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Abstract

Deterministic dynamical systems are used extensively for modeling
in biological applications. Unfortunately, such models cannot take into
account much of the stochastic behavior that arises in biological sys-
tems. Stochastic process models can capture the variance and higher
moments that exist in noisy real data. But the use of stochastic pro-
cess models is limited because of the formidable task of inferring the
model parameters’ values from observations. In this chapter we discuss
a parameter inference scheme for a family of stochastic processes that
can be defined by generalized reactions or rewrite rules as they oc-
cur within the Stochastic Parameterized Grammars (SPGs) modeling
framework.

The chapter is organized as follows. Section 1 provides an overview
of the related work on optimization techniques for both deterministic
continuous models and stochastic processes. In Section 2 we introduce
the SPG modeling framework and derive a sampling scheme for SPG
models. The parameter inference problem is defined in Section 3. We
describe the general Metropolis-Hastings algorithm in section 3.1, and
demonstrate how to apply it to SPG models in 3.2. Section 4 presents
the results for optimization in a stochastic model of chemical reactions.
Possible extensions and comparison to related algorithms is discussed
in Section 5.
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1 Introduction

Numerous optimization approaches have been applied to parameter infer-
ence in deterministic dynamical systems. Among the first fully automatic
parameter estimations for biological network dynamics was [32], which used
the Lam-Delosme variant of simulated annealing to fit the 33 parameters,
including a 5x5 matrix of connection strengths, in a phenomenological gene
regulation network (Artificial neural network or ANN style GRN, [25], Eq.
10) model to image-derived expression domain data in Drosophila develop-
ment. This is still a cutting-edge problem today, 15 years after the original
computer experiments. Chapter 1 discusses more modern approaches for
optimizing the same systems. A similar algorithm was later parallelized [6].
Genetic algorithms were compared to simulated annealing on these GRN
models in [21]. Furthermore, [21] presents the results of applying these op-
timization methods to variable-structure dynamical systems, specified by a
deterministic grammar as defined in [24]. The resulting model maintains a
changing number of cells each of which contains a set of chemical kinetic
differential equations representing a gene network. Simulated annealing,
quasi-Newton methods, and a variety of other deterministic and stochastic
optimization methods (including Levenberg-Marquardt, Nelder-Mead, and
Hooke-Jeeves) were compared in their applications to more standard chem-
ical kinetic differential equation models in [23]. Lam-Delosme simulated
annealing compared favorably with several alternative methods for optimiz-
ing signal transduction models in [40].

There has been a recent revival of interest in developing parameter
optimization methods. For example [17] applied parallelized differential
evolution to the ANN GRN models. [31] applied the adjoint method, a
continuous-time method analogous to backpropagation through time in discrete-
time neural networks, to efficiently compute gradients for gradient algo-
rithms, and applied them to mass action kinetic models of Drosophila wing
development. [27] applied recent developments in evolutionary strategies
to ANN GRN’s. Another major category of research looks to Bayesian in-
ference for a firm statistical foundation in structure and parameter estima-
tion. An essential requirement is a practical prior distribution on structures
and/or parameters. [37] demonstrates a GRN inference method for feed-
forward transcriptional networks using an approximate but tractable graph
prior. Other graph priors are possible, as in [4], [30].

Turning to parameter estimation in stochastic dynamics, [13] developed
a time-subdivision approach to learning reaction rates in small reaction net-
works under an SDE approximation to the usual stochastic dynamics. Chap-
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ter 9 provides an overview of the SDE approximation and also includes a
recent improvement that tackles the convergence problem of MCMC algo-
rithm for SDE inference. Other parameter inference approximations which
are based on the variational formulation of the posterior probability are in-
troduced in Chapter 10 . A statistical mechanics perspective is applied in
[7]. Others could be cited e.g. from recent workshops [3], [19]. All currently
have strong restrictions on their domain of applicability, especially in the
size of inferable system.

Also for parameter inference in stochastic dynamical systems, Green [14]
has introduced a sampling method for probability distributions which are
defined over spaces of varying dimensionality such as the variable-structure
systems considered above. The method, known as reversible jump Markov
Chain Monte Carlo (MCMC), is based on the Metropolis-Hastings (MH) [15]
scheme (which will be described in later section). The algorithm performs
”jumps” between models (or states) of different dimensionality. Therefore,
it is suitable to handle transitions between reaction paths of different length
(hence different number of variables). The reversible jump method requires
an application-based design of jump transitions. The jump transitions that
are commonly defined are birth, death, split or merge of random variables.

