indefinitely. Such integer strings were
eliminated without OID conflict by using a change of variables, in the related context
of constrained energy functions and Boltzmann distributions arising from a class of
context-free SPGs [45].

As an example of a graph grammar, discrete link “color” labels can be used to
specify a flexible meta-graph-grammar in terms of a matrix Gab

in jn ∈ {0, 1} of allowed
color transitions from parent to child links as a function of predetermined child
node labels (ik, jk) [46]. In the following grammar, boldface indices i, j refer to
sequences (i1, i2, ...ik−1) and (i j, j2, ... jk−1) which can index nodes in a binary tree, and

E. Mjolsness, G. Yosiphon

the operation (i, ik) yields the concatenated sequence (i1, i2, ...ik) that can index child
nodes. Also the variable A(i,ik) is a 0/1-valued “aliveness” variable, that indicates
which rooted subtree of the infinite binary tree has resulted from a node-generating
grammar such as binaryclustergen (Section 2.1). If the subindices il are allowed to
range over a larger set than {0,1} then the notation generalizes to trees with some
larger fixed fanout than binary. With these notations, we can link up nodes randomly
and recursively as follows:

grammar (discrete-time) graph-recursion (start → {node(i), link(a, i, j}) {
start → {node((0)), link(1, (0), (0))}
N := node(i) → N, {node((i, ik))|A(i,ik) = 1 ∧ ik < imax}

under E = µ
∑
ik

A(i,ik)

link(a, i, j), N := node((i, ik)), M := node((i, ik))

→ {link(b, (i, ik)(j, jk))|Gab
ik jk = 1}, N, M

}

5.2.1 Transformations of SPGs

Given graph grammar capabilities as above, with discrete-time semantics, it is pos-
sible to implement a graph grammar that performs a syntactic transformation on
an SPG. We have done this in the Plenum implementation of SPGs (Section 2),
implementing a very simple syntactic transformation that swaps the left and right
hand sides of each grammar rule, effectively reversing the arrows, without modifying
the rate function. This is not generally a correct solution to the problem (Section
5.2.1) of creating an inverse inference algorithm for a given generative SPG, but it
illustrates the potential for using (meta-) SPGs to implement such SPG morphisms
if they can be found. One advantage of this approach is that a meta-SPG may also
be able to check its own conditions of applicability before acting, if they are known
mathematically. Other selectively applicable grammar transformations may be im-
plementable by meta-grammars, such as transformations from continuous-time or
discrete-time SPGs to efficient discrete-time SPG simulation algorithms. In this way,
SPGs and DGs in principle can become dynamical systems themselves, in addition
to their usual role in specifying dynamical systems via their semantic maps.

5.2.2 String rewrite rule grammars

Strings may be encoded as one-dimensional graphs using either a singly or doubly
linked list data structure as was shown for the Anabaena example above. String
rewrite rules of the form

[
τa(i)(xi)|i ∈ IL

]
→

[
τa′(j)(y j)| j ∈ IR

]
with ρr

([
xi|i ∈ IL

]
,
[
y j| j ∈ IR

])
(51)

(note ordering of arguments, in contrast to (5)) can be emulated as graph rewrite
rules, whose semantics are defined above. This form is capable of handling many
L-system grammars [13]. As usual, if ρr is not supplied it defaults to 1. The Anabaena
example with continuous growth rules replaced by discrete cell state change rules
thus provides an elementary example of a string rewrite grammar.

Stochastic process semantics for dynamical grammars

5.3 Stochastic and ordinary differential equations

There are SPG rule forms corresponding to stochastic differential equations govern-
ing diffusion and transport. Given the SDE or equivalent Langevin equation (which
specializes to a system of ordinary differential equations when η(t) = 0):

dxi = vi([xk])dt + σ ([xk])dW or (52)

dxi

dt
= vi([xk]) + ηi(t) (53)

under some conditions on the noise term η(t) the dynamics can be expressed [30] as
a Fokker–Planck equation for the probability distribution P({x}, t):

∂P(x, t)
∂t

= −
∑

i

∂

∂xi
vi(x)P(x, t) +

∑

ij

∂2

∂xi∂x j
Dij(x)P(x, t) (54)

Let P(y, t|x, 0) be the solution of this equation given initial condition P(y, 0) =
δ(y − x) = ∏

k
δ(yk − xk) (with Dirac delta function appropriate to the particular mea-

sure µ used for each component). Then at t = 0,

∂P(y, 0|x, 0)

∂t
≡ ρ([yi]| [xi]) = −

∑

i

∂

∂yi
vi(x)δ(y − x) +

∑

ij

∂2

∂yi∂y j
Dij(x)δ(y − x)

Thus the probability rate ρ([yi]|[xi]) is given by a differential operator acting on a
Dirac delta function. It can be decomposed into drift and diffusion:

ρdrift([yi]| [xi]) = −
∑

i

∂

∂yi
vi(x)

∏

i

δ(yi − xi) (55)

ρdiffusion([yi]| [xi]) =
∑

ij

∂2

∂yi∂y j
Dij(x)

∏

i

δ(yi − xi) (56)

from which by (20) we construct the evolution generator operators OFP = Odrift +
Odiffusion, where

Odrift = −
∫

dx
∫

dyâ(y)a(x)

(
∑

i

∇yivi(y)
∏

k

δ(yk − xk)

)

(57)

Odiffusion =
∫

dx
∫

dyâ(y)a(x)




∑

ij

∇yi ∇y j Dij(y)
∏

k

δ(yk − xk)



 (58)

The second order derivative terms give diffusion dynamics and also regularize and
promote continuity of probability in parameter space both along and transverse to
any local drift direction. So, these two time-evolution operators may be identified

E. Mjolsness, G. Yosiphon

with the corresponding differential operators −∑
i

∂
∂xi

vi({x}) and
∑
ij

∂2

∂xi∂x j
Dij({x})in

the Fokker–Planck partial differential equation (54), respectively.
As a check one can use the relations

|z〉 = â(z)|0
〉
, 〈w| = 〈0|a(w)

[
a(x), â(y)

]
= δ(y − x)[1 + N(x)Q(N(x), nmax)]

〈w|z〉 = δ(w − z)

to calculate operator matrix elements 〈w| exp(tOFP)|z〉. For example,

〈w |Odrift| z〉 = −
〈

w

∣∣∣∣∣

∫
dx

∫
dy

(
∑

i

∇yivi(y)δ(y − x)

)

â(y)a(x)â(z)

