
UNIVERSITY OF CALIFORNIA,
IRVINE

Stochastic Parameterized Grammars:
Formalization, Inference and Modeling Applications

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Guy Yosiphon

Dissertation Committee:
Professor Eric Mjolsness, Chair

Professor Rina Dechter
Professor Arthur D. Lander

2009

c© 2009 Guy Yosiphon

DEDICATION

This dissertation is dedicated to my wife, Tali. I could not have made this effort
without her support. Tali encouraged me to pursue my dreams and continue even
during rough times. I thank Tali for putting up with my constant complaints and

directing me to a positive and constructive path (while raising our daughter Liya). I
also dedicate this dissertation to my parents who encouraged me to continue my
academic studies in the US. I thank them for their advice and for sharing their

experience with us.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

ACKNOWLEDGMENTS vii

CURRICULUM VITAE viii

ABSTRACT OF THE DISSERTATION x

1 Introduction 1
1.1 Motivation . 1
1.2 Overview of the contributions of the thesis 4
1.3 Overview of the thesis . 4

2 Background 7
2.1 Generative grammars . 7
2.2 Stochastic grammars . 9
2.3 Other related formalisms . 11

3 The Stochastic Parameterized Grammar formalism 15
3.1 SPG formal definition . 17
3.2 Language extensions . 24

3.2.1 Constraints over rule parameters 24
3.2.2 Existential operator . 25
3.2.3 Subgrammar calls . 27

3.3 SPG illustration - clustering . 30
3.4 Dynamical Grammar . 31

3.4.1 Parabolic partial differential equations 34

4 SPG simulation 37
4.1 Time ordered product expansion . 37
4.2 Dynamical Grammar simulation . 38
4.3 Simulation of Dynamical Grammars with PDEs 40

5 Simulator implementation 43
5.1 Matching objects tuples to rules . 43
5.2 Computational complexity of the simulation algorithm 48

iii

5.3 Handling output parameters . 49
5.4 Integration of Dynamical Grammar rate functions 50

6 SPG modeling motifs 52
6.1 Complex chemical reactions . 53
6.2 Rule schema for memory dependent processes 56
6.3 Spatial modeling - the weak spring 57
6.4 Reduction to deterministic model . 59
6.5 Meta-Grammar rules . 62

7 Exact inference in context-free SPGs 64
7.1 The inside-outside algorithm . 65
7.2 Parameter training in SCFGs . 67
7.3 Inference algorithm for context-free SPGs 69
7.4 Handling SPGs’ unordered objects 70
7.5 Discussion . 71

8 Approximate inference in SPGs 73
8.1 MCMC algorithm . 74
8.2 Grammar sampling algorithm . 76
8.3 Illustrative example . 79
8.4 Related work . 81
8.5 Discussion . 85

9 Galaxy morphology grammar 87
9.1 Spiral galaxy grammar . 89
9.2 Galaxy model inference . 91
9.3 Results . 95
9.4 Future directions . 98

10 Modeling root development 100
10.1 Introduction . 100
10.2 Model for Auxin transport . 101
10.3 Regulation of cell division . 104

11 Modeling the olfactory epithelium 111
11.1 Introduction . 112
11.2 Methods and model description . 115
11.3 Results . 121

11.3.1 Divergence between stochastic and deterministic solutions . . 121
11.3.2 Dynamics of lineage trees in spatial-stochastic models 127

11.4 Conclusions . 130
11.4.1 Related work . 132
11.4.2 Summary and future directions 133

iv

12 Conclusions 135
12.1 Contributions of this thesis . 135
12.2 Future directions . 137

Appendices 140
A Derivation of the Dynamical Grammar’s simulation algorithm 140

Bibliography 142

v

LIST OF FIGURES

Page

6.1 Spring potential plot . 58

8.1 Trajectories of stochastic multi-reaction path 80
8.2 Trajectories of the MCMC inference algorithm - decomposition rate . 81
8.3 Trajectories of the MCMC inference algorithm - molecule state 82
8.4 Distribution of inferred rate values 83
8.5 Standard deviation of inferred rates 84

9.1 Hubble Classification Scheme . 88
9.2 Results of different 3-Dimensional simulations 92
9.3 Inference results for simulated barred-galaxy 1 96
9.4 Inference results for simulated barred-galaxy 2 97
9.5 Inference results for galaxy NGC-895 99

10.1 Root tip structure of A. thaliana and the 1-Dimensional model. . . . 107
10.2 Auxin distribution pattern in response to varying in parameter values. 108
10.3 Mitotic activity in the root and its simulation 109
10.4 Simulation of root growth along the root longitudinal axis 110

11.1 Cell lineage with negative feedback regulation on cell proliferation . . 116
11.2 Divergence between stochastic and deterministic solutions 123
11.3 Master equation solution show bimodal distribution of cell counts . . 126
11.4 OE lamination by differential affinity 129
11.5 Spatial simulations recapitulate OE morphology 131
11.6 Dominance of one lineage tree (LT) due to stochasticity 132

vi

ACKNOWLEDGMENTS

I would like to thank my advisor Eric Mjolsness, for his support over the years,
and for giving me guidance and the freedom to explore related areas of research.
Eric suggested that I should investigate this novel computational formalism. To
my great satisfaction, this research exposed me to number of fascinating areas of
computer science, biology, chemistry, and astronomy. I have greatly benefited from
Eric’s mentoring and his in-depth knowledge in all these research topics. I would also
like to thank Eric for his patience and confidence in my capabilities.

I would like to thank my previous advisor and member of my thesis committee, Rina
Dechter. Rina introduced me to Artificial Intelligence and related topics. I learned
from Rina the essential tools to conduct scientific research. I also thank her for the
time and advice in reviewing this thesis.

I would like to thank, Arthur Lander, a member of my thesis committee and a col-
laborator. The collaboration with Arthur, Kimberly Gokoffski, and Anne Calof was
invaluable in conducting the olfactory epithelium modeling research. I would like to
thank Arthur, Kim, and Anne for their patience and assistance with all the biological
aspects of our study.

I would like to thank our collaborators in the root development model: Victoria
Mironova, Vitaly Likhoshvai and Nadya Omelyanchuk. I thank Aaron Barth for the
collaboration on spiral galaxy modeling. I appreciate the help and the numerous
stimulating discussions with my friends and colleagues at UCI and the Scientific
Inference Systems Laboratory. These include: Shyam Srinivasan, Yuanfeng Wang,
Todd Johnson, David Orendorff, Shaohua Zhou, Ben Compani, Li Zhang, Michael
Duff, Pawell Kurpinski, and Alex Sadovsky.

The work was supported in part by the National Institutes of Health (NIH) awards
numbers P50-GM76516, P20-GM66051 and GM086883, and the National Science
Foundations Frontiers in Biological Research (FIBR) program, award number EF-
0330786.

vii

CURRICULUM VITAE

Guy Yosiphon

EDUCATION

Doctor of Philosophy in Computer Science 2009
University of California, Irvine Irvine, California

Master of Science in Computer Science 2005
University of California, Irvine Irvine, California

Bachelor of Science in Computer Science 2000
Tel Aviv Academic College Tel Aviv, Israel

RESEARCH EXPERIENCE

Senior Researcher 2009
Utopia Compression Los Angeles, California

Graduate Research Assistant 2003–2009
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teacher Assistant 2003
University of California, Irvine Irvine, California

SELECTED HONORS AND AWARDS

Graduate Research Fellowship 2002–2003
University of California, Irvine

Scholarship for outstanding achievements in studies 1998–1999
Tel Aviv Academic College

viii

REFEREED JOURNAL PUBLICATIONS

Eric Mjolsness and Guy Yosiphon
Stochastic Process Semantics for Dynamical Gram-
mars
Annals of Mathematics and Artificial Intelligence 2006, August

BOOK CHAPTERS

Guy Yosiphon and Eric Mjolsness
Towards the Inference of Stochastic Biochemical Net-
work and Parameterized Grammar Models
In Learning and Inference in Computational Systems Biology
N. Lawrence, et al., ed. MIT Press 2009

CONFERENCES

Guy Yosiphon, Kimberly K. Gokoffski, Anne L. Calof,
Arthur D. Lander and Eric Mjolsness
Stochastic Multiscale Modeling Methods for Stem Cell
Niches
Machine Learning in Computational Biology workshop (NIPS-
MLCB)

2007

Guy Yosiphon, Kimberly K. Gokoffski, Anne L. Calof,
Arthur D. Lander and Eric Mjolsness
Dynamical Grammar Modeling of Cellular Prolifera-
tive Dynamics in the Olfactory Epithelium
The 8th International Conference on Systems Biology 2007

Guy Yosiphon
Automated Galaxy Morphology using Stochastic Pa-
rameterized Grammar
Second International Conference on Space Mission Challenges
For Information Technology (SMC-IT 2006)

2006

ix

ABSTRACT OF THE DISSERTATION

Stochastic Parameterized Grammars:
Formalization, Inference and Modeling Applications

By

Guy Yosiphon

Doctor of Philosophy in Computer Science

University of California, Irvine, 2009

Professor Eric Mjolsness, Chair

The Stochastic Parameterized Grammar (SPG) forms a unifying framework for mod-

eling systems of stochastic nature and dynamical structure. The modeling language

is based on grammar-like collections of rewrite rules that define local interactions be-

tween objects or features and may involve creation or annihilation of objects. Local

interactions may be either in the form of stochastic events or deterministic continu-

ous dynamics. Such broad expressiveness makes the framework particularly suitable

for applications in machine learning and multi-scale scientific modeling. This thesis

introduces the SPG framework, its appropriate simulation methods and their com-

putational cost. The problems of parameter learning and inference in SPG models

are addressed by deriving exact and approximate sampling algorithms. As an ap-

plication of SPG inference, the thesis includes an automated technique for inferring

galaxy structure from images. The thesis concludes with two biological applications

of the SPG framework: modeling root development and modeling the regeneration of

neurons in the olfactory epithelium. The SPG model of the olfactory epithelium is a

comprehensive spatial representation of the tissue that includes cellular level stochas-

tic events and diffusion of signaling molecules. The model recapitulates the observed

behavior of the tissue and provides interesting predictions about the dynamics of cell

x

population.

xi

Chapter 1

Introduction

1.1 Motivation

Computational modeling and simulation may provide insights into the functionality

of complex biological and physical systems. A computational framework for modeling

such systems should take into account the interactions between components of differ-

ent scales, from the molecular level to the cellular and tissue levels. In this thesis, we

present the Stochastic Parameterized Grammars (SPGs) as a computational frame-

work for modeling a broad class of stochastic processes with emphasis on biological

applications.

Depending on the application and the required level of accuracy, molecules or cells

may be represented by discrete quantities or approximated as continuous concentra-

tions in the cellular or extracellular medium. In many applications, cells are depicted

as individual objects with different properties as opposed to global quantities. The

distribution of molecular concentrations can be approximated being uniform and well-

stirred over the relevant space. However, in some biological processes, the distribution

1

of signaling molecules is far from uniform in space. Such inhomogeneous distribution

may be important for the correct behavior and functionality of the system.

Stochastic models may capture the dynamics of an underlying process when dealing

with noisy or incomplete data which is a common case for biological systems data.

When the concentration or quantity of molecules or cells is large enough, a determin-

istic mathematical model can provide a fairly accurate description of the real process.

This is because the standard deviation of the number of reactions in a stochastic

process that can be approximated by Poisson process (O(
√
λt), where λ is the total

stochastic rate and t is time) is negligible in comparison to the mean (O(λt)) in large

systems (as λt → ∞). However, many physical and biological systems are not large

enough so that stochastic fluctuations can be discarded. The probabilistic nature of

cell division or differentiation may have significant impact over the dynamics of small

cell populations.

Consider modeling the development of the bacteria Anabaena catenula. The Anabaena

is a type of filamentous cyanobacteria. Such a bacterium is constructed of a long chain

of cells and it obtains energy through photosynthesis. There are two types of cells in

the Anabaena: vegetative cells and heterocyst cells [89]. A vegetative cell synthesizes

carbohydrate and may differentiate into a heterocyst cell or divide into two vegetative

cells. The heterocyst cells are terminally differentiated cells (cannot divide anymore)

which are specialized for nitrogen fixation. In spite of continuous growth and cell

divisions, heterocyst cells emerge in relatively constant spacing of vegetative cells.

On average, there are intervals of 9-15 vegetative cells separating heterocyst cells.

Some mathematical models [43] postulate that the robust pattern of heterocyst cells

is regulated by a signaling molecule (NtcA protein, see [8]) which is secreted by

heterocysts and diffuses along the cellular chain. The probability of vegetative cell’s

differentiation is correlated with the molecule concentration level.

2

The Anabaena model exemplifies the requirements for a comprehensive computational

framework of developmental biological systems. The filament can be represented as a

chain of individual cell objects. Each cell object is parameterized by type (vegetative

or heterocyst), size, location (or connections to neighboring cells) and its compound

concentration. Vegetative cells can grow according to a continuous growth function,

and divide or differentiate. The vegetative cell’s division and differentiation are both

stochastic discrete events with probabilities that depend on the cell’s compound con-

centration. Another probability distribution controls the size of each daughter cell.

In such multi-cellular system, the amount of signaling molecule can be approximated

by continuous concentrations and the molecule’s secretion, diffusion and decay are

described by a set of time dependent ordinary differential equations (ODEs).

The SPG framework enables the design of models that include parameterized objects,

time-varying structure and stochastic “jump” reaction dynamics. SPGs are defined

as a rule based language and have a stochastic process semantics which is independent

of a specific simulation algorithm. Hybrid models which are composed of stochastic

discrete events and differential equations with time derivatives can be specified as

Dynamical Grammars (DGs), a generalization of SPGs.

The SPG modeling language provides a comprehensive computational framework for

modeling complex systems in biology or other scientific domains. This thesis demon-

strates the expressive power and intuitive representation of the SPG language. Fur-

thermore, the mathematical definition of SPGs, which is decoupled from specific sim-

ulation algorithm, allows derivations of various simulation and inference algorithms.

3

1.2 Overview of the contributions of the thesis

The SPG formalism, some extensions such as the non-exists operator, and the SPG

simulation algorithm were introduced in [93]. This thesis provides a comprehen-

sive presentation of the SPG framework and an implementation of the simulation

algorithm including the algorithm’s computational aspects. A simulation algorithm

for dynamical grammars is derived in this thesis. The thesis defines a set of new

SPG modeling motifs (Chapter 6): complex chemical reactions grammar rules, re-

duction to deterministic model, rule schema for memory dependent processes, and

meta-grammar rules. Furthermore, the semantics of new subgrammar recursive calls

(subgrammar over the same state space) is defined here.

The approximate inference algorithm was presented in [137]. The exact inference

algorithm for context-free SPGs is introduced in this thesis.

The thesis presents two new SPG applications: spiral galaxy modeling and feature

extraction from galaxy images, and model of neurogenesis in the olfactory epithelium.

Moreover, this thesis explores the behavior of cell populations and lineage trees in

the olfactory epithelium model and their biological implications.

1.3 Overview of the thesis

The rest of the thesis defines the SPG formalism, introduces the relevant sampling and

inference algorithms, and presents SPG models from both biological and physical do-

mains. Chapter 2 provides background on the SPG formalism and related work. The

chapter introduces generative grammars, probabilistic extensions of formal grammars

and relevant formalisms for modeling stochastic processes.

4

Chapter 3 defines the SPG syntax and its continuous-time stochastic process seman-

tics. We further develop the basic SPG framework by adding some useful extensions

such as: constraints over rule parameters, not-exist operator, and recursive calls to

subgrammars. Moreover, Section 3.4 provides the definition of dynamical grammars

(DGs) as a generalization of SPGs which include continuous state-transitions that

are formulated as sets of ordinary differential equations (ODEs). Finally, we describe

DG models that incorporate a discretization of Partial Differential Equations (PDEs)

for continuous spatio-temporal dynamics.

Derivation of the simulation algorithms from the SPG probability dynamics is per-

formed in Chapter 4. Subsequently, the simulation algorithm of DGs is presented

and extended to DGs containing PDEs. Computational aspects of the SPG and DG

simulation software are discussed in Chapter 5.

Chapter 6 outlines some SPG modeling schemas of wide applicability. The chapter

describes rules schemas for modeling complex chemical reactions, memory depen-

dent processes, spatial interactions and meta-grammar rules. Moreover, the chapter

includes a reduction to a deterministic model of ODEs.

Inference and parameter learning problems are addressed in Chapters 7 and 8. An

exact inference method for context-free SPGs is outlined in Chapter 7. An approxi-

mate inference algorithm based on a Markov Chain Monte Carlo (MCMC) sampling

method, that is applicable for any SPG, is presented in Chapter 8.

Chapters 9, 10 and 11 present three applications for SPG modeling. Chapter 9

discusses an SPG model for spiral galaxy structures. The spiral galaxy SPG is a purely

structure based model with no relation to the current physical theory of galactic spiral

arms formation. However, it can be useful for automatic inference of galaxy structure

from images. The chapter discusses a specialized learning algorithm which is based

5

on an approximation of the SPG model.

We present SPG models that recapitulate the development of tissues in two domains:

plant root (in the Arabidopsis) and stem cell niche of the olfactory epithelium. Chap-

ter 10 presents a one-dimensional model of root development. Cells are represented

as objects that may continuously grow, divide in a random manner, and communicate

by diffusion of a growth hormone (Auxin). The SPG model recreates the observed

auxin profile and distribution of cell divisions.

The one-dimensional root model is expanded to a two-dimensional cell model of the

olfactory epithelium (OE) in Chapter 11. The OE model includes stochastic cell

divisions and differentiations, and communication between cells by diffusion of sig-

naling molecules in the two-dimensional space. A finite difference PDE solver is used

to numerically integrate the diffusion equations. The SPG model recapitulates the

development and spatial arrangement of cells in the OE. Furthermore, the model

predicts an interesting interaction between different cell lineages.

6

Chapter 2

Background

The SPG language provides a unifying modeling framework that integrates distinct

formalisms: generative grammars, stochastic processes, and dynamical systems. This

chapter provides a background on generative grammars and their computational hier-

archy [24, 25], and on the probabilistic extensions of grammars as applied to natural

language processing (NLP) [84], protein sequence analysis [39, 41] and computer vi-

sion [140]. We further explore other relevant formalisms that model stochastic or

deterministic processes. We discuss the related formalisms’ computational capabili-

ties and limitations in modeling complex behavior.

2.1 Generative grammars

Generative (or transformational) grammars were developed by linguists [24, 25] in

order to study the structure of natural and formal languages. Grammars describe the

syntactical structure of an acceptable sentence (or string) in a formal language. A

grammar includes a set of transformation rules that recursively describe the language.

7

The generative grammar is formally defined as the 4-tuple G = (N,Σ, P, S) where N

and Σ are disjoint sets, N is a finite set of nonterminal symbols , Σ is a finite set of

terminal symbols (eg. words, letters, pixels), and P is a set of production rules of the

form: α → β such that α and β are strings of terminal and nonterminal symbols and

β can be the empty string. S is a nonterminal that is designated as the start symbol.

For example, consider the alphabet Σ = {a, b} , a single nonterminal symbol S, ǫ

denotes an empty string, and the following rules:

1. S → aSb

2. S → ǫ

Applying the first grammar rule results in a symmetric expansion of the string whereas

the second rule terminates the expansion, i.e. S ⇒1 aSb ⇒1 aaSbb ⇒1 aaaSbbb ⇒2

aaabbb. The grammar generates the language anbn : n ≥ 0. As a shorthand, multiple

rules with the same LHS can be denoted as a single rule with all the RHS parts

separated by |, e.g. the above grammar is S → aSb|ǫ.

Chomsky identified four classes of grammars [24, 25], known as the Chomsky hier-

archy: regular, context-free, context-sensitive and unrestricted. Each grammar class

is increasingly more expressive, meaning that it can generate a larger class of lan-

guages. Regular grammars, which are the most constrained, can only have rules with

one nonterminal on the LHS and one terminal on the RHS that may be followed by

one nonterminal (i.e. A → a or A → aB). Regular languages are decided by a finite

state automaton.

The context free grammars (CFG) may have rules that are composed of only one

nonterminal on the LHS and unconstrained RHS, i.e. A → α where α is a string of

terminals and nonterminals. Context free languages express nested languages such

8

as palindromes and programming languages. The parsing of a context free string is

denoted as a parsing tree where each inner node denotes a nonterminal, the children of

each inner node are the RHS symbols of the corresponding rule, and the leaves denote

the terminal symbols. Context free languages are decided by a nondeterministic push-

down automaton that represents an inefficient exponential size solution. However,

the Cocke-Younger-Kasami (CYK) algorithm [138] provides an efficient polynomial

time algorithm for parsing context free languages. The CYK algorithm is based on

bottom-up parsing and dynamic programming.

Context-sensitive grammars allow rules of the type: αAβ → αγβ where A is a non-

terminal, α, β and γ are strings of nonterminals and terminals, and γ cannot be an

empty string. Context-sensitive rules have RHS with at least as many symbols as

the LHS. Therefore, the context-sensitive grammar’s productions never shrink. The

decision problem of context-sensitive languages is solved by linear bounded automata

which means that the decision problem is in PSPACE-Complete. In other words, the

decision problem requires only polynomial space however there is no known polyno-

mial time algorithm.

Finally, Unrestricted grammars represent the set of recursively enumerable languages.

Hence, in general, finding whether a string was generated by an unrestricted grammar

is an undecidable problem.

2.2 Stochastic grammars

A grammar is an ambiguous grammar if there are multiple parsing paths for a given

string. For example, the CFG: S → S + S|S ∗ S|a, has two different parsing trees for

a+a∗a. Multiple explanations and ambiguities arise in many real-world applications

9

such as parsing natural language text (eg. the ambiguous sentence “I saw the man

with the telescope”) or the identification of objects and their relations in vision.

Assigning probabilities to strings and their different parsing paths can be used as a

way to resolve multiple explanations.

Stochastic context-free grammar (SCFGs) is an extension of CFG that associates

probabilities with each rule. The probabilities of all the rules with the same LHS sum

to 1, i.e. for every nonterminal N i:
∑

j P (N i → αj) = 1. For example, a verb phrase

(VP) [84] may have two outcomes with probabilities 0.7 and 0.3, as denoted by the

following stochastic context free grammar rules:

1. V P → V NP , 0.7

2. V P → V P PP , 0.3

SCFGs are used in NLP [84] to infer the most probable semantics of a sentence.

Apart from handling the ambiguity in many natural language sentences, SCFGs form

a robust modeling framework that can handle grammatical mistakes. While CFG

models can only ignore grammatical errors, SCFG models can handle such errors

by associating low probabilities. SCFG are used in the analysis of RNA secondary

structure [39, 41]. The secondary structure involves the folding of the single stranded

RNA due to intramolecular forces which forms base pair connections. Frequently,

base pairs occur in a nested form [39] in which case SCFG can accurately model the

RNA secondary structure.

The probabilistic extension of regular grammars is equivalent to Hidden Markov mod-

els (HMM). Context-sensitive and unrestricted grammars can also be associated with

probabilities. However, some context-sensitive and unrestricted grammars may not

have a valid probabilistic interpretation since the number of applicable rules over the

10

same substring may change according to the context (the current string state). The

Stochastic Parameterized Grammars (SPG), which are introduced in the thesis, avoid

this problem since the probabilities are dynamically defined according to the context.

A variant of the CYK parsing algorithm [138] can infer the most probable alignment of

a string to SCFG. This algorithm is an extension of the Viterbi algorithm [127] which

is used for HMM (or regular grammars) inference. In order to calculate the probability

of a sequence given an SCFG, the inside-outside algorithm [11, 75] is used. The inside-

outside algorithm which is analogous to the forward-backward algorithm for HMMs,

is a part of an Expectation Maximization (EM) [34] algorithm for estimation of the

SCFG parameters, analogous to the Baum-Welch algorithm [70] for HMMs. These

SCFG inference algorithms will be discussed further in chapter 7 which introduces an

exact inference algorithm for context-free SPG models.

2.3 Other related formalisms

In this section we provide an overview of other SPG related formalisms and their

modeling capabilities and limitations.

Dynamical systems frameworks include ordinary differential equation systems, stochas-

tic differential equations, and partial differential equations, all of which are continuous

in time and state spaces and constant in their structure; spatial birth and death pro-

cesses [104], multitype and spatial branching processes [74] and [121] which have

continuous time but discrete state-transitions including changes in their number of

variables; and cellular automata and branching processes [9] which are limited to

discrete time and discrete states. These continuous time frameworks do not come

with a formal language nor do they come with the powerful model composition op-

11

erations that such a formal language provide (such as parallel rule lists and recursive

subgrammar calls). By contrast, the semantics of SPG’s are not limited to branching

processes, but can also express multiple-input/multiple-output events.

In Artificial Intelligence (AI), there has been considerable work to extend the Bayes

Network (BN) [99] framework in order to handle time-dependence and dynamic model

structure. The Continuous Time Bayesian Networks of [98] are a form of BN that

expresses a graphical decomposition of a Markov Chain rate table. These networks

cannot model a dynamical system structure as can SPG’s. The Dynamical Bayesian

Network [31] is an extension of BNs for iterative time evolution processes. DBN’s

depict the probabilistic relations between variables within a time-slice and between

adjacent time slices. However, DBN’s can only represent constant size structures,

meaning that objects cannot be created or annihilated. Another limitation of DBN’s

is that they can represent only discrete temporal processes. In a DBN, time is depicted

by fixed intervals and therefore systems which are composed of processes that evolve

with different time granularities or systems that obtain evidence over irregular time

intervals become intractable for simulation and inference.

The Relational Dynamic Bayesian Networks framework [115] extends DBN’s to first

order logic domains so as to deal with creation of objects over time and with dynamical

structure. Another language for coding probabilistic dynamical systems is BLOG [87].

Both of these frameworks can represent only discrete-time processes and discrete

state-transitions.

A different paradigm is represented by Probabilistic Constraint Nets (PCN) [122]

which extends Constraint Networks to model uncertainty over time. PCNs subsume

DBNs since they are not restricted to discrete time structure. But as with DBN’s,

PCN’s cannot represent the dynamics and evolution over the number of objects in a

system.

12

Arising in other parts of computer science, the L-systems [106] and MGS [50] frame-

works were developed for modeling of biological processes. They both define transfor-

mation rules similar to SPG’s. However the semantics of these frameworks are defined

in terms of simulation algorithms rather than a parallel mathematical semantics as

with SPG’s. L-systems were extended to include differential equation dynamics as

“differential L-systems” [105], but this extension is still deterministic. A similar in-

tegration of deterministic grammars and gene regulation networks was proposed as a

framework for modeling biological development in [90].

