

UNIVERSITY OF CALIFORNIA,
IRVINE

Schematic Representation and Database Population Strategies for Sigmoid, a
Biochemical Network Modeling System

DISSERTATION

Submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Information and Computer Science

Concentration in Informatics for Biology and Medicine

by

Behnam Compani-Tabrizi

Dissertation Committee:

Professor Eric Mjolsness, Chair
Professor Lee Bardwell

Associate Professor Gopi Meenakshisundaram

2012

Chapter 1 © Springer Science + Business Media
Portion of Chapters 2, 4 and 5 © Springer Science + Business Media

All other materials © 2012 Behnam Compani-Tabrizi

ii

DEDICATION

To

My wonderful parents

Behrooz and Elizabeth

To whom I owe everything I have achieved in my life.

To my sister

Roya

Whom I love with all my heart.

And to my grandfather

Frank Doan Streightoff

For his unwavering support.

iii

.

Contents
 Page
LIST OF FIGURES ... vi
LIST OF TABLES ... xvii
ACKNOWLEDGMENTS ... xviii
CURRICULUM VITAE .. xx
ABSTRACT OF THE DISSERTATION .. xxi
Chapter 1. Sigmoid Overview ... 1

1.1 Introduction .. 1
1.2 Methods .. 4

1.2.1 Model Generation and Simulation: xCellerator .. 4
1.2.2 Sigmoid Pathway Database ... 6
1.2.3 Sigmoid Web Middleware for Distributed Computing and Web Services ... 7
1.2.4 The Graphical User Interface: Sigmoid Model Explorer (SME) 8

Chapter 2. The Sigmoid Schema .. 10
2.1 Introduction to the Schema and the Development Environment 10
2.2 Modeling Class Diagram .. 13

2.2.1 The Model Class ... 13
2.3 Parameters .. 16
2.4 Parameter Sets .. 18

2.4.1 Object-oriented Parameters ... 18
2.4.2 LEDA .. 25

2.5 The Reactant Hierarchy .. 26
2.5.1 Particles ... 28
2.5.2 Molecules .. 29
2.5.3 SmallMolecules... 30
2.5.4 MacroMolecules ... 30
2.5.5 Complexes... 34
2.5.6 Structured Reactants ... 36

2.6 Reactant Utility Classes ... 40
2.6.1 StateVectors and Modifications .. 40
2.6.2 Compartments ... 41
2.6.3 Taxonomy ... 41
2.6.4 Functional Ontology ... 42

2.7 Reactions .. 43
2.7.1 The Reaction Super Class. .. 44

2.8 The BiologicalReaction Sub-domain of Reactions. ... 48
2.8.1 NonCatalyzed Reactions ... 49
2.8.2 Catalytic and Enzymatic Biological Reactions ... 51
2.8.3 Additional Simple Biological Reactions ... 53
2.8.4 CompoundBio Reactions .. 54

2.9 MathematicalReactions .. 55
2.9.1 The MathematicalReaction sub-domain. .. 55

iv

2.9.2 Reaction Utility Classes. ... 64
2.9.3 Post Translational Modification Hierarchy ... 69

2.10 Knowledge Sources .. 71
2.11 Additional supporting classes ... 76

2.11.1 Gene Ontologies.. 76
2.11.2 Spatial and Compartmental Modeling .. 78

2.12 Other Systems ... 84
2.13 Conclusion .. 85

Chapter 3. Enzyme Mechanism Representation: SigMech ... 87
3.1 Addition Strategy ... 90

3.1.1 Full Addition ... 91
3.1.2 Sequential Addition .. 92
3.1.3 Random Addition .. 93

3.2 Conversion Strategy ... 94
3.2.1 Instant Conversion .. 94
3.2.2 OneStep Conversion ... 95

3.3 Release Strategy ... 96
3.3.1 Full Release ... 96
3.3.2 Sequential Release .. 96
3.3.3 Random Release .. 97

3.4 Ping Pong Pattern ... 97
3.5 Inhibition Models ... 99

3.5.1 Competitive inhibition: ... 99
3.5.2 Uncompetitive inhibition: ... 100
3.5.3 Noncompetitive inhibition: ... 100

3.6 Parameter Summary ... 101
3.7 User Interface: .. 103

3.7.1 Accessing SigMech from SME ... 104
3.7.2 Drop down Menus ... 106
3.7.3 TerTer Full Addition Full Release Example ... 107
3.7.4 TerTer Sequential Addition Full Release Example 109
3.7.5 BiBi Ping Pong Example .. 114
3.7.6 TerTer Ping Pong Example ... 115
3.7.7 Conversion Phase .. 117
3.7.8 Inhibition Examples: ... 122

3.8 Sigmoid Model Explorer integration. ... 128
3.9 Conclusion .. 129

Chapter 4. Population Strategies for the Sigmoid Database. .. 130
4.1 User Coded Models .. 131

4.1.1 Sigmoid Database Population From xCellerator notebooks. 134
4.1.2 SBML as a Source of Pathway Models. ... 134
4.1.3 Sigmoid Team Population Effort. ... 137
4.1.4 The Najdi_2009_Xyl_Ara_Et hModel ... 139
4.1.5 The Najdi_2010_FattyAcidBiosynthesis Model....................................... 140
4.1.6 The Middleton_2008_AuxinModel .. 141
4.1.7 The Wushel Compartmental and SpatialModel Model 142

v

4.1.8 Zhang Optimizer Models .. 143
4.1.9 Demonstration Models .. 144

4.2 Automated Population of the Sigmoid Database ... 145
4.2.1 Kyoto Encyclopedia of Genes and Genomes .. 145
4.2.2 SBML .. 147
4.2.3 Gene Networks .. 148
4.2.4 Gene Ontologies.. 149
4.2.5 SabioR-K... 150

Chapter 5. Support for Exterior Simulators and Utilities ... 152
5.1 Parameter Optimization .. 152
5.2 Alternate Simulators ... 152
5.3 Graph Crunch ... 153

Chapter 6. Conclusion ... 154
Bibliography: .. 158
Appendix A. Sigmoid Class Authorship. .. .163
Appendix B. ModelCodeAuthorship…...………….………………………………..….173
Appendix C. Posttranslational Modification Classes. .. 174

vi

LIST OF FIGURES

 Page
Figure 1.1 Sigmoid three-tier architecture. Separation of modules into a communicating
distributed system increases scalability of the architecture. The Sigmoid simulation
results are provided by the xCellerator model generator/ simulator. The database is
Sigmoid (autogenerated from a UML schema) and the user interface is the Sigmoid
Model Explorer (SME). .. 2

Figure 1.2 Sigmoid Three Stage Catalytic model. From Top to bottom. xCellerator input
notation, reaction cartoon, resulting differential equations and an example of numerical
output. ... 6

Figure 1.3 The Sigmoid Intelligent Middleware utilizing Apache Axis (SOAP) brokers
transactions for the Sigmoid framework. Clients such as SME can access the simulator
and database back end components through the middleware. The SQL database is
accessed through an Object Relational Bridge (OJB). The Mathematica/ xCellerator
simulator is accessed through Mathematicas’ JLink utility. The figure was redrawn from
[Cheng et al.2005] .. 7

Figure 1.4 Sigmoid Model Explorer showing portion of MAPK pathway: (a) TreeView
of compositional hierarchy. (b) network layout visualization. (c) parameter-editing panel.
(d) output plot preview panel. Along the top are various action buttons for saving and
running the model, and for switching the main panel to view output plots. User can select
reaction icons. ... 8

Figure 2.1 Sigmoid Schema Model Class Diagram includes supporting utility classes
such as parameter sets, parameters, classes that define units of measure, classes for graph
analysis and classes for compartmental modeling. ... 13

Figure 2.2 The Sigmoid Model class is the main container class for all Sigmoid
biochemical pathway models. Essential components for a Model capable of display
within the Sigmoid Model Explorer and simulation by the xCellerator/Mathematica
simulator are: 1) A Model name. 2) A set of Reactants. 3) A set of Biological Reactions
that only use Reactants specified in 2. Each Biological Reaction must have at least one
associated MathematicalReaction referenced for simulation capabilities. Models that
only possess a BiologicalReaction network may be visualized and edited within SME. . 15

Figure 2.3 The Sigmoid Parameter Classes store values that serve as parameter inputs for
the various Sigmoid Reaction classes. Parameters store Java primitive types as data that
can be used as inputs for computational or mathematical processing. RateFuntions are
designed to store algebraic expressions that are to be fed to external simulators. 16

Figure 2.4 ParameterSets are collections of Sigmoid Parameters that serve as inputs for
the variety of Sigmoid Reaction classes, concentration information Reactants and

vii

parameterized inputs for exernal simulators and analysis tools. Collections of parameters
are useful for organizing model behavior and analysis at a meta level. Also, the
Optimization ParameterSet stores parameters for a simulated annealing optimizer [Zhang
2008] that has been incorporated into Sigmoid. ... 19

Figure 2.5 LayoutNode Class is used for storing graphical layout settings that determine
the Sigmoid Model Explorer display behavior. Model icons are positioned via Cartesian
coordinates. Layouts were designed to be collapsible and thus can be stored in a nested
fashion by using the “owner” reference. Toggles for hiding particular icons and
associations to other icons are stored via the “isHidden” and “edgesHidden” attributes. 21

Figure 2.6 Cellerator ParameterSets are a legacy representation from earlier versions of
Sigmoid. They are still a useful representation for initializing models that have
corresponding Mathematica/xCellerator notebooks. .. 23

Figure 2.7 NameValuePairs serve as a mirror representation of xCellerator notebook rules
used to set initial conditions and rate constants for models. ... 24

Figure 2.8 The LEDA Graph data structure classes. .. 25

Figure 2.9 The entire Reactant class diagram. The root node of the main tree of reactants
is The Reactant class (red). The main sub categories of Reactants are from left to right,
Particles (in yellow), Molecules (green), Proteins (purple), BioComplexes (orange) and
Structures (reds and pinks). This hierarchy is expanded upon in more detail in
subsequent figures. .. 26

Figure 2.10 Basic particle types are available for modeling. Photons are available for
modeling of systems involving biological processes such as photosynthesis. Electrons
were included for modeling electromotive forces involved in mitochondrial ATP
synthesis. Protons are crucial for modeling acid-base chemistry and membrane bound
proton pumps. Alpha particles and Photons could be useful in modeling cell damage
induced by these forms of radiation. ... 28

Figure 2.11 The Molecule Sub-hierarchy of Reactants. At the molecule level, the
reactant tree is split into two categories, SmallMolecules (left branch) and
MacroMolecules (right branch). The MacroMolecule domain includes all types of
Sigmoid Protein (Purple subtree). Within the scope of existing and curated Sigmoid
models, the molecule tree possesses the most frequently instantiated types of Sigmoid
Reactants. .. 29

Figure 2.12 Several common kinds of biological SmallMolecules of are available for
modeling. SmallMolecules possess the chemicalFormula designation. The particular
convention of molecular formula is unspecified for user flexibility. Charged Ions can be
used for use cases such as acid-base reactions. ... 30

viii

Figure 2.13 The Sigmoid MacroMolecule classes represent common but pertinent classes
of biological macromolecules. Appearing from left to right are, Peptides which have the
Protein subclass tree, Lipids, DNA, RNA, and Carbohydrates (Should be termed
Polysaccharide). The “conformation” attribute of Macromolecule can be used to store
domain specific information about a particular macromolecule such as sequence
information. ... 31

Figure 2.14 This class diagram presents some of the Classes that inherit the Protein
designation. The six major types of enzymatic proteins are available as an Enzyme
Reactant. Other Protein class names are designated by roles the protein might be playing
in a particular Model or Reaction. Providing classes for these types of proteins allows a
coding investigator to build models using objects that represent relevant biological
entities. The representation can be expanded, with a schema revision, to include
additional attributes when a modeling demand arises. For example, Odixoreductases
have associated coenzymes or cofactors. Naturally if analysis of this relationship were to
become a modeling requirement, it could be added to the schema. 32

Figure 2.15 Additional Protein class types include Gate Proteins that are involved in
trans-membrane or boundary Reactions, roles as Structural proteins and Antibodies.
HypotheticalProteins are available to represent potential gene products and
TranscriptionFractors can specify sequence specificity. .. 33

Figure 2.16 The BioComplex sub-hierarchy of classes. ... 35

Figure 2.17 Structures are intended support large scale reactants with high complexity.
Structures can contain other Reactants thus provide a nested representation for
biologically complex entities. Every structure contains a collection of compartments. For
example, this can represent multi-compartmental Organs with cellular constituents that
possess organelles. .. 36

Figure 2.18 The available Organelle classes inherit from Structure and possess collections
of compartments. A set of classic cellular structures is available for the modeling
biologist to choose from to construct Models. .. 37

Figure 2.19 The Reactant super class is the container class for all common Reactant
attributes. It is abstract in that its biological role has not been explicitly designated.
Functionally at a minimum for xCellerator simulation the only required field for a
Reactant is a “name”. A corresponding initial condition should be specified. 38

Figure 2.20 StateVectors, Modifications and the Sigmoid 2.17 Compartment
representation. ... 40

Figure 2.21 A simple Taxon representation. Taxonomic ancestor information can be
stored in this simple recursive data structure. The reference to Taxon is contained in the
root Reactant class. Although most entities in the Reactant hierarchy may have a

ix

taxonomic designation, a few exceptions are present. i.e. particles and small molecules do
not inherently possess this attribute. ... 41

Figure 2.22 The Sigmoid functional ontology. ... 42

Figure 2.23 The entire Sigmoid Reaction diagram. This diagram is comprised of a
Reaction hierarchy (yellow root class), a post-translational modification hierarchy (the
green tree on bottom right), and supporting utility classes (top left). The Reaction
hierarchy is split into two major sections. The top right most branch of the tree is
composed of Biological Reactions. The left branch is composed of Mathematical
Reactions. Components and attributes of this diagram will be illustrated in more detail in
the following sections. .. 43

Figure 2.24 Reaction is the root class of the entire Reaction Hierarchy. Every class of
Reaction will inherit its attributes. The name attribute is requisite for display in SME and
is required for simulation in xCellerator. KnowledgeSources, “shortDescription”, and the
comment field are available for annotations. .. 44

Figure 2.25 Simplified version of the Sigmoid Schema Reaction hierarchy. (a.) There
may exist a one to many relation between a particular biological reaction and potential
functions (Mathematical-Reactions) that may be assigned to model the kinetics of the
interaction. For instance numerous mathematical functions can be assigned to model a
catalytic process. (b.) In reverse, the functional application of a particular set of
differential equations may be conserved over a variety of biological phenomena so, there
also may be a one to many association between a particular mathematical function
(Reaction) and the biological scenarios it may be applied to. For instance a Hill equation
may provide useful in modeling a catalytic reaction, transcriptional regulation or even a
transport process. .. 45