∣∣∣∣∣ 0

〉

= −
〈

w

∣∣∣∣∣

∫
dx

∫
dy

(
∑

i

∇yivi(y)δ(y − x)

)

â(y)δ(z − x)[1 + N(x)]
∣∣∣∣∣ 0

〉

= −
∫

dx
∫

dy

(
∑

i

∇yivi(y)δ(y − x)

)

δ(z − x) 〈w|y〉

= −
∫

dy

(
∑

i

∇yivi(y)δ(y − z)

)

δ(w − y)

= +
∫

dyδ(y − z)

(
∑

i

vi(y)∇yiδ(w − y)

)

=
∑

i

vi(z)∇ziδ(w − z)

Computing higher powers yields

〈w |exp(tOdrift)| z〉 = exp

(

t
∑

i

vi(z)∇zi

)

δ(w − z)

= δ

(
w −

(
{z(0) = z} +

∫ t

0
vi(z(t))dt

))

which is a formal solution of the drift-only differential equation (dxi)/dt = vi(xk) .
Diffusion/drift rules can be combined with chemical reaction rules to describe

reaction-diffusion systems [24, 47]. The foregoing approach can be generalized to
encompass partial differential equations (PDEs) and stochastic partial differential
equations (SPDEs) [34]; these extensions are taken to be part of the definition of al-
lowed rules in a DG. With suitable PDEs, one can then express models of dynamical

Stochastic process semantics for dynamical grammars

manifolds (as in General Relativity) and dynamical manifold embeddings using ex-
plicit or level set representations.

The foregoing operator expressions all correspond to natural extended-time pro-
cesses given by the evolution of continuous differential equations (DEs). The oper-
ator semantics of the differential equations is given in terms of derivatives of delta
functions in the manner of (52), (53), (55), (56). The “solving” keyword may be used
to introduce such ODE/SDE rule clauses in the SPG syntax. This syntax could be
eliminated in favor of a “with” clause by using derivatives of delta functions in the
rate expression ρDE({yi}|{xi}), provided that such generalized functions are in the
Banach space F(V) as a limit of functions.

Thus, ODE’s and SDE’s have operator expressions for their semantics and can
therefore be added to the allowed syntax of Dynamical Grammars. These kinds of
dynamics can now be freely combined with reaction networks and other discrete-
time event processes whose dynamics is also defined by operator algebra generators.
Indeed if a grammar includes both DE rules and non-DE rules, a conventional DE
solver can be used to compute exp((tn+1 − tn)OFP) in the time-ordered product ex-
pansion (40) for exp(tH) as a hybrid simulation algorithm for discontinuous (jump)
stochastic processes combined with stochastic differential equations. The analogous
combination for grammars with deterministic dynamics semantics appears in [41]
which exhibits simulation algorithms, in [15] which introduces the “solve” keyword
for L-systems, and in [16] which specifies a dynamical grammar modeling framework
for developmental biology.

5.4 Discussion: relevance to artificial intelligence and computational science

The relevance of the modeling language defined here to artificial intelligence in-
cludes the following points. First, pattern recognition and machine learning both
benefit foundationally from better, more descriptively adequate probabilistic domain
models. As an example, Section 4.1 exhibits hierarchical clustering data models ex-
pressed very simply in terms of SPGs and relates them to recent work. Graphical
models are probabilistic domain models with a fixed structure of variables and their
relationships, by contrast with the inherently flexible variable sets and dependency
structures resulting from the execution of stochastic parameterized grammars. Thus
SPGs, unlike graphical models, are Variable-Structure Systems (defined in [34]),
and consequently they can support compositional description of complex situations
such as multiple object tracking in the presence of cell division in biological imagery
[48]. Second, the reduction of many divergent styles of modelling and computation
to a common SPG syntax and operator algebra semantics enables new possibilities
for deep semantic-level integration of hybrid forms of modeling and computing.
For example one could combine logic programming with probability distribution
models and quantitative areas such as stochastic processes, or one could combine
discrete-event stochastic and differential equation models as discussed in Section 5.3,
in possibly new ways.

As a third point of AI relevance, from SPG probabilistic domain models it is
possible to systematically derive algorithms for simulation (as in Section 3.7.2) and
inference either by hand or automatically. Of course, inference algorithms are not as
well worked out yet for SPGs as for graphical models. SPGs have the advantage
that simulation or inference algorithms could be expressed again in the form of

E. Mjolsness, G. Yosiphon

SPGs, a possibility demonstrated by the clustering inference grammar in Section
4.1.3 and also in part by the encoding of logic programs as SPGs. Since both model
and algorithm are expressed as SPGs, it is possible to use SPG transformations that
preserve relevant quantities (Section 5.2.1) as a technique for deriving such novel
algorithms or generating them automatically. For example we have taken this ap-
proach to rederive by hand the Gillespie simulation algorithm for chemical kinetics.
This derivation is different from the one in Section 3.7.2. Because SPGs encompass
graph grammars it is even possible in principle to express families of valid SPG
transformations as meta-SPGs. All of these points apply a fortiori to Dynamical
Grammars as well.

The relevance of the modeling language defined here to computational science
includes the following points. First, as argued previously, multiscale models must
encompass and unify heterogeneous model types such as discrete/continuous or sto-
chastic/deterministic dynamical models; this unification is provided by SPGs and
DGs. In this way, the fine scale dynamics (such as reaction events) in a two-scale
model can be approximated by a coarse-scale model (for example, mass-action ki-
netic ODEs for concentrations). Such a coarse-scale approximation of the fine scale
dynamics can then be integrated, by simple addition of time-evolution generators,
with the dynamics of intrinsically coarse-scale processes, such as cell division and
cell-type changing events in a developmental biology model. Second, a representa-
tionally adequate computerized modeling language can be of great assistance in con-
structing mathematical models in science, as demonstrated for biological regulatory
network models by Cellerator [49] and other cell modeling languages. DGs extend
this promise to more complex, spatiotemporally dynamic, variable-structure system
models such as occur in biological development. Third, machine learning techniques
could in principle be applied to find simplified approximate or reduced models of
emergent phenomena within complex domain models. Indeed, one indicator of in-
telligent behavior is the ability to construct operationally adequate internal models
of the environment. In that case the forgoing AI arguments apply to computational
science applications of machine learning as well.

Both for artificial intelligence and computational science, future work will be re-
quired to determine whether the prospects outlined above are both realizable and
compelling. The present work is intended to provide a mathematical foundation for
achieving that goal.