Process calculi, which were introduced for the study of concurrent computation, have

also been adapted for applications in biology. Phillips and Cardelli [102] presented

an abstract machine mechanism, to perform stochastic simulations from stochastic

pi-calculus (SPC) models. The SPG framework is more flexible in its semantics since

it is not bound to any specified stochastic simulation technique as is the SPC abstract

machine, which is based on the Gillespie stochastic simulation algorithm. Moreover,

the SPC abstract machine has no extension for handling objects with continuously-

changing parameters as do Dynamical Grammars.

One graphical formalism developed for the analysis of concurrent computation is

the Petri Net (PN) [101] which depicts the structure of a distributed system as a

directed bipartite graph. This framework models the creation and annihilation of

objects by a set of “tokens” which are transmitted between “place” nodes by the

firing of “transition” nodes. There are many generalizations of PNs such as Colored

PNs [65] or the Predicate/Transition Nets [49] that enhance PN with First Order

Logic predicates. Since the execution of most forms of PNs is nondeterministic, the

most relevant PN extensions are the stochastic or stochastic-colored PNs [60] that

augment PNs with rates of execution. Nevertheless, the syntax of stochastic PNs

does not contain features such as rule variables, firing rate functions, and PNs are

13

defined only for discontinuous state transitions.

A well-published approach to developmental modeling in biology is the Cellular Potts

Model (CPM) [58] based on Potts models of statistical mechanics. CPM is a lattice-

based computational modeling method that is used to simulate the behavior of cellular

structures. However, lattice-based frameworks are inaccurate for modeling multi-

object systems that exhibit range of velocities. A high computational cost is required

for maintaining an accurate depiction of the underlying process (if that is even possi-

ble), since the time interval for a whole grid update must be small enough to capture

the highest relative speed in the process.

Another computational framework for modeling multicellular development was intro-

duced in [44]. The internal state of each cell, in this framework, is represented by

a differential equation, which is formulated as a sum of contributions from multiple

sources. The framework was used in synthetic biology modeling, study of artificial

evolution of neural networks and computer rendering of multicellular development.

14

Chapter 3

The Stochastic Parameterized

Grammar formalism

Stochastic Parameterized Grammars (SPGs)[93] comprise a formal modeling language

based on grammar-like collections of rewrite rules. SPGs have a stochastic process

semantics in continuous time, which can be extended to discrete time. The essential

idea is that there is a “pool” (unordered set) of fully specified parameter-bearing

objects such as {bacterium[x], macrophage[y], redbloodcell[z]} where x, y and z are

parameters such as position vectors. A grammar may include rules of the following

type:

{bacterium[x],macrophage[y]} → macrophage[y] with ρ(‖x− y‖)

The rule specifies the probability per unit time, ρ, that a macrophage ingests and

destroys a bacterium as a function of the distance between their centers, ‖x − y‖.

The left hand side (LHS) of the rule is comprised of terms that are matched to a set

of input parameterized objects. The terms on the right hand side (RHS) constitute

15

the output objects which are constrained by the parameter matchings of the LHS

terms. An SPG rule has the following general form:

{A1[x1],A2[x2], ...,An[xn]} → {B1[y1],B2[y2], ...,Bm[ym]} with ρ(x, y) (3.1)

Ai and Bj are the object types and xi or yi are the uninstantiated parameters’ vectors

of the ith term on the LHS or RHS, respectively. The number of terms on the LHS or

RHS is finite and can be zero. The function ρ is a nonnegative function of the input

and output parameters.

The SPG language is a generalization of the probabilistic formulation of chemical

reactions. The grammar rules are reaction schemas where each rule term matches any

object of the same type and according to the parameters’ constraints. The system’s

state (or the “pool”) is represented by a vector of copy numbers for every unique

parameterized object. Thus, the state space may be infinite or even uncountable.

An instantiated grammar rule represents a possible reaction that removes a set of

reactants and creates the products.

Assuming there are no conflicts with other reactions, the waiting time for a reaction is

exponentially distributed. The exponential rate is defined as the rule’s rate function ρ

times the number of distinct reactants (input objects) combinations in a given state,

which is denoted by n, i.e. w = nρ.

The SPG semantics can be summarized as a set of time dependent differential equa-

tions over the states’ probabilities [126]:

∀a d

dt
Pa(t) =

∑

b 6=a

Wb,aPb(t) −Wa,aPa(t), where Wa,a =
∑

b 6=a

Wa,b (3.2)

Here, Pa(t) denotes the probability of state a at time t. The summation is over all

16

possible neighboring states where Wb,a is a reaction rate, as defined above, from state

b to state a. If P (t) denotes the probability function over the entire state space then

the system can be written in an operator form:

Ṗ (t) = WP (t) (3.3)

which has the formal solution:

P (t) = exp(tW) · P (0) (3.4)

W is the probability rate operator which is composed of the corresponding transition

rates, Wa,b, and the diagonal entries, −Wa,a.

The following section provides a formal definition of SPG syntax and stochastic pro-

cess semantics. Section 3.2 presents some useful extensions for the SPG language:

embedding constraints over rule variables, an existential operator over grammar ob-

jects, and subgrammar execution via SPG rules. The inclusion of continuous rules

that contain differential equations dynamics is a powerful extension of SPGs, named

Dynamical Grammars (DG), which is defined in Section 3.4.

3.1 SPG formal definition

This section first defines the SPG probability space {Ω,F , P}. Subsequently, the basic

syntax for SPGs is introduced, followed by a semantics map to the time evolution

(Hamiltonian) operator W.

Let T be a set of object types and D =
d
∏

i=1

Di, a set of measure spaces , where Di is

a measure space such as the real numbers R or some finite set. For each object type

17

τ ∈ T , let k[τ] ≥ 0 be the number of related parameters. The measure space of each

object type is defined as X[τ] =
k[τ]
∏

j=1

Xj, where Xj ∈ D. We denote a parameterized

object as φ = τ(x1, ..., xk[τ]).

A state of the system (or an element of the state space Ω) is an attachment of a

copy number for every possible parameterized object. The state space Ω is defined

as follows:

Ω = N

m
∏

i=1

X[τi]

where m = |T | (the number of object types), and τi is the ith object type.

Denote an element in the sample space as {nφ} ∈ Ω , where nφ is the copy number

of object φ. F is defined as the appropriate σ-algebra for the set Ω.

The syntax of a grammar rule is defined as follows:

{τ1[x1,1, ..., x1,k[τ1]], ..., τn[xn,1, ..., xn,k[τn]]} → {τ̃1[y1,1, ..., y1,k[τ̃1]], ..., τ̃n[ym,1, ..., ym,k[τ̃n]]}

with ρ(x, y) (3.5)

The SPG rule has a tuple (ordered list) of left hand side (LHS) terms, that represent

the input items, followed by a tuple of right hand side (RHS) terms, that represent

the output items. A rule term is a template for matching a parameterized object of

the same type τi. Each parameter of input or output term (x,y) is an uninstantiated

variable that is defined over the corresponding space of the object type parameters

space, X[τi].

The rule is associated with a nonnegative rate function ρ over the ordered lists of

18

input (LHS) x and output (RHS) y parameters:

ρ :

(

n
∏

i=1

X[τi]

)

×
(

m
∏

i=1

X[τ̃i]

)

−→ R+

If ρ is integrable over the output parameters then it can be decomposed to: a rate

function over only the input parameters, ρ(x), and a conditional probability function

over the output parameters:

ρ(x) ≡
∫

ρ(x, y)dy ; P (y|x) ≡ ρ(x, y)

ρ(x)
; ρ(x, y) = P (y|x) ∗ ρ(x) (3.6)

This decomposition is essential for an SPG time-forward simulation algorithm where

the input parameters are known and the output parameters are sampled according

to P (y|x) . The simulation algorithm will be described in detail in the next chapter.

An SPG is simply a collection of such rules defined over a common sample space,

with the following syntax:

grammar-name = grammar[

{τ 1
i [x1

i]} → {τ̃ 1
i [y1

i]} with ρ1(x1, y1)

. . .

{τn
i [xn

i]} → {τ̃n
i [yn

i]} with ρn(xn, yn)

]

The order of rules, which are indexed by the superscript, has no effect on the seman-

tics, as defined below. The SPG header contains the keyword grammar followed by

a grammar name and an optional header rule.

19

Now we formally define the semantics of the probability evolution operator W that

was introduced in Equations 3.2 - 3.4. The evolution operator is constructed from

elementary creation and annihilation operators which are similar to the creation and

annihilation operators in physics and Quantum Field Theory [18]. In physics the

creation and annihilation operators increase and decrease the number of particles or

quantum of energy in a state. In the probabilistic settings of SPGs, these operators

are used to direct the probability flow between states.

Prior to the creation and annihilation operators, we define the delta functions:

Definition: (delta functions) The Kronecker delta function is defined for discrete

spaces as:

δK(a, b) =

1 if x = y

0 otherwise

(3.7)

The Dirac delta (generalized) function, δ(x, y), with the appropriate measure µ is

used in continuous spaces. The Dirac delta has the following property:

∫ ∞

−∞

f(x)δ(x, y)dx = f(y)

A delta function between two objects φ and φ̂ is defined as:

δo(φ, φ̂) = δK(τ [φ], τ [φ̂]) ∗
k[φ]
∏

i=1

δ(xi[φ], xi[φ̂]) (3.8)

where τ [φ] is the object type and xi[φ] is the ith parameter of the object.

Definition: (creation operator â(φ)) Given two objects φ and φ̂, and the previously

20

defined probability space, the creation operator â(φ) has the following effect:

â(φ)P ({nφ̂}) = P ({nφ̂ − δo(φ, φ̂)})

The creation operator shifts the probability from one state to a state that has an

additional copy of the object φ.

Definition: (annihilation operator a(φ))

a(φ)P ({nφ̂}) = (1T · {δo(φ, φ̂)(nφ̂ + 1)})P ({nφ̂ + δo(φ, φ̂)})

The annihilation operator shifts the probability from one state to a state that has one

less copy of the object φ. In addition, the probability is multiplied by the number of

copies of object φ in the source state.

Definition: (copy-number operator N(φ))

N(φ)P ({nφ̂}) = â(φ)a(φ)P ({nφ̂}) = 1T · {δo(φ, φ̂)nφ̂} · P ({nφ̂})

The copy-number operator multiplies the state probability with the number of copies

of object φ. This operator is equivalent to an application of the annihilation operator

followed by the creation operator.

If the sample states are comprised of only a single object, the previous operations can

21

be represented in the following matrix form:

â =

0 0 0 0 · · ·

1 0 0 0

0 1 0 0

0 0 1 0

...
.

a =

0 1 0 0 · · ·

0 0 2 0

0 0 0 3

0 0 0 0
. . .

...
. . .

ñ =

0 0 0 0 · · ·

0 1 0 0

0 0 2 0

0 0 0 3
. . .

...
. . .

The transition of probability due to an SPG rule can be described as the application

of annihilation operators followed by the application of creation operators. The rule

operator given a set of input and output parameterized objects is defined as follows:

Ô(x, y) = ρ(x, y)

[

m
∏

i=1

â(τ̃i(yi))

] [

n
∏

i=1

a(τi(xi))

]

(3.9)

The operator, Ô(x, x̃), establishes the rate of probability transition from any source

state into a target state where the LHS objects were removed and the RHS objects

were added. The rate value is a product of the rate function, ρ(x, y), and the number

of matching input objects available in the source state. Note that when the rule’s LHS

matches k copies of the same object and the source state has n copies of the object

then the rate function is multiplied by n!/(n − k)! , which is the number of ways of

choosing sorted sets of k object copies. This definition agrees with the chemical Law

of Mass Action and is valid for large n. In order to count only unsorted sets,
(

n
k

)

, the

rate function should be multiplied by the factor 1/k!, which is independent of n and

the source state.

A rule operator is defined as the integral of the operator from Equation 3.9 over the

22

entire parameter space:

Ô =

∫

X[τ1]

...

(

n
∏

i=1

dxi

)

∫

X[τ̃1]

...

(

m
∏

i=1

dyi

)

Ô(x, y) (3.10)

The operator addition or integration corresponds to independently firing processes,

whereas the operator multiplication corresponds to obligatory event co-occurrence.

The rule operator expresses only the flow of probabilities into new states and not

the flow of probabilities out of old states. Including the probability outflow in our

dynamical system is essential for probability conservation. Therefore, the rule oper-

ator is adjusted by subtracting the sum of outflow rate from the current state using

diagonal matrix elements:

O = Ô − diag(1T · Ô) = Ô − D̂ (3.11)

We can define D̂ alternatively by using the copy-number operator:

D̂(x, x̃) = ρ(x, x̃)
n
∏

i=1

N(τi(xi)) (3.12)

The time evolution operator of the entire SPG is simply a sum over the generators of

each rule:

W =
∑

r

Or (3.13)

This superposition implements the basic principle that every possible rule firing is

an exponential process, happening in parallel with all the others until a firing event

occurs. The operator semantics does not, in general, impose a unique preferred

execution order on rule-firing events.

23

3.2 Language extensions

3.2.1 Constraints over rule parameters

Constraints over the input and output variables (x, y) in a grammar rule (Equation

3.5) may be incorporated in the rate function ρ(x, y). Equality constraints, such as

f(x, y) = 0, may be incorporated by multiplying ρ by the appropriate Dirac delta or

Kronecker delta (Equation 3.7). Inequality constraints, such as f(x, y) ≤ 0 and other

Boolean combinations, can be similarly converted to numerical functions using the

Heaviside function Θ:

Θ(A) ≡

1 if predicate A is true

0 otherwise

(3.14)

As a convenient syntactic extension, equality constraints may be embedded in the

rule terms in place of the constrained parameters. Given the constraint δ(xi,n − ci,n)

where ci,n is an expression over the rule’s variables and constant values, the following

shorthand notation is used:

{

τi[xi,1, ..., ci,n, ..., xi,k[τi]]
}

→
{

τ̃j[yj,1, ..., yj,k[τ̃j]]
}

with ρ(x, y)

The same notation is applicable for equality constraints in the RHS of the rule. All

the auxiliary variables are integrated over in the rate operator as defined in Equation

3.10 for the rule’s parameters.

Example 1 The following rule matches only Cell objects such that their first pa-

rameter equals 1. If the first parameter denotes a cell type then this rule represents

a cell differentiation event. A second equality constraint exists between the second

parameter, x, of the input object and the second parameter of the output object.

24

Cell[1, x] → Cell[2, x] with ρ(x)

Example 2 This example demonstrates a constraint between variables in the LHS

of the rule. The edge term’s parameters must match the first parameters of the Node

terms. This rule represents an event of detachment between two nodes whereas the

stochastic rate is proportional to the squared distance between the nodes.

{Node[i1, x1],Node[i2, x2], edge[i1, i2]} → {Node[i1, x1],Node[i2, x2]}

with α(x1 − x2)
2

The subjectTo keyword provides another syntactic extension which may be used to

introduce inequalities or other complex Boolean constraints. Given a set of Boolean

constraints, c, over the rule’s parameters, the following notation is defined:

{

τi[xi,1, ..., xi,k[τi]]
}

→
{

τ̃j[yj,1, ..., yj,k[τ̃j]]
}

with ρ(x, y) subjectTo c

Example 3

The following rule eliminates a Cell object as a function of the inverse cell size, r.

Such rate function is only valid for positive cell size as declared by the subjectTo constraint.

Cell[i, x, r] → {} with r−1 subjectTo {r > 0}

3.2.2 Existential operator

Some events are triggered by the absence of an object. The basic SPG language can

only support rules that require the existence of some objects. Here, the SPG syntax

and semantics is extended to include a “Not Exists” quantifier, ∄. In the following

rule the ith term in the LHS indicates that the existence of any matching object (copy

25

counter greater than 0) will render this rule as inapplicable.

{

τ1[x1,1, ..., x1,k[τ1]], ...,∄τi[xi,1, ..., xi,k[τi]], ..., τn[xn,1, ..., xn,k[τn]]
}

→ {τ̃j [yj]} with ρ(x, y)

(3.15)

Definition: (not-exists operator ε(φ))

ε(φ)P ({nφ̂}) = (1T · {δo(φ, φ̂)δK(nφ̂, 0)})P ({nφ̂})

The not-exists operator is non-zero for states that do not contain a copy of the object,

φ. The not-exists operator is applied inside the rule operator (Equation 3.9) as part

of the product of annihilation operators. However, the annihilation and not-exist

operators do not commute (where A and B commute if AB = BA). Therefore, the

order in which not-exists operators are applied may affect the outcome. If the not-

exist term precedes a regular input term that matches the same object then the rule is

not applicable (the rule has no set of matching objects). If the not-exist term follows

a regular input term that matches the same object then the rule is applicable to some

states. In general, applicable states must have exactly the same number of copies of

the not-exist object as the number of preceding regular terms that match the same

object.

Example 4

The following rule describes an event of connecting two adjacent nodes. In order to

avoid reconnecting the same nodes repeatedly, this rule is applicable only when there

is no existing edge object that connects the two nodes.

26

{Node[i1, x1],Node[i2, x2],∄edge[i1, i2]} → {Node[i1, x1],Node[i2, x2], edge[i1, i2]}

with (x1 − x2)
−2 subjectTo {x1 6= x2}

3.2.3 Subgrammar calls

An SPG prescribes a probability function and therefore can be used as part of a rate

function in another calling SPG. A rate function that depends on another SPG is

defined as:

ρ({τi(xi)} , {τj(yj)} ; t,W) = δ({τj(yj)}) exp(tW)δ({τi(xi)}) (3.16)

The rate function expresses the joint probability of an initial state {τi(xi)} and final

state {τj(yj)} at time t according to the subgrammar (the called grammar), which

is denoted by its operator W . This method is useful for multiscale modeling where

the subgrammar may describe a set of stochastic reactions that occur in a faster time

scale than the calling grammar. For example, an SPG that encodes cellular or tissue

level stochastic events may call a subgrammar that encodes chemical reactions.

We define the via keyword as a syntactic extension for calling a subgrammar Γ. A

single rule may have both a via and with clauses, in which case their firing rates are

multiplied.

{

τi[xi,1, ..., xi,k[τi]]
}

→
{

τ̃j[yj,1, ..., yj,k[τ̃j]]
}

via Γ(t) [with ρ(x, y)] (3.17)

The subgrammar called by a via clause operates on a different sample space than the

calling grammar. We propose another scheme in which the subgrammar operates over

the same sample space. The grammar rules, described thus far, encode probability

27

transitions between states that differ by some set of objects matching a single rule.

A subgrammar, that encapsulates many reactions over the same space, can express

direct probability transitions between states that differ by dynamic sets of objects

matching multiple reactions.

The syntax of a subgrammar call over a common sample-space is “call Γ̃(t)”. This

command may either replace a grammar rule, thus a standalone call, or follow a

grammar rule. When we use a standalone call command with a subgrammar operator

W̃ , the operator, Ô, in the calling grammar becomes: (instead of Equation 3.10)

Ô = exp(tW̃) (3.18)

If the subgrammar call follows a grammar rule then the operator exp(tW̃) is applied

immediately after the rule operator:

Ô = exp(tW̃)

∫

X[τ1]

...

(

n
∏

i=1

dxi

)

∫

X[τ̃1]

...

(

m
∏

i=1

dyi

)

Ô(x, x̃) (3.19)

This way, the subgrammar performs multiple reactions that can take place immedi-

ately after the rule execution. The rule may provide input data to the subgrammar

in the form of RHS matching objects.

A generalization of the common sample-space subgrammar calls has the following

syntax:

call Γ̃1(t1), Γ̃2(t2), ...

Subgrammars operators are applied according to their respective order. Such com-

mand may encode a sequence of events that occur immediately after the primary rule

28

(in the calling grammar) has executed.

Example 5

This example shows the use of subgrammar calls for removing a variable number of

objects in one event. The following rule removes a Node object and all of its edge

connections. The Node object is replaced by a delNode object whereas the edges are

removed by calling two subgrammars. The first subgrammar uses delNode as an input

to remove all the edge. The second subgrammar removes the unused delNode object.

Calling the two subgrammars with infinite time results in a sample from the steady

state which is concentrated in a single point, hence a deterministic state. Using finite

time may result in non-zero probabilities for invalid states, i.e. states that have edges

for non-existing nodes.

Node[i, x] → delNode[i, x]

with ρ(x) call EdgeDelGrammar1(∞),EdgeDelGrammar2(∞)

EdgeDelGrammar1 = grammar[

{delNode[i, x], edge[i, i2]} → {delNode[i, x]} with k

{delNode[i, x], edge[i1, i]} → {delNode[i, x]} with k

]

EdgeDelGrammar2 = grammar[

delNode[i, x] → {} with k

]

29

3.3 SPG illustration - clustering

This section provides an illustration of the expressive power of SPGs. The example

has two parts: a generative process of hierarchical data structure creations and hierar-

chical clustering inference. The following single-rule grammar produces a hierarchical

tree structure of clusters which is bounded by L, the tree depth. The deepest clusters,

at level L, are the data items. The cluster distributions are Gaussians as encoded

in the rate function. The subjectTo constraints limit the number of subclusters

generated in each supercluster according to the size control variable, S.

ClusterGenerator = grammar [

(*Cluster generates a subcluster*)

Cluster[x, σ, l, s] → {Cluster[x, σ, l, s+ 1],Cluster[x̃, σ/V, l + 1, 0]}

with N(x̃;x, σ) subjectTo {s ≤ S and l < L}

]

The clustering grammar represents an iterative procedure which is implicit in many

clustering algorithms such as K-Means [82] and EM algorithm [34]. Each subcluster or

data item is associated with a superlcuster (cluster of lower level). Subsequently, the

new mean locations and variances are calculated. This sequence of steps is performed

using the call operation to two subgrammars.

Each Cluster object is augmented with two additional parameters, b and χ . The

first parameter, b, is a Boolean indicator for the assignment of the cluster to some

super-cluster, whereas χ is a place holder for the sum of positions of all the assigned

subclusters. The subgrammars are called with infinite time in order to obtain steady

states which are concentrated in single (deterministic) points.

30

ClusteringGrammar = grammar[

call Step1Grammar(∞), Step2Grammar(∞)

]

Step1Grammar = grammar[

(*associate a subcluster to cluster*)

{Cluster[x, σ, l, s, b, χ],Cluster[x̃, σ̃, l + 1, s̃, b̃, χ̃]} →

{Cluster[x, σ, l, s+ 1, b, χ+ x̃],Cluster[x̃, σ̃, l + 1, s̃, 1, χ̃]}

with N(x̃;x, σ) subjectTo {s ≤ S and l < L and b̃ = 0}

]

Step2Grammar = grammar[

(*compute new mean *)

Cluster[x, σ, l, s, b, χ] → Cluster[χ/s, σ, l, 0, 0, 0]

with 1 subjectTo {s > 0 and l < L}

]

3.4 Dynamical Grammar

Many complex processes, such as molecule signaling by diffusion, transport and decay,

or object motion due to physical forces, are approximated by differential equations

(DEs): ordinary DE (ODEs), partial DE (PDEs) or stochastic DE (SDEs). Dynamical

Grammars (DGs) are defined as a generalization of SPGs that supports differential

31

equations. DEs are encoded in solving clauses that follow a regular rule structure

where the LHS and RHS terms are identical. The following rule is denoted as a

continuous-time rule:

{

τi[xi,1, ..., xi,k[τi]]
}

→
{

τi[xi,1, ..., xi,k[τi]]
}

solving

{

dxi,j

dt
= fi,j(x)

}

(3.20)

The solving clause contains differential equation for each input variable, xi,j, whereas

x denotes the set of all input variables xi,j. Therefore, each variable may be depen-

dent on any or all of the input variables. Rule constraints, either in the form of

subjectTo clause or inline equality constraints, are still applicable. A rule constraint

is translated into the appropriate delta (or Heaviside) function which is multiplied

with each gradient function, fi,j(χ).

The continuous rules’ semantics are defined by considering an SDE or equivalent

Langevin equation which specializes to an ordinary differential equation when the

stochastic term vanishes: (η(t) = 0):

dui = vi(u)dt+ σi(u)dw or (3.21)

dui

dt
= vi(u) + ηi(t) (3.22)

Under some conditions on the noise term η(t) the dynamics can be expressed [113]

as a Fokker-Planck equation for the probability distribution P (u, t):

∂P (u, t)

∂t
= −

∑

i

∂

∂u
vi(u)P (u, t) +

∑

ij

∂2

∂ui∂uj

Dij(u)P (u, t) (3.23)

32

Therefore, the probability rate is comprised of the drift and diffusion rate operators:

ρdrift(u) = −
∑

i

∂

∂ui

vi(u) (3.24)

ρdiffusion(u) =
∑

ij

∂2

∂ui∂uj

Dij(u) (3.25)

The drift rate operator can be expressed as an infinite dimension matrix in the limit

du→ ∞:

ρdrift(u) = −

−v(u)
du

v(u+du)
du

0 0

0 −v(u)
du

v(u+du)
du

0

0 0 −v(u)
du

. . .

0 0 0
. . .

Instead of using a derivative operation over the probability function we can define

the drift and diffusion operators differently, by using the following relation:

− ∂

∂u
v(u) P (u, t) = −

∫ ∞

−∞

∂v(y)P (y, t)

∂y
δ(y−u)dy =

∫ ∞

−∞

v(y)P (y, t)
∂

∂y
δ(y−u)dy

The delta function’s fundamental derivative property [17] is used in the equation

above. The drift and diffusion operators can be expressed by using the creation and

annihilation operators over the continuous space:

Odrift =

∫ ∫

â(y)a(u)v(y)
∑

i

∂

∂yi

δ(y − u)dy du (3.26)

Odiffusion =

∫ ∫

â(y)a(u)Dij(y)
∑

ij

∂2

∂yi∂yj

δ(y − u)dy du (3.27)

The continuous rule operator, Oc, is defined as the sum of the drift and diffusion

33

operators:

Oc = Odrift(u) +Odiffusion(u) (3.28)

Example 6

A rule that describes continuous exponential growth for a cell:

Cell[x, r] → Cell[x, r]

solving {dr
dt

= kr}

Example 7

The following rule describes a repulsion force between two cells as a function of their

distance. According to the defined semantics above, if there are multiple cells in the

system, then, for each cell, the repulsion forces, from all other cells, will add up.