Figure 2.26 Other elements of the Reaction class diagram have been extracted to illustrate
the Sigmoid Reaction Hierarchy of Biological and Mathematical reactions.. The top
branch of this hierarchy consists of Biological Reactions. Biological Reactions contain
information about the players in a reaction and are classified according to category of
biological process, but are abstract in that they contain no kinetic details about a reaction.
The bottom branch of the diagram consists of MathematicalReactions.
MathematicalReaction classes store parameter information about specific xCellerator
functions designed to model reaction kinetics. ... 47

Figure 2.27 The BiologicalReaction sub-hierarchy of Reactions has two main branches.
The right branch is composed of Simple reactions, representing typically singular
BiologicalReactions. There are three sections of Simple Bio Reactions, NonCatalized
(far right in cyan), CatayticEnzymatic (blue), and other Simple Reactions (purple). The
left branch of BioReactions (in green) is composed of CompoundBio Reactions.
CompoundBio reactions are composed of many Biological reactions and can represent
complex systems of biological processes. These Sections will be expanded upon in detail
in the following sections. .. 48

x

Figure 2.28 NonCatalyzed Reactions, inheriting from the Simple BioReaction class, were
constructed to represent general chemical (or non-catalytic biochemical) processes.
GeneralConversions is a generalized form of simple non catalytic reaction that converts
any number of substrates into any number of products. It is the most flexible
representation in this sub-tree of BioReactions and can functionally represent any
reaction in this figure. AcidBase, DoubleRelplacement and the OxidationReduction
classes should be subclasses of, and inherit attributes from the GeneralConversions class.
This inheritance error was corrected in the 2.25 schema update. 49

Figure 2.29 Classes inheriting from CatalyticEnzymatic are designed to represent
biological process reactions that involver either chemical catalysts or biological enzymes.
Key commonalities are that both catalysts and enzymes are not consumed in the reactions
and modify the rates of their reaction processes. The focus of these classes was primarily
designed to support enzymatic processes but purely chemical processes and be
represented by expert use. ... 51

Figure 2.30 Additional Simple reactions from right to left, BioRegulatoryRelationships
for regulatory proceses, AllostericInteractions (attributes unimplemented),
AssemblyDisassembly for complex formation, ConformationalIsomerizations (attributes
unimplemented), Translocation for inter-compartmental reactions and the
GeneOntologyFunction. GeneOntologyFunction is a class designed to represent
reactions within a hierarchy of reactions. ... 53

Figure 2.31 The CompoundBio reactions represent biological processes that span whole
collections of biological processes. CompoundBio contain other Biological Reactions,
including other CompoundBio reactions, resulting in a nested structure that is built to
represent highly complex and involved biological processes. Of the vast number of
complex biological processes, DNA replication, transcription and translation have been
added as subclasses to CompoundBio because of their biological prominence. To handle
the vast array of biological processes, the GeneOntologyProcess class has been included.
... 54

Figure 2.32 The MathematicalReaction domain of Reactions. The branch of equation
classes to the right is comprised of ODEReaction equations that have direct counterparts
in xCellerator. The ODEReaction classes are data classes that store reaction parameters
for simulation. Reactions on the large left branch are Compound reactions which
comprise sets of ODEReactions. The center Reactions in white are AlgebraicPassthrough
reactions designed to pass algebraic expressions directly to the Mathematica simulator.
The small branch of reactions on the far left are reserved for stochastic simulations and
serve as stub classes awaiting further implementation. .. 55

Figure 2.33 The ODEReactions are data representations designed to store reaction
parameters for xCellerator simulator processing. Each class shown here, with the
exception of the attribute empty classes, possesses a directly corresponding xCellerator
function. There are two main classifications of Reaction: Regulatory reactions appear in

xi

the right main (dark orange) branch; Nonregulatory reactions appear to the left.
Subsequent class diagrams will reveal the attributes in more detail. 57

Figure 2.34 Massaction, MichaelisMenten, and a now deprecated
SimplifiedNonSaturatedCatalytic enzymatic reaction appear in the ODEReaction tree. . 58

Figure 2.35 There are several regulatory functions supported by xCellerator. A
regulation indicates that a particular Reactant modifies the kinetics of a reaction equation
but is not consumed in the process. The corresponding data classses appearing in the
schema with all requisite xCellerator input parameters are, from left to right, Hill
(regulatory) and its subclass CatalyticViaHill, GRN (Genetic Regulatory Network),
NHCA (Non-heirarchical, Cooperative Activation), and SSystem. Also, a
UserDefinedRegulation exists, and a subsection of allosteric regulations is composed of
three classes of the Monod-Wyman-Changeux (MWC) model. 59

Figure 2.36 The Compound Reaction section of the Reaction hierarchy. Compound
Reactions are conceptually single Reactions that are composed of sets of ODEReactions.
The majority are enzymatic processes. Reactions shown in purple on the right are
catalytic reactions that have direct analogs with xCellerator reactions. Reactions
illustrated in either red or white are direct representations of existing kMech reaction
equations. Classes shown in while are classes to support more recent additions to kMech.
Reactions shown in yellow are part of the KMechReaction representation which is a
parameterized version of the kMech reactions shown in white and red. The
KMechReaction set of classes is processed by the SigMech Utility to produce all of the
associated sub-reactions. ... 61

Figure 2.37 The KMechReaction classes are designed to be a replacement representation
for all (self excluded) existing compound enzymatic reactions featured in Figure 2.36.
The representation is a generalized form of previous enzymatic reaction mechanism
classes within the Sigmoid schema. The KMechReaction class must be processed by
SigMech (0) in order to generate associated sub-reactions. ... 62

Figure 2.38 The AlgebraicPassthrough subclasses of MathematicalReaction were
constructed to pass algebraic rate laws directly to Mathematica for processing. Three
classes noncatalytic, a catalyzed version that includes a field for an enzyme (or catalyst)
and a bidirectional version that includes a reference for an enzyme that catalyzes an
additional reverse reaction. ... 63

Figure 2.39 There are three frequently used parameter wrapper classes in the Reaction
class diagram. ReactantCoefficientPairs are used to specify the stoichiometry of reaction
equations. ReactantKineticPairs are a mechanism to store values such as substrate
affinity for substrate binding of an enzyme or, rates for inhibitor binding.
SubstrateCompetitvieInhibitorSets were provided to store parameters for enzymatic
inhibitors specific to a particular substrate. .. 65

xii

Figure 2.40 Reaction groups serve as an organizational tool to reference groups of related
reactions. They’re available to the user interface (SME) to hide or expand portions of the
pathway networks. The KMechReactionGroup serves an additional purpose. Since
SigMech builds sets of sub-reactions from a parameterized set of inputs (a
KMechReaction), The KMechReactionGroups are present to store these sets of Reactions
in the database. (KMechReactionGroup could be renamed SigMechReactionGroup
because it was designed to store the output of SigMech). .. 66

Figure 2.41 The [Najdi 2011] fatty acid biosynthesis model contains portions of the
pentose phosphate, glycolysis and fatty acid biosynthetic pathways. The implementation
of reaction groups enable the hiding or highlighting of pathway sections and reaction
arrows to more clearly show portions of the overall model. This particular model has
been organized fairly well but other more interconnected models can become
cumbersome to visualize. Commonly connected reactant molecules such as ATP can
generate many edges in a network that can quickly clutter network visualization. 68

Figure 2.42 The post translational modification hierarchy contains a structured
organization of common chemical modifications of protein amino acid residues. Since
this figure is difficult to read a comprehensive list of these modification classes is
provided in Appendix 0. ... 69

Figure 2.43 The entire KnowledgeSource class diagram consists of data classes designed
to provide citation information and documentation references for Sigmoid Models,
Reactants and Reactions. The Citation domain of subclasses (Blue and purple classes)
provide references to model research publications. The Knowledgesource classes are
expanded for legibility in subsequent figures. .. 71

Figure 2.44 A subset of KnowledgeSource (KS) subclasses are designed for references to
external databases, files and markup languages. KEGGInfo is a KS for the Kyoto
Encyclopedia of Genes and Genomes. SBMLRepresentation is a KS forthe Systems
Biology Markup Language. KSs are provided for Universal Resource Locators
(WebKS). Miscellaneous files and Mathematica notebooks associated with pathway
models stored on the Sigmoid servers are referenced by the MiscFile and
MathematicaNotebook classes. These MiscFiles and MathematicaNotebooks are
accessed and displayed by the Sigmoid website. .. 73

Figure 2.45 The Citation KnowledgeSource provides a set of subclasses designed for
publication citation information that follow the BibTex conventions [Cheng 2005 et al.].
Citations for model pathways are accessed and displayed by the Sigmoid website the
browse models section. ... 74

Figure 2.46 Some KnowledgeSource information such as Model Citations are accessible
through the “Browse Models” utility at www.sigmoid.org. Model xCellerator notebooks
and model graphic files, which are also referenced by KnowledgeSource, are also
accessible there. .. 75

xiii

Figure 2.47 The Sigmoid schema implements classes for a Gene Ontology representation.
The GeneOntologyComponent class (On left) has been implemented as a subclass of
Reactant because the GO component most closely correlates to biological objects. The
GeneOntologyFunction (On right) has been implemented as a subclass of Simple
BioReactions because of its close correlation to simple biological reaction processes.
The GeneOntologyProcess class (middle) has been implemented as a subclass of
CompoundBio reactions because GO processes, which are composed of sets of
GOFunctions, most closely parallel the complex biological processes represented by
CompoundBio reactions. ... 76

Figure 2.48 Classes to support Spatial and Compartmental Models are located in the
Model class diagram. SpatialModel is a subclass of Model and inherits all Models’
attributes. A Spatial model is composed of DimensionalCompartments (DCs) that
possess sets of InternalNetworks and ExternalNetworks. InternalNetworks are composed
of sets of Reactants and Reactions that are contained within particular DCs.
ExternalNetworks have Reactants and Reactions that participate across DCs. DCs have
references for Catesian coordinates to incorporate spatial components of n dimensions to
the model if necessary. DCs have CompaortmentRelationshipPairs to specify
relationship specificity between DCs. Since Cellzilla utilizes indices for multi-
compartmental reaction modeling, a set of Index, IndexNode and SparceArray classes are
associated with DCs to reference DCs for simulation. ... 79

Figure 2.49 DecoratedReactants contain a Reactant and a DecorationTypePair. The
DecorationTypePair class attribute “decoration” is used to store indices to be processed
for Cellzilla output. The “decorationType” attribute indicates the nature of the decoration
for instance a “neighbor”. The “decorationType2” attribute can establish a reference to a
DimensionalCompartment. ... 82

Figure 2.50 The ReplicatedReaction and BireplicatedReactions were created to handle
indices for multicompartmental SpatialModels. The “sharedDecorations” attributes are
used to store indices for Cellzilla that correspond to compartments. For instance the
“sharedDecoration” attributes of a BireplicatedReaction could be decorated with indices
“i” and “j”. The BireplicatedReactions’ associated MathReaction could implement
diffusion with a DecoratedReactant Rea[i] as a substrate getting converted to product
Rea[j]. The change of index indicates a change in compartment. 83

Figure 3.1 The Enzymatic MathematicalReactions section of the Sigmoid Schema
consists of compound MathReactions that can be represented more compactly. The three
reactions in purple on the right are xCellerator compound enzyme reactions 88

Figure 3.2 The new KMech representation for enzymatic mechanisms. This set of data
classes should encompass all previous kMech compound reaction classes and many new
cases of kMech reactions that follow previous patterns. .. 89

Figure 3.3 A BiBi Ping Pong kMech Reaction. a: Cellerator input notation is shown
below the reaction cartoon. The enzyme has two states, free enzyme and chemically

xiv

modified. The kMech compound reaction shown in a) is translated to four sub-reactions
shown in b: 1) The enzyme binds to substrate S1. 2) Substrate is converted to product
P1 and the enzyme is modified to a state where it can bind S2. 3) The modified enzyme
binds S2. 4) S2 is converted to product and the enzyme is returned to its original state. 98

Figure 3.4 The access buttons for SigMech from SME appear on the left of the taskbar.
The button on the far left opens the SigMech utility. The button to the right displays the
enzyme mechanism once it has been generated. ... 104

Figure 3.5 The addition strategy selection menu appears at the far left bottom of the UI
below the list of participating substrates. Three addition strategies are available, Full
Addition, Random Addition or Sequential Addition. ... 106

Figure 3.6 The release strategy selection menu appears beneath the list of participating
products. As with the addition strategy, three choices are available: Full Release,
Random Release, and Sequential Release. ... 106

Figure 3.7 Interface view for a Ter-Ter reaction with Full Addition and Full Release. 107

Figure 3.8 SME Network view of the Ter-Ter Full Addition Full Release Mechanism.
Substrates are on the left and products on the right. ... 108

Figure 3.9 SigMech Interface: BiBi Full Addition Full Release. 109

Figure 3.10 SME view of Bi-Bi Full Addition Full Release reaction. 109

Figure 3.11 SigMech Interface: TerTer Sequential Addition Full Release. 110

Figure 3.12 SME: TerTer Sequential Addition Full Release. This illustrates that addition
and release mechanisms can be independent of one another. ... 110

Figure 3.13 SigMech Interface: BiBi Random Addition Full release. 111

Figure 3.14 SME: BiBi Random Addition Full release. .. 112

Figure 3.15 SigMech: BiBi Random Addition Random Release. 112

Figure 3.16 SME Overview: BiBi Random Addition Random Release. 113

Figure 3.17 SME Overview: TerTer Random Addition Random Release. 114

Figure 3.18 SigMech Interface: Classic BiBi Ping Pong reaction. 114

Figure 3.19 SME: Classic BiBi Ping Pong reaction. Substrates (in red) are sequentially
converted to product (in blue) leaving the enzyme in a changed state. 115

xv

Figure 3.20 SigMech Interface: TerTer Ping Pong. .. 116
Figure 3.21 SME Overview Panel: TerTer Ping Pong reaction mechanism. Substrates (in
red) are sequentially converted to product (in blue) leaving the enzyme in a changed
state. Ping pong mechanisms can be built for any number of stages provided that the
number of substrates, products and enzyme states are all equal. 116

Figure 3.22 The Conversion menu.. 117

Figure 3.23 The ThreeStageCatalytic MathReaction in the schema illustrates the
implementation of a central “conversion ” reaction where enzymatically bound
substrates are converted to product. Release of product is modeled as a third reaction
step. ... 118

Figure 3.24 SigMech UI: UniUni reaction with OneStep Conversion activated. 119

Figure 3.25 SME view: A UniUni Reaction with a OneStep Conversion phase. 119

Figure 3.26 SigMech Interface: TerTer Sequential Addition Full Release One Step
Conversion. ... 120

Figure 3.27 SME: TerTer Sequential Addition Full Release with a One Step Conversion.
... 121

Figure 3.28 SigMech Interface: TerTer Ping Pong with One Step Conversion. 121

Figure 3.29 SME Overview Panel: TerTer Ping Pong One with Step Conversion. 122

Figure 3.30 SigMech UniUni with Competitive Inhibitor. ... 123

Figure 3.31 SME Overview Panel: UniUni with Competitive inhibitor. Competitive
inhibitors bind free enzyme thus preventing substrate binding. 123