6 Conclusions and future directions

We have established a syntax and semantics for a probabilistic modeling language
based on independent processes leading to events linked by a shared set of objects.
The semantics is based on a polynomial ring of time-evolution operators. The syntax
is in the form of a set of rewrite rules. Variable-binding occurs by integration of
the rule firing rate function over parameter value spaces. Stochastic Parameterized
Grammars and the more general Dynamical Grammars expressed in this language
can compactly encode disparate models: generative cluster data models, biochemical
networks, logic programs, graph grammars, string rewrite grammars, and stochastic
differential equations among other others. The time-ordered product expansion con-
nects this framework to powerful methods from quantum field theory and operator
algebra.

Stochastic process semantics for dynamical grammars

One future direction for Dynamical Grammar applications is in dynamic spatial
modeling for biological development ([13, 14, 16, 34, 50]). To this end it will be
interesting to explore the relationship between graph grammars for spatial structures
and their continuum limits including PDEs, both encoded as DGs. For multicellular
structures it may be useful to consider simultaneously continuum limits at both the
subcellular scale and the multicellular tissue level. At the latter scale, developmental
systems can act as dynamic information-processing manifolds embedded dynamically
in Rd=3.

Also in the future, it may be useful to formalize non-textual, labelled graph repre-
sentations for the syntax of SPGs and Dynamical Grammars. Using graph grammars
such a representation could allow the semantics functions "c/d to be applied itera-
tively. To create such a graph representation, one could use diagrammatic represen-
tations such as Markov Random Fields or Bayes Networks for the language LR which
specifies the firing rate functions ρr([y j], [xi]) which are also members of function
spaces F(V), provided that such diagrams are augmented with a nonnegative scalar
multiplier to represent unnormalized firing rates. In this connection Dependency
Diagrams [34] generalize many other such representations. For the actual grammar
itself, there exists a bipartite graph {Gra, Gar} of types τa (indexed by a) and rules
(indexed by r), in which type node a links to rule r (Gra = 1) iff some term of type τa
occurs in the LHS multiset of rule r, and rule r links to type node a (Gar = 1) iff rule
r contains some term of type τa in its RHS multiset. This bipartite graph is similar
to the set of arcs between places (our types) and transitions (our rules) in a Petri
Net, and indeed there are generalizations such as Colored Petri Nets [19] in which
CPN tokens (our grounded term instances or objects) contain values (our vector
of parameter values). However our operator semantics appears to be nonstandard
in detail by comparison with the existing Petri Net literature, and the SPG syntax
contains features not found in Petri Nets such as rule variables, parameter vectors,
type signatures, polymorphic type signatures, oblivious semantics for all possible
(Section 3.4) rule firings and firing rate functions.

Acknowledgements Useful discussions with Pierre Baldi, Ashish Bhan, Michael Duff, Sergei
Nikolaev, Przemyslaw Prusinkiewicz, Alex Sadovsky, Bruce Shapiro, Padhraic Smyth, Michael
Turmon, and Max Welling are gratefully acknowledged. The detailed criticisms of an anonymous
reviewer were very helpful and caused us to reformulate the discrete-time SPG semantics and to
introduce Proposition 2. The work was supported in part by the National Science Foundation’s
Frontiers in Biological Research (FIBR) program, award number EF-0330786, by a Biomedical
Information Science and Technology Initiative (BISTI) grant (number R33 GM069013) from the
National Institute of General Medical Sciences, and by the Center for Cell Mimetic Space Explo-
ration (CMISE), a NASA University Research, Engineering and Technology Institute (URETI),
under award number #NCC 2-1364.

Appendix A1: Time-ordered operator expansion

We rederive the Time-Ordered Product expansion (Equation 2.14 of [24] Equation
4.29 of [30]) by elementary probabilistic means as follows. For arbitrary operators
H0 and H1 we wish to calculate

exp(tH) · p0 = exp(t (H1 + H0)) · p0

E. Mjolsness, G. Yosiphon

To this end we introduce an extra variable z, which can ultimately be set to 1, in order
to create a generating function that keeps track of the number of times operator H1

is applied in polynomial expansions of the exponential:

S(z) = exp(t (H1z + H0)) · p0

∞∑

n=0

skzk

=
∞∑

k=0

zk

k!

[
∂z

k exp(t (H1z + H0))

]

z=0
· p0

=
∞∑

k=0

zk

n!

[
∂z

k
∞∑

l=0

(t (H1z + H0))
l

l!

]

z=0

· p0

=
∞∑

k=0

zk

k!





∞∑

l=k

1
l!

∑

{0!ip!l−k}∧
k∑

p=0
ip=l−k

k!(tH0)
ik tĤ(tH0)

ik−1 · · · tĤ(tH0)
i0




· p0

=
∞∑

k=0

zktk





∞∑

l=0

1
(l + k)!

∑

{0!ip!l}∧
k∑

p=0
ip=l

(tH0)
ik H1(tH0)

ik−1 · · · H1(tH0)
i0




· p0

=
∞∑

k=0

zktk





∞∑

l=0

∑

{0!ip!l}∧ k∑
p=0

ip=l

k∏
p=0

(
ip
)
!

(
k∑

p=0
ip + k

)

!

(tH0)
ik

(ik)!
H1

(tH0)
ik−1

(ik−1)!
· · · H1

(tH0)
i0

(i0)




·p0

=
∞∑

k=0

zltl





∑

{0!ip!∞}

k∏
p=0

(
ip
)
!

(
k∑

p=0

(
ip + 1

)
− 1

)

!

(tH0)
ik

(ik)!
H1

(tH0)
ik−1

(ik−1)!
· · · H1

(tH0)
i0

(i0)!




· p0

=
∞∑

k=0

zktk





∑

{0!ip!∞}

k∏
p=0

,(ip + 1)

,

(
k∑

p=0

(
ip + 1

)
) (tH0)

ik

(ik)!
H1

(tH0)
ik−1

(ik−1)!
· · · H1

(tH0)
i0

(i0)!




· p0

Now we use the Multinomial–Dirichlet normalization integral

n∏
p=0

,(ip + 1)

,

(
n∑

p=0

(
ip + 1

)
) =

∫ 1

0
dθ0 · · ·

∫ 1

0
dθkδ




k∑

p=1

θp − 1




k∏

p=0

(
θp

)ip .

Stochastic process semantics for dynamical grammars

Accordingly,

S(z) =
∞∑

k=0

zk tk




∑

{0!ip!∞}

∫ 1

0
dθ0 · · ·

∫ 1

0
dθkδ

(k∑

p=1

θp − 1
)(k∏

p=0

(
θp

)ip

)

× (tH0)
ik

(ik)!
H1

(tH0)
ik−1

(ik−1)!
· · · H1

(tH0)
i0

(i0)!