{Cell[x1, r1],Cell[x2, r2]} → {Cell[x1, r1],Cell[x2, r2]}

solving {dx1

dt
= (x1 − x2)

−1}

3.4.1 Parabolic partial differential equations

In some modeling applications, the time dependent continuous concentration, u(t),

may vary as a function of the spatial coordinates, u(x, t). Examples of such contin-

uous spatial dynamics include fluid flow and the propagation of heat and sound.

Parabolic Partial Differential Equations (PDEs) are used to formulate diffusion-

dominated spatio-temporal dynamics (eg. heat and particle diffusion), as the fol-

lowing PDE for diffusion and drift (∇ is the differential operator over the spatial

34

coordinates, x):

∂u

∂t
= v(u) +D∇2u(x, t)

In general, time dependent PDEs have the following form:

∂u

∂t
= F (∇, x, u)

The syntax of Dynamical Grammars, defined in the previous section, can be expanded

to time dependent PDEs. When declaring continuous rules for PDEs, the parameter

that corresponds to the dependent variable u represents a function over the spatial

coordinates rather than a point.

The probability rate operators for PDEs can be derived by replacing each spatial func-

tion u(x) with a set of variables, ui, over the vertices of a uniform grid discretization

of space. xi denotes the positions of the grid for the one dimensional case, whereas

h is the grid spacing. Hence, xi = ih and ui = u(xi). When h → 0, the spatial

derivatives, ∇, may be approximated using the Taylor expansion:

u′(xi) =
u(xi+1) − u(xi−1)

h
+O(h3)

u′′(xi) =
u(xi+1) − 2u(xi) + u(xi−1)

h2
+O(h4) (3.29)

Using Equation 3.29, PDEs can be approximated by sets of ODEs over the grid vari-

ables ui. Subsequently, the previous section’s operator derivation is applicable for

this set of ODEs. Such discretization is directly expressed by a set of grammar ele-

ments, Γ(ui, i), representing the grid points and the following continuous rule between

35

neighboring elements:

{Γ[ui−1, i− 1],Γ[ui, i],Γ[ui+1, i+ 1]} → {Γ[ui−1, i− 1],Γ[ui, i],Γ[ui+1, i+ 1]}

solving

{

d

dt
ui = g(ui−1, ui, ui+1, h)

}

(3.30)

The function g is the finite difference discretization of the RHS part of Equation 3.29.

We use the Crank-Nicolson discretization scheme [28] which is an implicit method in

time and numerically stable (in most cases) for large timestamps [23]. Crank-Nicolson

is second order accurate in both time and space.

36

Chapter 4

SPG simulation

4.1 Time ordered product expansion

It is impossible to derive a general algebraic solution of the probability function

(Equation 3.4, also known as the master equation) or its moments since the state space

is infinite or even uncountable. Sampling techniques are used in order to approximate

the probability distribution. The Time-Ordered Product Expansion (TOPE) [40, 113]

is a valuable tool for studying similar stochastic processes in physics and can be used

to create samples from the master equation. The following is the TOPE of the master

equation:

P (t) = exp (tW)P (0) = exp (t (W0 +W1)) · P (0)

=
∞
∑

n=0

[

∫ t

0

dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtn

exp((t− tn)W0)W1 exp((tn − tn−1)W0) · · ·W1 exp(t1W0)] · P (0) (4.1)

37

W0 is usually a solvable or easily computable part of W . An obvious choice is to

take W0 to be the diagonal part of W , in which case we derive Gillespie’s well-known

Stochastic Simulation Algorithm (SSA) for simulating chemical reaction networks

[52]. The SSA algorithm generates a multi-reaction path by sampling in each iteration

the next waiting time and reaction event. The TOPE with a diagonal W0 interprets

the probability of an arbitrary state a at time t as the sum of probabilities over all

possible multi-reaction paths that arrive at state a and time t. The probability of a

multi-reaction path can be written as:

P (.|a, k) = Wk ◦ P (.|a, 0)

where

W(b, t′|a, t) ≈ Wb,a exp(− (t′ − t)Da,a)1 (t′ > t)

D ≡ diag(W)

In these equations we have defined Pr(a, t|b, k) to be the “just-reacted state prob-

ability”: the probability of being at state b and time t immediately after the k’th

reaction event, given the initial state a. These equations explicitly express the SSA

algorithm as a discrete-time Markov chain representing a randomized algorithm. This

expression is in accord with, for example, Theorem 10.1 of [131].

4.2 Dynamical Grammar simulation

A simulation algorithm of Dynamical Grammars (DGs) should take into account the

continuous rules’ operators of drift and diffusion (Equation 3.24 and Equation 3.25).

38

The TOPE can be used by including the continuous rules’ operators as part of the

operator H0 which appears in the exponential. Following the simulation scheme of

previous section, we denote H0 = D +
∑

r

Oc
r where D is the discrete rules’ diagonal

operator and Oc
r is a continuous rule’s operator (indexed by r) which is defined in

Equation 3.28. Using this definition of H0, the waiting time for the next discrete

event in the sampling scheme is distributed according to:

exp

(

t(D +
∑

r

Oc
r)

)

· δ({nφ}) (4.2)

Let x denote a state space and ρ(x) denote the diagonal element inD that corresponds

to state x, i.e. the outflow rate in state x. Assuming the continuous operators involve

only drift operators (η(t) = 0 in Equation 3.22), the resulting distribution (which is

derived in Appendix A) is:

exp(−ρ̂(t))δ(x− x̂(t)) (4.3)

where x̂ and ρ̂ are defined as:

dx̂

dt
= v(x̂) , x̂(0) = x0 (4.4)

ρ̂(t) =

∫ t

0

ρ(x̂(τ))dτ (4.5)

The sampling scheme of previous section is modified by integrating the differential

equations (expressed by the continuous rules) between successive discrete events. Fur-

thermore, the total outflow rate during the waiting time is expressed as an integration

of the outflow rate over the continuous state path.

When dealing with SDEs, the expression in Equation 4.2 becomes analytically com-

39

plicated since the diffusion term (Equation 3.25) expands the variance of the state

distribution. However, for each simulation there is a single realization of the random

function η(t) (Equation 3.22). Therefore, the simulation algorithm is modified by

initially generating a random realization of η(t) and replacing Equation 4.4 with:

dx̂

dt
= v(x̂) + η(t)

4.3 Simulation of Dynamical Grammars with PDEs

In Section 3.4.1, Dynamical Grammars were generalized to allow continuous rules

with PDEs that include time and spatial derivatives (in particular, parabolic PDEs).

The semantics of continuous rules with PDEs is defined by discretizing the space and

replacing each PDE with a set of ODEs for the grid variables.

The Dynamical Grammar simulation algorithm, described in the previous section, ap-

plies to this space discretization. Numerical solution of the PDEs with time derivative

can be computationally expensive. However, in many applications, the steady state

solution (no time derivative), which is a boundary value problem, is sufficient and

may provide substantial computational speedup. In biological modeling applications

signaling molecules diffuse in space in a faster time scale than cell level events such as

cell division or movement. The production, decay and diffusion of signaling molecules

may reach steady state before any cell level event occurs.

The MultiGrid method [130] is an efficient numerical PDE solver method that is

used primarily for boundary value problems. The finite differences discretization of

a boundary value problem PDE (steady state solution) is denoted by this system of

40

linear equations:

Au = f (4.6)

Here u is the unknown spatial function whereas f is a source function. The matrix A

is sparse and therefore Equation 4.6 can be computed by iterative methods such as

Jacobi or Gauss-Seidel. The error term of the iterative method is e = u− um where

um is the solution vector of the m’th iteration. The error term can be represented

by a Fourier series. It can be shown that iterative methods do converge (e → 0 as

m → ∞) [132]. The rate of convergence is the slowest for the first Fourier mode

(longest wavelength) whereas short wavelength Fourier modes converge rapidly. The

MultiGrid method uses the differences in rates of convergence by using coarser grids

in order to approximate the smooth error of long wavelengths. The correction is then

propagated to finer grids where the short wavelengths error is reduced.

The MultiGrid method is further described in [109], which provides MultiGrid solver

software that is used in our Dynamical Grammar simulation software Plenum.

A different method that is applicable for both steady state and time dependent prob-

lems is the Finite Element Method (FEM) [63]. FEM works as Finite Differences

methods by discretizing the space. However, Finite Differences calculates the de-

pendent variable over the grid points whereas FEM defines nodes and element trial

functions that cover the whole space. The elements and the trial functions can be

designed according to the complexity of the underlying medium.

41

As a simple example, we define the following linear one-dimensional elements:

N1(x) =
xj+1 − x

xj+1 − xj

, N2(x) =
x− xj

xj+1 − xj

u∗(x, t) = N1(x)u1(t) +N2(x)u2(t) , for xj ≤ x ≤ xj+1

Given a PDE that describes production, diffusion and decay:

∂u

∂t
= v(x) +D∇2u(x, t) − ku ,

we can derive the following equation for each node, ui , where L is the element size.

L(u̇i−1 + 4u̇i + u̇i+1) +
D

L
(−ui−1 + 2ui + ui+1) + kL(ui−1 + 4ui + ui+1) = vi

This set of ordinary differential equations can be solved using any finite difference

method.

The FEM formulation is appealing for biological modeling since elements may cor-

respond to cells or organs. As opposed to grid methods that naively discretize the

underlying space, the FEM elements may change and develop along with their corre-

sponding physical entity, such as cells.

The formulation of FEM and Finite Differences can be declared internally by the DG

simulator or externally by the DG model. A grammar rule for Finite Differences was

described in Equation 3.30.

42

Chapter 5

Simulator implementation

A Dynamical Grammar interpreter, called Plenum, was developed in Mathematica,

the computer algebra system. Plenum includes the simulation algorithm that was

derived in Chapter 4 and a PDE Finite difference solver. This chapter discusses al-

gotihmic design issues that emerged while developing the interpreter and DG models

that are described in the following chapters. Section 5.1 describes the constraint pro-

cessing methods for matching sets of objects to the LHS of grammar rules. Section 5.2

provides the overall complexity analysis of the simulation algorithm. The simulation

of SPGs, that include output parameters in the rate functions, is discussed in Section

5.3. Simulation of continuous-time rules is described in Section 5.4.

5.1 Matching objects tuples to rules

After every discrete event, the simulation algorithm attempts to match sets of objects

from the pool to the LHS of each grammar rule. The procedure which finds all the

sets of objects that match the rule’s LHS elements and satisfy their constraints (as

43

defined in Section 3.2.1) can be divided to two phases. The first phase matches a

tuple of arbitrary objects to some or all of the elements in the LHS, whereas the

second part enumerate all candidate objects’ tuples for complete or partial matching

of the LHS. In order to match an objects’ tuple to an elements’ tuple, Plenum uses, in

most cases, Mathematica’s built-in pattern matching method. This procedure works

for simple elements that have only a variable or constant value for each parameter.

However, if an LHS element’s parameter is a mathematical expression then this direct

procedure is insufficient. For example:

{TreeNode[l, x1],TreeNode[l+1, x2]} → {TreeNode[l+1, x1],TreeNode[l, x2]} with k

The first parameter of a TreeNode object denotes its level in the tree. The rule

switches tree levels of two TreeNode’s that differ by one level. In order to process

constraints such as the level parameter of the second LHS element (l + 1), Plenum

generates a set of equations in which the equations’ LHS comprise the set of elements’

parameters, whereas the equations’ RHS is the set of candidate object parameters.

The set of objects matches if and only if there are one or more solutions for this set of

equations. Plenum utilizes Mathematica’s equation solver(Solve [133]) for this task.

The full enumeration of all possible object tuples for each rule may be prohibitive

and unnecassery. Consider the following example of a rule that eliminates a set of

three connected nodes.

{Node[i1, x1], edge[i1, i2],Node[i2, x2], edge[i2, i3],Node[i3, x3]} → {} with k

A naive algorithm may construct a list of all node triplets, whereas the only node

triplets that satisfy the rule’s constraints form a connected and directed row. For

any graph that is not fully connected, such implementation has an unnecessarily high

computational cost. If there is a mismatch between a partial object tuple and the

corresponding LHS elements, then there is no need to test the complete tuples.

44

After each reaction event, every new tuple of matching objects contains at least one

new object. Therefore, the tuple enumeration scheme should not reconsider tuples

that consists of existing objects only.

The following Generate Tuples Algorithm is implemented in Plenum. The input to

the algorithm is a set of new and existing matching objects per LHS element. The

algorithm maintains a list of partial tuples over the first i elements which are then

extended or eliminated by considering the objects of the next (i + 1’st) element.

In addition, the algorithm enumerates only tuples that have some new objects by

combining the lists of new and existing objects.

Generate Tuples Algorithm:

Input: LHS[r]: set of LHS elements of rule r.

LHS[r]1...i denotes the list of the first i elements.

|LHS[r]| denotes the number of elements.

Θr
i : List of matching objects in the pool for each LHS element i of rule r.

Θ̂r
i : List of matching new objects for each LHS element i of rule r.

Initialize: For each r, i - concatenate the two lists : Θ̄r
i = Θr

i ∪ Θ̂r
i

Set of new tuples : T̄ = {}

Iteration: For each rule r, For i = 1 to |LHS[r]|

initialize list of new tuples T = {}

For j = 1 to |LHS[r]|

If j < i then a = Θr
i , else If j = i then a = Θ̂r

i , else a = Θ̄r
i

create new set of tuples by appending a new object to each candidate

T = T × a, where × denotes the Cartesian product

For each tuple τ in T

If τ matches LHS[r]1...j continue, else remove τ from T

45

add the new tuples : T̄ = T̄ ∪ T

return T̄

In the above algorithm, the elements’ ordering of tuple construction, indexed by j,

is predetermined by the elements’ order in the LHS. However, this ordering may re

many partial tuples that do not include new objects and can not be extended to full

tuples when considering the new objects. Therefore, as a heuristic, the ordering may

be modified so that, in every partial tuple, the first object is new, i.e. change the

ordering statement such that a = Θ̂r
i for j = 1. This heuristic is implemented in

Plenum.

If a rule includes not-exists elements (see Section 3.2.2) then a tuple that matches all

the regular elements may trigger a reaction only if there are no objects that complete

the tuple for the remaining not-exists elements. For every such regular elements tuple,

Plenum maintains a list of matching not-exists tuples. A regular elements tuple is

considered valid whenever its not-exists tuples’ list is empty.

The Rete algorithm [45] is a pattern matching algorithm for performing forward

chaining in production rule systems such as Ops5 [19] and Soar [71]. The algorithm

maintains a list of objects matching each rule element, as in the above algorithm. In

addition, Rete stores the partial tuples that were discarded in the foregoing Generate

Tuples Algorithm. Storing the partial tuples may save considerable processing time

when generating new tuples and partial tuples. However, the increased space com-

plexity may be prohibitive and there is additional processing time for deleting the

relevant partial tuples of removed objects.

The problem of generating tuples over the set of constraints imposed by the rule’s

elements is essentially a constraint satisfaction problem (CSP) [33]. The Bucket

Elimination (BE) [32] algorithm is an optimal dynamical programming type algorithm

46

for solving CSPs. In this algorithm, the variables, which are the rule elements in our

application, are arranged in sequential order. Each variable is associated with a

bucket (abstract container), whereas the constraints are assigned to the first bucket

in the ordering that includes one of their variables. Each bucket is processed thus

creating a set of partial tuples that satisfy all these constraints. The set of partial

tuples constitutes a new discrete constraint which is propagated to the next bucket

that includes one of its variables.

The time and space complexity of the BE procedure is bounded by the size of the

largest discrete constraint that was generated. The constraint size is exponential in

the number of variables involved. Every variable ordering may produce a different

maximal constraint size, which is also known as the induced width of the ordered

constraint graph (network) [33]. Finding the minimum induced width of a graph is

hard (NP-complete). However there are some heuristics [33] that usually produce

close approximations.

The BE algorithm which generates tuples in a tree-like structure that may provide

computational speedup over the sequential approach of Generate Tuples Algorithm.

BE implementation can be embedded in the inner loop of Generate Tuples Algorithm

by replacing the sequential construction of tuples. Since the BE algorithm stores all

the partial tuples that are associated with each bucket, the space complexity might

be prohibitive in some cases. In addition, the computational time that is gained by

using the BE algorithm is insignificant for constraint problems with few variables

whereas most SPG rules used in this thesis have at most four LHS elements, which

are the constraints’ variables.

47

5.2 Computational complexity of the simulation

algorithm

This section analyzes the overall computational complexity of the simulation algo-

rithm’s implementation in Plenum. The simulation algorithm maintains a data struc-

ture of pending reactions and their rates. Each reaction step consists of: a search

for the new executed reaction, execution of the reaction, creation of new pending

reactions, and the modification of affected pending reactions. Let r̂(t) be the set of

pending reactions at time t and M(t) is the set of unique objects that exist at time

t. Note that |r̂(t)| is bounded by
∑

k

(

M(t)
| reactant(k)|

)

, where reactant(k) is the set of LHS

reactant elements (or input elements) of the kth grammar rule. The unique objects

could be stored in an array where each entry holds a link to the set of relevant pending

reactions (all the reactions for which the current object is the first reactant). In many

stochastic processes (for example, various gene regulation network models), the total

number of unique objects over the entire process, M = ∪t(M(t)), is finite, relatively

small and known in advance. Thus, the objects’ array can include the entire set of

unique objects and the space complexity is O(max
t

|r̂(t)|+ |M |). In other cases, where

|M | is too large or unpredictable, an alternative for the array is a hash table of fixed

size.

The search for a random reaction may take O(|r̂(t)|), but using a binary tree reduces

the search time to O(log |r̂(t)|). The tree leaves refer to pending reactions, whereas the

inner nodes store the total rate and number of reactions (leaves) in their subtree. New

pending reactions are inserted into the subtree (right or left) that has fewer leaves.

That way, the binary tree is balanced throughout the simulation with a logarithmic

height.

Once a reaction, denoted as
∗
r, is executed, the algorithm updates the affected pending

48

reactions which are accessed directly by the array (or hash table) structure. The set

of affected reactions is r̃ = {ri|a ∈ ∗
r ∧ a ∈ ri}, or in other words, the set of reactions

that share an object, a, with the executed reaction. Therefore this procedure takes

O(|r̃|) time. The number of new reactant tuples and Generate Tuples Algorithm is

bounded exponentially by the size of the LHS of the largest rule.

Finally, the total number of reactions events depends on the total time T , the rates of

each reaction ρ(r̂i), and the number of possible reactants’ tuples per reaction
∏

j∈r̂i

Nj

(where Nj is the number of identical objects that match the jth reactant). A bound

on the expected number of reaction events is : O(T · maxi(ρ(r̂i)
∏

i∈r̂j

Nj)).

The computational bounds of the simulation algorithm are summarized in the follow-

ing theorem.

Theorem 5.2.1 The expected time complexity of the SPG simulation algorithm is

O(Ψ · r̂max) where Ψ = T · maxi(ρ(r̂i)
∏

i∈r̂j

Nj) and r̂max = max
t

|r̂(t)|. The space

complexity of the SPG simulation algorithm is O(r̂max).

5.3 Handling output parameters

The rate function is defined over both input and output parameters. During a simula-

tion, the input (or LHS) parameters are assigned according to the tuple of matching

objects, but the output parameters are unknown. A rule with output parameters

represents infinitely many potential transitions from a single input state to the whole

space of output objects. We decompose the rate function into the product of: a

rate function over the input parameters and a conditional probability of the output

49

parameters:

ρ(x, y) = P (y|x) ∗ ρ(x) where ρ(x) ≡
∫

ρ(x, y)dy ; P (y|x) ≡ ρ(x, y)

ρ(x)

The simulation algorithm chooses the input objects tuple, i, according to the discrete

distribution of the normalized input rate functions: ρ(xi)/
∑

i

ρ(xi). Given the input

tuple, the algorithm samples from the conditional probability, P (y|xi), and creates the

output objects. An applicable sampling method is the probability integral transform

[35]:

• Sample u ∼ Uniform[0, 1]

• Return x = F−1(u)

Here, F is the cumulative distribution function (CDF). The simulation algorithm, in

Plenum, computes the CDF of the conditional probability by numerical integration

over the relevant domain. All the integrations that create the conditional probability

function and later its CDF, are performed as a preprocessing step. The algebraic

transformations are performed using built-in Mathematica functions.

5.4 Integration of Dynamical Grammar rate func-

tions

In case there are matching tuples to continuous rules, the simulator has to integrate

(solve) all the relevant object parameters according to the solving time-dependent

differential equations. In the following equations x is the set of continuous parameters,

50

v is the relevant set of rate functions, and x0 is the initial condition:

dx

dt
= v(x) , x(0) = x0

Plenum uses Mathematica’s numerical ODE solver (NDSolve). The rate functions of

discrete events may depend on continuously changing parameters, so the simulator

integrates the rate functions as well. An additional ODE describes the exponential

decay of the survival probability for avoiding the next reaction firing event:

dP

dt
= −P

∑

i

ρi(x(t)) , P (0) = 1

ρi is the rate function of the ith candidate reaction. A derivation of these equations

from the TOPE is described in Section 4.2.

Sampling a reaction time from P is similar to the previous section’s probability integral

transform. Generate a uniform number, u, from [0,1] and find the time, t, for which

P (t) = u. The ODE solver integrates until it reaches the event time. Finally, the

discrete event is sampled from the distribution of the normalized rates at the time of

event: ρj(x(t))/
∑

i

ρi(x(t)).

51

Chapter 6

SPG modeling motifs

This chapter presents several SPG modeling “motifs”. An SPG motif is a schema

of grammar rules that represents recurring patterns of use. Section 6.1 shows SPG

schema for modeling complex chemical reactions. In Section 6.2, we describe a dy-

namical grammar schema for modeling processes with memory in contrast to the

SPG semantics that results in memoryless exponential distributions for elementary

events. Section 6.3 presents dynamical grammar rules that define the basic kinetics

of movement caused by forces between adjacent cells in accord with a weak spring

potential. The weak spring rules were incorporated in the spatial biological models

of the following chapters. A procedure that transforms an SPG model to a determin-

istic approximation based on ODEs is presented in Section 6.4. Finally, Section 6.5

discusses the capability to create SPGs that manipulate other SPG models.

52

6.1 Complex chemical reactions

Ordinary chemical reactions involve sets of rules between unparameterized objects

that denote different molecules, such as:

2H2O → 2H2, O2

However, in many biological applications, chemical reactions involve numerous chem-

ical complexes which may affect the local interactions. For example, a ligand that

has n binding sites may bind to a receptor molecule that has m binding sites. The

rate of such reactions may depend on the number of free binding sites. This results

in an exponential scaling of the number of different reactions between ligands and

receptors. Modeling these reactions in the conventional way would be impractical.

The following is an SPG rule for the binding of ligand, ‘L’, and receptor, ‘R’, over one

of their free binding sites, ‘B’. The ligand and receptor objects are associated with a

set of binding site objects. The ligand-receptor models, described in this section, are

adapted from the models published in [27]. The ligand-receptor models in [27] were

described using the BioNetGen language (BNGL) [15].

{r = R[i1],B[i1, ib1, 0, 0], l = L[i2],B[i2, ib2, 0, 0]} →

{r,B[i1, ib1, i2, ib2], l,B[i2, ib2, i1, ib1]}

with k

(6.1)

The i parameters denote identification (ID) numbers for the relevant objects. Object

53

ID numbers, as part of SPG models, are discussed in [93] as a way to define graph

grammars. Binding site objects have ID numbers for the source object, source binding

site, target object, and target binding site. The last binding site object in the rule

represents a free binding site since a ‘0’ ID number is not associated with any target

object. The SPG rule describes a binding event between two free binding sites of a

ligand and a receptor such that the ligand has an additional binding site which is

already occupied (as defined by the inequality constraint).

The probability of chemical reactions may depend on the intricate structure of un-

derlying chemical complexes. For example, ligand and receptor may belong to the

same complex not because of direct connection but via intermediate connection with

other ligands and receptors. In such cases, the possibility of ligand-receptor binding is

diminished due to the structural constraints of their mutual complex. Modeling this

type of reaction requires a recursive language that can identify dynamic structures.

The following SPG rules describe a ligand-receptor model in which a ligand and a

receptor may bind only if they belong to different complexes.

(*binding ligand-receptor: *)

{R[i1, c1],B[i1, ib1, 0, 0],L[i2, c2],B[i2, ib2, 0, 0]} →

{R[i1,max(c1, c2)],B[i1, ib1, i2, ib2],L[i2,max(c1, c2)],B[i2, ib2, i1, ib1]}

with k1 subjectTo c1 6= c2

(6.2)

(*disassociation of ligand-receptor: *)

{R[i1, c1],B[i1, ib1, i2, ib2],L[i2, c1],B[i2, ib2, i1, ib1]} →

{R[i1, c1],B[i1, ib1, 0, 0],L[i2, c
∗],B[i2, ib2, 0, 0]}

with k2

(6.3)

54

(*propagate new complex ID: *)

{R[i1, c1],B[i1, ib1, i2, ib2],L[i2, c2],B[i2, ib2, i1, ib1]} →

{R[i1,max(c1, c2)],B[i1, ib1, i2, ib2],L[i2,max(c1, c2)],B[i2, ib2, i1, ib1]}

with ∞ subjectTo c1 6= c2

(6.4)

Each ligand and receptor object includes a reference to its complex ID. The rule of

Equation 6.2 denotes a binding event of ligand and receptor from different complexes.

Both objects are assigned with the same complex ID (max(c1, c2)). Equation 6.3

defines the reverse event of disassociation. c∗ denotes a new complex ID. An ID

generator to support c∗ can be defined by adding an object that produces new ID

number in every disassociation event.

Equation 6.3 defines a rule that updates all the complex objects whenever there is

a mismatch of complex ID. The mismatch occurs immediately after binding or dis-

association events. The rule uses max(c1, c2) to resolve the conflict between the two

connected objects. This deterministic resolution is required since a random assign-

ment to one of the complex IDs may cause an infinite update loop (A updates B,

then C updates B).

The ID propagation rule (Equation 6.3) may be replaced by a call to an ID prop-

agation subgrammar (see Equation 3.18). Such subgrammar will include only the

propagation rule and the subgrammar call should be included in both the binding

and disassociation rules.