Figure 3.32 SigMech UniUni with Competitive Inhibitor and a One Step Conversion. 124

Figure 3.33 SME Overview Panel: UniUni with Competitive inhibitor and a One Step
Conversion. The enzyme-substrate to enzyme-product conversion appears in yellow at
the bottom. .. 124

Figure 3.34 SigMech: UniUni with an UnCompetitive Inhibitor (UCI). 125

Figure 3.35 SME Overview: UniUni with an UnCompetitive Inhibitor (UCI). UCIs bind
enzyme-substrate complexes to inhibit the activity of an enzyme. 126

Figure 3.36 SigMech UniUni reaction with a NonCompetitive Inhibitor(NCI). 127

xvi

Figure 3.37 SME: UniUni reaction with a NonCompetitive Inhibitor (NCI).
NonCompetitive inhibitors may possess a residual enzymatic activity that generates
product from inhibitor bound enzyme. NCIs can either bind free enzyme or enzyme-
substrate complexes. ... 127

Figure 4.1 A comprehensive list of pathway models stored in the Sigmoid database can
be browsed in the Models section of the Sigmoid website at www.sigmoid.org. A
majority of the models in the database focus on virtual representation of intracellular
pathways that include examples in signaling, metabolism, the cell cycle, and gene
regulation. ... 133

Figure 4.2 The Najdi_2010_FattyAcidBiosynthesis model contains portions of the
pentose phosphate pathway, glycolysis and fatty acid biosynthesis. 140

Figure 4.3 The Wuschel-Model-for-iPlant Cellzilla notebook [Shapiro 2008] implements
the Wuschel pattern formation model of [Jönsson 2005]. The model = { …}; section
contains the InternalNetwork of reactions and the diffusingSpecies = {…}; section
contains the ExternalNetwork of reactions. .. 142

xvii

LIST OF TABLES

 Page

Sigmoid Class Authorship 163

Model Code Authorship 173

xviii

ACKNOWLEDGMENTS

 Having reached this point in my academic life and looking back, I find it hard to

put all the names I need to thank together and in one page. I need to first and foremost

thank my advisor, Professor Eric Mjolsness. Working with him has been an honor and I

have benefitted greatly from his insights, direction and patience. I’d like to thank

Professors Lee Bardwell and Pierre Baldi for all of their insights, feedback and

contributions as PIs on the Sigmoid project. With regard to Sigmoid, they put together a

highly talented group of students working on what was a very interesting project. I

learned a lot through my interactions with both of them, as they were open, nice, active,

extremely knowledgeable and smart. I highly value the experience and sincerely thank

them for that. I’d like to sincerely thank Gopi Meenakshisundaram for his valuable input

and taking the time and effort to serve on my committees. There were many members of

the Sigmoid project when it was going full force and I’ve benefitted from all of them in

one way or another. Of note and distinction; Trent Su, Ivan Chang, Tom Whisnamt,

Kandarp Shah, Kirill Petrov, and Chinran Yang. Lucas Sharenbroich deserves a good

portion of my gratitude, he was instrumental in providing me with a really decent primer

on Sigmoid and its internal functioning. I’d also like to thank Dr. Tarek Najdi for all of

his collaborative support and involvement over the years.

 I’d like to thank Professor Suzanne Sandmeyer for being by BIT co-advisor and

the experiences I had while rotating through her lab. Also, I’d like to thank Fang Fang

for her assistance with the laboratory protocols. I’d like to thank the Bioinformatics

Training Program (BIT) for what has been a great experience and opportunity to relate to

xix

a wonderful group of people. Kudos must go to Professor Pierre Baldi for his role

managing such a strong and diverse set of BIT researchers here at UCI.

 I’d like to thank my grantors for this research and all the wonderful people I was

able to meet at the National Institute of Health. Personal support was received through

the NIH grant GM069013 for the Sigmoid project. Support was also received through

the NIH-NLM Biomedical Informatics Training grant LM-07443-01 for three years. In

addition, I was supported by NIH grant NIH NIGMS R01 GM086883 fall quarter 2011.

 Portions of previously published work is reproduced here with kind permission

from © Springer Science + Business Media: H.R. Arabnia (ed.), Advances in

Computational Biology, Advances in Experimental Medicine and Biology, “A scalable

and Integrative System for Pathway Bioinformatics and Systems Biology”, 680, 2010,

pg. 523-534, Compani B, Su T, Chang I, Cheng J, Shah KH, Whisenant T, Dou Y,

Bergmann A, Cheong R, Wold B, Bardwell L, Levchenko A, Baldi P, Mjolsness E. The

portions appear as: Chapter 1 and Sections 2.7 (Third paragraph), 4.1.3, 4.2.4 (first

paragraph) and 5.1.

 The last but not the least, I would like to thank everyone who made it possible for

me to focus on my work throughout my PhD life. Their friendship is invaluable to me

and I always appreciate it. The list is extremely long but in specific I want to thank my

family, my friends at UCI, all the nice staff at Palo Verde Housing, the wonderful people

in ICS graduate student affairs, and the staff at graduate division. One last word for the

amazing and helpful staff at the Institute for Genomics and Bioinformatics, Janet Ko and

Katarina Fletcher for everything they’ve done.

xx

CURRICULUM VITAE

Behnam Dustin Compani-Tabrizi
Home page: http://computableplant.ics.uci.edu/~companib/
E-mail: companib@uci.edu

EDUCATION

PhD in Information and Computer Science
Concentration in Informatics for Biology and Medicine – 2012
University of California, Irvine – Irvine, CA

M.S. in Information and Computer Science – 2011
University of California, Irvine – Irvine, CA

B.S. in Biochemistry – 1993
B.S. in Molecular, Cellular and Developmental Biology - 1993
University of Colorado, Boulder – Boulder, Colorado

RESEARCH INTERESTS

 Modeling and Simulation of Biochemical Reaction Networks
 Enzymatic Reaction Mechanisms
 Database Design

PUBLICATIONS

[Compani et al. 2010] B. Compani, T. Su, I. Chang, J. Cheng, K. H. Shah, T. Whisenant,
Y. Dou, A. Bergmann, R. Cheong, B. Wold, L. Bardwell, A. Levchenko, P. Baldi, and E.
Mjolsness, A Scalable and Integrative System for Pathway Bioinformatics and Systems
Biology. Adv Exp Med Biol. 2010; 680: 523–534.

[Podkolodny et al. 2006] Podkolodny NL, Podkolodnaya NN, Miginsky DS, Poplavsky
AS, Likhoshvai VA, Compani B, Mjolsness E. An integration of the descriptions of gene
networks and their models presented in Sigmoid (Cellerator) and GeneNet, 5th
International Conference on the Bioinformatics of Genome Regulation and Function
(BGRS-2006), Volume 3, pp. 86-90.

HONORS AND AWARDS

 NIH/NLM Biomedical Informatics Training Grant fellowship 2008-2011
 BIT Conference 2009 Portland Oregon (Best Poster Award)
 “Sigmoid: An integrative System for Pathway Bioinformatics and Systems Biology”

xxi

ABSTRACT OF THE DISSERTATION

Schematic Representation and Database Population Strategies for
Sigmoid, a Biochemical Network Modeling System

by

Behnam Compani-Tabrizi

Doctor of Philosophy in Information and Computer Science

Concentration in Informatics for Biology and Medicine

University of California Irvine, 2012

Professor Eric Mjolsness, Chair

Research summary:

 Progress in systems biology critically depends on developing scalable informatics

tools to model and visualize complex biological systems. Flexibly storing information

about these systems and their models for subsequent retrieval and analysis is also a key

concern. The focus of the research reported here has been the development of the

Sigmoid project and associated pathway models. The Sigmoid project

(www.sigmoid.org) provides biologists with a database, modeling and simulation

platform for signal transduction, metabolic and biosynthetic pathways. Sigmoid has been

implemented as a three-tier architecture, consisting of client, web service, and back end

simulator/database. Sigmoid provides a front end to the xCellerator / kMech /

Mathematica simulation platform and enables mathematical simulations of biochemical

networks [Shapiro 2007] [Yang et al.2005b]. A visualization and simulation platform

xxii

such as this allows wet bench biologists to make targeted decisions about their

experimental designs and save on unnecessary expenditures of wet bench resources.

Many published models are currently available and functional within the Sigmoid

framework. The models focus on virtual representation of intracellular pathways that

include examples in signaling, metabolism, the cell cycle, and gene regulation.

 To facilitate the modeling of organelle, multi-cellular and developmental models

within the Sigmoid framework, a back-end representation for multi-compartmental

modeling was added to the Sigmoid schema. Although the Schema representation for

this is more comprehensive, a first step compatibility with the xCellerator “Cellzilla”

utility was implemented. A model of Wuschel expression [Jönsson 2005] in the

Arabidopsis thaliana shoot apical meristem has been completed with the Sigmoid

representation.

 kMech [Yang 2005] is an enzyme mechanism modeling tool designed for the

mathematical modeling of enzymes. It comprises a collection of single and multiple

substrate enzyme reactions. Over the years the library of requested enzymatic reactions

implemented in the kMech utility and correspondingly in Sigmoid has grown

substantially. A new generalized version of the kMech enzyme mechanism modeling

tool has been developed. With this utility, SigMech, the approximately 35 existing

enzyme mechanism models expressed explicitly in the kMech/Sigmoid platform can be

expressed implicitly by a single parameterized input notation. Subsequent sub-reactions

can be generated procedurally, and any potential “new” kMech enzyme mechanisms that

fall within the pattern abstracted from previous motifs need not be created explicitly.

1

Chapter 1. Sigmoid Overview

1.1 Introduction

 As an introduction, this chapter reflects a team effort development of Sigmoid.

To distinguish member contributions we will refer to the “Sigmoid team” as the

contributing authors to the book chapter on Sigmoid published in Advances in

Computational Biology [Compani, Su et al. 2010].

 Sigmoid is a generative, scalable software infrastructure for systems biology

designed to facilitate global modeling of biological systems. SIGMOID if deciphered as

an acronym, would translate into a SIGnal MOdeling Interface and Database. Here the

term Signal, in a biological sense, is broadly interpreted.

 Sigmoid supports the process of cycling between model building, hypothesis

generation, biological experimentation and data gathering, by integrating the hypothesis

and discovery phases of the research process. In Sigmoid, the Sigmoid team address the

problem of creating a scalable expert assistance system for modeling biological

pathways, using current software technology to decrease the difficulty and cost of

building the system. The reason for building such a system is to provide computational

support to biologists and computational scientists who need to create and explore

predictive dynamical models of complex biological systems such as metabolic, gene

regulation, or signal transduction pathways in living cells [Cheng et al. 2005].

2

Figure 1.1 Sigmoid three-tier architecture. Separation of modules into a communicating distributed
system increases scalability of the architecture. The Sigmoid simulation results are provided by the
xCellerator model generator/ simulator. The database is Sigmoid (autogenerated from a UML
schema) and the user interface is the Sigmoid Model Explorer (SME).

 The Sigmoid modeling system core consists of distributed modules implementing:

(1) pathway/cell model generation and simulation (Cellerator [Shapiro et al. 2003]), (2) a

pathway modeling database (Sigmoid proper), (3) a Web service-oriented middleware,

(4) a world wide web model browser, and (5) a graphical user interface (Sigmoid Model

Explorer) friendly to a biologist user. Other components have been integrated into the

system such as a parameter optimization module and functional connections to

compatible external data sources. These modules are organized in a classical three-tier

architecture (Figure 1.1). The back-end currently consists of the database, the simulator,

and other model manipulators. The GUI front-end does not access the back-end modules

3

directly but rather via a Web service middleware module. The extra development

overhead introduced by the middle layer is more than compensated by its advantages in

terms of distributed computing, performance, flexibility, and scalability. With the

exception of rapid model retrieval, the middleware layer brokers all communications

between the GUI and the back-end components and also between the back end

components themselves. The Sigmoid team has found that storing binary instances of

models in a database cache can provide significant improvements in model retrieval times

in comparison to full model reconstruction and retrieval through the middleware layer. In

the event that the rapid model retrieval interface is not accessible, the system will shift

access to the database through the middleware. This infrastructure was created in a close

collaboration between bioinformaticians and biologists. The design of many of the

essential software objects and their relationships became visible as the implementation

proceeded. The Sigmoid team has coordinated the development of various software

modules in Sigmoid by using the Universal Modeling Language (UML) to diagram the

most important biological objects, notably reactions and molecular reactants. This UML

diagram is used as a template to automatically generate several parts of Sigmoid, in

particular a realization of the Sigmoid pathway modeling database (in SQL) and the

corresponding Java object hierarchy along with support files for facilitating the object-

relational mapping. Also the Graphical User Interface (GUI) relies heavily on the Java

reflection utility to automatically discover much of what it needs to know about the

Sigmoid schema. Thus there is a guarantee that the software actually implements

something very close to the UML construction of biological objects. In addition, coding

time for different modules of the system is reduced. To keep the infrastructure flexible

4

and manageable as it grows, the Sigmoid team has resorted to a “generative” approach

that seeks to partially automate the generation of both executable code and mathematical

models. The Sigmoid team has applied this approach to as many of the modules in Figure

1.1 as possible, starting from high-level inputs such as UML diagrams and reaction

notations understandable to non-computer scientists.

1.2 Methods

1.2.1 Model Generation and Simulation: xCellerator
 In order to facilitate the modeling of biochemical reactions a library of re-usable

reaction models that can be expressed in a simple higher-level language that specifies the

molecular species and the type of reaction is required. Cellerator [Shapiro et al.2003]

code is implemented as a Mathematica notebook and is designed to facilitate biological

modeling via automated equation generation. Sigmoid now supports xCellerator [B.

Shapiro2007], the most recent version of Cellerator.

 Many models of molecular interactions have been implemented in xCellerator

using different formalisms, such as differential equations or stochastic molecular

simulation formalism and ranging from the law of mass action and simple Michaelis-

Menten models to more complex models of enzyme reactions (e.g. the Monod-Wyman-

Changeaux or MWC model for allosteric enzymes [Najdi et al.2005]) and gene

regulation [Segel1992]. The list of reaction models continues to expand along with the

library of actual pathway models comprising sets of coordinated reactions with

parameters derived from the literature whenever possible. In addition, an extended set of

enzyme mechanism models for single and multi-substrate, positively and negatively

regulated and allosteric enzymes, called kMech, has been written for xCellerator and

5

continues to develop [Yang et al.2005b]. Sigmoid currently supports all the available

xCellerator and kMech reaction models.

 To illustrate xCellerator utility, consider the example of a three stage catalytic

model. This reaction is a composite representation of 3 reversible reactions: substrate

enzyme complex formation, the conversion of the substrate to product within the

complex and, subsequent disassociation of the enzyme-product complex into free enzyme

and product. When presented with the correct input notation, xCellerator will translate the

symbolic reaction to differential equations. The resulting differential equations and

variable definitions are passed to Mathematica where they are solved by the numeric

solver function (NDSolve) and time plots are generated. For an example of these steps,

see example in Figure 1.2. The parameters for this enzyme mechanism are stored in the

Sigmoid Pathways Database. In short, xCellerator converts symbolic reactions to

mathematical equations, and solves the corresponding equations.