]

· p0

=
∞∑

k=0

zk tk




∑

{0!ip!∞}

∫ 1

0
dθ0 · · ·

∫ 1

0
dθkδ

(k∑

p=1

θp − 1
)

× (θktH0)
ik

(ik)!
H1

(θk−1tH0)
ik−1

(ik−1)!
· · · H1

(θ0tH0)
i0

(i0)!

]

· p0

=
∞∑

k=0

zk tk




∫ 1

0
dθ0 · · ·

∫ 1

0
dθkδ

(k∑

p=1

θp − 1
) ∑

{0!i0!∞}

(θktH0)
i0

(ik)!
H1

×
∑

{0!i1!∞}

(θk−1tH0)
i1

(ik−1)!
· · · H1

∑

{0!ik!∞}

(θ0tH0)
ik

(i0)!



 · p0

=
∞∑

k=0

zk tk




∫ 1

0
dθ0 · · ·

∫ 1

0
dθkδ

(k∑

p=1

θp − 1
)

exp(θktH0)

×H1 exp(θk−1tH0) · · · H1 exp(θ0tH0)

]
· p0

Thus

S(z) =
∞∑

k=0

zk
[∫ t

0
dτ0 · · ·

∫ t

0
dτkδ

(k∑

p=1

τp − t
)

exp(τk H0)

×H1 exp(τk−1 H0) · · · H1 exp(τ0 H0)

]
· p0 (A59)

In summary (since p0 was never used in the above calculations),

exp(t (H1 + H0))

=
∞∑

k=0




∫ t

0
dτ0 · · ·

∫ t

0
dτkδ




k∑

p=1

τp − t



 exp(τk H0)H1 exp(τk−1 H0) · · · H1 exp(τ0 H0)



 .

E. Mjolsness, G. Yosiphon

Alternatively, define t1 = τ0, t2 = t1 + τ1, ... tn+1 = tn + τn = t. Then the evolution of
the state vector is given by

exp(t (H1 − H0)) · p0 =
∞∑

k=0

[∫ t

0
dt1

∫ t

t1
dt2 · · ·

∫ t

tk−1

dtk exp((t − tk) H0)

×H1 exp((tk − tk−1) H0) · · · H1 exp(t1 H0)

]
· p0

In the special case H1 = Ĥ, H0 = −D this simplifies to:

exp
(

t
(

Ĥ − D
))

· p0 =
∞∑

k=0

[∫ t

0
dt1

∫ t

t1
dt2 · · ·

∫ t

tk−1

dtn exp(− (t − tk) D) · · · Ĥ

× exp(− (tk − tk−1) D) · · · Ĥ exp(−t1 D)

]
· p0

(A60)

Since D is diagonal, the terms exp(−τD) are analytically calculable and easy to
simulate with large jumps in time. Between these easy terms are interposed single
powers of Ĥ representing the occurrence of discrete-time grammar events that must
be simulated.

These last two expression for exp(t(Ĥ − D)) have a significant interpretation in
the case of reaction kinetics: they correspond to the Gillespie algorithm for stochastic
simulation. The exponential distribution of waiting times until the next reaction is
given by exp(−τD), which depends on the state of the system but doesn’t change it,
and the reaction events are modeled by the interdigitated powers of Ĥ.

The same derivation can be accomplished for any decomposition of H into a
solvable part H0 (above, −D, but it need not be diagonal) plus a more difficult term
H1(here, Ĥ):

exp(t (H0 + H1)) · p0 =
∞∑

k=0

[∫ t

0
dt1

∫ t

t1
dt2 · · ·

∫ t

tk−1

dtk exp((t − tk) H0)

×H1 exp((tk − tk−1) H0) · · · H1 exp(t1 H0)

]
· p0

(A61)

This is one formulation of the time-ordered product expansion.
This perturbative approach is equivalent to the use of perturbative methods in-

cluding Feynman diagram calculations in quantum field theory, except for an occa-
sional factor of i=

√
−1 which would turn our probabilities into the complex-valued

probability factors of quantum mechanics, as discussed in Section 3.4.2.

Appendix A2: Relation of discrete-time and continuous-time grammars

The continuous and discrete-time grammar executions are related as follows. After
continuous time t, the joint probability density on the states of the original system

Stochastic process semantics for dynamical grammars

and on the number k of discrete events (including rule firings and post-termination
pseudo-events with rate ω) is

Prcontinuous

(
| {na(xa)}〉, k

∣∣∣∣| {ma(xa)}〉
)

and has the generating function S(z) (from (A59)) with H1 = H̃ and H0 = D̃ (=Ĥ
and D respectively if ω=0):

S(z) = exp
(

t
(

zH̃ − D̃
))

· p0

Expanding in z, successive powers of z will accompany successive powers of H̃ =
Ĥ + ω diag(#(1 · Ĥ = 0)) which can be interpreted as rule firings (applications of
the operator Ĥ) or, if ω 0= 0, as post-termination pseudo-events that don’t change
anything. We can expand this generating function as in Appendix A1 above:

S(z) =
∞∑

k=0

zk
[∫ t

0
dτ0 · · ·

∫ t

0
dτkδ

(k∑

p=1

τp − t
)

exp(−τk D̃)

×H̃ exp(−τk−1 D̃) · · · H̃ exp(−τ0 D̃)

]
· p0

Equating terms in the generating function for the joint distribution over k,

Prcontinuous(·, k|t, p0) =
∫ t

0
dτ0 · · ·

∫ t

0
dτkδ

(k∑

p=1

τp − t
)

exp(−τk D̃)

×H̃ exp(−τk−1 D̃) · · · H̃ exp(−τ0 D̃) · p0 (A62)

which can be disagreggated into a joint distribution on inter-event delay times τ0· · · τ k:

Prcontinuous(·, τ0· · · τ k, k|t, p0) = δ

(k∑

p=1

τp − t
)

exp(−τk D̃)

×H̃ exp(−τk−1 D̃) · · · H̃ exp(−τ0 D̃) · p0

By construction all entries of the diagonal matrix D are nonnegative. If all entries
of D are also bounded below by δ > 0 (and in particular there are no terminal states
with zero exit probability), and ε < 1 is a desired relative agreement in probabilities,
then we may introduce a probability distribution q(t) on time that is uniform for
t ∈ [0, T] where T = k| log(ε/k)|/δ:

q(t) =
{

1/T if t ∈ [0, T]
0 otherwise

= #(0 ! t ! T)/T

E. Mjolsness, G. Yosiphon

Then

Prcontinuous(·, τ0, ..., τk, k|T, p0)