55

6.2 Rule schema for memory dependent processes

SPGs model memoryless processes since reaction waiting times are distributed ac-

cording to exponential distributions. However, in many domains, the processes are

not memoryless. Power law distributions such as the Pareto distribution are used for

approximation of computer network traffic [80, 79] and various applications in biol-

ogy and neuroscience [124, 78]. A Pareto distribution has the following cumulative

distribution function (CDF) and probability density function (PDF):

F (t) = 1 − (
t0
t
)k (6.5)

p(t) = k(
tk0
tk+1

) (6.6)

where t0 > 0 is the minimum possible value of t.

The following dynamical grammar rules describe an event (cell death) where the

waiting time follows a Pareto distribution. Each Cell object is associated with a life

span parameter, τ , which evolves according to the first continuous rule. τ is initialized

in the creation of the Cell object. This initialization is equivalent to the minimal time

parameter t0 in Equation 6.5.

Cell[x, τ] → Cell[x, τ]

solving {dτ
dt

= 1}

Cell[x, τ] → {}

with k/τ

In contrast to the above Pareto rule in which the rate decreases over time, we may

define rules that have increasing firing rates. A delayed rule has a firing rate that

56

increases abruptly from 0 to some constant after a predefined delay time. Such rule

can be declared using the Heaviside Step function from Equation 3.14. For example,

see the following delayed rule for a cell death event after tdelay time:

Cell[x, τ] → {}

with k Θ(τ − tdelay)

The expected waiting time for a delayed rule is: tdelay+ 1
k
, whereas the variance, which

results only from the homogeneous exponential part, is: 1
k2 . Thus, as k increases to

infinity, the rule converges to a deterministic delayed process.

In general, the cumulative rate of a valid rule must converge to infinity:
∫∞

0
ρ(t)dt =

∞; otherwise, the waiting time’s CDF will not converge to 1.

6.3 Spatial modeling - the weak spring

In the biological spatial models which are presented in this thesis, cell objects grow,

divide, and push one another or other tissues. Such spatial interaction is modeled

by a weak (breakable) spring potential function, as described in [120]. The spring

potential is ‘breakable’ since the attraction force is broken after some distance between

the cells. Equation 6.7 describes a weak spring potential where k is the interaction

strength, ∆ is the Euclidean distance between the two objects, ∆opt is the optimal

distance, and ∆max is the maximum interaction distance.

V (∆,∆opt) =
1

2
k(Min(∆,∆max) − ∆opt)

2 (6.7)

Spatial objects attempt to minimize the potential thus each object moves along the

57

0.5 1.0 1.5 2.0
D0.0

0.1

0.2

0.3

0.4

0.5

V

Figure 6.1: Plot of the spring potential according to Equation 6.7 for k = 1 , ∆max =
1.5 and ∆opt = 1

spring’s gradient. The following rule describes a spring potential between two cells

where the optimal distance is their total radii.

{c1 = Cell[x1, r1], c2 = Cell[x2, r2]} → {c1, c2}

solving {dx1

dt
= −∇V (d(x1, x2), r1 + r2)}

Another possible potential function that may represent the breakable spring is the

Lennard-Jones function for the interaction of two atoms [76].

The breakable springs may be generalized to stochastic breakable springs that dis-

connect according to a discrete stochastic event as the following rules:

{c1 = Cell[x1, r1], c2 = Cell[x2, r2], spring[c1, c2]} → {c1, c2, s12}

solving {dx1

dt
= −∇V (d(x1, x2), r1 + r2)}

(*disconnect spring*)

{c1 = Cell[x1, r1], c2 = Cell[x2, r2], spring[c1, c2]} → {c1, c2}

with ρd(|x1 − x2|)

58

(*connect spring*)

{c1 = Cell[x1, r1], c2 = Cell[x2, r2],∄spring[c1, c2]} → {c1, c2, s12}

with ρc(|x1 − x2|)

Both the stochastic and deterministic breakable spring rules create matchings between

every pair of cells or other spatial objects. For every discrete event, the simulator

integrate O(n2) differential equations or rate functions if there are n spatial objects.

However, the number of interacting objects, in spatial models, is only O(n). In order

to save computational time, we implemented a spatial data structure in Plenum which

assigns grammar rules between spatial elements only if they are considered neighbors.

The space partitioning data structure is a KD tree [13], [29]. Generating a KD tree

requires O(n log(n)) operations whereas inserting or removing an element requires

only O(log(n)). Grammar rules apply only for proximate spatial objects (according

to a threshold distance). Spatial object types are declared in Plenum using the rule

’spatialObject→ obj’ that is augmented to the input grammar.

6.4 Reduction to deterministic model

In many applications, the model’s parameters are unknown and have to be estimated

from observations or according to some desired behavior. Inference in stochastic mod-

els and SPGs, which is discussed in Chapters 7 and 8, is computationally intensive

and often intractable. Deterministic models such as ODEs are amenable for param-

eter space exploration. Here, we describe a mechanism that converts an SPG to an

approximate ODE model.

The first step is to convert an SPG to an equivalent SPG where the rates express the

number of reactions for each unique object tuple as in ODE models. The equivalent

59

grammar is denoted here as the aggregate SPG form. Every element, in the aggre-

gate SPG form, is augmented with a parameter that counts the number of existing

objects in the pool for each configuration of the other parameters. The rate functions

are multiplied by the combinatorial number of reactions according to the counting

parameters. For example, the following is a rule that eliminates two parameterized

objects, A and B, and creates a new object C:

{A[x1],B[x2]} → {C[q(x1, x2)]]}

with f(x1, x2)

This rule is converted to the following aggregate form:

{A[x1, i1],B[x2, i2],C[q(x1, x2), i3]} → {A[x1, i1 − 1],B[x2, i2 − 1],C[q(x1, x2), i3 + 1]}

with i1i2f(x1, x2)

In the ODE approximation, the discrete counters of the aggregate form are replaced

by continuous quantities. The rate of change of the quantities in a continuous rule

is approximated as the stochastic rate times the number of objects created (positive

counter) or removed (negative counter). The approximate continuous rule of the

aggregate rule above is:

{A[x1, i1],B[x2, i2],C[q(x1, x2), i3]} → {A[x1, i1],B[x2, i2],C[q(x1, x2), i3]}

solving {di1
dt

= −i1i2f(x1, x2),
di2
dt

= −i1i2f(x1, x2),
di3
dt

= i1i2f(x1, x2)}

The aggregate grammar form maintains one object instance with counter parameter

for every set of object copies in the original form. A rule, in the original form, that

contains multiple elements that match the same object is mapped to multiple rules

in the aggregate form. Each rule in the aggregate form is equivalent to a different

possible combination of objects. For example, the following rule may match three

equal objects (same parameter values, x1 = x2 = x3) or two equal objects and one

60

different object or three different objects:

{A[x1],A[x2],A[x3]} → {}

with f(x1, x2, x3)

Mapping this rule to the aggregate grammar form results in the following three rules:

{A[x1, i1]} → {A[x1, i1 − 3]}

with
(

i1
3

)

f(x1, x2, x2)

{A[x1, i1],A[x2, i2]} → {A[x1, i1 − 1],A[x2, i2 − 2]}

with i1
(

i2
2

)

f(x1, x2, x2)

{A[x1, i1],A[x2, i2],A[x3, i3]} → {A[x1, i1, i1 − 1],A[x2, i2 − 1],A[x3, i3 − 1]}

with i1i2i3f(x1, x2, x3)

The “Not Exists” quantifier can be mapped to the aggregate form by including the

constraint as a factor in the rate function. An example is the following “Not Exists”

rule:

{A[x1],∄B[x1]} → {C[x1]]}

with f(x1) This rule is converted to the following aggregate form rule where

Θ is the Heaviside Step function (Equation 3.14):

{A[x1, i1],B[x1, i2],C[x1, i3]} → {A[x1, i1 − 1],B[x1, i2],C[x1, i3 + 1]}

with Θ(i2 = 0)i1f(x1)

The rules in the aggregate grammar form do not create or remove objects but, instead,

modify the counters. Therefore, the initial pool of the aggregate grammar consists

of all the possible unique objects that are created in the original grammar. Yet,

SPGs define variable structure systems with a possibly unbounded number of unique

objects. SPGs with unbounded or even large number of unique objects can not

61

be mapped to equivalent aggregate grammars. The modeler may approximate the

behavior of the original grammar by defining the aggregate grammar’s initial pool

with a finite number of unique objects that are most likely to dominate the system

over time.

The conversion rules described in this section can be encoded and applied automati-

cally. However, such an automated conversion tool was not developed, yet, as part of

Plenum. A similar conversion tool is Cellerator [119], which provides an automatic

translation of reactions to ordinary differential equations. Cellerator handles chemical

reactions with unparameterized objects but does not support parameterized objects.

Subsequently, Cellerator does not include the expanded conversion (see the foregoing

discussion) that is required when multiple parameterized terms may match the same

or different objects.

6.5 Meta-Grammar rules

Since the SPG framework extends unrestricted grammars, we can design SPGs that

perform manipulations on other SPGs. Such meta-grammars include, for example,

an SPG that interpreters or reverse all the reaction rules of different SPGs.

Assume that SPG rules can be represented as a tree where the root node is connected

to a LHS elements node, RHS elements node, and a rate node. Each rule element is

associated with a tree node that is connected to either the LHS or the RHS node.

The following simple rule reverses the direction of a reaction that is expressed as a

tree, modifies the rate function, and flags it as ‘reversed’.

{LHS[ruleID, lhsRootID],RHS[ruleID, rhsRootID],Rate[ruleID, r],∄reversed[ruleID]} →

{LHS[ruleID, rhsRootID],RHS[ruleID, lhsRootID],Rate[ruleID, k·r], reversed[ruleID]}}

62

63

Chapter 7

Exact inference in context-free

SPGs

Previous chapters discussed the generative process of SPGs and DGs. A generative

process is useful for prediction of future events. However, in some cases the modeler’s

task is to infer the past system’s states or learn the model’s parameters given some

set of observations. Chapter 2 discusses the Chomsky hierarchy of generative gram-

mars [24, 25] and their stochastic extensions. Since context-sensitive and unrestricted

grammars are generally infeasible for inference tasks, regular and context free gram-

mars (CFG) and their stochastic extensions are commonly used for modeling and

inference purposes. This chapter presents inference algorithms for context-free SPGs,

i.e. SPGs with only one term on the LHS.

The context-free SPGs inference algorithms are derived from the inference algorithms

for stochastic context-free grammars (SCFG). The SCFG inference algorithms are

based on the inside-outside scheme [11, 75], which calculates the probability of an

observed sequence. The inside-outside scheme is a dynamic programming algorithm

64

which is analogous to the forward-backward algorithm for Hidden Markov Models

(HMMs). Inferring the most likely parsing can be done by modifying the inside

algorithm. This modification is analogous to the Viterbi algorithm [127] for HMMs.

Lastly, the inside-outside algorithm is used as part of an Expectation Maximization

(EM) [34] algorithm in order to estimate the grammar’s parameters.

Context-free SPGs are similar to SCFGs except that: 1) the semantics includes the

time dimension which is either discretized or continuous, and 2) there is no predefined

linear order of the objects as in the strings produced by formal grammars.

Section 7.1 provides a background on the inside-outside algorithm and the EM scheme

for learning parameters in SCFG. The inference algorithms for context-free SPGs are

developed in Section 7.3.

7.1 The inside-outside algorithm

The inside-outside algorithm is used for calculating the probabilities of SCFGs. The

inside part calculates the probability that a grammar, G, generates a subsequence, wij

(from terminal i to j), that originated from a nonterminal Nk, i.e. the probabilities:

P (wij|root = Nk, grammar = G) ∀i, j, k

The algorithm uses a dynamic programming scheme where the probabilities of small

sequences are cached and used for calculating the probabilities of enclosing sequences.

This approach is valid since the grammar is context free, and therefore, the probability

of a sequence is independent of the rest of the string, given the sequence’s root element.

The inside-outside procedures are defined for SCFGs in Chomsky Normal form, mean-

65

ing that the rules are of the form A→ BC|a where a is a terminal symbol. However,

the inside-outside procedures could be redefined for general SCFGs. Furthermore, any

CFG can be efficiently [62] transformed to an equivalent CFG in Chomsky Normal

form. The outline of the inside algorithm is the following [75]:

Inside Algorithm:

Input: String w, l = length(w), set of nonterminals Nk, S = N0.

Initialize: For all i, k: α(k, i, i) = P (Nk → wi)

Iteration: For δ = 1 to l, For i = 1 to l − δ + 1, For all k

α(k, i, i+ δ) =
∑i+δ−1

j=i

∑

m,n α(m, i, j)α(n, j + 1, i+ δ)P (Nk → NmNn)

Output: α(k, i, j) = P (wij|root = Nk, G)

The probability of the whole string given the grammar is: P (w|G) = α(0, 1, l). The

most likely parse tree can be inferred by a modification of the inside algorithm such

that all the summation operators are replaced by maximization operators. In addi-

tion, for each α(k, i, j) we store the rule with the maximal probability in order to

traceback in top-down order the most likely parsing tree.

The outside procedure calculates the probability of a nonterminal as the root of some

subsequence and the string outside of the subsequence. Let w−1
ij be the complete

string except the sequence wij (the outside string). The outside probability can be

stated as:

P (w−1
ij , root = Nk|G)

The outside probability β(k, i, j) is calculated by the following algorithm [75]:

Outside Algorithm:

66

Input: String w, l = length(w), set of nonterminals Nk, S = N0, α functions.

Initialize: β(0, 1, l) = 1; For all k 6= 0, β(k, 1, l) = 0

Iteration: For δ = l to 1, For i = 1 to l − δ + 1, For all k

β(k, i, i+ δ) =
∑i+δ−1

j=i

∑

m,n α(n, i, j)β(m, j + 1, i+ δ)P (Nm → NkNn)

+
∑i+δ−1

j=i

∑

m,n β(m, i, j)α(n, j + 1, i+ δ)P (Nm → NnNk)

Output: β(k, i, j) = P (w−1
ij , root = Nk|G)

The probability of a nonterminal as the root of some subsequence given the entire

string is:

P (root = Nk|wij, w
−1
ij , G) = P (wij|root = Nk, G)P (w−1

ij , root = Nk|G)/P (w)

= α(k, i, j)β(k, i, j)/P (w) (7.1)

Here, P (w) can be regarded as a normalization factor.

If L is the number of terminals and M is the number of nonterminals, the time

complexity of the inside-outside algorithm is O(L3M3), and the space complexity is

O(L2M) [11, 75].

7.2 Parameter training in SCFGs

In case the generative process of the data is known, the rules’ probabilities are learned

according to a maximum likelihood estimation. However, in most cases the generative

process of the observed data is not available. The Expectation Maximization (EM)

[34] algorithm is used for maximizing the log-likelihood, L, of the latent parameters

when the generative process is unknown. The following equation describes the objec-

tive of an EM iteration. θi denotes the set of latent parameters, x is the observed data

67

(set of strings), and z is a set of hidden variables that fully describes the unknown

generative process.

θi+1 = arg max
θ

∑

z

P (z|x, θi)L(x, z|θ) (7.2)

Each iteration estimates the latent parameters that maximize the expected log-

likelihood with respect to the conditional probability of the hidden variables. The EM

algorithm is guaranteed to converge to some local maximum [34] which is dependent

on the initial parameters values.

In SCFGs, the generative process is described by the parse tree, i.e. the set of rule

executions. The conditional probabilities of the hidden variables, P (z|x, θi), are the

following two equations: the probability that a rule is the root of a sequence, wij [75]:

P (root = Nk → NmNn|wij, w
−1
ij) =

∑

o

α(k, i, o)α(k, o, j)β(k, i, j)P (NmNn|Nk)/P (w)

(7.3)

Also, the probability of a rule that generates a terminal is the following [75]:

P (Nk → wi|wi, w
−1
i) = β(k, i, i)P (wi|Nk)/P (w) (7.4)

Let Pt denote the probability estimation at iteration t. The maximization of Equation

7.2 results in this reestimation of a rule probability [75]:

Pt+1(NmNn|Nk) =

∑

ij|i<j

∑

o α(k, i, o)α(k, o, j)β(k, i, j)Pt(NmNn|Nk)
∑

ij|i<j α(k, i, j)β(k, i, j)
(7.5)

68

Likewise the probability of a terminal generating rule is re-estimated as follows [75]:

Pt+1(a|Nk) =

∑

i|wi=a β(k, i, i)Pt(a|Nk)
∑

ij|i<j α(k, i, j)β(k, i, j)
. (7.6)

7.3 Inference algorithm for context-free SPGs

Context-free SPGs differ from SCFG in two major ways: 1) the SPG rule firing

probability is time dependent, and 2) there is no imposed linear ordering of the

terminal objects. For now, suppose that there is an imposed linear ordering on the

objects generated by an SPG. The discussion about handling the unordered sets of

objects and its complexity is deferred to Section 7.4.

We assume that all or some of the observations (the terminals) are associated with

known time points and the task is to infer probabilities of parsing trees or the most

likely parsing tree. The following Inside Algorithm is modified for SPG inference.

The same modifications apply for the outside algorithm.

SPG-Inside Algorithm:

Input: Set of terminals w, l = length(w), t̂(i)- observed time of terminal object wi

t̂- max observed time

ρ(k,m, n)- rate of rule Nk → {Nm, Nn}

ρ(k, a)- rate of rule Nk → a

ρ(k)- total rates of rules for object Nk

Initialize: For all i, k: α(k, i, i, t) = if t < t̂(i) : ρ(k, wi) exp(−ρ(k)(t̂(i) − t)), else : 0

Iteration: For δ = 1 to l, For i = 1 to l − δ + 1, For all k

α(k, i, i+ δ, t) =
∑i+δ−1

j=i

∑

m,n

∫ t̂

t
α(m, i, j, t̄)α(n, j + 1, i+ δ, t̄)ρ(k,m, n) exp(−ρ(k)(t̄− t))dt̄

69

In many cases, numerical integration is the only option for the foregoing integral since

analytical solution is infeasible. A numerical method for estimating the α(k, i, j, t)

function over the t axis, requires multiple evaluations over different t values. However,

there is no need to compute the complete integral from t to t̂ in every α(k, i, j, t) evalu-

ation. Previous integral calculations can be stored and used in subsequent α(k, i, j, t′)

evaluations.

7.4 Handling SPGs’ unordered objects

As opposed to SCFG, SPGs do not generate objects in a predefined linear order.

Therefore, the previous SPG-Inside Algorithm has to take into account all possible

objects groups.

The following ‘Build parse tree’ routine constructs a dataset of all the relevant ob-

ject sets. The routine maintains a list of subtrees that are represented by triplets

(k, η, Size(η)) where k is the index of a nonterminal symbol, and η is the set of all

terminal nodes in the subtree. The routine builds the data structure bottom-up by

constructing subtrees of size one up to a full tree. For each size, s, the routine finds

new subtrees by combining two subtrees that have a unifying rule and a total size s.

Build parse tree Algorithm:

Input: set of terminals w, l = length(w), set of nonterminals Nk, S = N0.

Initialize: Q = {}; For all i, k if there is a rule Nk → wi then add (k, wi, 1) to the set Q.

Iteration: For s = 2 to l, For s1 = 1 to s− 1, For all k,m, n

retrieve (m, η1, s1) ∈ Q and (n, η2, s− s1) ∈ Q

if there is a rule Nk → NmNn and η1 ∩ η2 = ∅

then add (k, η1 ∪ η2, s) to Q.

70

Once the list of all the relevant object sets is established, the inside and outside

routines can use it. The number of unordered sets can be exponentially large, de-

pending on the grammar. Consider a simple grammar with recursive rules such as

A→ AA|a. For this grammar, the number of sets with m terminals is
(

n
m

)

, and each

set can be composed of 2m different pairs of sets. Using the inside-outside method for

such SPGs will be infeasible. Yet, SPGs with a more constrained structure and no

recursive rules may be used efficiently. In order to reduce the size of the tuples list,

the Build Algorithm may save only tuples that were formed due to grounded rules

with a probability rate over some threshold.

7.5 Discussion

The SPG Inside-Outside algorithm can be modified for inference in context-free dy-

namical grammars that describe memory dependent processes (non-homogeneous pro-

cesses). The calculation of the α functions is changed to this form:

α(k, i, i+ δ, t) =

i+δ−1
∑

j=i

∑

m,n

∫ t̂

t

α(m, i, j, t̄)α(n, j + 1, i+ δ, t̄)ρ(k,m, n, t̄− t) exp(−
∫ t̄−t

0

ρ(k, τ)dτ)dt̄

(7.7)

Note the dependence of the rate functions over time. The additional integral for the

non-homogeneous exponential process could be computed once in advance over the

entire time range. Since the factors that depend on t can not be extracted from the

outer integral, calculation of the outer integral cannot be used for evaluations of α at

other t values.

71

The inference algorithm is designed for context-free SPGs that may generate a finite

number of nonterminals (unique objects). Yet, some SPGs may generate an infinite

number of unique objects because of rules that have output parameters, i.e. parame-

ters of RHS objects which are not given as input on the LHS of the rule. For example,

the following grammar rule generates a new item near the cluster location:

cluster[x] → {cluster[x], item[y]}

with (x− y)2

According to this rule, there is a continuous range of cluster objects (each with a

different location x) that have a positive reaction rate. A possible solution would

be to generate a fixed number of nonterminal cluster objects given an observed item

object. The input parameters, which are the locations of the cluster objects in the

above example, can be optimized or sampled according to the conditional probability

of the rate function.

72

Chapter 8

Approximate inference in SPGs

Chapter 7 presents an inference algorithm for context-free SPGs. The algorithm,

which is based on the inside-outside method [11, 75], utilizes the tree structure de-

pendencies between objects in a context-free grammar. However, when there are

context-sensitive rules, which are rules that have more than a single term on the

LHS, the inside-outside inference algorithm does not apply. Moreover, every possible

object in some parse tree is represented as a node in the inside-outside scheme. This

limits the applicability of the inside-outside scheme for SPGs that generate limited

number and size of parse trees (multi-reactions paths).

Here, we present an approximate inference algorithm for unrestricted SPGs (having

no context-free constraint) that is based on a Markov Chain Monte Carlo (MCMC)

sampling method. This inference algorithm uses the simulation algorithm to evaluate

multi-reactions path probabilities, and therefore, avoids the explicit parse trees struc-

ture that was required for the exact method of the previous chapter. The approximate

inference algorithm was published in [137].

Parameter inference may be achieved by evaluating the likelihood function P (Θ|Γ),

73

where Γ denotes the stochastic grammar and its parameters, and Θ denotes the

observations or evidence. Prior information about the model’s parameters may be

incorporated, using Bayes’ theorem. The posterior distribution is:

P (Γ|Θ) =
P (Θ|Γ)P (Γ)

P (Θ)
= αP (Θ|Γ)P (Γ) (8.1)

The marginal probability, P (Θ), is equivalent to a normalizing factor which will

be discarded in our sampling algorithm (the factor is canceled out in the MCMC

Metropolis-Hastings method, see next section). The evidence, Θ, may be in the form

of full or partial observation of the underlying system state in certain time points.

The likelihood function is decomposed according to the multi-reactions path and the

observations probability (the error term):

P (Θ|Γ) =
∑

r

P (Θ|a[r, ~τ])P (r|Γ) (8.2)

where ~τ denotes the observations time points, r denotes a multi-reaction path, and

a[r, ~τ] denotes the system state at the observation time points as realized by the path

r.

Usually, deriving an analytical solution for the likelihood function is not possible. We

resort to a sampling algorithm that is based on the MCMC principle.

8.1 MCMC algorithm

An MCMC algorithm [7] generates a sequence of samples, according to a Markov chain

transition function that converges to the desired (target) probability. The Markov

chain transition function, M(x|x′), is designed so that its invariant probability is the

74

target probability, π(x):

π(x) =

∫

M(x|x′)π(x′)dx′

Furthermore, the Markov chain must be ergodic, i.e. it must converge to the invariant

probability regardless of the initial condition [81]. The chain satisfies the ergodic

condition if it is both irreducible and aperiodic. A chain is irreducible when there

is a non-zero probability of reaching every state from any other state. A reducible

chain has more than one invariant probability. An aperiodic (with period of 1) chain

is established when, for every state, there is a non-zero probability to stay.

A sufficient but not necessary condition ([81],[7]) for π(x) to be the invariant proba-

bility of the chain is the following “detailed balance condition”:

π(x)M(x′|x) = π(x′)M(x|x′)

For our sampling task, we use the Metropolis-Hastings (MH) algorithm [61] which is

an MCMC method. An MH step works as follows:

1) Generate a candidate sample x given the current sample, x∗ = x(i−1), according to

a proposal distribution q(x|x∗).

2) (To maintain detailed balance) The candidate sample is accepted according to the

probability:

Min[1,
π(x)q(x∗|x)
π(x∗)q(x|x∗)]

If accepted x(i) = x, otherwise x(i) = x∗.

75

The choice of the proposal distribution, q, is important for the convergence of the

algorithm. On the one hand, a proposal distribution with small variance might con-

strain the MH method to a local region of the target distribution space. On the

other hand, a proposal distribution with high variance will result in many rejections,

which subsequently increase the correlation between samples. As a rule of thumb, the

proposal distribution should be adjusted so that the rejection rate is approximately

0.5 [72] [81].

In most parameter inference applications, we are interested in the global maximum (or

maxima) of the target distribution. For this task, a simulated annealing like strategy

[48] can be integrated in the MH algorithm. The target distribution is modified

to π1/Ti(x) where Ti obeys a decreasing temperature cooling schedule lim
i→∞

Ti = 0.

The algorithm is expected to initially explore a broad region of the state space and

gradually to confine the search to lower-energy areas.

8.2 Grammar sampling algorithm

We define the invariant (target) distribution of the MH method as the posterior

distribution in Equation 8.1. A sample is an instantiation of the grammar parameters

and a multi-reaction path. A possible choice for the proposal distribution can be

obtained by omitting the observations probabilities from the target distribution:

q = P (r|Γ)P (Γ)

This proposal distribution may exhibit high variance since the candidate sample is

independent of the current sample which may lead to high number of rejections. Since

the grammar parameters are a fixed size set, a conditional probability on the current

76

parameters values may be easily included in q:

q = P (r|Γ)f(Γ|Γ∗) (8.3)

A Normal distribution which is centered around the current parameters values, Γ∗, is

a natural choice for continuous variables.