6

Figure 1.2 Sigmoid Three Stage Catalytic model. From Top to bottom. xCellerator input
notation, reaction cartoon, resulting differential equations and an example of numerical output.

1.2.2 Sigmoid Pathway Database
 The pathway model database is defined by a UML schema. Comprehensive UML

class diagrams of the Sigmoid Schema can be found at www.sigmoid.org. The schema is

organized into four main diagrams. The first diagram consists of the various top level

container classes such as the Model Class and the Gene Ontology source class. The first

diagram also contains the parameter set hierarchy, classes for graphical layout in SME,

and various classes to handle units and measures. The three remaining diagrams consist

of the three major class hierarchies: Reactions, Reactants and Knowledge Sources.

Reactions utilize Reactants for their products, substrates, and enzymes, Models are

composed of parameterized Reactions, and these three class hierarchies utilize

Knowledge Sources in order to reference external information about themselves.

 While initial versions of the Sigmoid database were implemented by hand, the

Sigmoid team wished to automatically transform the class descriptions contained in the

7

high-level UML diagram of this hierarchy into a set of instantiable objects upon which

applications may be built. The current approach to the process of auto-generating

software components from a master UML diagram relies on the capabilities of several

existing open-source projects [Cheng et al. 2005]. These pre-existing projects remove

much of the core software development responsibilities and allow the team efforts to

focus on tying them together to produce the specific software products needed. Object-

relational database code autogeneration from UML is itself a contribution of potentially

general interest in database software engineering. The current version of Sigmoid is

implemented using PostgreSQL the main Open Source database software.

Figure 1.3 The Sigmoid Intelligent Middleware utilizing Apache Axis (SOAP) brokers
transactions for the Sigmoid framework. Clients such as SME can access the simulator and
database back end components through the middleware. The SQL database is accessed
through an Object Relational Bridge (OJB). The Mathematica/ xCellerator simulator is
accessed through Mathematicas’ JLink utility. The figure was redrawn from [Cheng et al.2005]

1.2.3 Sigmoid Web Middleware for Distributed Computing and Web Services
 A new distributed Web middleware layer was built which accesses the Sigmoid

Database (Figure 1.3) and translates reaction sets into the input language of the

xCellerator cell model generator, then calls xCellerator with requests for model

generation and simulation and receives output plots in response. All these functions are

8

exposed as Web services available to Java application programs and/or other clients. In

addition to load balance and security management, the middleware provides a gateway

between the front-end and the back-end of the architecture, allowing each one to evolve

independently as long as the interface to the middleware is properly maintained.

Furthermore, the middleware allows scalability in terms of the number of users that can

be served simultaneously simply by increasing the computational and database server

resources [Cheng et al.2005].

Figure 1.4 Sigmoid Model Explorer showing portion of MAPK pathway: (a) TreeView of
compositional hierarchy. (b) network layout visualization. (c) parameter-editing panel. (d) output plot
preview panel. Along the top are various action buttons for saving and running the model, and for
switching the main panel to view output plots. User can select reaction icons.

1.2.4 The Graphical User Interface: Sigmoid Model Explorer (SME)
 A component of the system to be initiated by the Sigmoid team, and that has

achieved functional maturity, is the SME Web-compatible Graphical User Interface. The

GUI allows the user to visualize, design, edit, and store pathway models, parameters, and

9

initial conditions and their properties, to simulate the models by calling the simulator

through the middleware, and to view and compare the properties of simulated models by

viewing the temporal evolution of the concentration of chemical species under different

conditions. The GUI runs from any Web browser as a Webstart or as a local client

program.

 Recent enhancements to SME by the Sigmoid team are as follows: (1) Model

creation. There exists a new mechanism to create biological models completely from

within SME and save them locally or, commit them to the database. To facilitate the

construction of more complex biological processes, one-to-many mathematical reactions

can be assigned to each biological reaction. Also, there are utilities to facilitate the use of

web pages as source of information for data input and perform queries to the Gene

Ontology database from within SME. Gene Ontology entities can either be used to tag

Sigmoid objects or, instantiated directly as Sigmoid objects, i.e. Reactants or Biological

reactions. (2) Numerous enhanced display features. (3) Model translation; SME can

perform local translation of Sigmoid models to xCellerator code and can perform

translation of SBML 1.0 to Mathematica code. (4) Model simulation. SME supports

simulation through a local Mathematica license using the JLink library as well as through

the remote server and there is an option to retrieve and display the output graphs for

intermediate complexes generated by xCellerator/kMech reaction types. (5) Connectivity.

SME now supports the Web Services Description Language (WSDL), which is an XML

grammar for describing network services. Supporting WSDL expedites adoption of

supplementary datasets and functionalities from other systems that support this standard.

10

Chapter 2. The Sigmoid Schema

2.1 Introduction to the Schema and the Development Environment

 The Sigmoid schema is an object-oriented set of Java classes designed within a

Unified Modeling Language (UML) editor. The use of the UML editor isn’t necessarily

required but it is a helpful organizational tool can produce the requisite XMI (XML

Metadata Interchange) files. XMI files are a standard interchange format for the UML

specification. In the Sigmoid development cycle, these XMI files are parsed by Pheno

[Cheng et al. 2005] to produce the Sigmoid Java API, the PostGres database tables and

the Object Relational Bridge (OJB) files needed to bridge Sigmoid Java programming

with the relational database that Sigmoid is composed of. Information on OJB can be

found at http://db.apache.org/ojb/. All of the Sigmoid schema UML development the

author has performed was with the Poseidon for UML tool (available at

www.gentleware.com). There are other suitable UML modeling tools. The only concern

for a potential Sigmoid developer would be the requirement that the editor produces a

properly formatted xmi document which can be fed to Pheno for processing.

 Here we describe in detail the Sigmoid schema structure, and the logic behind it,

as it evolved during the years 2004-2011. Several factors influenced the growth and

evolution of the Sigmoid schema. The schema was constructed in response to

contemporary modeling requirements and with intention to expand capacity for

interconnectivity and interoperability with other systems. A primary mission was to

maximize compatibility and support for xCellerator as a base simulation platform. This

11

compatibility was to be achieved without limiting Sigmoid to the representational system

of an interpreted notebook such as xCellerator. The Sigmoid Application Programming

Interface (API) provides an object-oriented set of classes that can be utilized by modeling

biologists.

 While the Sigmoid schema conforms to the UML standard, there are few if any

methods present in the Sigmoid schema classes. Attributes are listed in the section under

the class name. In a UML class diagram, methods would normally appear in the bottom

section of the class box under the attribute section. Constructing these classes with an

absence of methods reflects the intentional practice of separating data from

implementation. The schema classes should serve as data objects with which operations

can be performed on by external operators or code.

 In this dissertation, certain conventions are borrowed from Java programming and

the style in which the Sigmoid components have been composed. These conventions

signify computational relevance and context. In cases where a biological object or

concept has a computational representation in the Sigmoid schema, it will be capitalized.

For instance, if the word “model” appears it can be taken within context, if it appears as

“Model” this refers to a Sigmoid Model Java class object or its corresponding database

object. An additional indication of computational implications is the lack of spaces

between words. i.e. “MathematicalReaction” is a mathematical reaction representation

within the schema. Non-capitalized words appearing with capitalization mid-word

indicate a variable or attribute name. i.e. “shortDescription” is a String attribute or

variable of Model where short descriptions are stored. In this way, an attempt was made

12

to construct these classes and attribute names with care. Capitalization thus often carries

the extra meaning of being a computational representation as well as a biological one.

 The Sigmoid schema has been organized into four main class diagrams. These

consist of: (1) The Model class diagram. This comprises the Model class and relevant

utility classes to support models. The Model class is the main representational and

container class for Sigmoid pathway models. Models can be constructed without reaction

kinetics strictly for network visualization. In practice however, models are constructed to

produce simulateable output through xCellerator. The utility classes consist primarily of

parameter set representations, classes for units and measure, and data structures designed

to support external utilities. (2) The Reactant class hierarchy and supporting classes.

Reactants are data objects that represent biologically relevant entities. (3) The Reaction

class diagram. The diagram consists of a Reaction class hierarchy and supporting

classes. Reactions are data representations for processes that transform sets of Reactants

into other sets of Reactants. (4) The KnowledgeSource diagram. KnowledgeSources

serve to document and cite relevant information about Sigmoid Models, Reactants and

Reactions. Full diagrams are available at www.sigmoid.org.

 In the class diagrams, the [*] designation specifies that multiplicity (zero to many)

is enabled for the attribute at hand. Attributes lacking this designation must possess zero

or one instances of the attribute.

13

Figure 2.1 Sigmoid Schema Model Class Diagram includes supporting utility classes such as
parameter sets, parameters, classes that define units of measure, classes for graph analysis and
classes for compartmental modeling.

2.2 Modeling Class Diagram

 Figure 2.1 illustrates the classes contained in the Model class diagram for the

Sigmoid schema. All major components will be illustrated more closely and explained in

detail below. The classes contained in this diagram are primarily concerned with the top

level Model class, its subclass for spatial and compartmental modeling, and supporting

utility classes. The Model class and compartmental classes appear to the right of the

diagram. Classes for parameter sets such as rate constants, rate equations and specie

initial conditions appear on the left of the diagram. The class groups will be discussed in

more detail below. Full diagrams of the Sigmoid schema are available at

www.sigmoid.org.

2.2.1 The Model Class

 The Model class is the primary top level class used in producing all pathway

model representations. These models can model signal transduction, biosynthetic,

metabolic, biochemical or other kinds of biological processes. The primary components

14

that will comprise a model are the Model class itself containing Reactants, Reactions,

InitialConditions (reactant concentrations) and ParameterSets which contain kinetic rates,

hill exponents, algebraic expressions or any relevant quantitative variable representation

that occurs in a mathematical reaction equation as an input parameter. These are the bare

minimum components to produce a model that is both viewable in SME and capable of

being simulated by the back end Mathematica/xCellerator simulator. There are cases

where kinetic rate laws and chemical species initial conditions are not available for

pathways obtained from other databases or literature. In this case, it’s best simply to

provide SME with a dummy ParameterSet to view the pathway. Of course, simulation

will not be available in that case.

15

Figure 2.2 The Sigmoid Model class is the main container class for all Sigmoid biochemical
pathway models. Essential components for a Model capable of display within the Sigmoid
Model Explorer and simulation by the xCellerator/Mathematica simulator are: 1) A Model
name. 2) A set of Reactants. 3) A set of Biological Reactions that only use Reactants specified in
2. Each Biological Reaction must have at least one associated MathematicalReaction referenced
for simulation capabilities. Models that only possess a BiologicalReaction network may be
visualized and edited within SME.

 The Model class contains other notable objects. KnowledgeSources are available

for citation and relevant information associated with the model. Of course the Model

name is what the user intends to call the pathway, and the extendedDescription attribute

is for a more descriptive title. Keywords are provided for quick data searching (utilized

by the Sigmoid website search) of models. The modelLogandNotes and modelStatus

attributes were included for pathway model developers to keep track of modeling

16

progress. The associatedFiles attribute provides URL references to notable

documentation and most importantly the pathway model Mathematica notebooks.

 Since Sigmoid relies on Mathematica/xCellerator, the inlineFunctions attribute

provides a location for snippets of Mathematica code to be passed through the Sigmoid to

Mathematica translator and to be included in the notebook output fed that is to the

simulator. This allows raw Mathematica code to be inserted into notebook output

allowing for deeper access to Mathematicas’ extensive mathematical capabilities.

Likewise, “Instructions” are attributes intended for SBML support and “Graphs” are

attributes intended for LEDA support which are discussed in Section 2.4.2.

2.3 Parameters

Figure 2.3 The Sigmoid Parameter Classes store values that serve as parameter inputs for the
various Sigmoid Reaction classes. Parameters store Java primitive types as data that can be
used as inputs for computational or mathematical processing. RateFuntions are designed to
store algebraic expressions that are to be fed to external simulators.

Parameters are used to store kinetic rate values for reaction equations, initial

condition values for reactants, Hill equation exponents, stochiometery values for

17

reactants participating in reactions, or any reaction equation input parameter value stored

in Sigmoid MathematicalReaction data classes for xCellerator compatibility. There are

currently seven classes that inherit from the Parameter super-class. Every parameter

possesses two key attributes. The Units attribute is a reference to (International System of

Units) SI base unit classes which appear in the center of Figure 2.1 in yellow. This is

done in order to provide to the user with a clear reference and meaning for the value of

the parameter. It also was included in the case that the Sigmoid system were to perform

any sort of dimensional analysis. The “owner” attribute references the ParameterSet in

which a particular parameter belongs. By this arrangement, a parameter points to its

“owner” ParameterSet.

The IntParameter and DoubleParameter classes as shown in Figure 2.3 are built to

reference integer and Double value parameters respectively. They posess a string

attribute ”variableReferenceName” which is designed to handle variable declarations in

models which implement any sort of rate equation. Models that implement

AlgebraicPassthrough reactions will require this field in cases where global variables

(reactant names) or constants are to be set for the notebook model.

The IntVector and DoubleVector Parameter classes have been constructed because a

limitation in the OJB code implementation prohibits multiplicity from being used directly

on Java primitive types. IntVector and DoubleVector serve as wrapper classes.

RateFunction is the primary mechanism by which algebraic expressions are stored,

as strings, for AlgebraicPassthrough Reactions. These expressions are delivered to the

xCellerator simulator. StringParameters hold strings and similarly may be of use for the

construction of models that utilize algebraic rate expressions. The algebraic rate

18

expressions are important because they provide a modeling biologist with a mechanism

to implement custom or unsupported (by xCellerator) kinetics in reaction equations thus

adding calculable flexibility to the Sigmoid simulation platform.

2.4 Parameter Sets

2.4.1 Object-oriented Parameters

Parameter sets, illustrated in Figure 2.4, serve as a high level single grouping of

parameters for models. This grouping allows a modeler to store different sets of

parameters that may yield differing behaviors in the model. It simplifies the modeling

process for the user and facilitates organized storage of information into the Sigmoid

database. For instance, if a modeling biologist discovers an interesting oscillatory

behavior in a model, and wishes to store the kinetic rate parameters for further

investigation, he or she may do so without abandoning other rate information or having to

tediously change individual parameters. Sigmoid models can be constructed with any

number of parameter sets to represent model data. A limitation of the SME graphical user

interface prevents Models without initial conditions or rate constants from being rendered

[Su 2004]. Furthermore, models lacking kinetic rate constants or parameters will not

translate to simulateable models for xCellerator.

19

Figure 2.4 ParameterSets are collections of Sigmoid Parameters that serve as inputs for the
variety of Sigmoid Reaction classes, concentration information Reactants and parameterized
inputs for exernal simulators and analysis tools. Collections of parameters are useful for
organizing model behavior and analysis at a meta level. Also, the Optimization ParameterSet
stores parameters for a simulated annealing optimizer [Zhang 2008] that has been incorporated
into Sigmoid.