=
∫ ∞

0
dtPrcontinuous(·, τ0, ..., τk, k|t, p0)q(t)

=
#

(
k∑

p=1
τp < T

)

T
exp(−τk D)H̃ exp(−τk−1 D̃) · · · H̃ exp(−τ0 D̃) · p0

Prcontinuous(·, τk = 0, k|T, p0)

=
∫ ∞

0
dτ0 · · ·

∫ ∞

0
dτk−1Prcontinuous(·, τ0, ..., τk−1, τk = 0, k|T, p0)

=
∫ ∞

0
dτ0 · · ·

∫ ∞

0
dτk−1

#

(
k∑

p=1
τp < T

)

T
exp(− (τk = 0) D̃)

×H̃ exp(−τk−1 D̃) · · · H̃ exp(−τ0 D̃) · p0

=
∫ T

0
dτ0 · · ·

∫ T

0
dτk−1

#

(
k∑

p=1
τp < T

)

T
H̃ exp(−τk−1 D̃) · · · H̃ exp(−τ0 D̃) · p0

Since all entries of D are also bounded below by δ > 0, then for any ε we can find a
T > 0 so large that

∫ T
T/k dτ exp(−τδ)
∫ T

0 dτ exp(−τδ)
<

∫ ∞
T/k dτ exp(−τδ)

∫ T/k
0 dτ exp(−τδ) +

∫ T
T/k dτ exp(−τδ)

which,

<

∫ ∞
T/k dτ exp(−τδ)

∫ T/k
0 dτ exp(−τδ)

= exp(−Tδ/k)

1 − exp(−Tδ/k)
< ε/k (A63)

In particular, T = k| log(ε/k)|/δ suffices.

Prcontinuous(·, τk = 0, k|T, p0)

∼=





∫ T/k

0
dτ0 · · ·

∫ T/k

0
dτk−1

#

(
k∑

p=1
τp < T

)

T
H̃ exp(−τk−1 D̃) · · · H̃ exp(−τ0 D̃) · p0





× (1 + O(ε))

=
[

1
T

∫ T/k

0
dτ0 · · ·

∫ T/k

0
dτk−1 H̃ exp(−τk−1 D̃) · · · H̃ exp(−τ0 D̃) · p0

]

× (1 + O(ε))

Stochastic process semantics for dynamical grammars

=
[

1
T

H̃

[∫ T/k

0
dτk−1 exp(−τk−1 D̃)

]

· · · H̃

[∫ T/k

0
dτ0 exp(−τ0 D̃)

]

· p0

]

× (1 + O(ε))

∼=
[

1
T

(
H̃ D̃−1

)k
· p0

]
× (1 + O(ε))

where we have used

∫ T/k

0
dτ exp(−τD) =

[
1 − exp(−T D̃/k)

]
D̃−1

∼=
{

T/k for D̃ss = 0(
1/D̃ss

)
× (1 + O(ε/k)) for D̃ss 0= 0

= D̃′[T/k] × (1 + O(ε/k)) .

Sorting into nonterminal and terminal pool states (1 · Ĥ · p > 0 or 1 · Ĥ · p = 0)
and using block matrix notation as in (34),

µ(ω, T/k) ≡
{

T/k if ω = 0
ω otherwise

H̃

[∫ T/k

0
dτk−1 exp(−τk−1 D̃)

]
∼=

(
H̃11 0
H̃21 ωI

)(
diag

(
1 · H̃1

)−1
0

0 µ(ω, T/k)I

)

× (1 + O(ε/k))

which,

=
(

H̃11 · diag(1 · H̃1)
−1

0

H̃21 · diag(1 · H̃1)
−1

I#(ω > 0)

)

× (1 + O(ε/k)) = H̃ · D̃′ × (1 + O(ε/k))

(A64)
(last step uses (34) and (36)) Now we conditionalize on k and τk.

Case I: Prcontinuous(τk = 0, k|p0) = 0: Then

0 = 1 ·
(

H̃ D̃′
)k

· p0 ⇒ ω = 0 ⇒
(

H̃ = Ĥ and D̃ = D
)

; thus

0 = 1 ·
(

Ĥ D′
)k

· p0 = 1 − pk(7) = Prdiscrete(not halted|k events)

(by (37)). So

Prcontinuous(τk = 0, k|T, p0) = 0 = Prdiscrete(not halted|k events)

E. Mjolsness, G. Yosiphon

Case II: Prcontinuous(τk = 0, k|T, p0) > 0: We can conditionalize on k and τk by di-
viding by the sum over the remaining parameters, namely the pool states
|{na(xa)}〉:

Prcontinuous(·|k, τk = 0, T, p0)

= Prcontinuous(·, τk = 0, k|T, p0)

Prcontinuous(τk = 0, k|T, p0)
= Prcontinuous(·, τk = 0, k|T, p0)

1 · Prcontinuous(·, τk = 0, k|T, p0)

∼=





(
H̃ D̃′

)k
· p0

1 ·
(

H̃ D̃′
)k

· p0



 × (1 + O(ε))

using (A64).
If ω 0= 0 (and therefore in the present context ω # δ) then 1 · (H̃ D̃′)

k ·
p0 = 1 by the definition of D̃ (D̃ = diag(1 · H̃)), and

Prcontinuous(·|k, τk = 0, T, p0) =
(

H̃ D̃′
)k

· p0 × (1 + O(ε)) .

so we conclude that, with a relative approximation error of O(ε),

Prcontinuous(·|k, τk = 0, T, p0) ∼= Prdiscrete(·|k, p0)

If ω = 0 we can conditionalize the discrete distribution on not halting using
(37):

Prdiscrete(·|not halted, k events, p0) = Prdiscrete(·, not halted|k events, p0)

Prdiscrete(not halted|k events)

=

(
H̃ D̃′

)k
· p0

1 ·
(

H̃ D̃′
)k

· p0

so we conclude that, with a relative approximation error of O(ε),

Prcontinuous(·|k, τk = 0, T, p0) ∼= Prdiscrete(·|not halted, k events, p0).

This is also true of the case ω 0= 0 since in that case there is zero probability
of halting and Prdiscrete(·|k, p0) = Prdiscrete(·|not halted, k events, p0).

Appendix A3: Shadow grammars

A related calculation establishes another approximation of discrete by continuous-
time SPG semantics, in which the instantaneous examination of the state resulting
from the k’th rule firing is done not by Bayes’ rule inference, but by adding “flash-
freezing” events as part of the continuous-time dynamics.