Still, the multi-reaction path r is independent of the current path. We offer a modified

proposal distribution for which each candidate path has the same set of reactions as

the current path except for a randomly chosen time window (t′, t′′). The reactions in

the chosen time window are sampled according to the SPG probability conditioned

on the state at time t′. In other words, the SSA algorithm is executed over the

subinterval (t′, t′′) where the initial state is the state reached by the current path at

time t′, a(r∗, t′). The probability of the candidate path in the subinterval window

(denoted as r′[t′, t′′]) is:

P (r′[t′, t′′]|initial time = t′, end time = t′′, initial state = a(r∗, t′), parameters = Γ)

(8.4)

The candidate multi-reaction path over the whole time interval, r, is defined as follows

(where + denotes concatenation of multi-reaction paths):

r = r∗[0, t′] + r′[t′, t′′] + r∗[t′′, tend]

Note that although the reactions in the last subinterval (t′′, tend) are identical to the

current path, r∗, the states may be different, due to the changes in the intermediate

subinterval. The deterministic scheme for setting the reactions in the last subinterval

77

may lead to improbable paths. For example, the reactions in r′[t′, t′′] could remove all

water molecules by decomposition (2H2O −→ 2H2+O2) even though there is another

decomposition reaction that occurs in r∗[t′′, tend] before the production of any other

water molecules. However, the target probability (π) of such an improbable path will

be zero and it will be rejected.

Now, the modified proposal distribution is defined as:

q(r′; t′, t′′) = P (r′[t′, t′′]|t′, t′′, a(r∗, t′),Γ)P (t′, t′′)f(Γ|Γ∗) (8.5)

Note that for a proper MH proposal distribution, the time window (t′, t′′) should be

integrated out. However, the MCMC method would preserve detailed balance even

when picking a random time window (according to P (t′, t′′)) instead of integrating over

them. This construction of an MCMC sampler is known as a mixture of transitions

[81]. In general, an MH with mixture of transitions can be applied in order to modify

each variable, or block of variables, separately. In that case, a variable or block of

variables is randomly selected (usually according to uniform distribution), followed

by an MH transition over the chosen variable space. Such an algorithm is applicable

when the proposal distribution can be decomposed according to individual transitions.

The current proposal distribution (Equation 8.5) can be decomposed to a transition

over a random window in the multi-reaction path and a transition over the grammar

parameters (or individual parameters):

q1(r
′; t′, t′′) = P (r′[t′, t′′]|t′, t′′, a(r∗, t′),Γ∗)P (t′, t′′) q2(Γ|Γ∗) = f(Γ|Γ∗) (8.6)

The proposal distributions (q1,q2) should be designed according to the Markov chain

ergodicity requirement. If q2 is a Normal distribution which is centered in the current

78

parameter value, then the chain is aperiodic and irreducible (since each parameter

value is reachable). The window proposal is aperiodic since there is a non-zero prob-

ability to stay in the same path, i.e. q1(r
∗; t′, t′′) > 0. If the set of possible windows,

according to P (t′, t′′), covers the whole time interval, then the proposal distribution

is irreducible (since each path is reachable from any other path).

8.3 Illustrative example

As an illustrative example of the inference algorithm, we use a simple model of chem-

ical reactions for synthesis and decomposition A +B
ks

⇋
kd

C, which can be expressed in

SPG syntax:

Chemical-Reaction= grammar[

{A,B} → C with ks

C → {A,B} with kd

]

After setting the rate variables, we generated multi-reaction paths using an SPG

interpreter and simulator [136]. Figure 8.1 plots the time sequence of molecule states

for a single stochastic multi-reaction path.

The input for the inference algorithm is a sequence of molecule-number states in

20 evenly spaced time points. The observations conditional probability (data error

term) has a Normal distribution shape with an input width (variance) parameter σi.

Figures 8.2 and 8.3 present five trajectories of the MCMC inference algorithm for a

single observations sequence. Figure 8.2 shows the convergence of the rate parameter

79

2 4 6 8 10
time

20

30

40

50

60

70

molecules

Figure 8.1: Plots of the time sequence of molecule states for a single stochastic multi-
reaction path. Y axis - molecule quantity (A-solid black line,B-dotted black line,
and C-dashed gray line). X axis - time. The synthesis and decomposition rates are
ks = 0.01,kd = 0.3

where the true parameter value is 0.3. Figure 8.3 shows the convergence of the multi-

reaction path in each MCMC iteration to the observed molecules states.

The inference algorithm uses different transitions for the rate variable and for the

multi-reaction path, as defined in Equation 8.6. This has the benefit of potentially

higher acceptance probability. The variance of the parameters proposal distribution

and window size distribution were adjusted during the execution, in order to maintain

a low rejection rate (below 0.5).

The algorithm implements an exponentially decreasing cooling schedule (Ti = pTi−1

where 0 < p < 1) for the rate parameter transition. Initial attempts without a cooling

schedule have resulted in rapid convergence to low-probability samples.

We have performed inference for different values of the decomposition rate kd. The

results are shown in Figure 8.4. For each rate value, five random multi-reaction

paths were generated. We performed 25 inference runs where each is given one of the

80

50 100 150 200
iteration

0.2

0.4

0.6

0.8

rate

Figure 8.2: Trajectories of the MCMC inference algorithm: Y axis - inferred de-
composition rate kd. X Axis - iterations counter. The inferred decomposition rate
converges toward the target rate value, kd = 0.3

generated multi-reaction paths and a random initial rate value.

The variance of the observations conditional probability is important for the accuracy

of the inference method. A search algorithm is more susceptible to getting trapped

in local minima when the variance is too low. High variance may lead to the opposite

effect since the penalty for improbable samples is insufficient. Figure 8.5 displays the

increase in standard deviation of inferred rates as we increase observations’ probability

variance.

8.4 Related work

Numerous optimization approaches have been applied to parameter inference in deter-

ministic dynamical systems. Among the first fully automatic parameter estimations

for biological network dynamics was [110], which used the Lam-Delosme variant of

simulated annealing to fit the 33 parameters, including a 5x5 matrix of connection

strengths in a phenomenological gene regulation network (Artificial neural network

81

0 50 100 150 200
iteration0

20

40

60

80

100
d

Figure 8.3: Trajectories of the MCMC inference algorithm: Y axis - Euclidean dis-
tance between the current sample’s molecule state and the input. X Axis - iterations
counter.

or ANN style GRN) model to image-derived expression domain data in Drosophila

development. This is still a cutting-edge problem today, 15 years after the origi-

nal computer experiments. A similar algorithm was later parallelized [26]. Genetic

algorithms were compared to simulated annealing on these GRN models in [85]. Fur-

thermore, [85] presents the results of applying these optimization methods to variable-

structure dynamical systems, specified by a deterministic grammar as defined in [92].

The resulting model maintains a changing number of cells each of which contains

a set of chemical kinetic differential equations representing a gene network. Sim-

ulated annealing, quasi-Newton methods, and a variety of other deterministic and

stochastic optimization methods (including Levenberg-Marquardt, Nelder-Mead, and

Hooke-Jeeves) were compared in their applications to more standard chemical kinetic

differential equation models in [86]. Lam-Delosme simulated annealing compared fa-

vorably with several alternative methods for optimizing signal transduction models

in [139].

There has been a recent revival of interest in developing parameter optimization

82

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 8.4: The distribution of inferred rate values for each target value, kd =
{0.3, 0.4, 0.5, 0.6, 0.7}: Each column of dots represents the 25 inference outcomes per
target value (x position). The average inferred rate for each value is denoted by the
circles.

methods. For example [68] applied parallelized differential evolution to the ANN GRN

models. [108] applied the adjoint method, a continuous-time method analogous to

backpropagation through time in discrete-time neural networks, to efficiently compute

gradients for gradient algorithms and applied them to mass action kinetic models of

Drosophila flies’ wing development. [97] applied recent developments in evolutionary

strategies to ANN GRN’s. Another major category of research looks to Bayesian

inference for a firm statistical foundation in structure and parameter estimation. An

essential requirement is a practical prior distribution on structures and/or parameters.

[129] demonstrates a GRN inference method for feed-forward transcriptional networks

using an approximate but tractable graph prior. Other graph priors are possible, as

in [14], [107].

Turning to parameter estimation in stochastic dynamics, [56] developed a time-

subdivision approach to learning reaction rates in small reaction networks under an

83

ææææ
æ æ

æ

æ

æ

æ

0 20 40 60 80 100
Σä0.0

0.2

0.4

0.6

0.8
Σk

Figure 8.5: Standard deviation of inferred rates, σk, as a function of the observations’
probability variance, σi. The synthesis and decomposition rates are ks = 0.01, kd =
0.3

SDE approximation to the usual stochastic dynamics. A statistical mechanics per-

spective is applied in [42]. Others could be cited e.g. from recent workshops [1], [2].

All currently have strong restrictions on their domain of applicability, especially in

the size of the inferable system.

Also for parameter inference in stochastic dynamical systems, Green [59] has intro-

duced a sampling method for probability distributions that are defined over spaces of

varying dimensionality such as the variable-structure systems considered above. The

method, known as reversible jump Markov Chain Monte Carlo (MCMC), is based

on the Metropolis-Hastings (MH) [61] scheme (which will be described in a later

section). The algorithm performs ”jumps” between models (or states) of different

dimensionality. Therefore, it is suitable to handle transitions between reaction paths

of different length (hence, different number of variables). The reversible jump method

requires an application-based design of jump transitions. The jump transitions that

are commonly defined are birth, death, split, or merge of random variables.

The reversible jump method was generalized to a block updating method which was

84

used for inference in stochastic reaction models [16]. The block update scheme mod-

ifies multiple variables, which represent the number of reactions (of each type) and

the reactions times in a single MCMC step. A previous work on stochastic epidemic

compartment models [51] has also used multiple jump events in each iteration in or-

der to increase the convergence rate of an MCMC sampler. A Simulated Annealing

cooling schedule was integrated into the reversible jump method in [6].

Reinker et al. [111] have taken an approximate maximum likelihood approach for

parameter estimation in stochastic biochemical reactions. The method approximates

the number of reactions in each interval and assumes that the total rate does not

change inside an interval. A similar approach was taken for simulating chemical

reactions by the approximate tau-leap method [53].

An algorithm for inferring grammar-based structure models was introduced in [117].

The grammars, which are based on an L-system formulation [106], describe recursive

structures and are used to model images of multi-cellular bacteria. Their grammars

resemble SPGs but are only context free (only a single element on the LHS of rule)

and cannot model continuous-time processes. The inference procedure is an MCMC

method that includes reversible jumps for adding or removing cells and branches from

the multicellular structure.

8.5 Discussion

The method presented here does not require the construction of specialized jump

transitions, which was required in [59], [16], [51], [6] and [111]. The modeling as-

sumptions are all integrated in the declared grammar. The methods described in

[16] and [51] require exact molecule counts over discrete time points, whereas in our

85

method, the data is assumed to be noisy and the multi-reaction paths are weighted

accordingly. Since the penalty for matching the data is less strict (and tunable), this

method can be more flexible in traversing the multi-reaction path space.

As described before, the simulation algorithm for DG is an extension of the SPG

simulation algorithm and is derived directly from the Time-Ordered Product Expan-

sion (TOPE). The presented inference algorithm is based on the simulation from the

TOPE and therefore can encompass even DG models.

The current inference method is most effective for SPGs that have a finite number

of unique objects which are all present throughout the simulations. Using forward

simulations to generate new multi-reactions paths might be ineffective for SPGs that

produce numerous unique objects, e.g. SPGs that include output parameters. In

these grammars, there is a small probability of generating a multi-reactions path, by

forward simulation that includes all the unique objects of the observations. A possible

future direction is to incorporate, in this approximate method, a reverse approach for

generating reactions from the observations, as in the inside-outside algorithm.

Another possible direction is to incorporate exact marginalization over some parts

of the multi-reactions path. A method that combines Monte-Carlo sampling and

marginalization is known as Rao-Blackwellisation [22]. The Rao-Blackwellised par-

ticle filtering algorithm for Dynamic Bayesian Networks was presented in [38]. Ex-

act marginalization is feasible only for some context-free SPGs, as was discussed in

Chapter 7. Therefore, the marginalization part should be confined to context-free

and independent parts of the generative process. In a Rao-Blackwellised sampling

algorithm for SPGs, the sampling part generates a multi-reactions path over some

internal (or hidden) objects. Given the sampled internal objects and a context-free

decomposition of the remaining possible reactions, the exact marginalization may

calculate the probability of the observations.

86

Chapter 9

Galaxy morphology grammar

Galaxies are often classified according to Edwin Hubble’s classification scheme that is

known colloquially as the Hubble tuning-fork, shown in Figure 9.1. Hubble’s galaxy

classification distinguishes between elliptical and spiral galaxies, which are further

divided into normal spirals and barred spirals. Still, this is a very broad classification

scheme that does not capture the apparent variety of shapes and components of

galaxies that belong to the same class. In order to gain insight into the formation

and evolution of galaxies, we need to understand the structure of galaxies based

on rigorous, quantitative criteria. Quantitative properties of galaxies include disk

and bulge luminosities and radii, bar lengths, and spiral arm pitch angles (e.g., the

tightness of spiral arm winding). These quantities, when measured accurately for

nearby galaxies, can give us information on the structure and mass of the halo of

“dark matter” around galaxies and insights into the history of how galaxies formed

through mergers, since mergers tend to disrupt disks and build bulges.

Recent advancements in telescope technology have produced an inflating size of image

datasets of both nearby and distant galaxies. The task of analyzing the images and

87

feature extraction becomes impractical without the aid of machine learning tools.

Spiral galaxies are complex objects which are intrinsically “fuzzy” since the bulge,

disk, and bar regions do not have definite boundaries. In addition, images taken by

ground-based telescopes are smeared due the atmospheric distortion of rays of light.

This smearing effect is known as Point Spread Function (PSF). Spiral arms present a

particularly complex problem for automated classification, and no previous scheme of

automated morphological measurement has ever successfully found a way to measure

spiral arm properties such as pitch angle or arm length. These are of particular

importance since dynamical models predict that spiral arm pitch angle is directly

related to the degree of mass concentration in galaxies, which is a fundamentally

important quantity.

Figure 9.1: Hubble Classification Scheme. Retrieved from
http://hubblesite.org/newscenter/archive/releases/1999/34/image/o

Related work on automated galaxy morphology was mostly focused on classification

88

of distant galaxies. An Expectation-Maximization (EM) [34] algorithm for automatic

identification of “bent-double” morphology was introduced in [67]. Another regression

algorithm that identifies the bulge-to-disk ratio was presented in [5]. However, neither

of the papers discusses the identification of individual galaxy components such as

spiral arms and bars.

An initial attempt at inferring the spiral structure for galaxy images was done in

[112]. The spiral arms and bars were modeled as a collection of segments, where the

distribution of an angle between two segments i and i+1 depends on the angle be-

tween previous segments i-1 and i. An algorithm for fitting the structural parameters

to galaxy images using the Levenberg-Marquardt method for optimization was intro-

duced in [100]. GALFIT supports a detailed parameterization of galaxy structure:

however, spiral arms are not modeled directly.

9.1 Spiral galaxy grammar

This section presents a DG model for generating spiral galaxies structures. The model

is based on the spiral galaxies’ structure with no relation to the current physical

theory of galactic spiral arms formation. The objects form a hierarchy of four levels:

1) galaxy object 2) bulge and spiral arms 3) knots and 4) stars. A spiral arm object

is constantly growing according to a continuous rule along a spiral trajectory that

originates in the center of the galaxy. A discrete/stochastic rule creates the knot

objects from each arm, thus generating a dynamic number of knots along the spiral

arms. Subsequently, the knot objects create clusters of star objects according to a

Normal distribution formulation.

grammar[

89

(*creation of major components*)

spiralGalaxy[x] → {bulge[x], armGenerator[x]} with 1

armGenerator[x] → {armGenerator[x], arm[x, θ0, 0], arm[x, θ0 + π, 0]}

with ρg Uniform(θ0; 0, π)

(*create a knot in the bulge*)

bulge[x] → {bulge[x], knot[x1]}

with ρb ∗N(x1;x, σb)

(*extend the spiral arm - arm length (r), angle (θ) , and position (x)*)

arm[x, θ, r] → arm[x, θ, r]

solving {dr
dt

= k, dθ
dt

= s(r), dx
dt

= {Cos(θ), Sin(θ)}

(*stop the spiral arm*)

arm[x, θ, r] → {}

with da

(*create a knot in a spiral arm*)

arm[x, θ, r] → {arm[x, θ, r], knot[x1]}

with ρa ∗N(x1;x, σa)

(*create a star in a knot*)

knot[x] → {knot[x], star[x1]}

with ρk ∗N(x1;x, σk)

(*stop the knot*)

90

knot[x] → {} with dk

]

We define the change in spiral arms’ angle as:

s(r) = α ∗ rβ

In order to add the bar component, the arm angle is held constant for a predefined

distance from the galaxy center, denoted as b. This is modeled by a sigmoidal function:

s(r) = σ(r − b)α ∗ rβ

An extension of the current model to 3-Dimensional space is straightforward. Fur-

thermore, the location of stars may be translated according to the viewing angle and

the Point Spread Function (PSF). Different results of 3-Dimensional simulations are

plotted in Figure 9.2. The simulations differ in the number of generated arms, rate

of angle change (α,β), initial arm angle θ0, and viewing angle.

9.2 Galaxy model inference

The objective is to infer the model’s latent variables from a galaxy image. The latent

variables in the model include: the initial angle of each arm θ0, variables for spiral

angle change (α,β), the bar length b, and the rates of creation, ρ, and removal, d, of

knots, arms and stars.

Using Bayes theorem (Equation 8.1), we define the inference objective function. The

inference scheme of Chapter 8 is applicable here since it is based on deriving the

91

(a) (b)

(c) (d)

Figure 9.2: Results of different 3-Dimensional simulations

92

likelihood function from the TOPE, Equation 4.1. The inference scheme in Chapter

8 involves regenerating a multi-reactions path (or part of the path according to a

window) for every MCMC sample. Such sampling algorithm is appropriate for gram-

mar models that do not have random output parameters, as in Section 8.3. However,

the galaxy grammar rules include random output parameters for the knots and stars

locations and therefore generate a multi-reactions path from the TOPE (likelihood

function) that will produce the exact same output objects, is improbable.

Instead of using the exact likelihood function of a galaxy grammar multi-reactions

path, we use an approximation. First, a predetermined number of arms is assumed.

In addition, the number of knots is predetermined, although their time of creation

and location are still unknown. These assumptions simplify the model so that there

is a static number of star clusters. Taking into account only the arm-knot creation

process, the following equation is the likelihood function:

Larm:k =

(

n
∏

i=1

e−∆tiρ̂iρa ∗N(wknoti
; arm(θ0, ti), σa)

)

∗ e−∆tn+1ρ̂n+1da (9.1)

ρ̂i denotes the total rate at time interval i, which is ρa +da for a single arm process. ti

denotes the time of the ith reaction whereas ∆ti = ti+1− ti. arm(θ0, ti) is the solution

for the spiral arm position ODE given the initial angle and time, which is based on

the optimized variables α, β. The final product results from the ending arm removal

event.

Given an input galaxy image, the stars objects are assumed to be represented by the

white pixels. Suppose the knot origin of each star is known and is determined by the

mapping. knot[j]. The following product is the relevant part of the grammar reaction

93

path’s likelihood function for the creation of the observed stars:

m
∏

j=1

ρk ∗N(xj;wknot[j], σk)

However, the knot origin of each star is an unknown that should be summed over, as

in the following:

m
∏

j=1

n
∑

i=1

ρk ∗N(xj;wi, σk) (9.2)

The summation is over all the combinations of paths for generating the stars from

different knots. This summation is based on the assumption of equivalence between

the different knots. There is such equivalence only when the life time of each knot is

the same. The knot’s life time is the time between the knot’s creation and removal.

When the life time of an arbitrary knot is longer than the rest, there are more multi-

reaction paths that create stars from that knot. A varied predefined life time for each

knot may be expressed in the model by setting a weight or prior function P (wi) for

each knot, which will get multiplied by the star’s conditional (Normal) probability.

Instead of optimizing the likelihood function, we use the log-likelihood since the log-

arithmic (or any monotone) transformation does not affect the maximum. This is

beneficial for optimization since the logarithm simplifies the expression. However,

there is no advantage in using the logarithm on the product expression in Equation

9.2 because of the inner summation. To overcome this problem, we use a formula-

tion originated from the Expectation-Maximization (EM) algorithm [34]. The EM

algorithm is popularly used for maximum likelihood estimation of mixture of Gaus-

sians models. It maximizes a lower bound of the objective function which is based on

94

Jensen’s Inequality:

Log

(

n
∑

i=1

N(xj;wi, σk)

)

= Log

(

n
∑

i=1

qji
qji
N(xj;wi, σk)

)

≥
n
∑

i=1

qjiLog
N(xj;wi, σk)

qji

whenever qji > 0 and
n
∑

i=1

qji = 1.

The variables qji provide a weight for the relation between data item (star) and cluster

(knot). EM iteratively optimizes the qji variables on the E-step and the model’s latent

variables on the M-step. The E-step has a simple closed form solution:

qji =
N(xj;wi, σk)

n
∑

i=1

N(xj;wi, σk)

There is no closed form solution for the latent arm’s variables in the M-Step. There-

fore, the M-Step is solved by a numerical method.

9.3 Results

We performed inference on images of a simulated barred-spiral galaxy. The input

stars’ locations are shown as white pixels in Figure 9.3 and Figure 9.4. The figures

illustrate the initial and final configurations of the knots’ locations and the inferred

spiral arm parameters. The two figures represent two inference runs from different

initial configurations. The knots’ locations and the spiral structure variables (α, β,

θ0) converge to the target values. However, the spiral arm length does not change

significantly throughout an EM inference run. Figure 9.3(b) and Figure 9.4(b) show

the convergence of the log-likelihood during each inference execution.

Figure 9.5 illustrates the initial and final states of the model for a real galaxy (NGC-

95

(a)

(b)

Figure 9.3: 9.3(a) The input barred-galaxy and the initial and final states of the
model. There are 20 knots per arm. 9.3(b) Plot of the convergence of log-likelihood
function

96

(a)

(b)

Figure 9.4: 9.4(a) The input barred-galaxy and the initial and final states of the
model. There are 20 knots per arm. 9.4(b) The convergence of log-likelihood function
for the data

97

895) image, shown in Figure 9.5(a). In this model, we incorporate an affine trans-

formation matrix in order to capture the angle in which the galaxy is tilted. The

transformation matrix is also optimized, as seen by the elliptic shape of the final

spiral arms. Still, the optimized shape of the spiral structure does not fully capture

the underlying structure.

9.4 Future directions

The results for NGC-895 demonstrate the complexity of inferring the correct model

from these real galaxies’ images. The galaxy’s structure is more complex than our

simplified model, and the telescopic images are limited in quality due to physical

constraints. A possible remedy for the inference difficulties is to allow freedom in the

development of spiral structures, similar to the model of [112]. This can be achieved by

adding a stochastic rule that randomly changes the spiral arm’s direction. However,

such added flexibility in the model increases the complexity of the parameter space.

The current algorithm is susceptible to the choice of initial conditions. As with other

deterministic optimization methods, the current algorithm gets easily trapped in local

minima. A simulated annealing strategy [48], for accepting or rejecting new parameter

values, may be incorporated in the M-step, in order to avoid local minima.

In this chapter we discussed only an inference algorithm for a predefined set of knots.

An optimization algorithm for an unknown number of knots may be derived using

the Metropolis-Hastings (MH) [61] method, as introduced in Chapter 8.

98

(a)

(b)

Figure 9.5: 9.5(a) Galaxy NGC-895. 9.5(b) The initial and final states of the model
for NGC-895. The final configuration does not fully capture the underlying spiral
structure, as the initial arm angle is inaccurate.

99

Chapter 10

Modeling root development

10.1 Introduction

The flow of auxin across plant cells plays an extensive role in regulating patterns of

cell growth, divisions and fates in development [125]. This is particularly apparent

in the root apical meristem (RAM) where auxin flow is involved in the maintenance

of an undifferentiated stem cell population and the continuous formation of regular

cell layers on the meristem periphery. The RAM consists of meristematic zone with

mitotically active cells and promeristem which contains stem cells. The promeristem

is subdivided into a quiescent center (QC) surrounded by stem cells (initials) [36].

Upward and laterally located initials propagate the root radial pattern, a vascular

cylinder surrounded by the concentric layers of pericycle, endodermis and cortex

[125]. Directly underneath, columella initials produce columella cells. Monitoring of

free auxin level in the root by the expression of auxin-responsive DR5 reporters has

revealed an auxin maximum in the columella initial cells, with lower activity in the

QC and mature columella [114]. A. Thaliana root tip structure with the auxin flow

100

diagram is illustrated in Figure 10.1.

Auxin which is secreted from the shoot is transported acropetally in the root via

the vascular cylinder toward the root tip [96, 47]. Auxin is transported between

plant cells by a combination of diffusion and active transport mediated by influx

and efflux carriers [69]. There is a variety of evidence that auxin maxima may be

a consequence of actions of the PIN family efflux carriers. PIN1 and PIN4 proteins

provide a continuous straight route for auxin along the central apical-basal root axis

through the vascular cylinder toward the QC [46], [135].

10.2 Model for Auxin transport

Our proposed model [88] for auxin transport is as follows: at low intracellular con-

centrations, auxin increases the rate of its own efflux by enhancing the expression of

PIN proteins. However, if its concentration exceeds a threshold, then auxin starts to

inhibit its efflux by activating PIN protein degradation. There is a direct exchange

of auxin between the cells (intercellular space is ignored).

Stochastic grammar reactions describe events such as cell division or death, whereas

continuous rules depict cell growth and movement and the active or passive trans-

portation of signaling molecules between cells as well as dissipation of these molecules.

In root development simulation, cells are constantly moving along the central longi-

tudinal axis due to growth of adjacent cells. This dynamic behavior is modeled by

Dynamical Grammar rules that specify a weak (breakable) spring potential function

between neighboring cells, as described in Section 6.3.

A summary of the root Grammar’s rules is depicted below. A ‘Cell’ object is com-

prised of four parameters: x (location), r (size), m (mode - either growth or wait) and

101

a (auxin concentration).