The reversible jump method was generalized to a block updating method
which was used for inference in stochastic reaction models [5]. The block
update scheme modifies multiple variables, which represent the number of
reactions (of each type) and the reactions times, in a single MCMC step. A
previous work on stochastic epidemic compartment models [10] has also used
multiple jump events in each iteration in order to increase the convergence
rate of an MCMC sampler. A Simulated Annealing cooling schedule was
integrated into the reversible jump method in [1].

[33] have taken an approximate maximum likelihood approach for pa-
rameter estimation in stochastic biochemical reactions. The method ap-
proximates the number of reactions in each interval and assumes that the
total rate does not change inside an interval. A similar approach was taken
for simulating chemical reactions by the approximate tau-leap method [11].

An algorithm for inferring grammar-based structure models was intro-
duced in [35]. The grammars, which are based on an L-system formulation
[29], describe recursive structures and are used to model images of multi-
cellular bacteria. Their grammars resemble SPGs but are only context free
(only a single element on the LHS of rule) and can not model continuous-
time processes. The inference procedure is an MCMC method that includes
reversible jumps for adding or removing cells and branches from the multi-
cellular structure.
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2 Stochastic Parameterized Grammars

Stochastic Parameterized Grammars (SPG’s) [26] comprise a formal model-
ing language based on grammar-like collections of rewrite rules. They have
a stochastic process semantics in continuous time, which can be extended to
discrete time. The essential idea is that there is a “pool” (unordered set) of
fully specified parameter-bearing objects such as {bacterium[x], macrophage[y],
redbloodcell[z]} where x, y and z are parameters such as position vectors.
A grammar can include rules such as:

{bacterium[x], macrophage[y]} → macrophage[y] with ρ(‖x − y‖)

which specifies the probability per unit time, ρ, that the macrophage ingests
and destroys the bacterium as a function of the distance ‖x − y‖ between
their centers. The left hand side (LHS) of the rule is comprised of terms
which are matched to a set of input parameterized objects. The terms on the
right hand side (RHS) constitute the output objects which are constrained
to the parameter matching of the LHS terms. An SPG rule has the following
general form:

A1[x1], A2[x2], ..., An[xn] → B1[y1], B2[y2], ..., Bm[ym] with ρ([xi] , [yj ])

(1)

Ai and Bj are the object types and xi(or yi) is the uninstantiated param-
eters’ vector of the ith term on the LHS (or RHS). The number of terms
on the LHS or RHS is finite and can be zero. The function ρ can be any
nonnegative function of the input and output parameters.

The SPG language is a generalization of the probabilistic formulation of
chemical reactions. The grammar rules are reaction schemes where each rule
term matches any object of the same type, regardless of parameters value.
The system’s state (or the “pool”) is represented by a vector of copy numbers
for every unique parameterized object. Thus, the state space may be infinite
or even uncountable when the parameters are continuous. For example, the
following rate function is positive over an uncountable parameter space:

bacterium[x] → {bacterium[y1], bacterium[y2]}

with exp(−α((x − y1)
2 + (x − y2)

2)) (2)

This rule represents a bacterial cell division in which the daughter cells’
locations are distributed continuously according to a Gaussian distribution
centered around the parent cell’s position.
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An instantiated grammar rule represents a possible reaction that removes
a set of reactants and adds the products. The waiting time for a reaction is
exponentially distributed according to the rate w. The exponential rate is
defined as the rule’s rate function ρ times the number of distinct reactant
combinations in a given state, which is denoted by n, i.e. w = nρ . The
SPG semantics can be summarized as a set of time dependent differential
equations over the state probability [36]:

∀a
d

dt
P(a|t) =

∑

b 6=a

Wa,bP(b|t)+Wa,aP(a|t), where Wa,a = −
∑

b 6=a

Wb,a

where P(a, t) denotes the probability of state a at time t. The summation
is over all possible neighboring states, where Wb,a is the rate of a reaction,
as defined above, from state b to state a. If P(t) denotes the probability
function over the entire state space then the system can be written in an
operator form:

P′(t) = WP(t)

which has the formal solution:

P(t) = exp(tW )P(0) (3)

The operator W is the probability rate operator which is composed of
the corresponding transition rates between states Wa,b, and the diagonal
entries, −Wa,a.