Suppose there is one or more terminal states (with zero probability of exit), and
we want to know the probability that the continuous-time system falls into a terminal

Stochastic process semantics for dynamical grammars

state after k rule firings and then stays there forever. This assumption can be met as
follows:

Augment the original grammar , with a new one-parameter global “live” object
added to every RHS and LHS, whose Boolean “liveness” parameter must be True
in the LHS for any rule firing to occur (and remains True in the RHS). This doubles
the state space by adding a “shadow” terminal state to every original state of the
pool. Also for every rule r, add a “shadow” rule r′(r) with the same LHS as r, whose
RHS switches the liveness parameter to False and leaves all the other input terms
unchanged. The shadow rule r′should have the same probability rate function as does
r, times a small constant factor κ > 0.

Thus each rule r in ,

{
τa(i)(xi)|i ∈ IL

}
→

{
τa′(j)(y j)| j ∈ IR

}
with ρr([xi], [y j])

becomes two rules in ,′(,), the modified rule r and its shadow rule r′(r):

live(True),
{
τa(i)(xi)|i ∈ IL

}
→ live(True),

{
τa′(j)(y j)| j ∈ IR

}
with ρr([xi], [y j])

live(True),
{
τa(i)(xi)|i ∈ IL

}
→ live(False),

{
τa′(j)(y j)| j ∈ IR

}
with κρr([xi], [y j])

and no rule has live(False) in its LHS.
If we order the states so that first all the live states appear, then all the nonlive

shadow states, then using 2x2 block matrix notation the full H̃∗and D̃∗ can be written
in terms of the original H̃ and D̃ (using the matrix “prime” operation of (29)):

H̃∗ =
(

H̃ 0
κ H̃ ωI

)
; D̃∗ =

(
(1 + κ) D̃ 0

0 ωI

)
; p∗

0 =
(

p0

0

)

also D̃∗′ =
(

D̃′/ (1 + κ) 0
0 (#(ω > 0)/ω) I

)
⇒ H̃∗ D̃∗′ =

(
H̃D̃′/ (1 + κ) 0
κ H̃D̃′/ (1 + κ) #(ω > 0)I

)

Assume all other entries of D̃ (besides those associated with terminal states,
whether they are shadow states or not) are bounded below by δ > 0 (and in particular
there are no terminal states with zero exit probability), and ε < 1 is a desired relative
agreement in probabilities. Also define T so that T = k| log(ε/k)|/δ. Then

p∗
k(t) = Prcontinuous(·|k, t, p0) = Prcontinuous(·, k|t, p0)

1 · Prcontinuous(·, k|t, p0)

where

Prcontinuous(·, k|t = T, p0) =
[∫ T

0
dτ0 · · ·

∫ T

0
dτkδ




k∑

p=1

τp − t



 exp(−τk D̃∗)

×H̃∗ exp(−τk−1 D̃∗) · · · H̃∗ exp(−τ0 D̃∗)

]
· p∗

0

and we want to compute the long-time limit limT→∞ pk(T) for arbitrary but finite k.
In that way the relative error parameter ε will become as small as desired, and zero
in the limit.

E. Mjolsness, G. Yosiphon

From (A62) and (A63),

Prcontinuous(·, k|t = T, p0)

∼=
[∫ T/k

0
dτ0 · · ·

∫ T/k

0
dτk−1

∫ t

0
dτkδ




k−1∑

p=1

τp + τk − t



 exp(−τk D̃∗)

× H̃∗ exp(−τk−1 D̃∗) · · · H̃∗ exp(−τ0 D̃∗)

]
· p∗

0 × (1 + O(ε))

None of the factors exp(−τ0 D) ... exp(−τk−1 D) can contribute anything from the
Dss=0 terminal states, because the next matrix multiplication by Ĥ (to the left in the
matrix product) would zero out such contributions. So the only contributions from
the terminal states come from the innermost integral:

∫ t

0
dτkδ




k−1∑

p=1

τp + τk − t



 exp(−τk D̃∗) = exp



−



t −
k−1∑

p=1

τp



 D̃∗





=






1 for
(

D̃∗
)

ss
= 0

! exp(−Tδ/k) = O(ε) for
(

D̃∗
)

ss
0= 0

= θ(D̃∗) + O(ε)

where we define the matrix function θ(D̃) elementwise on matrix D̃:

θ
((

D̃∗
)

ss′

)
=

{
1 if s = s′ and

(
D̃∗

)

ss
= 0

0 otherwise

Here, at large times t, any nonzero diagonal element becomes O(ε) while zero
diagonal elements receive a factor of 1. We assumed the terminal state is reachable
in any number of rule firings k, in which case only the terminal states will receive
O(1) weight

Prcontinuous,′(·, k|t = T, p0) ∼=
(
θ(D̃∗) + O(ε)

)

×
[∫ T/k

0
dτ0 · · ·

∫ T/k

0
dτk−1 H̃∗ exp(−τk−1 D̃∗) · · · H̃∗ exp(−τ0 D̃∗)

]

·p∗
0 × (1 + O(ε))

∼=
(
θ(D̃∗) + O(ε)

)
×

[(
H̃∗ D̃∗′

)k
· p∗

0

]
× (1 + O(ε))

(using the same argument as for (A64)), where the matrix “prime” operation is
defined in (29). Conditionalizing,

p∗
k(t = T) = Prcontinuous(·|k, t = T, p0)

=

(
θ(D̃∗) + O(ε)

)
×

[(
H̃∗ D̃∗′

)k
· p∗

0

]
× (1 + O(ε))

1 ·
(
θ(D̃∗) + O(ε)

)
×

[(
H̃∗ D̃∗′

)k
· p∗

0

]
× (1 + O(ε))

Stochastic process semantics for dynamical grammars

Assuming ω = 0, and no original terminal states:

θ(D̃∗) =
(

0 0
0 I

)
; H̃∗ D̃∗′ =

(
H̃D̃′/ (1 + κ) 0
κ H̃D̃′/ (1 + κ) 0

)
;

(
H̃∗ D̃∗′

)k
=




(

H̃D̃′/ (1 + κ)
)k

0

κ(H̃D̃′/ (1 + κ))
k

0



 =
(

I 0
κ I 0

)
⊗

(
H̃D̃′/ (1 + κ)

)k

(
0 0
0 I

)(
I 0
κ I 0

)
=

(
0 0
κ I 0

)

p∗
k(t = T) ∼=

(
θ(D̃∗) + O(ε)

)
×

[(
H̃∗ D̃∗′

)k
· p∗

0

]