(*cell enters idle mode*)

Cell[x, r,m = 1, a] → Cell[x, r,m = 2, a] with ρ1(r)

(*cell division when idle*)

Cell[x, r,m = 1, a] → {Cell[x1,
r
2
,m = 1, a],Cell[x2,

r
2
,m = 1, a]} with ρ2(a)P (x1, x2|x)

(*cell death*)

Cell[x, r,m, a] → {} with ρ3(x)

(*Auxin influx from shoot*)

{c1 = Cell[x1, r1,m1, a1], s1 = shoot[c1]} → {c1, s1} solving {da1

dt
= γ(t)}

(*Auxin passive transport between cells*)

{c1 = Cell[x1, r1,m1, a1], c2 = Cell[x2, r2,m2, a2], s12 = Spring[c1, c2]} → {c1, c2, s12}

solving {da1

dt
= Pt(a2 − a1),

da2

dt
= Pt(a1 − a2)}

(*Auxin active transport between cells*)

{c1 = Cell[x1, r1,m1, a1], c2 = Cell[x2, r2,m2, a2], s12 = Spring[c1, c2]} → {c1, c2, s12}

solving {da1

dt
= K0a2f(a2),

da2

dt
= −K0a2f(a2)}

(*Auxin dissipation*)

{c1 = Cell[x, r,m, a]} → {c1} solving {da
dt

= −a(d+ υ(r)
r

)}

(*cell growth*)

{c1 = Cell[x, r,m = 1, a]} → {c1} solving {dr
dt

= υ}

102

(*cell neighbors spring*)

{c1 = Cell[x1, r1,m1, a1], c2 = Cell[x2, r2,m2, a2], s12 = Spring[c1, c2]} → {c1, c2, s12}

solving {dx1

dt
= ϕ(x1, r1, x2, r2)}

Auxin is secreted from the shoot object to the first Cell object in the root. Thereafter,

auxin is transported between cells by diffusion (passively) and forward to the root tip

by the active transport rule according to:

f(a) =

(

a
q11

)p1

1 +
(

a
q12

)p1

1

1 +
(

a
q2

)p2
(10.1)

The active transport rule is derived by reduction from the comprehensive model which

includes PIN1 effects on auxin concentration, see [88]. Auxin dissipation refers to

any other processes leading to the decrease of auxin concentration in cells due to cell

growth and other molecular processes, i.e. direct oxidation or auxin flow transversely

to the longitudinal axis.

The first factor of Equation 10.1 describes the activation mechanism of auxin trans-

port whereas the second factor describes the auxin inhibition mechanism. Further-

more, we introduce an auxin influx from shoot (parameter α) as time dependent

linearly increasing function.

A cell object may be in either growth or idle mode where, initially, a cell is in growth

mode. The rate function, ρ1(r), of mode change is a Sigmoid function. A cell may

divide only when it is in idle mode. The waiting time for cell division, when the cell

is in idle mode, is distributed exponentially. The idle mode signifies the cell cycle

checkpoints and the stochastic waiting time during a real cell cycle.

The cell division rate is decomposed to a rate function over auxin concentration and

103

a probability function of the location of new daughter cells. Auxin regulated division

function is defined as the following Hill’s function:

ρ2(a) =

(

a
k1
cell div

)h1

1 +
(

y
k2
cell div

)h2

Auxin profiles of the simulated DG model are shown in Figure 10.2. The model is

robust in some range of parameter values, see [88]. In case of slowly increasing auxin

flow from the shoot, we observe persistent location of auxin maximum, in spite of

root growth. This result supports the idea that regulated acropetal auxin transport

is able to adjust the position of QC in the course of root development.

10.3 Regulation of cell division

Along the root, there are two distinguished zones with increased rates of cell divi-

sion separated by the QC (Figure 10.3). The spatial profile of mitotic activity in

the RAM, measured for cortical cells, is bell-shaped with the maximum located at

10-16 cells distance from the QC [12]. The dividing initial columella cells add an

additional maximum to the spatial profile of mitotic activity in the root. Figure 10.3

(B) demonstrates the two distinct maxima: in the meristematic zone of RAM and in

the columella initial.

Simulations of cell divisions in the root regulated by auxin failed to provide a profile of

mitotic activity along the longitudinal axis that fits the experimental data. The model

is extended with additional regulation of cell divisions by a hypothetic substance Y.

The predicted substance has the following properties: Y is constitutively synthesized

in the QC and its degradation exhibits dose response to the auxin concentration. Y

104

is transported through the cell array by diffusion and regulates the mitotic activity of

the cells. The rate of cell division is low (or zero) in the absence or abundance of Y

and is high if its concentration is intermediate. The parameters of Y transport were

adjusted in order to exhibit the desired behavior.

Y may be replaced by two factors: repressor and activator of cell division. Suppose

that (1) the activator moves by diffusion from the QC, where it is synthesized; (2) the

repressor’s gradient is maximized in the root end. There are a number of hypotheses

for the possible repressor and activator candidates [88].

The following grammar rules were augmented to the previous root-model. Cell objects

have an additional parameter for Y concentration. The rules of Y diffusion (passive

transport) and dissipation are similar to the auxin rules. Y is produced in the QC

which is recognized by the high auxin concentration of its neighbor cell. Furthermore,

Y diffuses (passive transport) between cells, in a higher rate than the diffusion rate

of auxin.

(*Y passive transport between cells*)

{c1 = Cell[x1, r1,m1, a1], c2 = Cell[x2, r2,m2, a2], s12 = Spring[c1, c2]} → {c1, c2, s12}

solving {dy1

dt
= Pty(y2 − y1),

dy2

dt
= Pty(y1 − y2)}

(*Y synthesis in the QC*)

{c1 = Cell[x1, r1,m1, a1, y1], c2 = Cell[x2, r2,m2, a2, y2], s12 = Spring[c1, c2]}

→ {c1, c2, s12} solving {dy1

dt
= β σ(a2 − a1)}

(*Y dissipation*)

{c1 = Cell[x, r,m, a, y]} → {c1} solving {dy
dt

= −y(kdegr y(a) + υ(r)
r

)}

kdegr y(ai) defines the function of auxin regulated Y degradation, which has a Hill’s

105

function form:

kdegr y(a) = 0.05 +
k0

degr y(
a

k1
degr y

)
p1

1 +
(

a
k2
degr y

)p2

The cell division rule is modified to include the effect of Y concentration:

(*cell division*)

{Cell[x, r,m = 2, a, y]} → {Cell[x1,
r
2
,m = 1, a, y],Cell[x2,

r
2
,m = 1, a, y]}

with kcell div(y)P (x1, x2|x)

kcell div(y) is defined as:

kcell div(y) = 0.001 +
k0

degr y(
y

k1
cell div

)
h1

1 +
(

y
k2
cell div

)h2

This model was able to recapitulate both the observed auxin gradient and mitotic

profile as shown in Figure 10.4. In the calculated results, we were able to distin-

guish between different cell types (see Figure 10.1) by considering both their auxin

concentration and mitotic activity.

106

Figure 10.1: Root tip structure of A. thaliana and the 1-Dimensional representation
in the DG model. A. Root tip structure with directions of auxin transport and its
representation in the 1D DG model. The cell array along the central longitudinal axis
was used to simulate auxin redistribution. Arrows mark the processes studied in the
model that affect auxin distribution. The generalized mechanism of auxin regulated
PIN1 expression includes both regulation of PIN1 synthesis and degradation by auxin
on a concentration dependent manner. B. The DR5::GUS gene expression presents
auxin distribution in the root tip of young seedlings (adapted from [125]). C. The
surface plot of DR5 activity in the root tip according to the experimental data (B). D.
The plot shows correspondence of the static model solution result (red line) to semi-
quantitative data of auxin distribution (black line) scanned from (B) and marked by
red in (C). The blue arrowhead marks the QC position.

107

Figure 10.2: Changes in auxin distribution pattern in response to varying in parameter
values. A-B, D-F. The model behavior under increase of auxin flow from the shoot.
In the static model simulation (A, B) and while simulating root growth (D-F). C. The
model behavior in response to varying values of parameter q2. D, H-J. Simulation
of experiment on QC laser ablation or root cut. E. Shift of auxin maximum toward
the middle of the root in response to increase auxin flow from the shoot. F-G.
The different examples of the additional maximum formation in the model with cell
divisions in response to increase auxin flow from the shoot. D. For simulation of
QC laser ablation or root cut in silico, we removed from the array all cells located
distally to vascular initial and started calculation with current auxin concentrations in
cells. Qualitative correspondence of model solutions to experimentally observed auxin
distribution before and after cut are shown. H-J. Computer simulation of changes in
auxin distribution after cut is presented for the first 7 cells.

108

Figure 10.3: Mitotic activity in the root and its simulation

109

Figure 10.4: Simulation of root growth along the root longitudinal axis. A. Profiles
of auxin (red) and Y (blue) distributions and rates of cell division (gray columns) in
conventional units along the root longitudinal axis. B. The profile of mitotic activity
along the longitudinal axis of root calculated in the model with cell divisions. The
ordinate is the number of cell divisions, abscissa the serial number of the cell starting
from the root end. C-F. Auxin (red) and Y (blue) distribution in conventional units
during simulation of root growth. The green curve indicates the mode of cells (1- idle,
0- growth).C. the simulation was initialized with three cells; D. 10 cells; E. 20 cells; F.
more than 100 cells. Cells of different types can be distinguished by considering both
their auxin concentration and mitotic activity (see the main text for more details):
QC – quiescent center; RCI – root cap initial; RC- root cap; MZ meristematic zone;
DZ- differentiation zone.

110

Chapter 11

Modeling the olfactory epithelium

The olfactory epithelium (OE) is a self-renewing tissue in which multipotent, progen-

itor cells undergo a multistage process of successive cell type transitions and divisions

regulated by intercellular signaling. We investigate the possible mechanisms for such

a stem cell lineage to maintain robust size control and spatial distribution in the face

of environmental and genetic perturbations, despite a number of complicating fac-

tors: (a) cell transitions may be stochastic, (b) OE cells at different lineage stages are

distributed in a non-uniform manner in space, and (c) length scales associated with

such spatial inhomogeneity may be substantial compared with the diffusion lengths

of signaling molecules such as GDF11, Activin and Follistatin. The stochastic simu-

lation strategy uses the Dynamical Grammar (DG) multiscale modeling framework,

under which a dynamical system comprises both continuous differential dynamics and

discrete stochastic processes. The resulting simulations are used to investigate con-

ditions sufficient to produce the observed size control and spatial stratification of cell

types in the OE.

111

11.1 Introduction

The olfactory epithelium (OE) of the mouse is a useful system for understanding the

complex interactions that regulate tissue development and regeneration. The OE is

one of a few regions of the vertebrate nervous system that undergoes neurogenesis,

or de novo production of neurons, throughout life. The olfactory receptor neurons

(ORNs) are in direct contact with the external environment through the nasal cavity.

Due to their exposed location, ORNs are subject to variable damage by exogenous

factors and must be constantly replenished. Remarkably, the thickness of the ORN

cell layer is maintained almost constant throughout the OE.

Neurogenesis is maintained by a stem cell niche, which is a locus in the tissue where

multipotent, self-renewing progenitor cells reside. Stem cells undergo a multistage

process of successive cell type transitions and divisions regulated by intercellular

signaling, as described in [21]. Stem cells may differentiate into progenitor cells

which are also known as transit amplifying (TA) cells. TA cells give rise to terminally

differentiated (TD) cells, the ORNs. Both stem and TA cells can also replicate, hence

reproduce cells of the same cell type. The rate of cell division and the types of the

resulting daughter cells vary across different cell types. The assignment of cell types

to daughter cells is crucial for size control in the OE.

Recent studies show that the size of the OE tissue is controlled by two inhibitory

feedback signals: Growth Differentiation Factor 11 (GDF11) [134], and ActivinβB

(ActβB) [55]. Both GDF11 and ActβB are members of transforming growth factor-β

(TGF-β) superfamily of ligands. GDF11, which is expressed by both ORNs and TAs,

inhibits the proliferation of TAs, whereas ActβB, which is expressed by all neuronal

lineage cell types, inhibits the proliferation of stem cells. A schematic view of a related

generic cell lineage model is shown in Figure 11.1.

112

An additional diffusible molecule, Follistatin (FST), is produced in and around the

OE, and acts as a competitive inhibitor of GDF11, ActβB and their homologs. The

role of FST in the regulation of the cell lineage is established in [55].

A variety of different mathematical modeling approaches may be used to simulate

such a complex and dynamic system. A common approach in systems biology is to

use ordinary differential equation (ODE) models in which the system is assumed to

be spatially “well-stirred”, continuous, and deterministic. An ODE formulation for

modeling the multistage cell lineage in the OE is shown in [77]. The cell lineage ODE

model of [77] is used to establish stability enhancing conditions: autoregulation of TA

proliferation and low TD death rate. A recent study [73] identified basic strategies by

negative feedback factors in order to control the growth of multi-stage cell lineages.

The feedback regulation that exists in the OE has important control objectives such

as regeneration speedup, and decreased sensitivity to initial condition and parameter

values [73].

However, stochastic events and an inhomogeneous spatial distribution, which are not

modeled by ODEs, may have a substantial effect on the functionality of the OE sys-

tem. Cells at different lineage stages are distributed in a non-uniform manner in

space (inconsistent with the “well-stirred” assumption), and length scales associated

with such spatial inhomogeneity may be comparable or large compared to the length

scales over which signaling molecules such as GDF11 and Activin diffuse before be-

ing captured and destroyed. These observations suggest that cell behavior and cell

decisions (such as whether to replicate or differentiate) depend only on conditions

within a local region around the cell, and such a local region may be susceptible to

stochastic fluctuations.

This chapter examines cell lineage models that represent the development of local

regions in the OE. The simulations involve relatively small cell populations (around

113

50-100 cells) in which cells are modeled as discrete entities, and processes such as cell

replication, differentiation or death are modeled as sequences of discrete stochastic

events. The models studied include feedback molecules whose state is modeled either

by global or locally spatially continuous concentrations.

Dynamical grammars (DGs) [93] provide a convenient mathematical and computa-

tional framework for modeling hybrid discrete/continuous systems such as OE cell

lineages coupled with subcellular ODE dynamics. DGs describe a broad family of

stochastic processes that include systems with time-varying structure, and both con-

tinuous and discrete processes. Grammatical transitions describe stochastic jump

events such as cell differentiation and replication, whereas continuous-time rules de-

scribe cell growth, movement and diffusion of secreted molecules.

The simulations described in Section 11.3 of this chapter reveal key differences be-

tween the stochastic and deterministic models. In stochastic simulations, there is a

strictly positive probability for extinction of the stem cell population. The probability

for stem cell extinction is high because the effects of feedback signals are dominated

by the neuronal population. We further show how stochastic variations may con-

tribute to the dominance of a monoclonal cell population (all cells of which originate

from single stem cell) in small sections of the tissue corresponding to the range of

signal diffusion.

Another factor that is likely to play an important role in size control of the OE is the

highly non-uniform spatial distribution of cells. Stem and progenitor cells form a layer

near the basal lamina (BL). Such a layered stem cell distribution may be advantageous

for maintaining uniform thickness across the tissue. Potential mechanisms to maintain

the layered spatial distribution of cells are explored using two-dimensional stochastic

models in Section 11.3.2. A model that includes strong affinity of stem and progenitor

cells toward the BL is able to recapitulate the observed lamination in the OE. In this

114

way, we show that DGs are capable of simulating a rich set of biologically known or

plausible mechanisms by which OE homeostasis (both in cell number and layering)

could be maintained, despite stochastic fluctuations, and can therefore serve as the

engine for more detailed explorations of such hypotheses in the future.

The chapter is organized as follows. Section 11.2 describes the DG formulation of our

models. Simulations results are shown in Section 11.3. Discussion of related modeling

frameworks, a summary of our results, and a discussion of future directions are in

Section 11.4.

11.2 Methods and model description

Following [134, 73], the cell lineage model is a simplified OE model that is comprised

of just three cell types: stem, transit amplifying (TA), and terminally differentiated

(TD) cells. Both stem and TA cells may replicate or differentiate after a random time

interval (roughly the length of the cell cycle). There are two feedback signals denoted

as φ0 and φ1. φ0 is secreted by all cells and inhibits the replication probability of stem

cells, whereas φ1 is secreted by TA and TD, and inhibits the replication probability

of TA cells. TD cells die according to a fixed stochastic rate. A schematic view of

the model is shown in Figure 11.1. In this mapping, the feedback signals φ0 and φ1

characterize GDF11 and ActβB respectively.

The DG rules for the cell lineage model are defined using an object-oriented syntax

where Cell represents an abstract object that can be specialized into one of three cell

types: Stem :: Cell, TA :: Cell, and TD :: Cell. Any process that applies to Cells also

applies to all three cell types. The following grammar rules describe mitosis events

according to the dynamics in Figure 11.1:

115

Figure 11.1: Schematic of cell lineage with negative feedback regulation on cell prolif-
eration. Terminally differentiated (TD) cells derive from transit-amplifying (TA) cells
which arise from stem cells (St). Feedback regulation (φ0) on stem cell replication
probability (ρ0) is a function of total cell number. Feedback regulation (φ1) on TA
cell replication probability (ρ1) is a function of TA and ORN cell number. γ is TD
death rate.

(*stem cell mitosis: *)

{Stem :: Cell[x, v], g = Field[0, φ0]} →{Stem :: Cell[x1, v/2
1/d], Stem :: Cell[x2, v/2

1/d], g}

with ρ0,1(φ0(x), v) · P (x1, x2|x)

{Stem :: Cell[x, v], g = Field[0, φ0]} →{Stem :: Cell[x1, v/2
1/d], TA :: Cell[x2, v/2

1/d], g}

with ρ0,2(φ0(x), v) · P (x1, x2|x)

{Stem :: Cell[x, v], g = Field[0, φ0]} →{ TA :: Cell[x1, v/2
1/d], TA :: Cell[x2, v/2

1/d], g}

with ρ0,3(φ0(x), v) · P (x1, x2|x)
(11.1)

116

(*TA mitosis: *)

{ TA :: Cell[x, v], g = Field[1, φ1]} →{ TA :: Cell[x1, v/2
1/d], TA :: Cell[x2, v/2

1/d], g}

with ρ1,1(φ1(x), v) · P (x1, x2|x)

{ TA :: Cell[x, v], g = Field[1, φ1]} →{ TA :: Cell[x1, v/2
1/d], TD :: Cell[x2, v/2

1/d], g}

with ρ1,2(φ1(x), v) · P (x1, x2|x)

{ TA :: Cell[x, v], g = Field[1, φ1]} →{ TD :: Cell[x1, v/2
1/d], TD :: Cell[x2, v/2

1/d], g}

with ρ1,3(φ1(x), v) · P (x1, x2|x)
(11.2)

This set of rules describes symmetric and asymmetric cell division. The probability

of each option, Pi,j, is expressed in the rate functions ρi,j, as follows:

ρ0,j = P0,j(φ0(x))ρ̂(v)

ρ1,j = P1,j(φ1(x))ρ̂(v)

(11.3)

ρ̂(v) is the total cell division rate function (for both symmetric and asymmetric

choices) which is dependent on the cell size. The function is defined as a step func-

tion: 0 whenever v < vmax and 0.5/h for v ≥ vmax (h is hours). The probabilities for

symmetric or asymmetric cell division are expressed by the functions P0,j and P1,j.

We assume that the probability of a cell becoming any given cell type is independent

of its sibling’s type, which mathematically is stated as : Pi,1 = ψi
2, Pi,2 = 2(1−ψi)ψi,

and Pi,3 = (1 − ψi)
2. The feedback signals φ0 and φ1 are depicted, in the DG model,

as parameters of the Field objects, whereas mitosis rate functions depend on the

concentration of signal in the location of the cell (φ(x)).

117

The probability functions of stem cell replication P0,1(φ) and TA replication P2,1(φ)

are defined as follows:

Pi,1(φi) = Pmax
i

Si

φi + Si

for i ∈ {0, 1} ,where 0 ≤ Pmax
i ≤ 1 (11.4)

The replication probabilities are Hill functions (with Hill coefficient 1) which are com-

monly used in modeling feedback functions [3]. The constants S0 and S1 determine

the level of φ0 and φ1, respectively, where the replication probabilities are half of the

maximum.

A daughter cell’s linear size v/21/d depends on the model’s spatial dimension d which

equals two in Section 11.3.2. In Section 11.3.1 a non-spatial variant of the grammar

rules is used, in which the spatial parameters are omitted and signals concentrations

are assumed to be uniform in space.

The final discrete rule in the model describes TD cell death:

TD :: Cell[x, v] → {}, with γ/T (11.5)

In addition to discrete stochastic events, the model incorporates continuous dynamics

for the following processes: secretion, diffusion and decay of signaling molecules, and

cell growth and movement. The DG formalism includes continuous-time rules which

are rules that evolve the matching objects’ parameters forwards in time by sets of

differential equations. The following rules describe secretion of the signaling molecules

by their source cells, and diffusion/decay of molecules in the two-dimensional field.

In each case, the solving clause contains the set of applicable ODEs or PDEs.

118

{c = Cell[x, v], g = Field[0, φ0]} → {c, g}, solving {∂φ0

∂t
= k(x̂;x, v)}

{c = TA :: Cell[x, v], g = Field[1, φ1]} → {c, g}, solving {∂φ1

∂t
= k(x̂;x, v)}

{c = TD :: Cell[x, v], g = Field[1, φ1]} → {c, g}, solving {∂φ1

∂t
= k(x̂;x, v)}

Here x̂ denotes the spatial coordinates of the field variables (φ0 and φ1) and k(x̂;x, v)

denotes the secretion function which is defined as:

k(x̂;x, v) =

1 if ||x̂− x||2 < v/π

0 else

Diffusion and decay are defined in the following rule that applies to both φ0 and φ1:

Field[i, φ] → Field[i, φ], solving {∂φ
∂t

= D ∂2φ
∂x2 − dφ}

Stem and TA cells grow in constant rate (until division occurs) whereas TD cell

growth is diminished as the cell volume approaches vmax. The TD cell growth function

is defined as the following sigmoidal function:

ς(v) =
1

1 + eβ(v−vmax)

Cells constantly move due to their own growth and proximity to other cells and to

the BL boundary. The initial assumption is that cells’ movement due to collisions in

space is unrelated to cell type, so we define these rules for the abstract Cell object.

Grammar rules which are defined for the abstract Cell object apply to all concrete

objects (eg. Stem, TA, and TD).

(*cell movement due to neighbor cell position: *)

119

{c1 = Cell[x1, v1], c2 = Cell[x2, v2]} → {c1, c2}, solving {dx1

dt
= ϕ(x1, v1, x2, v2)}

(*cell movement due to boundary position: *)

{c1 = Cell[x1, v1], b = Boundary[x2]} → {c1, b}, solving {dx1

dt
= ϕ(x1, v1, x2, 0)}

Cells move under the force (given by the function ϕ) exerted by weak spring con-

nections to neighboring cells and to the boundaries. For more details on the weak

spring model see [120] or [91]. Further discussion on the spatial rules and possible

forces in the system is continued in Section 11.3.2. The computational aspects of DG

simulations are discussed in [137].

A deterministic, non-spatial approximation of the foregoing stochastic model could

be stated as the following set of ODEs (one may find equivalent models in [77] and

[73]):

dc0
dt

= (2ρ0,1(φ0) + ρ0,2(φ0) − 1/(a0T)) c0 (11.6)

dc1
dt

= (ρ0,2(φ0) + 2ρ0,3(φ0)) c0 + (2ρ1,1(φ1) + ρ1,2(φ1) − 1/T) c1 (11.7)

dc2
dt

= (ρ1,2(φ1) + 2ρ1,3(φ1)) c1 − γc2/T (11.8)

∂φ0

∂t
=

2
∑

i=0

ci − dφ0 (11.9)

∂φ1

∂t
=

2
∑

i=1

ci − dφ1 (11.10)

a0 is an additional parameter to adjust the average cell cycle time of stem cells.

120

11.3 Results

The results have three parts : 1) a non-spatial stochastic grammar is compared to

the deterministic ODE model; 2) In order to incorporate the spatial information,

possible mechanisms for tissue lamination are explored; and 3) A complete 2D spatial

grammar reveals possible interplay between cell lineages.

11.3.1 Divergence between stochastic and deterministic so-

lutions caused by random extinctions

Before delving into a complex spatial model, a stochastic non-spatial cell lineage

model is explored and compared to the deterministic equivalent. First, the set of free

parameters (Pmax
0 , a0, S0, P

max
1 , S1, and γ) were optimized such that the dynamics of

the deterministic model resemble the observed dynamics in the OE system. Taking

into account results from genetic experiments [134][55], we assume that (1) in the

absence of feedback from φ0 (φ0 is set to zero) twice as many stem cells develop,

corresponding to results of ActβB mutations in [55]; (2) a φ1 mutation develops twice

as many TAs and 50% more TD cells (no change in stem population), corresponding

to the results for GDF11 mutations in [134]; and (3) double mutants (both φ0 and

φ1 set to zero) develop twice as many stem and TA cells and 50% more TD cells,

corresponding to the results of double mutants in [55].

The set of free parameters were optimized according to the sum squared error (SSE)

between the ODE model’s (Equation 11.611.6- 11.8) output and the target cell num-

bers: one initial stem cell and 5 stem cells, 10 TA cells and 20 TD cells at t = 7

days for wildtype (after seven days of development the OE possesses a full cohort of

stem, TA and TD cells), and the appropriate corresponding cell numbers for mutant

121

animals. The optimization algorithm used was Powell’s method [103] as implemented

in the Mathematica computer program. Figure 11.2(a) shows the trajectories of the

ODE model under the best-fit set of parameters. In addition Figure 11.2(a) plots the

trajectories of the average cell quantities in the stochastic, non-spatial model given

the same set of parameter values.

As depicted in Figure 11.2(a), the stochastic model diverges from its deterministic

counterpart as time progresses. In fact, the stochastic model cannot converge to a

strictly positive steady state. Over time, stochastic simulations have an increasing

probability for differentiation of the entire stem cell population. Figure 11.2(b) plots

the percentage of simulations that result in total elimination of stem cells over time.

Since the feedback signal is dominated by the secretion by TAs and TDs, random

reductions in the number of stem cells are not sensed by the remaining stem cells and

result in their total extinction. When the cell lineage system is modified such that

the signal on stem cells is secreted only or mostly by stem cells (which is not the case

in the OE), then the rate of stochastic extinctions is dramatically reduced.

We examine the extent to which stem cell extinction is responsible for the divergence

between stochastic and deterministic results by artificially maintaining a minimum

of one stem cell in the system. The results are shown in Figure 11.2(c). In this case,

the averaged stochastic simulation follows a trajectory close to the deterministic one.