An important attribute to note is the ParameterSet name. This attribute must be set

both in the ParameterSet and by reference within any corresponding reaction rate or

InitialCondition. (Failure to do so will prevent SME and the ModelEmitter from

functioning properly.) Reaction equation parameters are attributes of

MathematicalReaction class or data objects. Each particular parameter possesses a

corresponding “owner” ParameterSet thus being contained by external reference.

20

2.4.1.1 Rate Constants

In the Sigmoid schema, MathematicalReactions (see Section 2.9) are classes that

represent and store the reaction kinetics that simulate biological processes. Each

MathematicalReaction has a set of attributes that consist of reaction input parameters that

are sent through the middleware translator and converted to xCellerator functions for

simulation. The MathematicalReaction attributes are stored as Parameters and these

Parameters refer, via their “owner” attribute, back to their ParameterSet. In this case the

ParameterSets are RateConstants. The naming of “RateConstants” is slightly misleading

and should be changed to better reflect what RateConstants stores. “Reaction

Parameters” would probably be a better name. The variableDeclarations attribute is

useful when constructing models that use eitherAlgebraicPassthrough reactions,

inlineFunctions or some cases of SBML support.

2.4.1.2 Initial Conditions

InitialConditions refer to the initial concentrations of Reactants in a Sigmoid model

which serve as starting points for simulation runs. Any model that is to be displayed by

SME must possess this collection. Failing to provide this will result in a display error.

Upon simulation, any uninitialized reactant concentrations will most likely be set to zero

by xCellerator.

21

2.4.1.3 Layout Nodes

Figure 2.5 LayoutNode Class is used for storing graphical layout settings that determine the
Sigmoid Model Explorer display behavior. Model icons are positioned via Cartesian
coordinates. Layouts were designed to be collapsible and thus can be stored in a nested fashion
by using the “owner” reference. Toggles for hiding particular icons and associations to other
icons are stored via the “isHidden” and “edgesHidden” attributes.

The Layout ParameterSet was included to allow multiple graphical layout

representations to be shown by SME. For reference the LayoutNode class is shown in

Figure 2.5. Layouts use Cartesian coordinates to position Sigmoid Icons. The

“expandable” attribute indicates that a node can be expanded into a sub-network of

reactions or collapsed and represented by one icon. The expansion/contraction is

coordinated with the ReactionGroup class which is comprised of collections of reactions.

The idea behind this is to be able to treat a biological processes comprised of many

subreactions as a unit. For instance, DNA to RNA translation should require a whole

network of reactions to achieve, but a modeler may wish to view the whole process as a

signal-in product-out node in one instance, and in another may wish to examine the

whole sub-network as it relates to other processes. ReactionGroups are explained in more

22

detail in Section 2.9.2.2. The “isHidden” attribute is used to hide nodes (icons) from

layout view. The “edgesHidden” attribute does the same for the SME/JGraph arrows that

point to, or from, the icon. The ‘size’ attribute can be used to scale Sigmoid icons.

 A Simulated Annealing Optimizer (SAO) [Zhang 2008] has been integrated into

Sigmoid through the web services interface. It uses a global optimization technique and

Lam- Delosme schedule to make the optimization process faster and more efficient when

compared with other general schedules available [Lam and Delosme1988]. It aims

to reverse engineer model parameters (for example kinetic rate constants) given both the

model structure (represented as ordinary differential equations) and empirical system

dynamics as expressed by experimental time series data.[Compani et al. 2010]

The Optimization ParameterSet, ExperimentalDataset, ReactantData and

TimeValuePair classes are built to support the storage of the SAO parameters in the case

that an expert user wishes to do multiple optimization runs with differing parameter

settings or to simply save their optimization settings with a corresponding model.

23

Figure 2.6 Cellerator ParameterSets are a legacy representation from earlier versions of
Sigmoid. They are still a useful representation for initializing models that have corresponding
Mathematica/xCellerator notebooks.

 Sigmoid was developed with the idea of having an external simulation engine.

The Cellerator, now xCellerator, package for Mathematica provides a powerful set of

functions to model and simulate biochemical reaction networks. Earlier versions of

Sigmoid (Pre Sigmoid 2.0) used a parameter representation that directly mirrored

Cellerator’s structure. Parameters were stored as NameValuePairs (Figure 2.7), just as

Cellerator notebooks commonly set a name for a variable and a corresponding initial

value. The need to implement multiple parameter sets as well as the requirement to

adhere to a more object-oriented design for parameter representation led to the

abandonment of the use of CelleratorParameterSets within SME and Sigmoid.

CelleratorParameterSets (CPS) are still useful however, during construction of hand

coded models from Cellerator Notebooks. In this case it’s useful to build a CPS from the

notebook data and then run a translator method to build the Sigmoid model. This point

will be discussed further in Chapter 4.

24

Figure 2.7 NameValuePairs serve as a mirror representation of xCellerator notebook rules used
to set initial conditions and rate constants for models.

 The NameValuePair (NVP) class is still a valuable class in the construction of

hand coded Sigmoid Models because it closely mirrors the structure of parameter

initialization in xCellerator notebooks. Although the NVP is not required for a

functioning Sigmoid model, it provides the user with a useful handle and reference to

existing Mathematica/xCellerator notebooks when building model code. The

“valueStatic” attribute can signal to the reaction translator that a value is to remain a

constant.

 The NVPbyCompartment class (NVP meaning Name Value Pair) was designed to

store NVPs for compartmental models designed for the Sigmoid schema version 2.17.

The version distinction is required because there are two differing representations in the

schema for compartmental modeling. Any class that refers to a Compartment will

correspond to a representation built for the 2.17 version. References to SpatialModels and

DimensionalCompartments were added to Sigmoid schema as of version 2.21. The

representation for compartments spatial models will be discussed in Section 2.11.2.

25

2.4.2 LEDA

Since Sigmoid was designed to be a database of biochemical reaction networks, at

some point the database could become heavily populated. The array of available Models,

Reactions and Reactants would overlap in scope and become interconnected. At this

point, the opportunity to perform graph analysis upon the vast biological networks

represented within the Sigmoid

framework could yield valuable

inferences. A likely candidate

for graph analysis integration

with Sigmoid is GraphCrunch

[Milenković 2008]. Therefore, a

set of data structure support

classes was built for LEDA

formatted graphs which scale up

to large problem sizes. A LEDA

graph consists of an EdgeList

and a NodeList with

corresponding “type” descriptors.

The graph may be directed or

undirected so Edges possess “sourceNodes ” and ”targetNodes” as well as a Boolean

toggle “isDirected”.

Figure 2.8 The LEDA Graph data structure classes.

26

2.5 The Reactant Hierarchy

Figure 2.9 The entire Reactant class diagram. The root node of the main tree of reactants is
The Reactant class (red). The main sub categories of Reactants are from left to right, Particles
(in yellow), Molecules (green), Proteins (purple), BioComplexes (orange) and Structures (reds
and pinks). This hierarchy is expanded upon in more detail in subsequent figures.

 The Reactant class diagram (Figure 2.9) for Sigmoid consists of a top level

superclass Reactant (in red) with a corresponding hierarchy of reactant subclasses and a

dozen or so supporting classes. We will define the reactant hierarchy as the Reactant

superclass and all classes that inherit from Reactant. The tree shown in Figure 2.9

indicates an “is a” relationship ie. an Enzyme “is a” Protein, a Protein “is a”

Macromolecule, and so forth where all classes below inherit the properties of the class

above it, ultimately all being Reactants. This hierarchy serves at least two main

purposes. First it produces an object-oriented representation of Reactant class objects to

serve the software engineering requirements for the Sigmoid modeling system.

Secondly, the hierarchy serves as a special-purpose ontology to represent relevant

biological entities as objects within the Sigmoid framework. The reactant hierarchy

should be comprised of a wide domain of frequently referenced biological objects that

27

participate in biological reaction processes. These reactants range greatly in scope in

scale, composition and complexity.

 An attempt was made to provide a distinguishable set of reactant objects that

would both represent at least basic biological entities for modeling biologists and also

interact properly with the software components of the system. In order to reduce coding

overhead, SME uses Java reflection to discover properties of the objects it wishes to

display. Java reflection discovers the class of its objects at runtime, to perform

operations at runtime. This technique and level of abstraction allows SME to avoid hard

coding behaviors based upon specific object types. This approach from the SME client

side was to parse the Reactant objects with reflection and to make display determinations

based upon a Reactants’ class. For instance, rules could be set to display SmallMolecules

with a particular icon (a graphical file image that represents a node in the display network

of SME) shape, color or size, and MacroMolecules with a different shape etc. Also, SME

makes determinations about display based on sub-class type.

 For the most part, on a macroscopic level the objects denoted in the reactant

hierarchy diagram increase in scale and complexity from left to right in Figure 2.9. The

idea was to provide common biologically relevant objects for the biologist to utilize in

constructing a model. From left to right the major groups are Particles, SmallMolecules,

MacroMolecules, Complexes and on the far right Organelles, Cells, CellularStructures

and Organisms.

28

2.5.1 Particles

Figure 2.10 Basic particle types are available for modeling. Photons are available for modeling
of systems involving biological processes such as photosynthesis. Electrons were included for
modeling electromotive forces involved in mitochondrial ATP synthesis. Protons are crucial for
modeling acid-base chemistry and membrane bound proton pumps. Alpha particles and
Photons could be useful in modeling cell damage induced by these forms of radiation.

 The Particle class, and its subclasses, serve to cover the low end of the modeling

scale for Sigmoid as described in Figure 2.10. Particles inherit from Reactants (not

shown on the diagram.) Energy and charge attributes are available for particles. The

particle classes arose as a modeling request at one point and should serve as a rough

template for further development if necessary. Of the various particle types, Photons are

available for modeling of systems involving biological processes such as photosynthesis.

Electrons were included for modeling electro motive forces involved in mitochondrial

ATP synthesis. Protons are crucial for modeling acid-base chemistry and membrane

bound proton pumps. Alpha particles and Photons could be useful in modeling cell

damage induced by these forms of radiation.

29

2.5.2 Molecules

Figure 2.11 The Molecule Sub-hierarchy of Reactants. At the molecule level, the reactant tree is
split into two categories, SmallMolecules (left branch) and MacroMolecules (right branch). The
MacroMolecule domain includes all types of Sigmoid Protein (Purple subtree). Within the
scope of existing and curated Sigmoid models, the molecule tree possesses the most frequently
instantiated types of Sigmoid Reactants.

 Molecule is a class that inherits from Reactant in the hierarchy and possesses a

vast number of subclass types arranged into relevant biological groupings. The major

groups fall under SmallMolecules, MacroMolecules and Proteins. These classes of

molecules were chosen because of their biological significance. This significance is

recognized for many of the classes by other markup languages like KEGG and SBML.

The intent was to provide a class array that would facilitate automated conversion of

30

information from other databases and markup languages to the object-oriented

representation present in Sigmoid.

2.5.3 SmallMolecules

Figure 2.12 Several common kinds of biological SmallMolecules of are available for modeling.
SmallMolecules possess the chemicalFormula designation. The particular convention of
molecular formula is unspecified for user flexibility. Charged Ions can be used for use cases
such as acid-base reactions.

 Small molecules arise frequently in biochemical and pathway models. A basic

array of biological types is provided: Sugars, AminoAcids, Nucleotides, Fatty Acids,

Ions, and a spot for CoEnzymes occur in the schema. All these classes inherit a

Composistion from SmallMolecule which basically stores a string for empirical,

molecular or structural formulas. No particular form is enforced by Sigmoid and this

convention is left to the expert user.

2.5.4 MacroMolecules

 Basic support for common biological macromolecules such as DNA, RNA,

Lipids, Carbohydrates and Proteins is provided by the classes shown in Figure 2.13.

31

(Although there are some lipid polymers such as Polyketides, Lipids should be relocated

to the SmallMolecule tree. Also, The Carbohydrate class should be re-termed

Polysaccharide.) The “conformation” attribute is present to give the user some flexibility

in storing relevant macromolecule information. Its primitive type was left as a string for

user flexibility until domain specific modeling requests or modeling plans determine

specialized attributes. Relevant sequence or domain specific molecule information could

be placed here.

Figure 2.13 The Sigmoid MacroMolecule classes represent common but pertinent classes of
biological macromolecules. Appearing from left to right are, Peptides which have the Protein
subclass tree, Lipids, DNA, RNA, and Carbohydrates (Should be termed Polysaccharide). The
“conformation” attribute of Macromolecule can be used to store domain specific information
about a particular macromolecule such as sequence information.

32

2.5.4.1 Proteins

Figure 2.14 This class diagram presents some of the Classes that inherit the Protein designation.
The six major types of enzymatic proteins are available as an Enzyme Reactant. Other Protein
class names are designated by roles the protein might be playing in a particular Model or
Reaction. Providing classes for these types of proteins allows a coding investigator to build
models using objects that represent relevant biological entities. The representation can be
expanded, with a schema revision, to include additional attributes when a modeling demand
arises. For example, Odixoreductases have associated coenzymes or cofactors. Naturally if
analysis of this relationship were to become a modeling requirement, it could be added to the
schema.

 Several protein sub-classes are available to choose from. The Protein class names

correspond to common protein types and roles. Markers and Receptors would indicate

surface proteins, Messengers would be used for intercellular functions. Six basic types of

enzyme as categorized by activity (Oxidoreductase, Isomerase, Hydrolase, Lipase, Lyase

and Transferase) are present and are marked by “ecNumber” to represent the Enzyme

Commission number (EC number), which is the numerical classification scheme for

enzymes. Enzymes also inherit a reference to potentially many BiologicalReactions.

33

Since the EC number is a reference to enzyme-catalyzed reactions, the idea is to store the

reactions in the “catalyzedReactions” attribute for an enzyme. GateProtein and its three

subclasses are available to represent trans-membrane types of proteins involved in

potentially multi-compartment models, and therefore possess a reference to a set of

associated “boundaryReaction” trans-membrane reactions. HypotheticalProtein was

included for potential gene products and has fields for the open reading frame and GO

annotations. Structural and Anitibody protein class designations are available for cases

where that role must be indicated.

Figure 2.15 Additional Protein class types include Gate Proteins that are involved in trans-
membrane or boundary Reactions, roles as Structural proteins and Antibodies.
HypotheticalProteins are available to represent potential gene products and
TranscriptionFractors can specify sequence specificity.

34

2.5.5 Complexes

 Moving up in scale, next is the BioComplex group of Reactants. BioComplexes

have been designed to represent biological complexes, mainly of macro-molecules. The

BioComplex class has an “entryPoint” Reactant specified to be the root of a tree or graph

structure. This was included mainly to provide a focal point for the user. The

“collapsed” attribute is a logical operator included for display purposes in SME. Since

complexes under this representation have associated Reactions, the design intent was to

include options for expanding or collapsing the reaction network display for a complex.