It is impossible to derive a general algebraic solution of the probability
function (Equation 3) or its moments since the time-evolution operator W
could encode computationally sophisticated dynamics. One generally appli-
cable approach is to use sampling techniques. In order to create samples
from this distribution, the Time-Ordered Product Expansion (TOPE) is
used. The TOPE is a valuable tool for studying such stochastic processes
in physics [22] using vector notation:

P (t) = exp (tW ) · P (0) = exp (t (W0 + W1)) · P (0)

=
∞

∑

n=0

∫ t

0
dt1

∫ t

t1

dt2 · · ·

∫ t

tn−1

dtn exp((t − tn) W0)W1×

exp((tn − tn−1) W0) · · ·W1 exp(t1W0) · P(0) (4)
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Here W0 is a solvable or easily computable part of W , so the exponen-
tials exp(tW0) can be computed or sampled more easily than exp(tW ). An
obvious choice is to take W0 to be the diagonal part of W, in which case
we can derive Gillespie’s well-known Stochastic Simulation Algorithm (SSA)
for simulating chemical reaction networks Gillespie [12]. The SSA algorithm
generates a multi-reaction path by jumping in time and sampling in each
iteration the next waiting time and reaction event. Correspondingly, the
TOPE with a diagonal W0 ≡ D interprets the probability of arbitrary state
a at time t as the sum of probabilities over all possible multi-reaction paths
(which result in state a at time t). To see this correspondence in more detail,
we argue as follows.

A recursive form of the TOPE is that if τq is the time interval between
events q and q + 1, then immediately after event k,

P(a, [τq|0 6 q 6 k − 1] , k|c, t) =

∑

b

∫ t

0
dτP(a, τk−1, 1|b, τ)P(b, [τq|0 6 q 6 k − 2] , k − 1|c, t − τ),

an expression closely related to the Chapman-Kolmogorov equation [34],
where W1 = Ŵ ≡ W − D and where

P(a, [τq|0 6 q 6 k] , k|b, t) =






exp(−τkD)





∏

q=k−1,k−2,...,0

Ŵ exp(−τqD)



 δ



t −

k
∑

q=0

τq











ab

and the immediately post-event probabilities are

P(a, [τq|0 6 q 6 k − 1] , k|b, t) = P(a, [τq|0 6 q 6 k − 1, τk = 0] , k|b, t) .

An event-oriented simulation requires the use of Bayes’ rule to convert
from P (a, [τq|0 6 q 6 k−1], k|c, t) to P (a, [τq|0 6 q 6 k−1], t|c, k), and this
in turn requires a distribution on simulation time, t. To this end, suppose
there is a small constant probability per unit time, ǫ = 1/Tlong, that a
simulation of the stochastic process defined by W comes to an end. This
termination process will provide an exponential prior distribution on the
time variable t. Taking the limit in which Tlong is much longer than the
time t of interest to us, so that ǫ t = t/Tlong → 0, the parameter Tlong drops
out of the calculation and the Bayes-transformed simulation statistics are
unaffected by the probability of pending termination.

6



Carrying out the indicated calculations and integrating out the random
time intervals τq, we find that probability of a multi-reaction path under
both TOPE and SSA can be expressed as:

P(.|k) ≈ W ◦ P(.|k − 1) (5)

where

W(a, t′|b, t) = Ŵab exp(−
(

t′ − t
)

Dbb)1
(

t′ > t
)

.

and the “◦” inner product operation combines both a sum over all states
and an integral over all nonnegative times. Iterating this recursion relation,

P(.|k) ≈ W
k ◦ P(.|0).

which has the form of a Markov chain.
In these equations we have defined P(a, t|b, k) to be the “just-reacted

state probability”: the probability of being in state a at time t immediately
after the k’th reaction event, given that the state is b at time zero. These
equations explicitly express the SSA algorithm as a discrete-time Markov
chain representing a randomized algorithm. This expression is in accord
with, for example, Theorem 10.1 of [38].