The continuous feedback functions φ0 and φ1 cannot be directly represented in a

finite structure if considering a numerical solution. However, the concentration level

can be approximated by the number of secreting cells. Another difficulty is in the

representation of an infinite number of cell states. This difficulty can be ameliorated

by representing a finite number of states and discarding states with high number of

cells due to their negligible probability in a negative feedback system.

122

1000 2000 3000 4000 5000
t 8hr<0

10

20

30

40

Avg ð cells

St Stem
St TA
St TD
Dt Stem
Dt TA
Dt TD

(a)

0 1000 2000 3000 4000 5000
t 8hr<

20

40

60

80

100
% extinct

(b)

1000 2000 3000 4000 5000
t 8hr<0

10

20

30

40

Avg ð cells

St Stem
St TA
St TD
Dt Stem
Dt TA
Dt TD

(c)

Figure 11.2: Divergence between stochastic and deterministic solutions results from
random extinctions. 11.2(a) Stochastic simulations diverge from deterministic sim-
ulations over time. Plot shows the average number of cells (stem, TAs, and TDs)
over simulated time. The straight lines depict the mean of the stochastic trajectories
whereas the dashed lines depict the deterministic trajectories. The stochastic aver-
age is over 500 simulations. 11.2(b) Number of extinctions in stochastic simulations
increases over time. Plot shows percentage of extinct simulations over time (out of
500 simulations). An extinct simulation is defined as a simulation that has no surviv-
ing stem cells. 11.2(c) A one-stem-cell minimum constraint on stochastic simulations
eliminates most of the divergence from deterministic trajectories. A plot of the aver-
age number of cells over time. The stochastic model is modified by enforcing a zero
probability for stem cell differentiation if there is only one stem cell left. Note that
in this setting the stochastic average follows closely the deterministic solution. The
stochastic average is over 500 simulations. Parameters values used were: Pmax

0 = 0.7,
a0 = 2, S0 = 84.5, Pmax

1 = 0.56, S1 = 45.2, and γ = 0.36 , and the decay rate
d = 5 ∗ 10−4 s−1.

123

Even for the modifications mentioned above, the three cell type model used in Section

11.3.1 could not be well approximated due to such computational limitations. There-

fore, we resort to a numerical solution of a simplified model which has only two cell

types: stem cells and differentiated cells. The differentiated cells are a combination of

TA and TD cells (denoted as Diff cells). One portion of the differentiated cells, αĉ1,

can proliferate (as TAs) whereas cells in the second portion (representing the TDs)

are subject to death with rate constant γ. The ratio parameter, α, was determined

according to the steady state number of TA and TD cells in the deterministic three

cell type model.

The complete grammar model of the simplified two cell types system is shown below.

Note that these grammar rules apply for objects of ‘Cells’ type instead ‘Cell’ type.

The ĉ parameters represent the number of individual cells in ‘Cells’ objects. The

rates of discrete events are multiplied by the appropriate ĉ counter.

(*stem cell mitosis: *)

{Stem :: Cells[ĉ0],Diff :: Cells[ĉ1]} →{Stem :: Cells[ĉ0 + 1],Diff :: Cells[ĉ1]}

with ĉ0 ρ0,1(ĉ0 + ĉ1)

{Stem :: Cells[ĉ0],Diff :: Cells[ĉ1]} →{Stem :: Cells[ĉ0],Diff :: Cells[ĉ1 + 1]}

with ĉ0 ρ0,2(ĉ0 + ĉ1)

{Stem :: Cells[ĉ0],Diff :: Cells[ĉ1]} →{Stem :: Cells[ĉ0 − 1],Diff :: Cells[ĉ1 + 2]}

with ĉ0 ρ0,3(ĉ0 + ĉ1)

(11.11)

124

(*Diff cell mitosis: *)

{Stem :: Cells[ĉ0],Diff :: Cells[ĉ1]} →{Stem :: Cells[ĉ1],Diff :: Cells[ĉ1 + 1]}

with α ĉ1/T

(11.12)

(*Diff cell death: *)

Diff :: Cell[ĉ1] → Diff :: Cell[ĉ1 − 1], with (1 − α) ĉ1 γ/T (11.13)

The deterministic version of this simplified stochastic model is stated as follows:

dĉ0
dt

= (2ρ0,1(ĉ) + ρ0,2(ĉ) − 1/ (a0T)) ĉ0 (11.14)

dĉ1
dt

= (ρ0,2(ĉ) + 2ρ0,3(ĉ)) ĉ0 + (α− (1 − α) γ) ĉ1/T (11.15)

ĉ = ĉ0 + ĉ1 (11.16)

A solution was obtained by numerically solving the master equation with an artificial

cap of 30 stem cells and 150 differentiated cells. This cap is greater than the number

of cells typically present in simulations of the stochastic model. Furthermore, the

contour plots in Figure 11.3 show that the probability of states outside of the grid is

negligible.

The results in Figure 11.3 show the probability distribution of the system over time.

There are two maxima for the probability of stem and differentiated cells. One maxi-

mum is in parallel to the deterministic solution, whereas the second maximum is fixed

at the zero state. The probability of the zero state (0 stem and differentiated cells)

gradually increases and converges to 1.

125

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

t

ð
ce

lls

(a) Stem cells distribution over time

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

120

t

ð
ce

lls

(b) Differentiated cells distribution over time

Figure 11.3: Contour plots of the master equation solution show bimodal distribution
of cell counts over time. The master solution is for a simplified model with two cell
types: stem cells and differentiated cells. The deterministic version is defined in
Equations 11.14-11.16. The ratio parameter α is set 0.21 according to the ratio of
TA to TD cells in the steady state solution of the three cell type model. Straight
lines depict the mean value whereas dashed lines show the deterministic solution.
The contour plots show that the probability distribution over time has two maxima
points: one is on the zero state and the second is in parallel to the deterministic
trajectory. The probability of the zero state increases over time and converges to 1.
The master equation was solved for states which have at most 30 stem cells and 150
differentiated cells. The equations for boundary states are adjusted accordingly. The
other parameters values used here are: Pmax

0 = 0.7, a0 = 2, S0 = 84.5, and γ = 0.36
, and the decay rate d = 5 ∗ 10−4 s−1.

126

11.3.2 Dynamics of lineage trees in spatial-stochastic models

The spatial distribution of cells and signaling molecules may have an impact on

the functionality of the tissue. The spatial-stochastic DG model reveals that cell

populations of different lineage trees in the same local region may have significant

effect on each other. In order to replicate the spatial dynamics in the OE, we first

discuss few possible mechanisms for cell lamination.

Possible mechanism for lamination in the OE

The OE is a highly laminated structure. To explore possible mechanisms that underlie

OE lamination, we use the 2D model with spring potentials of Section 11.2. The spring

potential is decomposed to two components: repulsion due to physical constraints and

attraction or repulsion due to cell type adhesion. Both potentials decay exponentially

as a function of the distance between the two cells. The springs are disconnected

(hence weak springs) when the distance between the two cells is more than the average

cell diameter (10µm).

The three boundaries (the bottom boundary that represents the BL and the two

side boundaries) are impenetrable for cells. The tissue is assumed to grow uniformly

in both directions. In the simulations, the side boundaries artificially maintain the

horizontal width in accordance with the uniform growth assumption.

As lamination is observed even in double mutant mice (GDF11−/−/ActβB−/−) [55],

we assume that the feedback signals play no essential role in the spatial orientation

of cells in the OE. Thus, in the following simulations, feedback is suppressed.

Figure 11.4 presents the spatial distribution of different cell types across the tissue

(from basal to apical). The first configuration is the simplest: every cell has the

127

same affinity force toward the BL and no adhesion forces exist between cells. This

basic configuration can not produce lamination as cells distribute uniformly across

the tissue (Figures 11.4(a) and 11.4(b)).

Differential adhesion (DA) [123] is a well known cell sorting mechanism that postu-

lates that sorting emerges because of random movement and different adhesion forces

between cells of different types. In our system we can use a limited version of DA

without random movement of cells. TD cells are assumed to have high adhesion force

for each other. As in DA, cells with higher adhesion (TDs) form clusters in the center

of the tissue. Such mechanism, however, does not produce directional layering of cells

in the OE (Figures 11.4(c) and 11.4(d)).

Finally, we introduce a model configuration with differential affinity to the BL. Stem

and TA cells are assumed to have stronger affinity to the BL than the TD cells.

Figures 11.4(e) and 11.4(f) show that the desired spatial distribution with lamination

does emerge in this model. The following section’s results were produced with this

differential affinity configuration.

Dominance of a single lineage tree over local region

Given the lamination mechanism of differential affinity, we investigated dynamics of

the complete spatio-stochastic DG model. Following the analysis in [73], the apical

and side boundaries are assumed to be impenetrable to signaling molecules whereas

the basal side is a leaky boundary. Furthermore, in this model, signaling molecules

are degraded at a faster rate in the region outside of the basal boundary (the stroma

in the OE model). The increased degradation of signaling molecules is based on the

observation that FST, which is known as an irreversible inhibitor of both GDF11 and

ActβB [55] [4] [30], is produced in the stroma.

128

50 100 150
y

0.02

0.04

0.06

0.08

0.10

0.12

cell conc.

Stem

TA

TD

(a)

-40 -20 0 20 40
0

20

40

60

80

100

120

x

y

Apical side

(b)

50 100 150
y

0.02

0.04

0.06

0.08

0.10

0.12

cell conc.

Stem

TA

TD

(c)

-40 -20 0 20 40
0

20

40

60

80

100

x

y

Apical side

(d)

0 20 40 60 80 100 120 140
y0.00

0.05

0.10

0.15

0.20
cell conc.

Stem

TA

TD

(e)

-40 -20 0 20 40
0

20

40

60

80

100

x

y

Apical side

(f)

Figure 11.4: Increased affinity of stem cells and TAs to the basal lamina is suf-
ficient to mimic OE lamination. 11.4(a),11.4(c),11.4(e): Plots of cell concentra-
tion over the basal-apical axis for different model configurations at time 200h.
11.4(b),11.4(d),11.4(f): Voronoi diagrams of the tissue state in one simulation (same
random seed number) at time 200h for each of the corresponding model configura-
tions. Red regions represent stem cells, green regions are TA cells, and blue regions
are TD cells. 11.4(a),11.4(b): Equal affinity to the basal lamina is insufficient to
mimic the OE lamination. Lamination is not reflected in the basal-apical distribu-
tion of cells. Cell’s velocity toward the BL is 10µm/h. The velocities are considered
proportional to forces due to viscous drag. 11.4(c),11.4(d): Adhesion force between
TD cells results in layers of stem and TA cells on both the apical and basal sides.
The distribution plots show high concentration of TD cells around the center of the
tissue. Stem and TA cells form clusters near the basal lamina and the apical side.
Adhesion between TD cells results in velocity of 15µm/h (only between cells that are
10µm apart). Furthermore, all cell types have equal velocity of 10µm/h toward the
BL. 11.4(e),11.4(f): Larger affinity force between stem/TA cells and the basal lamina,
compared to TD cells and the BL, results in layered distribution of cells similar to
the OE lamination. Cells’ affinities toward the BL result in velocities of: 80µm/h for
stem and TA cells, and 10µm/h for TD cells.

129

The parameter values of the non-spatial model are used here except for the constants

S0 and S1. These constants prescribe the level of φ0 and φ1 in the deterministic

model’s steady state (and therefore the number of cells in steady state). Accordingly,

S0 and S1 are reestimated in the spatial model so that the replication rate of both

stem and TA cells match steady state levels. The concentration of φ0 and φ1 in steady

state is approximated from a simulated constructed tissue with steady state number

of cells which are arranged in layers (stem to TD layers).

The simulations shown here are initialized with two adjacent stem cells. Each stem

cell is assumed to develop into an adjacent part of the tissue. Figure 11.5(a) and

Figure 11.5(b) show the end result (at t=500h) of a simulation with two initial stem

cells whereas Figure 11.5(c) shows the average number of cells over time.

An initial stem cell proliferates into a monoclonal lineage tree (LT) of cells. We ob-

serve that in many simulations a single lineage tree survives while the other vanishes.

A logical explanation is that the feedback strength is a function of the average size

lineage tree. Therefore, a lineage tree which is below average size (due to random

fluctuations) senses a signal for differentiation that is excessive for its size, while the

opposite is true for above average size lineage trees. Figure 11.6 plots the average

number of cells over time in each lineage tree according to their size. The plot shows

that the largest LT gradually expands at the expense of the smaller LT that gets

extinguished.

11.4 Conclusions

Here we discuss related work (Section 11.4.1 below), summarize our results, and

discuss future directions (Section 11.4.2 below).

130

-100 -50 0 50 100

0

20

40

60

80

100

x

y

Apical Side

(a) Voronoi diagram of the simulated tissue

-100

0

100
x

-100

-50

0

50

100

y

0.00

0.05

0.10

0.15

(b) Concentration of φ1 over the 2D space

100 200 300 400 500
t 8hr<0

10

20

30

40

50

Avg ð cells

Stem

TA

TD

(c) Average number of cells per cell type

Figure 11.5: Spatial simulations recapitulate OE morphology. 11.5(a) and 11.5(b)
are plots of the state of a single simulation at time 500hr. 11.5(a) A Voronoi diagram
of the cellular structure. Red regions represent stem cells, green regions are TA cells,
and blue regions are TD cells. 11.5(b) Concentration of φ1 over the 2D space. The OE
tissue is the y > 0 part of the grid whereas the y < 0 region is the stroma and the gap
at y = 0 represents the BL. 11.5(c): The average number of cells of each type (stem,
TA, and TD) over time. Simulations are initialized with two stem cells representing
two lineage trees (LT). The concentration of φ1 and φ2 is initially zero. Diffusion
constant (D) of φ1 and φ2 is 1 µm2s−1. The decay constant (d) for both φ0 and φ1 is
5 ∗ 10−4 s−1 in the OE, and 50 ∗ 10−4 s−1 in the stroma region (−100 ≤ y < 0). The
average is taken over 60 simulations.

131

100 200 300 400 500
t 8hr<

20

40

60

80

100

120

Avg. ð cells

Min LT

Max LT

Figure 11.6: Stochastic simulations show that during tissue development one lineage
tree (LT) dominates its region at the expense of neighboring LTs. The plot shows the
average number of cells per LT ordered by size. The size of the largest LT increases
whereas the other LT converges toward extinction state. The results are shown for
the simulations of Figure 11.5.

11.4.1 Related work

Stochastic and deterministic non-spatial models of stem cell niches are described in

[83]. A deterministic analysis in [83] shows the conditions for coexistence of stem

cells from two different mutations (ie. different lineage trees). Our work shows how

stochastic dynamics results in a competitive interplay between neighboring lineage

trees as discussed in Section 11.3.2.

A directional cell sorting mechanism was proposed in [66] and [116] which uses the

Cellular Potts Model (CPM) [54] for simulations. The advantage of the DG mod-

eling framework and the current model is that no lattice discretization of space is

required in order to represent cells and their dynamics, as there is in CPM models;

this minimizes the number of degrees of freedom in the simulation and explicitly pre-

serves translational and rotational invariance. Furthermore, the DG models represent

a stochastic process independent of the simulation algorithm, while CPM models are

defined in accordance with the CPM simulation algorithm of simulated annealing.

Models of the development and recovery of epidermis were presented in [95] and

[57]. The models recreated the cell layering which is exhibited in the epidermis,

132

similar to the lamination in the OE. However, both models are deterministic with

no consideration of stochastic effects and the diffusion of extracellular molecules is

approximated by direct cell-to-cell signaling.

11.4.2 Summary and future directions

In this chapter we present a computational framework for modeling stochastic bio-

logical systems which is based on the language of dynamical grammars (DG), and

apply it to stem cell niches. A cell lineage system is modeled as a DG model such

that the grammar rules for cell replication, differentiation, death and feedback signals

follow observations of the development of the olfactory epithelium (OE). The full DG

model includes a spatial representation of cells in 2D as cell growth and weak-spring

forces between cell neighbors determine the spatial dynamics. In this DG model, a

spatial grid is used for computing the numerical solution of secretion, diffusion and

degradation of signaling molecules.

A simplified version of the spatial DG model was derived by eliminating the spa-

tial coordinates. Such a non-spatial model is computationally faster to simulate and

therefore important for the initial study of the behavior of the stochastic system and

exploration of the parameter space. The importance of stochastic modeling for cell

lineage systems is revealed in the non-spatial DG model as stochastic results diverge

from those of the deterministic approximating models. Simulations of small cell pop-

ulations have high probability of extinction and therefore the stochastic simulated

system cannot maintain the positive steady state of the deterministic system.

The spatial simulations reveal the domination of a single lineage tree in each region

as other lineage trees go extinct. The feedback signal diffuses in the tissue and

therefore reduces the probability of proliferation in low cell density areas (whereas

133

the opposite effect holds in high density areas). Larger than average lineage trees

expand whereas their neighboring lineage trees contract and eventually go extinct.

Of course mutations in stem cells would propagate within their lineage trees. So there

may be evolutionary consequences of such stochastic lineage tree expansion within

the tissue.

The current spatial DG is a simplified model of the tissue’s expansion (or contrac-

tion) that assumes equal growth in both dimensions. Further study of the forces

of expansion and contraction, consistent with the model’s side boundary conditions,

should consider the lineage trees’ expansion and feedback signals’ range. If the range

of signaling molecules is larger than the range of cell mobility then the tissue may

develop in an inhomogeneous way. In this case cells that belong to larger lineage trees

will not be able to migrate to low cell density regions and therefore will accumulate

as clusters, contradicting the homogeneity observed in the OE.

The spatial DG model was also used to explore the possible mechanisms for lamination

in the OE. A possible mechanism is the increased adhesion between neuron cells, but

such adhesion generates a central layer of TD (neurons) whereas the stem and TA form

layers on both sides (basal and apical). This observation is in accord with differential

adhesion theory [123] although no random movement of cells was postulated here. In

order to recapitulate the structure in the OE, the stem and TA cells were assumed

to have stronger (four times or more) affinity to the basal lamina than the TD cells.

A further investigation using this model may unravel the importance of cell layers in

reducing the impact of stochastic extinctions of lineage trees on the tissue’s uniform

thickness.

134

Chapter 12

Conclusions

12.1 Contributions of this thesis

This thesis has implemented a novel computational framework, the Stochastic Param-

eterized Grammar (SPG) for modeling stochastic processes. SPGs (defined in [93])

form a generalization of the probabilistic formulation of chemical reactions. SPG

Grammar rules are reaction schemas where the reactants and products are param-

eterized terms. This formulation is shown to have wide expressive power which in-

cludes modeling complex chemical reactions and biological systems, and can be used

for various machine learning applications.

The thesis defined and implemented some useful extensions of the basic SPG frame-

work: constraints over objects’ parameters, rules that depend on the absence of some

objects and the incorporation of recursive calls to subgrammars. These extensions are

useful for modeling complex operations on graph systems. For example, the nonexis-

tence constraint is convenient when modeling an event that includes connecting two

nodes in the graph that are not directly connected. The subgrammar calls can de-

135

scribe a dynamic number of operations in a single reaction. For example, nodes are

connected to a variable number of nodes in a graph. Therefore, a node removal event

encompasses a dynamic number of operations that can be encoded in a single sub-

grammar call. An additional application for subgrammar calls is multiscale modeling.

Subgrammars may describe low level entities and events that occur in high frequency,

such as chemical reactions, whereas calling grammars describe higher level entities,

such as cells.

The Dynamical Grammars (DGs [93]) were implemented as a generalization of SPGs

that includes continuous dynamics as may wise for example in spatial simulations.

Ordinary and partial differential equations are declared as part of continuous-time

grammar rules. Thus, DGs can model complex deterministic and continuous move-

ment in space that results from interaction between objects. Examples of DG applica-

tions include: cells growth, cells movement due to spatial interactions, direct signaling

between cells, and indirect signaling due to secretion and diffusion of molecules. The

thesis presented a comprehensive DG model of the stem cell niche and neuronal pop-

ulation in the olfactory epithelium (OE). In the OE grammar, cells are represented as

objects in a two dimensional space and signaling molecules are spatial concentrations.

SPGs and their generalization, DGs, are defined as stochastic processes which are

decoupled from any specific simulation algorithm. The semantics (master equation)

allows the derivation of multiple simulation and sampling algorithms. The thesis

implemented a simulation algorithm for SPGs which was generalized to DGs, as

described in [93]. Furthermore, exact and approximate inference algorithms were

derived according to the master equation. The inference algorithms can be used to

infer the most likely hidden realization of an SPG process and the most probable

values of the hidden variables in an SPG model, given a set of observations. The

approximate inference algorithm is a Markov Chain Monte Carlo (MCMC) method

136

where new samples are generated by modifying the current multi-reactions path over a

random time interval. The time interval size is a tunable parameter that is correlated

to the samples acceptance rate and, therefore, may be optimized in order to maximize

the MCMC convergence rate.

The thesis introduced an SPG model of spiral galaxies’ structures. A learning algo-

rithm, which is based on an approximation of the galaxy model, was presented and

used for inferring spiral galaxy structures from images. This is the first probabilistic

model that is used to automatically extract low-level features of spiral galaxies from

images.

The OE model was developed in order to study the spatial interactions and possible

mechanisms of spatial distribution of cells in the tissue. The two dimensional spa-

tial model shows that the arrangement of stem and progenitor cells near the basal

lamina can be maintained with differential affinity to the basal lamina. Furthermore,

simulations of the OE model expose an interesting behavior of cell lineage trees that

arises due to random fluctuations of cell populations. In every local region, a single

cell lineage that originated from one stem cell dominates the other cell lineages that

go extinct.

12.2 Future directions

The SPG and DG simulation algorithms are analogous to Gillespie’s stochastic sim-

ulation algorithm (SSA) [52]. Substantial speedups over the straightforward SSA

method have been gained by the approximate methods, τ -leap [53] and R-leap [10],

and the recent exact method, Exact R-leap [94]. The τ -leap method approximates

the number of reactions in a discrete time interval whereas the R-leap methods ap-

137

proximate the number reactions of each type out of a total predefined number of

reactions in every simulation step. Such leaping methods can be incorporated in

the SPG framework. However, such accelerated simulations (by leaping methods) of

SPGs and DGs require handling objects’ parameters (especially output parameters),

and incorporating approximate integration techniques for the differential equations

of DGs.

Simulations of the OE model, shown in Chapter 11, require extensive computing

time and resources. A typical simulation of the OE model, that was shown, has ap-

proximately 10,000 reactions over hundreds of cells. For each reaction, the simulator

integrates a set of two dimensional diffusion equations (PDEs) and ODEs. Some

simulations require hours or even days of computation (an order of one minute per

simulation step). Plenum uses multiple processors to compute multiple simulations

in parallel. However, parallel computing can be used to speedup the computation of

each simulation separately. General methods of parallel computation for numerical

methods are discussed in [20, 37]. In case the DG model has spatial coordinates as the

OE model, the differential equations and stochastic rate functions can be distributed

between processors according to their spatial location. Movement of spatial objects

may trigger some modifications of the objects distribution among processors during

a simulation.

A possible direction for improving the accuracy of the SPG approximate sampling

algorithm is to combine the Monte-Carlo method with an exact marginalization over

some parameters. Such method of combining sampling with exact inference methods

is known as Rao-Blackwellisation [22] which was used successfully for some Dynamic

Bayesian Networks models [38]. In a Rao-Blackwellised inference algorithm for SPGs,

the sampling part generates a multi-reaction path over internal objects, whereas exact

marginalization calculates the probability of the observations given the set of gener-

138

ated internal objects. Exact marginalization is feasible only for some context-free

SPGs, as was discussed in Chapter 7. Hence, the marginalization part should be

confined to a context-free decomposition of the remaining possible reactions given

the set of generated internal objects.

The EM algorithm, used for inference in spiral galaxies’ images, is susceptible to local

minima and initial conditions. A simulated annealing approach, as in Chapter 8, can

avoid convergence to undesirable local minima. Moreover, the EM method optimizes

a static model (as opposed to the dynamic grammar model), meaning that the model

has a predefined number of objects and clusters (knots). The approximate inference

algorithm of Chapter 8 samples from the SPG probability distribution and could be

extended to handle unknown number of objects. An improved approximate inference

algorithm (with the extensions discussed above) may provide a more flexible and

accurate spiral galaxy inference scheme.

Plenum provides a basic interface for developing SPG models that is suitable for

models with small scale number of rules and terms. However, even the models that

were presented in this thesis can become increasingly complex and difficult to encode

and manipulate as more constraints and spatial interactions are introduced. To in-

crease the clarity of the model, the SPG syntax can be enhanced with object-oriented

constructs, as the rule syntax that is part of the OE model in chapter 11. For future

direction, a graphical user interface (GUI) can further improve the usability of the

SPG framework. A related GUI design is implemented in Sigmoid [64], which provides

a graphical representation of chemical reactions that are translated and simulated in

Cellerator [119]. For SPGs and DGs, a GUI can provide a graphical representation

of the interactions between different objects that will be translated to low level SPG

and DG rules and simulated in Plenum.

139

Appendices

A Derivation of the Dynamical Grammar’s simu-

lation algorithm

This section derives Equation 4.3 which is used in the simulation scheme for grammars

that include continuous rules. The simulation waiting time distribution (Equation

4.2) is an exponential over a sum of operators (i.e. eA+B). Such exponential may

be decomposed to a multiplication of exponentials (i.e. eAeB) only if the operators

commute (i.e. AB = BA). In general, continuous rules operators and diagonal

operators do not commute. In this case, the Trotter product formula [128, 118] can

be used:

exp

(

t(D +
∑

r

Oc
r)

)

= lim
n→∞

(

etD/netOc
1/netOc

2/n · · ·
)n

(A.1)

Let x denote a state space and ρ(x) denote the diagonal element inD that corresponds

to state x, i.e. the rate outflow in state x. The simulation waiting time distribution

(Equation 4.2 can be expressed according to the Trotter product formula as:

n
∏

(

exp(−dtρ(x)) exp(−dt
∂

∂x
v(x))

)

δ(x) ,wheredt= lim
n→∞

t/n (A.2)

140

The Taylor series expansion of the exponential is:

exp(−dt
∂

∂x
v(x))δ(x) =

(

δ(x) − dt
∂v(x)δ(x)

∂x
+ (−dt)2∂

2v(x)2δ(x)

(∂x)2 /2! + ...