1 ·
(
θ(D̃∗) + O(ε)

)
×

[(
H̃∗ D̃∗′

)k
· p∗

0

]

Now we calculate

1 ·
[(

0 0
κ 0

)
⊗

(
H̃D̃′/ (1 + κ)

)k
]

·
(

1
0

)
⊗ p0 =

{
(κ, 0) ⊗

[
1 ·

(
H̃D̃′/ (1 + κ)

)k
]}

·
(

1
0

)
⊗ p0

= 1 · κ(H̃D̃′)
k

(1 + κ)k · p0

p∗
k(t = T) ∼=

[(
0 0
κ 0

)
⊗

(
H̃D̃′

)k

(1+κ)k

]

·
(

1
0

)
⊗ p0

1 · κ(H̃D̃′)
k

(1+κ)k · p0

=

(
0
κ

)
⊗

[(
H̃D̃′

)k

(1+κ)k · p0

]

κ1 ·
(

H̃D̃′
)k

(1+κ)k · p0

=
(

0
1

)
⊗

(
H̃D̃′

)k
· p0

1 ·
(

H̃D̃′
)k

· p0

As in the previous proof, we may conclude that, with a relative approximation
error of O(ε),

Prcontinuous,′(·|k, t = T, p0) = p∗
k(t = T) ∼= Prdiscrete,(·|not halted, k events, p0).

E. Mjolsness, G. Yosiphon

Appendix A4: Relation of alternative discrete-time and continuous-time grammars

The continuous and discrete-time grammar executions are related as follows. After
continuous time t, the joint probability density on the states of the original system
and on the number of discrete rule firings, k, has the generating function

S(z) =
∞∑

k=0

skzk = exp
(

t
(

Ĥz − D
))

· p0

so that

sk = Coefk

(
exp

(
t
(

Ĥz − D
))

, z
)

· p0.

An alternative approach to the semantics of the discrete-time grammar is to take
the short-time limit of the continuous-time grammar’s conditional distribution given
that n rule firings occurred:

limt→0
[
sk/1 · sk

]
= limt→0

[
Coefk

(
exp

(
t
(

Ĥz − D
))

, z
)

· p0/1

· Coefn

(
exp

(
t
(

Ĥz − D
))

, z
)

· p0

]
.

This result follows by a short calculation from the following general expression
for S:

S(z) =
∞∑

k=0

skzk = exp
(

t
(

Ĥz − D
))

· p0

=
∞∑

k=0

zk

k!
[
∂z

k exp
(

t
(

Ĥz − D
))]

z=0
· p0

=
∞∑

k=0

zk

k!



∂z
k

∞∑

l=0

(
t
(

Ĥz − D
))l

l!





z=0

· p0

=
∞∑

k=0

zk

k!





∞∑

l=k

1
l!

∑

{0!ip!l−k}∧
k∑

p=0
ip=l−k

k!(−tD)ik tĤ(−tD)
ik−1 · · · tĤ(−tD)i0




· p0

=
∞∑

k=0

zk





∞∑

l=0

1
(l + k)!

∑

{0!ip!l}∧
k∑

p=0
ip=l

tk(−tD)
ik Ĥ(−tD)

ik−1 · · · Ĥ(−tD)i0




· p0

Stochastic process semantics for dynamical grammars

From this expression we can take the small-time limit, picking out only the ip = 0
terms:

limt→0S(z) =
∞∑

k=0

zk
[

1
(l + k)! |(l=0)tk Ĥk

]
· p0 =

∞∑

k=0

zktk

k! Ĥk · p0

Thus

limt→0
[
sk/1 · sk

]
= Ĥk · p0/

(
1 · Ĥk · p0

)

References

1. Mjolsness, E.: Stochastic process semantics for dynamical grammar syntax: an overview. In: Ninth
International Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida,
4-6 January 2006

2. Preston, C.J.: Spatial birth-and-death processes. Bull. Int. Statist. Inst. 46(2), 371–391 (1977)
3. Lange, K.: Applied Probability. Section 9.6. Springer, Berlin Heidelberg New York (2004)
4. Snyder, D.L., Miller, M.I.: Random Point Processes in Time and Space. Wiley, New York (1991)
5. Athreyea, K.B., Ney, P.E.: Branching Processes. Dover, New York (1972)
6. Engel, K., Nagel, R.: One-parameter Semigroups for Linear Evolution Equations. Springer

Graduate Texts in Mathematics 194, New York (2000)
7. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann, San Francisco (1988)
8. Nodelman, U., Shelton, C., Koller , D.: Continuous time Bayesian networks. In: Proceedings of

the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI), pp. 378–387. Morgan
Kaufmann, San Francisco (2002)

9. Dean, T., Kanazawa, K.: A model for reasoning about persistence and causation. Comput. Intell.
5, 142–150 (1989)

10. Sanghai, S., Domingos, P., Weld, D.: Relational dynamic Bayesian networks. J. Artif. Intell. Res.
24, 759–797 (2005)

11. Milch, B., Marthi, B., Russell, S., Sontag, D.: BLOG: probabilistic models with unknown objects.
In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp. 1352–
1359 (2005)

12. St-Aubin, R., Friedman, J., Mackworth, A.K.: A formal mathematical framework for modeling
probabilistic hybrid systems. In: Ninth International Symposium on Artificial Intelligence and
Mathematics, Fort Lauderdale, Florida, 4–6 January 2006

13. Prusinkiewicz, P., Lindenmeyer, A.: The Algorithmic Beauty of Plants. Springer, Berlin
Heidelberg New York (1990)

14. Giavitto, J., Michel, O.: MGS: a programming language for the transformations of topological
collections. LaMI – Universite d’ Evry Val d’Essonne. Technical Report 61–2001. Cited in May
2001

15. Prusinkiewicz, P., Hammel, M.S., Mjolsness, E.: Animation of plant development. Comput.
Graph. SIGGRAPH ‘93. 351–360 (1993)

16. Mjolsness, E., Sharp, D.H., Reinitz, J.: A Connectionist Model of Development. J. Theor. Biol.
152(4), 429–454 (1991)

17. Phillips, A., Cardelli, L.: A Correct Abstract Machine for the Stochastic Pi-calculus. http://
lucacardelli.name/Bibliography.htm Cited Sep 2006 (2006)

18. Petri, C.A.: Kommunikation mit Automaten. Dissertation, University of Bonn (1962)
19. Jensen, K.: Coloured Petri Nets I, II, III. Springer, Berlin Heidelberg New York (1997)
20. Genrich, H.: Predicate/Transition nets. Advances in Petri nets : APN 1, 208–247. (1986)
21. Haas, P.J.: Stochastic Petri Nets. Springer, Berlin Heidelberg New York (2006)
22. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam,