2.1 Simulation of SPG’s with output parameters

Equation 5 receives a stronger interpretation when the result of a reac-
tion event is not only a new time and a new population of objects, but
also a new assignment of parameters to these objects. This occurs for
W operators that contain parameter-dependent rates, as in equation 1.
A parameter-dependent rate function, ρ([xi] , [yj ]), can be factored into
k([xi])×P([yj ] | [xi]) , where P is a normalized conditional probability. The
Markov chain W can then be accurately sampled by (1) choosing the next
reaction’s identity and time, as in SSA, according to the input parameters
rate functions, k([xi]), and then (2) sampling the output parameters accord-
ing to P([yj ] | [xi]) given the input parameters of the chosen reaction.

3 Parameter Inference

Using SPGs and related stochastic processes for modeling applications re-
quires an estimation of the model’s parameters from the observations. Pa-
rameter inference may be achieved by evaluating the likelihood function
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P(Θ|Γ) where Γ denotes the stochastic grammar and its parameters, and Θ
denotes the observations or evidence. Prior information about the model’s
parameters may be incorporated, using Bayes’ theorem, to establish the
posterior distribution:

P(Γ|Θ) =
P(Θ|Γ)P(Γ)

P(Θ)
= αP(Θ|Γ)P(Γ) (6)

The marginal probability, P(Θ), is equivalent to a normalizing factor
which will be discarded in our sampling algorithm. The evidence, Θ, may
be in the form of full or partial observation of the underlying system state
in certain time points. The likelihood function is decomposed according to
the multi-reaction path and the observations probability (the error term):

P(Θ|Γ) =
∑

r

P(Θ|a[r, ~τ ])P(r|Γ) (7)

where ~τ denotes the observations time points, r denotes a multi-reaction
path and a[r, ~τ ] denotes the system state at the observation time points as
realized by the path r.

Usually, deriving an analytical solution for the likelihood function is not
possible. We resort to a sampling algorithm that is based on the Markov
Chain Monte Carlo (MCMC) principle.

3.1 MCMC algorithm

An MCMC algorithm [2] generates a sequence of samples, according to a
Markov chain transition function, that converges to the desired (target)
probability. The Markov chain transition function, M(x|x′), is designed so
that its invariant probability is the target probability, π(x):

π(x) =

∫

M(x|x′)π(x′)dx′

Furthermore, the Markov chain must be ergodic, i.e. it converges to
the invariant probability regardless of the initial condition [20]. The chain
satisfy the ergodic condition if it is both irreducible and aperiodic. A chain is
irreducible when there is a non-zero probability of reaching every state from
any other state. A reducible chain has more than one invariant probability.
An aperiodic (with period of 1) chain is established when, for every state,
there is a non-zero probability to stay.
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A sufficient but not necessary condition [20; 2] for π(x) to be the invariant
probability of the chain is the following detailed balance:

π(x)M(x′|x) = π(x′)M(x|x′)

For our sampling task, we use the Metropolis-Hastings (MH) algorithm
[15] which is an MCMC method. An MH step works as follows:

1. Generate a candidate sample x given the current sample, x∗ = x(i−1),
according to a proposal distribution q(x|x∗).

2. (To maintain detailed balance) The candidate sample is accepted ac-
cording to the probability:

Min[1,
π(x)q(x∗|x)

π(x∗)q(x|x∗)
]

If accepted x(i) = x, otherwise x(i) = x∗.

The choice of the proposal distribution, q, is important for the conver-
gence of the algorithm. On the one hand, a proposal distribution with small
variance might constrain the MH method to a local region of the target
distribution space. On the other hand, a proposal distribution with high
variance will result in many rejections, which subsequently increase the cor-
relation between samples. As a rule of thumb, the proposal distribution
should be adjusted so that the rejection rate is approximately 0.5 [18; 20].

In most parameter inference applications, we are interested in the global
maxima of the target distribution. For this task, a simulated annealing like
strategy [8] can be integrated in the MH algorithm. The target distribu-
tion is modified to π1/Ti(x) where Ti denotes a decreasing cooling schedule
lim

i→∞
Ti = 0. The algorithm is expected to initially explore a broad region

of the state space and gradually confine the search to lower-energy areas.

3.2 Grammar sampling algorithm

We define the invariant (target) distribution of the MH method as the poste-
rior distribution in Equation 6. A sample is an instantiation of the grammar
parameters and a multi-reaction path. A possible choice for the proposal
distribution can be obtained by omitting the observations probabilities from
the target distribution:

q = P(r|Γ)P(Γ)
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This proposal distribution may exhibit high variance since the candidate
sample is independent of the current sample which may lead to high number
of rejections. Since the grammar parameters are a fixed size set, a condi-
tional probability on the current parameters values may be easily included
in q:

q = P(r|Γ)f(Γ|Γ∗) (8)

A Normal distribution which is centered around the current parameters
values, Γ∗, is a natural choice for continuous variables.