)

(A.3)

The first derivative term may be reduced according to the fundamental property of

the delta function:

∂

∂x
v(x)δ(x) =

∫ ∞

−∞

∂v(y)δ(y)

∂y
δ(y−x)dy = −

∫ ∞

−∞

v(y)δ(y)
∂

∂y
δ(y−x)dy = v(0)

∂

∂x
δ(x)

The second derivative term may be reduced similarly:

∂2v(x)2δ(x)

(∂x)2 =

∫ ∞

−∞

∂2v(y)2δ(y)

(∂y)2 δ(y − x)dy = −
∫ ∞

−∞

∂v(y)2δ(y)

∂y

∂

∂y
δ(y − x)dy =

=

∫ ∞

−∞

v(y)2δ(y)
∂2

(∂y)2 δ(y − x)dy = v(0)2 ∂2

(∂x)2 δ(x) (A.4)

We can derive equivalent expressions for the rest of the terms, therefore Equation A.3

results in:

(

δ(x) − dtv(0)
∂δ(x)

∂x
+ (dtv(0))2∂

2δ(x)

(∂x)2 /2! + ...

)

= δ(x− dtv(0))

Equation A.2 after applying one factor of the multiplication:

n−1
∏

(

exp(−dtρ(x)) exp(−dt
∂

∂x
v(x))

)

exp(−dtρ(x))δ(x− dtv(0))

After applying all the factors, the result is:

exp(−
∫ t

0

ρ(x̂(τ))dτ)δ(x− x̂(t))

141

where x̂ is the solution of the differential equation:

dx̂

dt
= v(x̂) , x̂(0) = x0

142

Bibliography

[1] Neural Information Processing Systems (NIPS) 2006 workshop on Dynam-
ical Systems, Stochastic Processes and Bayesian Inference, December 2006.
Whistler, BC, Canada. http://www.cs.ucl.ac.uk/staff/C.Archambeau/dsb.htm.

[2] Parameter Estimation in Systems Biology (PESB), March 2007. Manchester,
UK. http://www.cs.manchester.ac.uk/ai/pesb07/.

[3] Uri Alon. An Introduction to Systems Biology: Design Principles of Biological
Circuits. Chapman Hall, 2006.

[4] H. Amthor, G. Nicholas, I. McKinnell, CF Kemp, and M. Sharma. Follistatin
complexes myostatin and antagonises myostatinmediated inhibition of myoge-
nesis. Dev Biol, 270:19–30, 2004.

[5] Brigham Anderson, Andrew Moore, Andrew J. Connolly, and Robert Nichol.
Fast nonlinear regression via eigenimages applied to galactic morphology. In
Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 40–48. ACM Press, 2004.

[6] C. Andrieu, J. P. G. de Freitas, and A. Doucet. Reversible jump MCMC simu-
lated annealing for neural networks. In Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence, pages 11–18. Morgan Kaufmann, 2000.

[7] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An introduction to
mcmc for machine learning. Machine Learning, 50:5–43, Jan 2003.

[8] Ana Valladares Enrique Flores Antonia Herrero, Alicia M. Muro-Pastor. Cel-
lular differentiation and the ntca transcription factor in filamentous cyanobac-
teria. FEMS Microbiology Reviews, 28(4):469–487, 2004.

[9] K. B. Athreyea and P. E. Ney. Branching Processes. Springer-Verlag; Dover,
1972.

[10] A. Auger, P. Chatelain, and P. Koumoutsakos. R-leaping: Accelerating the
stochastic simulation algorithm by reaction leaps. Journal of Chemical Physics,
(125), 2006.

143

[11] J. Baker. Trainable grammars for speech recognition. Speech communication
papers presented at the 97th meeting of the Acoustical Society of America, pages
547–550, 1979.

[12] GT Beemster and TI Baskin. Stunted plant 1 mediates effects of cytokinin, but
not of auxin, on cell division and expansion in the root of arabidopsis. Plant
Physiol., 124:1718–27, Dec 2000.

[13] J.L. Bentley. Multidimensional binary search trees used for associative search-
ing. Communication of the ACM, 18:1718–27, September 1975.

[14] Ashish Bhan and Eric Mjolsness. Static and dynamic models of biological
networks. Complexity, 11:11–13, 2006.

[15] Yang J. Faeder-J.R. Blinov, M.L. and W.S. Hlavacek. Graph theory for rule-
based modeling of biochemical networks. Lect. Notes Comput. Sci., 4230:89–
106, 2006.

[16] R. J. Boys, D. J. Wilkinson, and T. B.L. Kirkwood. Bayesian inference for
a discretely observed stochastic kinetic model. Statistics and Computing, 18,
June 2008.

[17] R. Bracewell. The impulse symbol. In The Fourier Transform and Its Applica-
tions, 3rd ed, pages 74–104. McGraw-Hill, 2000.

[18] Ola Bratteli and Derek W. Robinson. Operator Algebras and Quantum Statisti-
cal Mechanics 2: Equilibrium States. Models in Quantum Statistical Mechanics.
Springer, 2003.

[19] Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin. Programming
expert systems in OPS5: an introduction to rule-based programming. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1985.

[20] Are Magnus Bruaset and Aslak Tveito, editors. Numerical Solution of Partial
Differential Equations on Parallel Computers. Springer, 2006.

[21] Anne L. Calof, Alexandre Bonnin, Candice Crocker, Shimako Kawauchi,
Richard C. Murray, Jianyong Shou, and Hsiao-Huei Wu. Progenitor cells of
the olfactory receptor neuron lineage. Microscopy Research and Technique,
58:176–188, 2002.

[22] G. Casella and C. P. Robert. Rao-blackwellisation of sampling schemes.
Biometrika, 83(1):81–94, 1996.

[23] Tuncer Cebeci. Convective Heat Transfer. Springer, 2002.

[24] N. Chomsky. Three models for the description of language. IRE Transactions
Information Theory, 2:113–124, 1956.

144

[25] N. Chomsky. On certain formal properties of grammars. Information and
Control, 2:137–167, 1959.

[26] King-Wai Chu, Yuefan Deng, and John Reinitz. Parallel simulated annealing
by mixing of states. Journal of Computational Phys, 148:646–662, 1999.

[27] Faeder JR Hlavacek WS Von Hoff DD Posner RG. Colvin J, Monine MI. Sim-
ulation of large-scale rule-based models. Bioinformatics, 25(7):910–917, 2009.

[28] J. Crank and P. Nicolson. A practical method for numerical evaluation of solu-
tions of partial differential equations of the heat conduction type. Proceedings
of the Cambridge Philosophical Society, 43:50–64, 1947.

[29] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf.
Computational Geometry. Springer-Verlag, 2000.

[30] JP de Winter, P. Dijke, CJ de Vries, TA van Achterberg, and H. Sugino. Follis-
tatins neutralize activin bioactivity by inhibition of activin binding to its type
II receptors. Mol Cell Endocrinol, 116:105–114, 1996.

[31] T. Dean and K. Kanazawa. A model for reasoning about persistence and cau-
sation. Comp. Intelligence, 5:142–150., 1989.

[32] R. Dechter. Bucket elimination: A unifying framework for processing hard and
soft constraints. Constraints: An International Journal, (2):51–55, 1997.

[33] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[34] Arthur Dempster, Nan Laird, and Donald Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society,
Series B:1–38, 1977.

[35] Luc Devroye. Non-Uniform Random Variate Generation (see chapter 2). New
York: Springer-Verlag, 1986.

[36] L. Dolan, K. Janmaat, V. Willemsen, P. Linstead, and S. Poethig. Cellular
organisation of the arabidopsis thaliana root. Development, 119:71–84, 1993.

[37] J. Dongarra, G. Fox, K. Kennedy, L. Torczon, and W. Gropp. The Sourcebook
of Parallel Computing. Morgan Kaufmann, 2002.

[38] Arnaud Doucet, Narido de Freitas, Kevin Murphy, and Stuart Russell. Rao-
blackwellised particle filtering for dynamic bayesian networks. In Proceedings of
the Sixteenth Conference on Uncertainty in Artificial Intelligence, pages 176–
183, Stanford,CA, 2000.

[39] R. Durbin, R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
1999.

145

[40] F. Dyson. Phys. Rev., 75:107–136, 1949.

[41] S. R. Eddy and R. Durbin. Rna sequence analysis using covariance models.
Nucleic Acids Research, 22:2079–2088, 1994.

[42] Greg Eyink, Juan Restrepo, and Francis Alexander. A mean field approximation
in data assimilation for nonlinear dynamics. Physica, D:347–368, 2004.

[43] P. Federl and P. Prusinkiewicz. Solving differential equations in developmental
models of multicellular structures expressed using l 2212systems. Proceedings
of Computational Science, pages 1–5, 2004.

[44] Kurt W. Fleischer. A Multiple-Mechanism Developmental Model for Defining
Self-Organizing Geometric Structures. PhD thesis, California Institute of Tech-
nology, 1995.

[45] Charles Forgy. Rete: A fast algorithm for the many pattern/many object pat-
tern match problem. Artificial Intelligence, (19):17–37, 1982.

[46] J. Friml, E. Benkov, I. Blilou, J. Wisniewska, and T. Hamann. Atpin4 mediates
sinkdriven auxin gradients and root patterning in arabidopsis. Cell, 108:661–
673, 2002.

[47] J. Friml, A. Vieten, M. Sauer, D. Weijers, H. Schwarz, T. Hamann, R. Offringa,
and G. Jurgens. Efflux-dependent auxin gradients establish the apical basal axis
of arabidopsis. Nature, 426:147–153, 2003.

[48] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6:721–741, 1984.

[49] H.J. Genrich. Predicate/transition nets. Advances in Petri nets : APN, 1:208–
247, 1986.

[50] Jean-Louis Giavitto and Olivier Michel. Mgs: a programming language for the
transformations of topological collections. Technical Report 61-2001, May 2001.

[51] Gavin J. Gibson and Eric Renshaw. Estimating parameters in stochastic com-
partmental models using markov chain methods. Math Med Biol, 15:19–40,
1998.

[52] Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry, 81:2340–2361, 1977.

[53] D.T. Gillespie. Approximate accelerated stochastic simulation of chemically
reacting systems. J. Phys.Chem., 115:1716–1733, 2001.

[54] J. A. Glazier and F. Graner. Simulation of the differential adhesion driven
rearrangement of biological cells. Phys. Rev., 47:2128–2154, 1993.

146

[55] Kimberly K. Gokoffski, Hsiao-Huei Wu, Crestina L. Beites, Joon Kim, Martin
Matzuk, Arthur D. Lander, and Anne L. Calof. Cell stage-specific feedback
regulation of neurogenesis and gliogenesis by activin and GDF11. Submitted to
Genes and Development, Feb 2009.

[56] A. Golightly and D.J. Wilkinson. Bayesian inference for stochastic kinetic mod-
els using a diffusion approximation. Biometrics, 61:781–788, 2005.

[57] Niels Grabe and Karsten Neuber. A multicellular systems biology model pre-
dicts epidermal morphology, kinetics and Ca2+ flow. Bioinformatics, 21:3541–
3547, 2005.

[58] Franois Graner and James A. Glazier. Simulation of biological cell sorting using
a two-dimensional extended potts model. Physical Review Letters, 69:2013–
2016, 1992.

[59] Peter J. Green. Reversible jump markov chain monte carlo computation and
bayesian model determination. Biometrica, 82:711–732, 1995.

[60] Peter J. Haas. Stochastic Petri Nets. Springer, 2006.

[61] W. K. Hastings. Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57:97–109, 1970.

[62] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory,
languages, and computation. Reading, MA: Addison-Wesley, 1979.

[63] David V. Hutton. Fundamentals Of Finite Element Analysis. McGraw Hill,
2004.

[64] P. Baldi J. Cheng, L. Scharenbroich and E. Mjolsness. Sigmoid: Towards a gen-
erative, scalable, software infrastructure for pathway bioinformatics and systems
biology. IEEE Intelligent Systems, 20(3):68–75, May/June 2005.

[65] Kurt Jensen. Coloured Petri Nets, vols I, II, III. Springer-Verlag, 1997.

[66] J. Kafer, P. Hogeweg, and F. M. Maree. Moving forward moving backward:
directional sorting of chemotactic cells due to size and adhesion differences.
PLoS Computational Biology, 2:429–454, 2006.

[67] S. Kirshner, I. Cadez, P. Smyth, and C. Kamath. Learning to classify galaxy
shapes using em algorithm. Neural Information Processing Systems, pages
4658–4659, 2002.

[68] K.N. Kozlov and A.M. Samsonov. New migration scheme for parallel differen-
tial evolution. 5th International Conference on the Bioinformatics of Genome
Regulation and Function (BGRS-2006), 2:141–144, 2006.

[69] EM Kramer and MJ Bennett. Auxin transport: a field in flux. Trends in plant
science, 11:382–386, 2006.

147

[70] G. Soules L. E. Baum, T. Petrie and N. Weiss. A maximization technique
occurring in the statistical analysis of probabilistic functions of markov chains.
Ann. Math. Statist., 41(1):164–171, 1970.

[71] John E. Laird, Allen Newell, and Paul S. Rosenbloom. Soar: an architecture
for general intelligence. Artif. Intell., 33(1):1–64, 1987.

[72] J. Lam and J.-M. Delosme. An efficient simulated annealing schedule: Deriva-
tion. Technical Report 8816, 1988.

[73] Arthur D. Lander, Kimberly K. Gokoffski, Frederic Y.M. Wan, Qing Nie, and
Anne L. Calof. Cell lineages and the logic of proliferative control. PLoS Biology,
7(1), 2008.

[74] Kenneth Lange. Applied Probability. Section 9.6. Springer-Verlag, 2004.

[75] K. Lari and S. J. Young. The estimation of stochastic context-free grammars
using the inside-outside algorithm. Computer Speech and Language, 4:35–56,
1990.

[76] J. E. Lennard-Jones. Cohesion. Proceedings of the Physical Society, 43:461–482,
1931.

[77] Win-Cheong Lo, Ching-Shan Chou, Kimberly K. Gokoffski, Frederic Y.M. Wan,
Arthur D. Lander, Anee L. Calof, and Qing Nie. Feedback regulation in mul-
tistage cell lineages. Mathematical biosciences and engineering, pages 407–417,
2008.

[78] Cash S. S. Poo M. Lowen, S. B. and M. C. Teich. Quantal neurotransmitter
secretion rate exhibits fractal behavior. Journal of Neuroscience, (17):5666–
5677, 1997.

[79] S. B. Lowen and M. C. Teich. Fractal renewal processes generate 1/f noise.
Phys. Rev., 47:992–1001, 1993.

[80] Steven Bradley Lowen and Malvin Carl Teich. Fractal-Based Point Processes.
Wiley-Interscience, 2005.

[81] David MacKay. Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press, 2003.

[82] J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics
and Probability, pages 407–417, 1967.

[83] M. Mangel and M. B. Bonsall. Phenotypic evolutionary models in stem cell
biology: Replacement, quiescence, and variability. PLoS ONE, 3:407–417, 2008.

[84] Christopher D. Manning and Hinrich Schuetze. Foundations of Statistical Nat-
ural Language Processing. The MIT Press, 1999.

148

[85] Georgios Marnellos. Gene Network Models Applied to Questions in Development
and Evolution. PhD thesis, Yale University, 1997.

[86] P. Mendes and D. Kell. Non-linear optimization of biochemical pathways: ap-
plications to metabolic engineering and parameter estimation. Bioinformatics,
14:869–883, 1998.

[87] B. Milch, B. Marthi, S. Russell, and D. Sontag. Blog: Probabilistic models
with unknown objects. Proceedings of the International Joint Conference on
Artificial Intelligence, pages 1352–1359, 2005.

[88] V. Mironova, V. A. Likhoshvai, N. A Omelyanchuk, S. I. Fadeev, G. Yosiphon,
E. Mjolsness, and N. A. Kolchanov. Acroptal auxin transport mediates pat-
terning along the root longitudinal axis. In submission.

[89] G. J. Mitchison and M. Wilcox. Rules governing cell division in anabaena.
Nature, 239:110–111, 1972.

[90] E. Mjolsness, D. H. Sharp, and J. Reinitz. A connectionist model of develop-
ment. Journal of Theoretical Biology, 152:429–454, 1991.

[91] Eric Mjolsness. The growth and development of some recent plant models: A
viewpoint. Journal of Plant Growth Regulation, 25:270–277, December 2006.

[92] Eric Mjolsness, Charles D. Garrett, John Reinitz, and David H. Sharp. Mod-
eling the connection between development and evolution: Preliminary report.
Evolution and Biocomputation: Computational Models of Evolution, 899:103–
122, 1995.

[93] Eric Mjolsness and Guy Yosiphon. Stochastic process semantics for dynami-
cal grammars. Annals of Mathematics and Artificial Intelligence, 47:329–395,
August 2006.

[94] Chatelain P Koumoutsakos P. Mjolsness E, Orendorff D. An exact accelerated
stochastic simulation algorithm. Technical Report UCI-ICS, (08-09), 2009.

[95] D. Morel, R. Marcelpoil, and G. Brugal. A proliferation control network model:
The simulation of two-dimensional epithelial homeostasis. Acta Biotheoretica,
49:219–234, 2001.

[96] GK. Muday. Auxins and tropisms. J Plant Growth Regul., 20:226–243, 2001.

[97] Yves Fomekong Nanfack, Jaap A. Kaandorp, and Joke Blom. Efficient param-
eter estimation for spatio-temporal models of pattern formation: Case study of
drosophila melanogaster. Bioinformatics, 23:3356–3363, September 2007.

[98] U. Nodelman, C.R. Shelton, and D. Koller. Continuous time bayesian net-
works. Proceedings of the Eighteenth Conference on Uncertainty in Artificial
Intelligence (UAI), pages 378–387, 2002.

149

[99] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann Publishers, 1988.

[100] Chien Y. Peng, Luis C. Ho, Chris D. Impey, and Hans-Walter Rix. Detailed
structural decomposition of galaxy images. The Astronomical Journal, 124:266–
293, 7 2002.

[101] Carl A. Petri. Kommunikation mit Automaten. PhD thesis, University of Bonn,
1962.

[102] A. Phillips and L. Cardelli. A correct abstract machine for the stochastic pi-
calculus. In Concurrent Models in Molecular Biology, August 2004.

[103] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-
terling. Numerical Recipes in C: The Art of Scientific Computing. Cambridge
University Press, 1992.

[104] C. J. Preston. Spatial birth-and-death processes. Bull. Int. Statist. Inst.,
46:371–391, 1977.

[105] Przemyslaw Prusinkiewicz, Mark S. Hammel, and Eric Mjolsness. Animation of
plant development. SIGGRAPH ’93 Conference Proceedings, pages 3508–3515,
1993. Association for Computing Machinery.

[106] Przemyslaw Prusinkiewicz and Aristid Lindenmeyer. The Algorithmic Beauty
of Plants. Springer-Verlag, 1990.

[107] N. Przulj, D. G. Corneil, and I. Jurisica. Modeling interactome: Scale-free or
geometric? Bioinformatics, 20:3508–3515, 2004.

[108] R. Raffard, K. Amonlirdviman, J.D. Axelrod, and C. Tomlin. An adjoint-based
parameter identifcation algorithm applied to planar cell polarity signaling. Au-
tomatic Control, IEEE Transactions on, 53:109–121, Jan 2008.

[109] Oliver Rbenknig. Imtek mathematica supplement IMS. http://www.imtek.uni-
freiburg.de/simulation/mathematica/IMSweb/. Last accessed May 12, 2009.

[110] John Reinitz, Eric Mjolsness, and David H. Sharp. Model for cooperative control
of positional information in drosophila by bcd and maternal hb. Journal of
Experimental Zoology, 271:47–56, 1995.

[111] S. Reinker, R.M. Altman, and J. Timmer. Parameter estimation in stochastic
biochemical reactions. Systems Biology, IEE Proceedings, 153:168–178, 2006.

[112] B. D. Ripley and A. I. Sutherland. Finding spiral structures in images of galax-
ies. Philosophical Transactions: Physical Sciences and Engineering, 332:477–
485, 1990.

[113] H. Risken. The Fokker-Planck Equation. Springer, 1984.

150

[114] S. Sabatini, D. Beis, H. Wolkenfelt, J. Murfett, and T. Guilfoyle. An auxin-
dependent distal organizer of pattern and polarity in the arabidopsis root. Cell,
99:463–472, 1999.

[115] S. Sanghai, P. Domingos, and D. Weld. Relational dynamic bayesian networks.
Journal of Artificial Intelligence Research, 2005.

[116] Nicholas J. Savill and Paulien Hogeweg. Modelling morphogenesis: From single
cells to crawling slugs. Journal of Theoretical Biology, 184:229–235, 1997.

[117] J. Schlecht, K. Barnard, E. Spriggs, and B. Pryor. Inferring grammar-based
structure models from 3d microscopy data. Computer Vision and Pattern Recog-
nition. CVPR ’07. IEEE Conference on, 1:1–8, June 2007.

[118] L. S. Schulman. Techniques and Applications of Path Integration. Wiley, 1981.

[119] Bruce E. Shapiro, Andre Levchenko, Elliot M. Meyerowitz, Barbara J. Wold,
and Eric D. Mjolsness. Cellerator: extending a computer algebra system to
include biochemical arrows for signal transduction simulations. Bioinformatics,
19:677–678, 2003.

[120] Bruce E. Shapiro and Eric D. Mjolsness. Developmental simulations in Celler-
ator. In Second International Conference on Systems Biology, Pasadena, CA,
2001.

[121] D. L. Snyder and M. I. Miller. Random Point Processes in Time and Space.
Wiley, 1991.

[122] Robert St-Aubin, Joel Friedman, and Alan K. Mackworth. A formal mathe-
matical framework for modeling probabilistic hybrid systems. In Proceedings of
the Ninth Annual Conference on Artificial Intelligence and Mathematics, pages
407–417, January 2006.

[123] MS Steinberg. Reconstruction of tissues by dissociated cells. some morpho-
genetic tissue movements and the sorting out of embryonic cells may have a
common explanation. Science, 141:401–408, 1963.

[124] Heneghan C Lowen S. B. Ozaki T. Teich, M. C and E. Kaplan. Fractal character
of the neural spike train in the visual system of the cat. Journal of the Optical
Society of America, A(14):529–546, 1997.

[125] C. van den Berg, P. Weisbeek, and B. Scheres. Cell fate and cell differentiation
status in the arabidopsis root. Planta., 205:483–491, 1998.

[126] N. G. van Kampen. Stochastic Processes in Physics and Chemistry. North-
Holland, 1981.

[127] Andrew J. Viterbi. Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm. IEEE Transactions on Information Theory,
13(2):260–269, 1967.

151

[128] Eric W. Weisstein. Trotter product formula. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/TrotterProductFormula.html.

[129] A.V. Werhli and D. Husmeier. Reconstructing gene regulatory networks with
bayesian networks by combining expression data with multiple sources of prior
knowledge. Statistical Applications in Genetics and Molecular Biology, 6, 2007.

[130] Pieter Wesseling. An Introduction to Multigrid Methods. Wiley, 1992.

[131] Darren J. Wilkinson. Stochastic Modelling for Systems Biology. Chapman
Hall/CRC, 2006.

[132] William T. Vetterling and Brian P. Flannery William H. Press, Saul A. Teukol-
sky. Numerical Recipes : The Art of Scientific Computing. Cambridge Univer-
sity Press, 2007.

[133] Stephen Wolfram. The Mathematica Book, Fourth Edition. Cambridge Univer-
sity Press, 1999.

[134] H. Wu, S. Ivkovic, R. C. Murray, S. Jaramillo, K. M. Lyons, J. E. Johnson, and
A. L. Calof. Autoregulation of neurogenesis by GDF11. Neuron, 37:197–207,
2003.

[135] J. Xu, H. Hofhuis, R. Heidstra, M. Sauer, and J. Friml. A molecular framework
for plant regeneration. Science, 311:385–388, 2006.

[136] Guy Yosiphon and Eric Mjolsness. Plenum - a dynamical grammar inter-
preter/simulator, 2008. Software package written for Mathematica computer
algebra system. Available at http://computableplant.ics.uci.edu/. Last accessed
April 10, 2009.

[137] Guy Yosiphon and Eric Mjolsness. Towards the inference of stochastic bio-
chemical network and parameterized grammar models. In N. D. Lawrence,
M. Girolami, M. Rattray, and G. Sanguinetti, editors, Learning and Inference
in Computational Systems Biology. MIT Press, 2009.

[138] Daniel H. Younger. Recognition and parsing of context-free languages in time
n3. Information and Control, 10(2):189–208, 1967.

[139] L. Zhang. Dynamic Biological Signal Pathway Modeling and Parameter Es-
timation through Optimization. PhD thesis, University of California, Irvine,
2008.

[140] S.C. Zhu and D. Mumford. A stochastic grammar of images. Foundations and
Trends in Computer Graphics and Vision, 2(4):259–362, 2006.

152

	LIST OF FIGURES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Motivation
	Overview of the contributions of the thesis
	Overview of the thesis

	Background
	Generative grammars
	Stochastic grammars
	Other related formalisms

	The Stochastic Parameterized Grammar formalism
	SPG formal definition
	Language extensions
	Constraints over rule parameters
	Existential operator
	Subgrammar calls

	SPG illustration - clustering
	Dynamical Grammar
	Parabolic partial differential equations

	SPG simulation
	Time ordered product expansion
	Dynamical Grammar simulation
	Simulation of Dynamical Grammars with PDEs

	Simulator implementation
	Matching objects tuples to rules
	Computational complexity of the simulation algorithm
	Handling output parameters
	Integration of Dynamical Grammar rate functions

	SPG modeling motifs
	Complex chemical reactions
	Rule schema for memory dependent processes
	Spatial modeling - the weak spring
	Reduction to deterministic model
	Meta-Grammar rules

	Exact inference in context-free SPGs
	The inside-outside algorithm
	Parameter training in SCFGs
	Inference algorithm for context-free SPGs
	Handling SPGs' unordered objects
	Discussion

	Approximate inference in SPGs
	MCMC algorithm
	Grammar sampling algorithm
	Illustrative example
	Related work
	Discussion

	Galaxy morphology grammar
	Spiral galaxy grammar
	Galaxy model inference
	Results
	Future directions

	Modeling root development
	Introduction
	Model for Auxin transport
	Regulation of cell division

	Modeling the olfactory epithelium
	Introduction
	Methods and model description
	Results
	Divergence between stochastic and deterministic solutions
	Dynamics of lineage trees in spatial-stochastic models

	Conclusions
	Related work
	Summary and future directions

	Conclusions
	Contributions of this thesis
	Future directions

	Appendices
	Derivation of the Dynamical Grammar's simulation algorithm

	Bibliography