“complexID” was and identifier similar to “uniqueDBID”. Also, the “formationLogic”

SyntaxTree provides a handle to include a formal grammar for the formation of potential

complexes [Mjolsness 2007].

35

Figure 2.16 The BioComplex sub-hierarchy of classes.

 The BioComplex sub-hierarchy contains a couple branches of note. There are

several PrimalComplex subclasses built so that the class name describes the complexes’

respective components. The other branch, GenericComplex was designed as a container

class for assorted MacroMolecues. The “otherReactants” attribute and were included in

case the modeling biologist wises to use another reactant type in a complex. The intent

36

behind the GenericComplex was to provide a data class that would serve as a bin for

software processing and traversal of a complex network. StructuredComplex, inheriting

from GenericComplex contains its respective Reaction vector.

Figure 2.17 Structures are intended support large scale reactants with high complexity.
Structures can contain other Reactants thus provide a nested representation for biologically
complex entities. Every structure contains a collection of compartments. For example, this can
represent multi-compartmental Organs with cellular constituents that possess organelles.

2.5.6 Structured Reactants

 To the far right of the Reaction hierarchy are the Structured Reactants. Structured

Reactants are provided for cases where the complexity of a reactant exceeds

macromolecules or complexes. In left to right order of increasing complexity such

reactants include Organelles, Viruses Cells, Organs, Organisms and Colonies. Tissues

should be added to this diagram as they participate in developmental models.

Representational nesting of structures was included. For instance, a multi-compartmental

Organ, containing multi-compartmental Cells could contain multi-compartmental

37

Organelles.

Figure 2.18 The available Organelle classes inherit from Structure and possess collections of
compartments. A set of classic cellular structures is available for the modeling biologist to
choose from to construct Models.

 Several class types for Organelles are illustrated in Figure 2.18. These serve as

templates for later expansion of the ontology.

 Many classes in this hierarchy are lacking class specific attributes which, from an

object-oriented perspective is perhaps an inefficient use of a class structure and tables in

the database. The long-term intention was to add relevant attributes to the classes as need

emerged from modeling requirements and as the corresponding ontology evolved. The

author would classify a large amount of the ontology as mental place holders that still

provide a decent handle when constructing new models as well as a coding convenience.

Java code authors can simply instantiate a common biological component by name. This

is fairly important, as typically building new models yields a new modeling requirement

for the Sigmoid system. For instance, a user hand coding a Sigmoid model that

38

implements Transport, Pump, or Channel Proteins may have a domain-specific

requirement for the representation in the form of class attributes or additional supporting

classes. At that time, the new class requests can be considered for Sigmoid representation

and added to the schema if necessary. Having a basic Reactant class (for this example,

the Transport, Pump or Channel Protein) to serve as a handle, at least allows a framework

model to be encoded and tested until a schema revision, with the deeper representation, is

available.

Figure 2.19 The Reactant super class is the container class for all common Reactant attributes.
It is abstract in that its biological role has not been explicitly designated. Functionally at a
minimum for xCellerator simulation the only required field for a Reactant is a “name”. A
corresponding initial condition should be specified.

Furthermore, a substantial number of Reactant class types have designations in other

biological markup languages such as Kyoto Encyclopedia of Genes and Genomes

39

(KEGG) Markup Language, (KGML) or the Systems Biology Markup Language

(SBML). A reservoir of compatible Sigmoid Reactant classes facilitates automated

translation of models from the other markup languages to the Sigmoid database.

 The Reactant class serves as the top level designation in the hierarchy and all

other reactant classes inherit its attributes. Reactants all should have basic attribute

identifiers for use within the Sigmoid software system. SME and the translation to

xCellerator notebook require a “name” field in order to function. Names should not

contain any spaces or special characters that Mathematica/xCellerator cannot parse. A

“shortDescription” serves for the purposes of pop-up text within SME and can also be a

more descriptive name field. ShortDescriptions are not parsed by the simulator and are

not subject to restrictions. Additional user notes or information can be stored in the

“comment” field. The license field was included in case there were any licensing issues

with model data. “Synonyms” were included for cases where something might have

many names. The need for a unique identifier, “uniqueSigmoidDBID”, arose because

ultimately Sigmoid is to store relevant reactant and reaction data without redundancy.

For instance the ATP molecule possesses its own unique attributes and should be stored

in such a way that it can be used across all potential pathway models it may occur within.

 With regard to the “constituents” field, Reactants were built to have references for

recursive self containment in the event the modeler wanted to model one reactant as a

conglomeration of reactants. Reactants such as organelles or complexes may possess

several distinct Reactant components.

 The “state” attribute of StateVectors are an important representation for

macromolecules, as discussed in the next section.

40

2.6 Reactant Utility Classes

2.6.1 StateVectors and Modifications

 The Reactant hierarchy has a few utility classes constructed to allow Reactants the

ability to represent several states. This is particularly important for macromolecule type

reactants. For instance, proteins may undergo post-translational modifications such as

phosphorilation, ubiquitination, methylation, etc. (See Section 2.9.3 for a much more

extensive list.) The idea is to store a StateVector for a particular Reactant that would

contain a vector of potential modification sites and bindingRegions for potential complex

formation binding partners. Each Site would have references to particular reactants that

could modify the site. Regions

would reference those Reactants

which might potentially interact or

complex with a Reactant within a

binding region. Both Site and

Region inherit from Locus and

possess the Boolean “bound”

attribute intended for the software

system to record binding state

(bound or unbound). Reactants

also possess Modifications which

specify the Site of a modification

and the modifying molecule type.

Figure 2.20 StateVectors, Modifications and the
Sigmoid 2.17 Compartment representation.

41

2.6.2 Compartments

 A Compartment class was also provided in the 2.17 schema to support multi-

compartmental models. The class is shown here because it was associated with the

StateVector class. Consideration was given to specifying a Reactants location by

compartment within the StateVector, but this approach proves problematic because the

presence of a Reactant within a compartment can be more properly modeled as a property

of the compartment as opposed to being a property of the Reactant. The Compartment

class should be deprecated, since a more feasible approach is introduced in Section 2.11.2

on spatial and compartmental modeling.

2.6.3 Taxonomy

Figure 2.21 A simple Taxon representation. Taxonomic ancestor information can be stored in
this simple recursive data structure. The reference to Taxon is contained in the root Reactant
class. Although most entities in the Reactant hierarchy may have a taxonomic designation, a
few exceptions are present. i.e. particles and small molecules do not inherently possess this
attribute.

 The Reactant class includes a taxonomy attribute mainly included for taxonomic

references for proteins. The Taxon Class has a simple recursive inheritance structure to

indicate ancestors. It’s recommended to either modify, or remove this from the schema

for a couple reasons. Reactants like a particle or small molecule will not possess

taxonomy so, the Taxon attribute inherited from Reactant would be inapplicable. Also,

42

the Gene Ontology classes provide a more robust representation that includes taxonomy

identifier numbers for this function. The Gene Ontology classes are discussed in more

detail in Section 2.11.1.

2.6.4 Functional Ontology

Figure 2.22 The Sigmoid functional ontology.

 Certain classes were built to represent a functional ontology by a previous

Sigmoid developer. It appears as though the idea behind this was to provide a

mechanism by which a modeler could specify a reference to particular Reactions that a

reactant was involved in or would be activated by, thus indicating its function. These

classes were never used in any models and could possibly be better represented the by the

GeneOntology (GO) classes in the schema along with a set of associated

MathematicalReactions. One argument in support of maintaining these classes and that

distinguish it from a gene ontology representation is that these classes build a graph of

MathematicalReaction relationships. Function, ActivationPattern, ReactantFunction and

43

BooleanOverReactantState require evaluation (and consultation with the previous author)

for effective integration with the GO annotated or other Reactions and should be

scheduled for revision and/or possible deprecation. Function and ReactantFunction

appear might be better represented by GO Functions in the BiologicalReaction hierarchy

ActivationPattern and BooleanOverReactantState might be better represented by

StateVectors. The recommendation for deprecation is made because these classes were

introduced in an early schema version (Sigmoid v45 or prior) that did not have a

distinction or separation between BiologicalReactions and MathematicalReactions.

Schema v45 was structured so that all Reactions were closely representing Cellerator

functions and thus were MathematicalReactions.

2.7 Reactions

Figure 2.23 The entire Sigmoid Reaction diagram. This diagram is comprised of a Reaction
hierarchy (yellow root class), a post-translational modification hierarchy (the green tree on
bottom right), and supporting utility classes (top left). The Reaction hierarchy is split into two
major sections. The top right most branch of the tree is composed of Biological Reactions. The
left branch is composed of Mathematical Reactions. Components and attributes of this diagram
will be illustrated in more detail in the following sections.

The Reaction class diagram of the schema shown in Figure 2.23 contains the

hierarchical structure of Reactions, a hierarchical structure of

44

PostTranslationalModifications, and a few utility classes to support classes. The

Reaction hierarchy is comprised of groupings of Reactions. Reactions are composed of

biologically and mathematically relevant data classes constructed to facilitate the

transformation of sets of Reactants to produce other sets of Reactants. The Post-

translational hierarchy consists of common chemical modifications of protein amino acid

residues that have a functional impact on proteins. The hierarchy of post-translational

modifications appears to the bottom right of Figure 2.23, in green. The

PostTranslationalModification and the Reaction diagram supporting utility classes are

discussed in more detail in subsequent subsections.

2.7.1 The Reaction Super Class.

Figure 2.24 Reaction is the root class of the entire Reaction Hierarchy. Every class of Reaction
will inherit its attributes. The name attribute is requisite for display in SME and is required for
simulation in xCellerator. KnowledgeSources, “shortDescription”, and the comment field are
available for annotations.

45

 Reaction is the root of all Biological and Mathematical reactions. We will

introduce the details of the class here because all subsequent Reaction subclasses inherit

all of Reactions’ attributes. The “name” attribute is required for all Sigmoid Models that

are to be either displayed within SME or simulated by xCellerator. The name string is

passed to both for model parsing. “Comment” and “shortDescription” attributes are

available for supplementary reaction information. As with the Model and Reactant

classes, KnowledgeSource serves as a reference for citation information and

supplementary reactant documentation.

Figure 2.25 Simplified version of the Sigmoid Schema Reaction hierarchy. (a.) There may exist
a one to many relation between a particular biological reaction and potential functions
(Mathematical-Reactions) that may be assigned to model the kinetics of the interaction. For
instance numerous mathematical functions can be assigned to model a catalytic process. (b.) In
reverse, the functional application of a particular set of differential equations may be conserved
over a variety of biological phenomena so, there also may be a one to many association between
a particular mathematical function (Reaction) and the biological scenarios it may be applied to.
For instance a Hill equation may provide useful in modeling a catalytic reaction, transcriptional
regulation or even a transport process.

46

 An essential function of Sigmoid is to assist in the translation of biological

knowledge into mathematical form. The representation of Reactions in Sigmoid is aimed

at this goal. Sigmoid Reactions represent biochemical processes that transform molecular

or other biological objects that are represented as Sigmoid Reactants. A major design

feature of Sigmoid is that, to support translation of biology to mathematics, Reactions are

defined in two sub-hierarchies: Biological Reactions and Mathematical Reactions. The

Biological Reaction hierarchy is intended to provide biologically oriented users with

symbolic representations of a biochemical reaction or process. Attributes that represent

the basic reactants with primary roles are included. The kinetics of the reaction are

abstracted out and delegated to Mathematical Reactions. Mathematical Reactions

constitute a type hierarchy of mathematical models of reactions or other processes in the

Sigmoid schema. Such representations include particular rate laws, as well as the

translation of compound reactions into a sub-network of more elementary reactions each

of which has a more elementary mathematical model. With a few exceptions,

Mathematical Reactions currently have direct xCellerator/kMech implementation

functions associated with them. Numerical parameters associated with each reaction are

contained by reference, which enables key reaction parameters to be shared within a

MathematicalReaction or across a full reaction network. In this way the Sigmoid

architecture can offer explicit support for the translation of biological processes into

mathematical process models. Each type of biological reaction may in principle be

translated into several alternative mathematical reaction models, and each mathematical

reaction model can serve as the translation of several different biological reactions. An

47

example of the importance of many-to-many reaction translations is shown in Figure

2.25.

Figure 2.26 Other elements of the Reaction class diagram have been extracted to illustrate the
Sigmoid Reaction Hierarchy of Biological and Mathematical reactions.. The top branch of this
hierarchy consists of Biological Reactions. Biological Reactions contain information about the
players in a reaction and are classified according to category of biological process, but are
abstract in that they contain no kinetic details about a reaction. The bottom branch of the
diagram consists of MathematicalReactions. MathematicalReaction classes store parameter
information about specific xCellerator functions designed to model reaction kinetics.

 The Reaction hierarchy can be seen in Figure 2.26 independently of the other

classes that appear in the Reaction class diagram. Other elements of the Reaction class

diagram have been extracted to highlight the Biological and Mathematical subdomains of

Reaction. Every BiologicalReaction contains a reference to a collection of

MathematicalReactions. This collection can contain one-to-many

MathematicaReactions. The mapping between biological and mathematical reactions is

subject to applicability constraints. An expert user is required to determine which

48

mathematical functions will map properly to a particular biological process. SME

implements a table of suggested mathematical reactions in the model creation portion of

the program, but the implementation of this feature is immature and requires further

development.

2.8 The BiologicalReaction Sub-domain of Reactions.

Figure 2.27 The BiologicalReaction sub-hierarchy of Reactions has two main branches. The
right branch is composed of Simple reactions, representing typically singular
BiologicalReactions. There are three sections of Simple Bio Reactions, NonCatalized (far right
in cyan), CatayticEnzymatic (blue), and other Simple Reactions (purple). The left branch of
BioReactions (in green) is composed of CompoundBio Reactions. CompoundBio reactions are
composed of many Biological reactions and can represent complex systems of biological
processes. These Sections will be expanded upon in detail in the following sections.

 The biological domain of Reactions in Sigmoid was designed to present a concise

representation of biological process options. An effort was made to cover the widest

possible array of biological scenarios with a simple concise set of classes. The

BiologicalReactions (BioReactions) contain references to the players (Reactants) in the

reactions along with certain character attributes that describe the Reaction process. A

common example of one of these attributes is reaction reversibility, typically stored as a

Boolean value. The BioReaction sub-hiearchy is split into two main branches as

illustrated in Figure 2.27. The left branch consists of non-catalyzed reactions, catalytic or

49

enzymatic reactions, and a few other reaction types that will be discussed in the following

sections. The right main branch is consists of CompoundBio Reactions. The basic

principle behind the CompoundBio reactions is that they are comprised of sets of

BioReactions as opposed to being singular reaction processes.

2.8.1 NonCatalyzed Reactions

Figure 2.28 NonCatalyzed Reactions, inheriting from the Simple BioReaction class, were
constructed to represent general chemical (or non-catalytic biochemical) processes.
GeneralConversions is a generalized form of simple non catalytic reaction that converts any
number of substrates into any number of products. It is the most flexible representation in this
sub-tree of BioReactions and can functionally represent any reaction in this figure. AcidBase,
DoubleRelplacement and the OxidationReduction classes should be subclasses of, and inherit
attributes from the GeneralConversions class. This inheritance error was corrected in the 2.25
schema update.