Still, the multi-reaction path r is independent of the current path. We
offer a modified proposal distribution for which each candidate path has
the same set of reactions as the current path except for a randomly chosen
time window (t′, t′′). The reactions in the chosen time window are sampled
according to the SPG probability conditioned on the state at time t′. In other
words, the SSA algorithm is executed over the subinterval (t′, t′′) where the
initial state is the state reached by the current path at time t′, a(r∗, t′).
The probability of the candidate path in the subinterval window (denoted
as r′[t′, t′′]) is:

P(r′[t′, t′′] | initial time = t′, end time = t′′, initial state = a(r∗, t′), Γ) (9)

The candidate multi-reaction path over the whole time interval, r, is
defined as follows (where + denotes concatenation of multi-reaction paths):

r = r∗[0, t′] + r′[t′, t′′] + r∗[t′′, tend] (10)

Note that although the reactions in the last subinterval (t′′, tend) are iden-
tical to the current path, r∗, the states may be different due to the changes
in the intermediate subinterval. The deterministic scheme for setting the re-
actions in the last subinterval may lead to improbable paths. For example,
the reactions in r′[t′, t′′] could remove all water molecules by decomposition
(2H2O −→ 2H2 + O2) even though there is another decomposition reaction
that occurs in r∗[t′′, tend] before the production of any other water molecules.
However, the target probability (π) of such an improbable path will be zero
and it will be rejected.

Now, the modified proposal distribution is defined as:

q(r′; t′, t′′) = P(r′[t′, t′′]|t′, t′′, a(r∗, t′), Γ)P(t′, t′′)f(Γ|Γ∗) (11)

Note that for a proper MH proposal distribution, the time window (t′, t′′)
should be integrated out. However, the MCMC method would preserve
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detailed balance even when picking a random time window (according to
P(t′, t′′)) instead of integrating over them. This construction of an MCMC
sampler is known as a mixture of transitions [20]. In general, MH with
mixture of transitions can be applied in order to modify each variable, or
block of variables, separately. In that case, a variable, or block of variables,
is randomly selected (usually according to uniform distribution) followed
by an MH transition over the chosen variable space. Such an algorithm
is applicable when the proposal distribution can be decomposed according
to individual transitions. The current proposal distribution (Equation 11)
can be decomposed into a transition over a random window in the multi-
reaction path, and a transition over the grammar parameters (or individual
parameters):

q1(r
′; t′, t′′) = P(r′[t′, t′′]|t′, t′′, a(r∗, t′), Γ∗)P(t′, t′′)

q2(Γ|Γ
∗) = f(Γ|Γ∗)

(12)

The proposal distributions (q1,q2) should be designed according to the
Markov chain ergodicity requirement. If q2 is a Normal distribution which
is centered in the current parameter value then the chain is aperiodic and
irreducible (since each parameter value is reachable). The window proposal
is aperiodic since there is a non-zero probability to stay in the same path,
i.e. q1(r

∗; t′, t′′) > 0. If the set of possible windows, according to P(t′, t′′),
covers the whole time interval then the proposal distribution is irreducible
(since each path is reachable from any other path).

3.3 Inference in SPGs with output parameters

An SPG rule may have output parameters, i.e. parameters of right hand
side objects which are not given as input on the left hand side of the rule.
Such rules are useful for modeling stochastic behavior of objects with spa-
tial information, as in the example of Equation 2. SPGs that include output
parameters may describe processes with an unbounded number of unique
objects. The current inference method can be applied for such parameter-
ized grammar models although this could be inefficient or even infeasible for
grammar rules that denote processes over uncountable spaces (as in Equa-
tion 2). A new multi-reaction path can be accepted, by the MCMC method,
only if all the required unique objects are available for the reactions in the
last subinterval (see Equation 10). Therefore the probability of accepting
a new multi-reaction path for a process of unbounded number of unique
objects might be infinitesimal. A discretized representation of continuous
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parameter space is a possible solution that sacrifices accuracy for feasibility
and efficiency. Another promising direction is to include information about
the output parameters in the proposal distribution, so that parametrically
probable trajectory changes are usually proposed and high acceptance rate
is maintained.