The Netherlands (1981)
23. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Functional Analysis I. Acad-

emic, New York (1972)

http://lucacardelli.name/Bibliography.htm
http://lucacardelli.name/Bibliography.htm

E. Mjolsness, G. Yosiphon

24. Mattis, D.C., Glasser, M.L.: The uses of quantum field theory in diffusion-limited reactions. Rev.
Mod. Phys. 70, 979–1001 (1998)

25. McLachlan, R.I., Quispel, G.R.: Splitting methods. Acta Numer. 11, 341–434 (2002)
26. Hatano, N., Suzuki, M.: Finding Exponential Product Formulas of Higher Orders.

http://arxiv.org/pdf/math-ph/0506007. Cited in 2 Jun 2005 (2005)
27. Hall, B.C.: Lie Groups, Lie Algebras, and Representations: An Elementary Introduction,

pp. 63–76. Springer, Berlin Heidelberg New York (2003)
28. Müser, M.H.: The path-integral Monte Carlo approach of rigid linear molecules in three dimen-

sions. Mol. Simul. 17(131) (1996)
29. Dyson, F.: Phys. Rev. 75, 486 (1949)
30. Risken, H.: The Fokker–Planck Equation. Springer, Berlin Heidelberg New York (1984)
31. Gillespie, D.J.: A general method for numerically simulating the stochastic time evolution of

coupled chemical reactions. J. Comput. Phys. 2, 403–434 (1976)
32. Shachter, R.: Evaluating influence diagrams. Oper. Res. 33, 871–882 (1986)
33. Kanazawa, Koller, D., Russell, S.: Stochastic simulation algorithms for dynamic probabilis-

tic networks. In: Proceedings of Uncertainty in Artificial Intelligence 95. http://citeseer.
ist.psu.edu/kanazawa95stochastic.html (1995)

34. Mjolsness, E.: Variable-Structure Systems from Graphs and Grammars. UC Irvine School
of Information and Computer Sciences, Irvine. UCI ICS TR# 05-09, http://computableplant.
ics.uci.edu/papers/ vbl-Struct_GG_TR.pdf (2005)

35. Ghahramani, Z.: Non-parametric Bayesian methods. In: The 21st Conference on Uncertainty in
Artificial Intelligence (UAI 2005), University of Edinburgh, Edinburgh, Scotland, July 26th–July
29th 2005. http://www.gatsby.ucl.ac.uk/ ~zoubin/talks/uai05tutorial-b.pdf. Cited in Sep 06 (2006)

36. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration
of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)

37. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In:
Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability (1967)

38. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the EM
algorithm. J.R. Stat. Soc. Series B, 1–38 (1977)

39. Hart, C., et al.: A mathematical and computational framework for quantitative comparison and
integration of large-scale gene expression data. Nucleic Acids Res. 33, 2580–2594 (2005)

40. Jönsson, H., et al.: An auxin-driven polarized transport model for phyllotaxis. Proc. Natl.
Acad. Sciences USA, 103(5), 1633–1638. Retrieved 13 January 2006 from http://www.pnas.
org/cgi/content/abstract/103/5/1633 (2006)

41. Federl, P., Prusinkiewicz, P.: Solving differential equations in developmental models of multicel-
lular structures expressed using L-systems. In: Bubak, M., van Albada, G., Sloot, P., Dongarra, J.
(eds.) Proceedings of Computational Science. ICCS 2004, II. Lecture Notes in Computer Science,
vol. 3037, pp. 65–72. Springer, Berlin Heidelberg New York (2004)

42. Jacquez, J.A., Simon, C.P.: The stochastic SI model with recruitment and deaths. I. Comparison
with the closed SIS model. Math. Biosci. 117, 77–125 (1993)

43. Cenzer, D., Marek, V.W., Remmel, J.B.: Using logic programs to reason about infinite
sets. In: Eighth International Symposium on Artificial Intelligence and Mathematics. http://
rutcor.rutgers.edu/~amai/aimath04/accepted.html (2004)

44. Cuny, J., Ehrig, H., Engels, G., Rozenberg, G.: Graph Grammars and their Applications to
Computer Science. Springer, Berlin Heidelberg New York (1994)

45. Mjolsness, E.: Symbolic neural networks derived from stochastic grammar domain models. In:
Sun, R., Alexandre, R. (eds.) Connectionist Symbolic Integration. Erlbaum, Mahwah, NJ (1997)

46. Bhan, A., Mjolsness, E.: Static and dynamic models of biological networks. Complexity 11(6),
57–63 (2006)

47. Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B237, 37–72
(1952)

48. Gor, V., Bacarian, T., Elowitz, M., Mjolsness, E.: Tracking cell signals in fluorescent images.
In: Computer Vision Methods for Bioinformatics (CVMB) workshop, at Computer Vision and
Pattern Recognition (CVPR). http://computableplant.ics.uci.edu/CVPR-2005.pdf. Cited in June
2005

49. Shapiro, B.E., et al.: Cellerator: extending a computer algebra system to include biochemical
arrows for signal transduction simulations. Bioinformatics 19, 677–678 (2003)

50. Fracchia, F.D.: Integrating lineage and interaction for the visualization of cellular structures. In:
Cuny, J., Ehrig, H., Engels, G., Rozenberg, G. (eds.) Graph Grammars and Their Application

http://arxiv.org/pdf/math-ph/0506007
http://citeseer.ist.psu.edu/kanazawa95stochastic.html
http://citeseer.ist.psu.edu/kanazawa95stochastic.html
http://citeseer.ist.psu.edu/kanazawa95stochastic.html
http://www.gatsby.ucl.ac.uk/~zoubin/talks/uai05tutorial-b.pdf
http://www.pnas.org/cgi/content/abstract/103/5/1633
http://www.pnas.org/cgi/content/abstract/103/5/1633
http://rutcor.rutgers.edu/~amai/aimath04/accepted.html
http://rutcor.rutgers.edu/~amai/aimath04/accepted.html
http://computableplant.ics.uci.edu/CVPR-2005.pdf

Stochastic process semantics for dynamical grammars

to Computer Science. Fifth International Workshop, Lecture Notes in Computer Science 1073,
pp. 521–535. Springer, Berlin Heidelberg New York (1996)

51. Soloveichik, D., Cook, M., Winfree, E., Bruck, J. : Computation with Finite Stochastic Chemical
Reaction Networks. manuscript (2006)