 Although not shown in Figure 2.28, all NonCatalyzed BioReactoins inherit the

“mathImplementation” attribute from the Simple BioReaction class and can have zero-to-

many associated MathematicalReactions (MathReaction). The NonCatalyzed sub-

domain of BioReactions consists of a set of basic reactions that possess no explicit

50

enzyme or catalyst. Basic chemical processes can be functionally represented by these

reactions in the schema.

 All of the reaction classes within this sub-domain of BioReactions, in practicality,

can be functionally represented by the GeneralConversions class. All other subclasses of

NonCatalyzed are actually limited cases of GeneralConversion. An important property of

the Sigmoid classes is to provide a viable language for the modeling biologist to use in

the creation of their models. These classes are within the schema because the class names

are descriptive and confer biologically relevant information about common types of

reactions. These classes also provide constraints on the number of substrates and

products of a reaction plus a Boolean attribute to set reaction reversibility.

 The BioCreation or Annihilation classes are commonly used in the existing

Sigmoid models that have been coded. Models typically feature creation or destruction of

a reactant species without details of the process. i.e Anabolic processes require an ATP

(adenosine triphospate) source. The only relevant detail may be the abstract

manifestation of the product ATP at a certain rate. Conversely with regard to

BioAnnihilation, Reactant destruction may be required for a model, but including the

details (enzyme that catalyzes the destruction) of that reaction not an important detail of

the model reaction.

51

2.8.2 Catalytic and Enzymatic Biological Reactions

Figure 2.29 Classes inheriting from CatalyticEnzymatic are designed to represent biological
process reactions that involver either chemical catalysts or biological enzymes. Key
commonalities are that both catalysts and enzymes are not consumed in the reactions and
modify the rates of their reaction processes. The focus of these classes was primarily designed
to support enzymatic processes but purely chemical processes and be represented by expert use.

 Although not illustrated in Figure 2.29, all CatalyticEnzymatic inherit the

“mathImplementation” attribute from the Simple BioReaction class and can have zero-to-

many associated MathematicalReactions. Classes inheriting from CatalyticEnzymatic are

designed to represent biological process reactions that involve either chemical catalysts or

biological enzymesKey commonalities are that both catalysts and enzymes are not consumed

in the reactions and modify the rates of their reaction processes. These classes were primarily

designed to support enzymatic processes but purely chemical processes and be represented as

well if necessary.

52

 The GeneralCatalyzedReaction BioReaction was constructed to handle the

general cases of enzymatic processes for zero-to-many substrates and products.

Frequently, biologically catalyzed reactions posses a reverse reaction counterpart in

which the reverse reaction is catalyzed by a different enzyme. For instance, enzyme E

may convert substrate A into product B. The reverse enzyme E2 may convert product B

back into substrate A. Markup languages such as SBML or KGML typically provide

reverse reactions when available. The “intermediates” attribute of

GeneralCatalyzedReaction specifies enzyme intermediate states for cases like PingPong

Reactions. The “modifiers” attribute is available for regulatory reactants. The

BioCatalyticCreation and BioCatalyticAnnihilation classes are special cases of

GeneralCatalyzedReaction in that they designate the corresponding creation and

destruction reactions. The need to specifically designate inhibitors or activators can be

accommodated by the CatalzyedWithInhibitorAndOrActivators subclass of

GeneralCatalyzedReaction.

 Enzyme process models that specify allosteric regulation should be implemented

by the CatalyticWithAllostericRegulation class. A Sigmoid pathway model that uses this

class is the (Yang 2005) model.

 AutoCatalysis was included as a reaction class designation but a set of use cases

have not stimulated the addition of relevant attributes for the class. The stub class

remains in the schema as an important biochemical process, but awaits implementation.

53

2.8.3 Additional Simple Biological Reactions

Figure 2.30 Additional Simple reactions from right to left, BioRegulatoryRelationships for
regulatory proceses, AllostericInteractions (attributes unimplemented), AssemblyDisassembly
for complex formation, ConformationalIsomerizations (attributes unimplemented),
Translocation for inter-compartmental reactions and the GeneOntologyFunction.
GeneOntologyFunction is a class designed to represent reactions within a hierarchy of
reactions.

 A few additional Simple BioReaction classes have been included in the schema.

BioRegulatoryRelationship is present to allow a regulatory system to be modeled where

substrates are not specified. Only single product reactions with multiple regulators are

allowed for the BioRegulatoryRelationship class. AssemblyDissasembly, a reversible

reaction, was included for complex formation and specifies two binding partners and a

single Reactant product. Translocation is a class designed for movement of Reactants

across compartments. Source and destination compartments are specified for

Translocation and the reaction is reversible. ConformationalIsomerization is an

important Reactant transformation reaction but has remained unimplemented and

therefore possesses no attributes.

54

2.8.4 CompoundBio Reactions

Figure 2.31 The CompoundBio reactions represent biological processes that span whole
collections of biological processes. CompoundBio contain other Biological Reactions, including
other CompoundBio reactions, resulting in a nested structure that is built to represent highly
complex and involved biological processes. Of the vast number of complex biological processes,
DNA replication, transcription and translation have been added as subclasses to CompoundBio
because of their biological prominence. To handle the vast array of biological processes, the
GeneOntologyProcess class has been included.

 CompoundBio Reactions are composed of collections of BioReactions and

associated MathematicalReactions. They are designed to provide a layer of abstraction

and scalability within a model. Many biological processes such as DNA replication,

transcription and translation can be highly complex and involve many sub-processes and

55

reactions. The CompoundBio reactions may assist modeling biologists to reference these

sub-networks of reactions as a single process. Since CompoundBio Reactions contain

other BioReactions by reference, biological processes can be represented in a nested

fashion, thus adding a layer of scalability to the representation. Although the number and

attributes of biological processes is vast, only a few key subclasses of CompoundBio

have been added to the schema. To address the diversity of biological processes that

require representation, the Gene Ontology process class was included. Gene Ontologies

provide access to a hierarchy of biological processes. The Gene Ontology representation

will be discussed in more detail in Section 2.11.1.

2.9 MathematicalReactions

2.9.1 The MathematicalReaction sub-domain.

Figure 2.32 The MathematicalReaction domain of Reactions. The branch of equation classes to
the right is comprised of ODEReaction equations that have direct counterparts in xCellerator.
The ODEReaction classes are data classes that store reaction parameters for simulation.
Reactions on the large left branch are Compound reactions which comprise sets of
ODEReactions. The center Reactions in white are AlgebraicPassthrough reactions designed to
pass algebraic expressions directly to the Mathematica simulator. The small branch of
reactions on the far left are reserved for stochastic simulations and serve as stub classes
awaiting further implementation.

56

 The MathematicalReaction (MathReactions) sub-hierarchy serves as the data

structures to store reactant and parameter information for all xCellerator and kMech

reactions implemented by Sigmoid. It should be clear that only MathReactions are

processed by the middleware translation package and sent to xCellerator for simulation.

BioReactions are not processed in this manner. MathReactions are not visualized

currently in the SME network layout view, but instead are referenced by BioReactions.

MathReactions associated with a particular BioReaction are accessible in the side panel

of SME when the BioReaction is selected (shown in Figure 1.4 as item C).

 The MathReaction hierarchy of Reactions is composed of four main branches of

MathReaction. There are three reactions on the far left branch of Figure 2.32 which are

stub classes reserved for stochastic simulation. This type of modeling has not been

implemented in Sigmoid so these classes serve as place holders awaiting further

development. Three major classifications of MathematicalReactions are present in the

Schema. First, Ordinary differential equation (ODE) ODEReactions are reactions that

are direct parameterized representations of xCellerator functions. Second, Compound

MathReactions are reactions that consist of sets of reactions. Lastly,

AlgebraicPassthrough Reactions are reactions that store algebraic expressions to be

passed directly to Mathematica for processing. These sub-domains of MathReaction will

be discussed in more detail in the subsequent sections.

57

2.9.1.1 ODEReaction MathematicalReactions

Figure 2.33 The ODEReactions are data representations designed to store reaction parameters
for xCellerator simulator processing. Each class shown here, with the exception of the attribute
empty classes, possesses a directly corresponding xCellerator function. There are two main
classifications of Reaction: Regulatory reactions appear in the right main (dark orange) branch;
Nonregulatory reactions appear to the left. Subsequent class diagrams will reveal the attributes
in more detail.

 The ODEReactions consist of MathematicalReactions that are parameter input

representations for xCellerator [B. Shapiro2007] functions. The ODEReaction are data

classes designed to store parameter inputs for reaction equations consisting of ordinary

58

differential equations (ODE). The particulars of the reaction equations themselves are

located at http://xlr8r.info and deprecated functions (for older versions of Sigmoid) are

located at http://cellerator.info.

Figure 2.34 Massaction, MichaelisMenten, and a now deprecated
SimplifiedNonSaturatedCatalytic enzymatic reaction appear in the ODEReaction tree.

 Two forms of mass action kinetic equation data classes are available for

modeling: UnidirectionalMassAction, which stores only a forward rate, and a

bidirectional subclass possessing a reverse rate. The mass action equations form the basis

of the Compound MathReactions. All Compound MathReaction enzyme mechanisms

(Section 2.9.1.2) are composed of sets of mass action reactions. A classic

MichaelisMenten parameter class is available to model enzyme kinetics. The

SimplifiedNonSaturatedCatalytic equation is a deprecated function and is now handled

59

by the TwoStageCatalytic Compound MathReaction. SimplifiedNonSaturatedCatalytic

persists in the schema to support some older Sigmoid models until they are recoded.

Figure 2.35 There are several regulatory functions supported by xCellerator. A regulation
indicates that a particular Reactant modifies the kinetics of a reaction equation but is not
consumed in the process. The corresponding data classses appearing in the schema with all
requisite xCellerator input parameters are, from left to right, Hill (regulatory) and its subclass
CatalyticViaHill, GRN (Genetic Regulatory Network), NHCA (Non-heirarchical, Cooperative
Activation), and SSystem. Also, a UserDefinedRegulation exists, and a subsection of allosteric
regulations is composed of three classes of the Monod-Wyman-Changeux (MWC) model.

60

 Several classes of RegulatoryFunctions are available in the ODEReaction portion

of the schema. Two forms of Hill equations are available, a purely regulatory form in

which no substrate is consumed (Hill) and CatalyticViaHill version where the substrate is

consumed. A class for Genetic Regulator Network (GRN) reactions is available. Three

forms of Monod-Wyman-Changeux are present for allosteric regulations. The

generalized form of MWC (GMWC) reaction equation is used in the Yang_2005_Ile-

Val-Leu model in the Sigmoid database [Najdi et al. 2005] A regulatory function for

Non-heirarchical Cooperative Activation (NHCA) is available as well as SSystem

(Savageau 1969) (Savageau 1970), and a UserDefinedRegulation.

61

2.9.1.2 Compound MathematicalReactions.

Figure 2.36 The Compound Reaction section of the Reaction hierarchy. Compound Reactions
are conceptually single Reactions that are composed of sets of ODEReactions. The majority are
enzymatic processes. Reactions shown in purple on the right are catalytic reactions that have
direct analogs with xCellerator reactions. Reactions illustrated in either red or white are direct
representations of existing kMech reaction equations. Classes shown in while are classes to
support more recent additions to kMech. Reactions shown in yellow are part of the
KMechReaction representation which is a parameterized version of the kMech reactions shown
in white and red. The KMechReaction set of classes is processed by the SigMech Utility to
produce all of the associated sub-reactions.

 The Compound Mathematical Reactions portion of the MathReaction hierarchy

featured in Figure 2.36 consists of enzymatic Reactions that are composed of sets of sub-

Reactions. The ThreeStageCatalytic reaction featured previously in Figure 1.2 is an

example of an xCellerator compound reaction. It is a single parameterized reaction like

process that possesses six sub-reactions. All Compound Reaction class instances have

corresponding xCellerator or kMech reactions. The majority of CompoundReactions are

kMech enzymatic reactions.

 The Compound section of the schema began has grown as new compound

reactions have been added to kMech and xCellerator. It has become apparent that the

62

additional kMech reactions are built on a few general principles and that storing instances

of enzyme mechanisms as a hierarchy of classes would be a cumbersome process for the

design cycle of Sigmoid. Each instance of a new kMech reaction case would yield a

requirement to process a schema, generate the Java API classes, set up a development

environment for the particular schema release, update the middleware Sigmoid-to-

Cellerator code, and retask SME with the new Java API. To alleviate this coding burden,

the new KMechReaction Classes featured in Figure 2.37 are built to replace the previous

strategy of adding new enzyme mechanism reactions as they are requested by modeling

biologists.

Figure 2.37 The KMechReaction classes are designed to be a replacement representation for all
(self excluded) existing compound enzymatic reactions featured in Figure 2.36. The
representation is a generalized form of previous enzymatic reaction mechanism classes within
the Sigmoid schema. The KMechReaction class must be processed by SigMech (0) in order to
generate associated sub-reactions.

 The KMechReaction class has been designed as a replacement representation for

all existing compound enzymatic reactions in the CompoundReaction portion of the

MathReaction hierarchy of Reaction classes. These reactions consist of three xCellerator

enzymatic compound reactions and over 30 kinds of kMech reaction classes.

63

Furthermore, all potential new kMech reaction classes that follow previous motifs will be

encompassed by the new representation. The KMechReaction representation relies upon

a parameterized set of inputs and a set of procedures (SigMech) that generate the sub-

reactions of the enzyme mechanism. In this representation Substrate, Product,

kMechInhibitor, and enzymeIntermediate Reactants are stored as vectors along with

associated kinetic parameters. A set of “strategies” is stored to designate sub-reaction

generation procedures and process models of inhibitions are specified for

kMechInhibitors. SigMech is described in detail in 0.

2.9.1.3 AlgebraicPassthrough MathematicalReactions

Figure 2.38 The AlgebraicPassthrough subclasses of MathematicalReaction were constructed
to pass algebraic rate laws directly to Mathematica for processing. Three classes noncatalytic, a
catalyzed version that includes a field for an enzyme (or catalyst) and a bidirectional version
that includes a reference for an enzyme that catalyzes an additional reverse reaction.

64

 The AlgebraicPassthrough reactions provide a mechanism by which raw algebraic

expressions can be passed through the middleware to Mathematica for processing. The

“rateLaw” attributes store instances of RateFunction which inherits from

DoubleParameter. A catalytic version of the passthrough class and a bidirectional

passthrough reaction are present in the schema as illustrated by Figure 2.38. The

AlgebraicPassthrough reactions were incorporated into the schema for two primary

reasons. First, the representation allows for user defined functions that may not

correspond directly to existing xCellerator or kMech functions. Secondly, pathway

models stored by the SBML markup language have their rate laws in algebraic form.