3.4 Computational complexity

The computational complexity of the MCMC procedure depends on the
sampler’s convergence speed and the time and space complexities of each
sampling step.

There are several results on the convergence time of MH samplers for sim-
ple problems. [16] shows that the convergence time of the MH algorithm for
sampling multivariate Normal densities can be bounded by a polynomial in
the number of free parameters. Therefore MH samplers have an advantage
over importance and rejection sampling that suffer from the exponential
curse of dimensionality [20; 2]. The method proposed here requires more
complicated probability distributions that may even have variable struc-
ture. The set of free parameters should include the set of reactions’ times
and types that constitute a multi-reaction path and is therefore unbounded
with potentially unbounded cost (though bounded with high probability).
However, for many stochastic processes in which the reactions’ times and
types are strongly correlated, the convergence time may be bounded. We ob-
serve rough convergence for a multi-reaction path with 250 reactions (figure
1) in about 100 iterations (see figures 2 and 3).

A sampling step, in our MCMC algorithm, includes a simulation algo-
rithm run over the random time window and calculation of the probability
function over the complete multi-reaction path. We now discuss the compu-
tational bounds on selecting each random reaction event in the simulation
algorithm, and on the total number of reaction events. These bounds govern
the cost of the probability function’s calculation as well.

The simulation algorithm maintains a data structure of pending reactions
and their rates. Each reaction step consists of a search for the new executed
reaction, execution of a reaction, creation of new pending reactions, and
the modification of affected pending reactions. Define r̂(t) as the set of
pending reactions at time t and M(t) as the set of unique objects that exist

at time t. Note that |r̂(t)| is bounded by
∑

k

( M(t)
| reactant(k)|

)

, where reactant(k)

is the set of LHS reactant elements (or input elements) of the kth grammar
rule. The unique objects can be stored in an array in which each entry
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holds a link to the set of relevant pending reactions (all the reactions for
which the current object is the first reactant). In many stochastic processes
(for example, various gene regulation network models), the total number of
unique objects over the entire process, M = ∪t(M(t)), is finite, relatively
small and known in advance. Thus, the objects’ array can include the entire
set of unique objects and the space complexity is O(max

t
|r̂(t)| + |M |). In

other cases, where |M | is too large or unpredictable, an alternative for the
array is a hash table of fixed size.

The search for a random reaction may take O(|r̂(t)|), but using a binary
tree reduces the search time to O(log |r̂(t)|). The tree leaves refer to pend-
ing reactions whereas the inner nodes store the total rate and number of
reactions (leaves) in their subtree. New pending reactions are inserted to
the subtree (right or left) that has fewer leaves. That way, the binary tree
is balanced throughout the simulation with logarithmic height.

Once a reaction, denoted as
∗
r, is executed, the algorithm updates the

affected pending reactions which are accessed directly by the array (or hash

table) structure. The set of affected reactions is r̃ = {ri|a ∈
∗
r ∧ a ∈ ri},

or in words, the set of reactions that share an object, a, with the executed
reaction. Therefore this procedure takes O(|r̃|) time.

Finally, the total number of reactions events depends on the total time
T , the rates of each reaction ρ(r̂i), and the number of possible reactants’
groups per reaction

∏

j∈r̂i

Nj (where Nj is the number of identical objects

that match the jth reactant). A bound on the number of reaction events is
: O(T ∗ maxi(ρ(r̂i)

∏

i∈r̂j

Nj)).

4 Illustrative Example

As an illustrative example of the inference algorithm, we use a simple model

of chemical reactions for synthesis and decomposition A+B
ks

⇋
kd

C, which can

be expressed in SPG syntax:
grammar Chemical-Reaction {
{A, B} → C with ks

C → {A, B} with kd

}
After setting the rate variables, we generated multi-reaction paths using

an SPG interpreter and simulator [39]. Figure 1 plots the time sequence of
molecule states for a single stochastic multi-reaction path.
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Figure 1: Plots of the time sequence of molecule states for a single stochastic
multi-reaction path. Y axis - molecule quantity (A-solid black line,B-dotted
black line, and C-dashed gray line). X axis - time. The synthesis and
decomposition rates are ks = 0.01, kd = 0.3

The input for the inference algorithm is a sequence of molecule-number
states in 20 evenly spaced time points. The observations conditional prob-
ability (data error term) has a Normal distribution shape with an input
width (variance) parameter σi. Figure 2 and 3 present five trajectories of
the MCMC inference algorithm for a single observations sequence. Figure
2 shows the convergence of the rate parameter where the true parameter
value is 0.3. Figure 3 shows the convergence of the multi-reaction path in
each MCMC iteration to the observed molecules states.

The inference algorithm uses different transitions for the rate variable
and for the multi-reaction path, as defined in Equation 12. This has the
benefit of potentially higher acceptance probability. The variance of the
parameters proposal distribution and window size distribution were adjusted
during the execution, in order to maintain a low rejection rate (below 0.5).

The algorithm implements an exponentially decreasing cooling schedule
for the rate parameter transition:

Ti = p Ti−1 where 0 < p < 1
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Figure 2: Trajectories of the MCMC inference algorithm: Y axis - inferred
decomposition rate kd. X Axis - iterations counter. The inferred decompo-
sition rate converges toward the target rate value, kd = 0.3

Initial attempts without a cooling schedule have resulted in rapid conver-
gence to low-probability samples.

We have performed inference for different values of the decomposition
rate kd. The results are shown in Figure 4. For each rate value, five random
multi-reaction paths were generated. We performed 25 inference runs where
each is given one of the generated multi-reaction paths and a random initial
rate value.

The variance of the observations conditional probability is important for
the accuracy of the inference method. A search algorithm is more susceptible
to get trapped in local minimas when the variance is too low. High variance
may lead to the opposite effect since the penalty for improbable samples is
insufficient.

Figure 5 displays the increase in standard deviation of inferred rates as
we increase the variance of the observations’ probability. The variance could
be inferred as an additional parameter, but, in our experiments, it is held
fixed at a given value.
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Figure 3: Trajectories of the MCMC inference algorithm: Y axis - Euclidean
distance between the current sample’s molecule state and the input. X Axis
- iterations counter.

5 Discussion

The method presented here does not require the construction of specialized
jump transitions, which was required in [14], [5], [10], [1] and [33]. The mod-
eling assumptions are all integrated in the declared grammar. The methods
described in [5] and [10] require exact molecule counts over discrete time
points, whereas in our method, the data is assumed to be noisy and the
multi-reaction paths are weighted accordingly. Since the penalty for match-
ing the data is less strict (and tunable), this method can be more flexible in
traversing the multi-reaction path space.

Dynamical grammars (DGs) are defined as an extension of Stochastic
Parameterized Grammars (SPGs) that include continuous-time rules. Such
rules contain continuous-time dynamics (in the form of ordinary or partial
differential equations). DGs provide a multiscale modeling framework in
which a system can be comprised of continuous and discrete elements. A DG
simulation algorithm, which is an extension of the SPG simulation algorithm,
can be derived directly from the Time-Ordered Product Expansion (TOPE).
Therefore, the presented inference algorithm can be modified in order to infer
parameters in DG models.

Other formulations related to SPG’s and DG’s include L-Systems [29],
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Figure 4: The distribution of inferred rate values for each target value,
kd = {0.3, 0.4, 0.5, 0.6, 0.7}: Each column of dots represents the 25 inference
outcomes per target value (x position). The average inferred rate for each
value is denoted by the circles.

Stochastic Pi-calculus (SPC) [28] and variants of Petri-nets (PNs) such as
stochastic-colored PNs [9]. Both SPC and PNs were introduced for the
study of concurrent computation and then applied to biology. Our inference
scheme can be adopted to any of these formalisms. The main requirement
of the scheme, which is to establish the probability of a multi-reaction path
over some time window, can be derived according to the implicit or explicit
probabilistic semantics of any of the above formalisms.

Acknowledgments Useful discussions with Yuanfeng Wang, Todd John-
son and David Orendorff about algorithms, and with Kimberly Gokoffski,
Arthur Lander and Anne Calof about biological applications, are gratefully
acknowledged. The work was supported in part by the National Science
Foundation’s Frontiers in Biological Research (FIBR) program, award num-
ber EF-0330786, and the National Institutes of Health (NIH) awards num-
bers P50-GM76516 and P20-GM66051.

17



ææææ
æ æ

æ

æ

æ

æ

0 20 40 60 80 100
Σä0.0

0.2

0.4

0.6

0.8
Σk

Figure 5: Standard deviation of inferred rates, σk, as a function of the
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