These SBML functions do not necessarily map directly to xCellerator. As will be

explained in more detail in chapter 4, automated populator programs have been

developed to automatically load SBML models into the Sigmoid database. Since the

SBML format does not directly translate to xCellerator functions, a mechanism was

needed to pass these SBML rate functions through to Mathematica for processing. Also,

the same limitation applied to SBML models coded by hand from the Biomodels model

repository. Some of these models contain expressions that do not easily translate to

xCellerator functions.

2.9.2 Reaction Utility Classes.

Classes other than Reactions are present in the UML Reaction class diagram. A few

utility classes exist that are necessary to support the Reaction classes and their handling

of parameters. Other classes are designed to group Reactions for organizational and

display purposes. These support classes are described in this section.

65

2.9.2.1 Parameter Wrapper Classes

Figure 2.39 There are three frequently used parameter wrapper classes in the Reaction class
diagram. ReactantCoefficientPairs are used to specify the stoichiometry of reaction equations.
ReactantKineticPairs are a mechanism to store values such as substrate affinity for substrate
binding of an enzyme or, rates for inhibitor binding. SubstrateCompetitvieInhibitorSets were
provided to store parameters for enzymatic inhibitors specific to a particular substrate.

 A few parameter wrapper classes were designed to coordinate with the Reaction

classes. In cases where stochiometry is involved in reaction equations, integer

coefficients are required. The ReactantCoefficientPair class handles stoichiometric

coefficients for particular reactants in reaction equations. ReactantKineticPairs store

parameter information specific to a particular Reactant within a Reaction. For instance a

Reactant may have a particular binding rate to an enzyme. SubstrateCompetitiveInhibitor

sets store substrate and activator parameter information for the GeneralizedMWC (MWC

66

Monod-Wyman-Changeux) MathReaction which implements an allosteric form of

cooperativity [Najdi et al. 2005].

2.9.2.2 Reaction Groups

Figure 2.40 Reaction groups serve as an organizational tool to reference groups of related
reactions. They’re available to the user interface (SME) to hide or expand portions of the
pathway networks. The KMechReactionGroup serves an additional purpose. Since SigMech
builds sets of sub-reactions from a parameterized set of inputs (a KMechReaction), The
KMechReactionGroups are present to store these sets of Reactions in the database.
(KMechReactionGroup could be renamed SigMechReactionGroup because it was designed to
store the output of SigMech).

 Reaction groups were included in the schema as a mechanism by which sections

of pathways could be partitioned. This partitioning is to assist with the organization of

Reactions for of the modeling biologist. For example, enabling the collapse and

expansion of relevant portions of pathways, within SME, could prove useful for large

interconnected models. In theory, sections of pathways could be collapsed and iconically

represented with a few remaining input and output reaction arrows remaining. In cases

where pathways are large and highly interconnected the number of reaction arrows in

pathway network view of SME can become overbearing. Partitioning should serve to

alleviate this logistical obstacle. Larger models containing multiple related pathways can

be more ideally managed. For example, the [Najdi 2011] fatty acid biosynthesis model,

67

shown in Figure 2.41, contains portions of the pentose phosphate pathway, glycolysis,

and an engineered fatty acid biosynthesis pathway. These sections could be managed

separately, expanded and contracted within the SME (or other) viewer so that

visualization could be more easily directed by the modeling biologist. SME implemented

the reaction groups in conjunction with the LayoutNode class to enable hiding of

reactions, reactants and reaction arrows. Actual visual contraction and expansion of

groups hasn’t been implemented.

 Furthermore, compound reactions that contain multiple sub-reactions like the

SigMech reactions (Chapter 3) could implement ReactionGroups to manage the sub-

reactions. The class KMechReactionGroup was added for this purpose. The idea behind

this design is that an enzyme mechanism consisting of multiple sub-reactions,

conceptually can be seen as one reaction, and the details of the particular enzyme

mechanism should be hidden. When the network of sub-reactions may be of interest,

particularly when the mechanism is being modeled, the sub-reactions could be expanded.

Ultimately, proper implementation of reactions groups should provide differing levels of

pathway model examination.

68

Figure 2.41 The [Najdi 2011] fatty acid biosynthesis model contains portions of the pentose
phosphate, glycolysis and fatty acid biosynthetic pathways. The implementation of reaction
groups enable the hiding or highlighting of pathway sections and reaction arrows to more
clearly show portions of the overall model. This particular model has been organized fairly well
but other more interconnected models can become cumbersome to visualize. Commonly
connected reactant molecules such as ATP can generate many edges in a network that can
quickly clutter network visualization.

69

2.9.3 Post Translational Modification Hierarchy

Figure 2.42 The post translational modification hierarchy contains a structured organization of
common chemical modifications of protein amino acid residues. Since this figure is difficult to
read a comprehensive list of these modification classes is provided in Appendix 0.

 The Post-translational hierarchy consists of common chemical modifications of

protein amino acid residues. Since Figure 2.42 is difficult to read, a list of

posttranslational modification classes is provided in Appendix 0. These modifications

are important as they have functional impact upon the protein. This domain of

modifications was included in the schema because two sequence-identical proteins can

have many functional differences. Saving separate instances for the same protein with

different modification states in the database wouldn’t be feasible, as a single protein may

have multiple modification types over numerous locations. The cross product of

modification states becomes enormous quickly, and they can’t be stored in the database

as individual proteins. A more feasible approach would be to store a protein base form

and to “decorate” the protein with modifications. A corresponding table of states could

then be attached to the particular reactant. The post translational modification hierarchy

70

of modification should integrate with Section 2.6.1 concerning state vectors and

modifications.

 Although this hierarchy appears in the reaction diagram, this set of modifications

does not inherit class attributes of the Reaction base class. Post-translational

modifications can be modeled as either a state property of a polypeptide or a biological

reaction process. For instance, examination of the phosphorylation of a protein by a

particular enzyme, can take differing perspectives. If our goal is to address the functional

and regulatory properties of the protein itself by examining the state of the protein, in this

case the quantity and location of the phosphorylation sites, will yield information about

the enzymes functional activity. Another perspective is to view the biological process of

phosphorylation as a biochemical event with other Reactants participating and playing

various roles such as catalyst and substrate i.e. a kinase attaching a phosphate group to

the protein. Since the Gene Ontology (GO) classes in Sigmoid (for greater detail see

Section 2.11.1) can already provide a gateway to compilations of data concerning cellular

processes and functional events, developing an independent ontology of these events may

not be the most efficient use of resources for Sigmoid development. If however, we wish

to develop a system of examining the state of a particular polypeptide, in terms of the

product of multiple post-translational modifications, a system of recording the state of the

polypeptide must be implemented. The modifications in terms of state are treated as

decorative properties of proteins. If this is to be the approach, the

PostTranslationalModification hierarchy either should be more closely tied to the

Reactant diagram or, deserves its own diagram and should be relocated to a

71

“Modification” class diagram, perhaps to be shared with other potential macromolecule

type decorations.

2.10 Knowledge Sources

Figure 2.43 The entire KnowledgeSource class diagram consists of data classes designed to
provide citation information and documentation references for Sigmoid Models, Reactants and
Reactions. The Citation domain of subclasses (Blue and purple classes) provide references to
model research publications. The Knowledgesource classes are expanded for legibility in
subsequent figures.

 Knowledge sources are designed to provide investigators with references to

relevant Model, Reactant, and Reaction documentation. The KnowledgeSource class

diagram is illustrated in Figure 2.43. A large subclass of KnowledgeSource is the

Citation class (illustrated in more detail in Figure 2.45). The Citation class and its

subclasses follow BibTex conventions for document citation. Storing relevant model

citation information provides investigators with valuable access to previous research. In

addition, proper population of the Sigmoid database with publication information, and

some integration with word processing utilities like Latex could facilitate research

publication of pathway models. No features of this sort have been implemented for

72

Sigmoid so its integration with word processing utilities remains an open problem. Some

KnowledgeSource classes such as the Citationn MathematicaNotebook and MiscFiles

classes are accessed and displayed by the model browse feature of the sigmoid website at

www.sigmoid.org as shown in Figure 2.46.

 The Citation class (shown in Figure 2.45) has been implemented for storing

relevant publication information associated with user constructed Sigmoid models

[Cheng et al.2005], and has been integrated with the Sigmoid web search utility at

www.sigmoid.org. Relevant model publication reference information for Sigmoid

models is available in the model browsing section illustrated in Figure 2.46. The

MathematicaNotebook class includes URLs and file information for associated Model

notebooks. This is an important reference since all of the persistent models currently in

the database possess associated Mathematica notebooks. These notebooks are also linked

through www.sigmoid.org.

 Classes designed to access external pathway markup language documents are

present in the KnowledgeSource tree (See Figure 2.44). Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways are referenced through the KEGGInfo class. Attributes

for KEGG pathways include Universal Resource Locators (URLs), pathway titles,

associated organisms and the KEGG release number. Similar classes are available for,

Gene Ontologies (GOAnnotation class) and the Systems Biology Markup Languge

(SBML, SBMLRepresentation class).

 WebKnowledgeSources are simple URL wrapper classes to reference web data.

A subclass of WebKnowledgeSource is CGIKnowledgeSource and contains fields to

73

perform CGI queries. The MiscFile class is a useful class for storing miscellaneous files

associated with pathway models or model components.

 The Database Class includes a “jdbcURL” and fields for associated database

queries. Database opens up queries to other bioinformatics databases that implement the

Java Database Connectivity Application Programming Interface (JDBC API). The JDBC

API is the designed for database-independent connectivity between Java applications and

a wide range of databases including SQL databases (Oracle 2012).

Figure 2.44 A subset of KnowledgeSource (KS) subclasses are designed for references to
external databases, files and markup languages. KEGGInfo is a KS for the Kyoto Encyclopedia
of Genes and Genomes. SBMLRepresentation is a KS forthe Systems Biology Markup
Language. KSs are provided for Universal Resource Locators (WebKS). Miscellaneous files
and Mathematica notebooks associated with pathway models stored on the Sigmoid servers are
referenced by the MiscFile and MathematicaNotebook classes. These MiscFiles and
MathematicaNotebooks are accessed and displayed by the Sigmoid website.

74

Figure 2.45 The Citation KnowledgeSource provides a set of subclasses designed for publication
citation information that follow the BibTex conventions [Cheng et al.2005]. Citations for model
pathways are accessed and displayed by the Sigmoid website the browse models section.

75

Figure 2.46 Some KnowledgeSource information such as Model Citations are accessible
through the “Browse Models” utility at www.sigmoid.org. Model xCellerator notebooks and
model graphic files, which are also referenced by KnowledgeSource, are also accessible there.

76

2.11 Additional supporting classes

2.11.1 Gene Ontologies

Figure 2.47 The Sigmoid schema implements classes for a Gene Ontology representation. The
GeneOntologyComponent class (On left) has been implemented as a subclass of Reactant
because the GO component most closely correlates to biological objects. The
GeneOntologyFunction (On right) has been implemented as a subclass of Simple BioReactions
because of its close correlation to simple biological reaction processes. The
GeneOntologyProcess class (middle) has been implemented as a subclass of CompoundBio
reactions because GO processes, which are composed of sets of GOFunctions, most closely
parallel the complex biological processes represented by CompoundBio reactions.

 Classes have been incorporated into the Sigmoid data structures to build

compatibility with the Gene Ontologies Project (GO). The GO project is intended to

77

unify a controlled-vocabulary representation of annotated gene and gene product

attributes across species. In addition, the GO project provides a set of tools to access and

process GO data. The GO project provides ontology over three domains: 1) The Cellular

Component domain represents cellular components or elements of cellular structures.

Cellular components are not only (single or conglomerates) gene products, but the gene

products existing within the context of a larger cellular structure thus establishing it being

a component. 2) Molecular functions exist to represent molecular level activities of

generally single gene products. Gene product functions are what tasks the gene products

perform or what roles they play within a cell. Catalysis events and protein activities are

included within this scope. 3) Biological processes in GO represent series of events that

are composed of sets of GO molecular functions. The GO definition states that a process

should have a distinct beginning and end. Also, processes can be composed of processes.

 GO components most closely map to Reactants in the Sigmoid schema as they are

biological objects and with discretion can be treated as Sigmoid Reactants. Some care

must be used because some GO components can be large, complicated structures. For

example a cell membrane is a potential GO component, that is a child to a cell, and a

parent to cell membrane proteins in the GO hierarchy. Sigmoid’s mathematical reaction

equations are designed mostly for molecular biochemical reactions, so it is left to the

expert user to either determine applicability or extend the computational features of the

simulator to fit the context with which a GO component would be applied. GO functions

which are molecular activities most closely resemble Simple reactions therefore have

been implemented as a subclass of Simple BioReaction. There are many protein

activities available in the GO datasets that could be represented by the set of existing

78

Cellerator functions. The GO processes have been set to inherit from the CompoundBio

Reaction class as they consist of sets of GO functions just as CompoundBio Reactions

consists of sets of BioReactions. Again discretion must be applied by the expert user as

some GO processes do not directly map to the simulation capabilities of xCellerator. For

example, a muscle fiber contraction is a potential GO process, which of course involves a

network of biochemical reactions. A fiber contraction has other process attributes such

as spatial dynamics. These dynamics within the context of the GO term could be the

primary focus of the term. As spatial modeling in Sigmoid is in its infancy, modeling

considerations and development would have to be made to model a muscle fiber

contraction. None the less, the three GO categories of classification share enough

commonalities with their positions within the schema that they can be of use for a

modeling biologist.

2.11.2 Spatial and Compartmental Modeling

 We have added to Sigmoid a representation intended to support the development

of compartmental pathway models. This representation may be used for developmental

modeling and simulation, or for the modeling of spatially extended systems more

complex than a simple “well mixed” model of the locus of a pathway. Although the

representation is intended to be more comprehensive and flexible, a basic support class

structure exists to produce models for the Cellzilla (www.xlr8r.info) modeling tool

available with xCellerator.

79

Figure 2.48 Classes to support Spatial and Compartmental Models are located in the Model
class diagram. SpatialModel is a subclass of Model and inherits all Models’ attributes. A
Spatial model is composed of DimensionalCompartments (DCs) that possess sets of
InternalNetworks and ExternalNetworks. InternalNetworks are composed of sets of Reactants
and Reactions that are contained within particular DCs. ExternalNetworks have Reactants and
Reactions that participate across DCs. DCs have references for Catesian coordinates to
incorporate spatial components of n dimensions to the model if necessary. DCs have
CompaortmentRelationshipPairs to specify relationship specificity between DCs. Since Cellzilla
utilizes indices for multi-compartmental reaction modeling, a set of Index, IndexNode and
SparceArray classes are associated with DCs to reference DCs for simulation.

 SpatialModel inherits all the class attributes of a model. The main distinction is

that it contains DimensionalCompartments. The intention behind spatial models is to

provide a framework to construct objects for the representation of biological structures,

systems, and processes. The classes associated with SpatialModel may be used to

80

construct geometric and multicompartmental biochemical representations for the

SpatialModel.

 DimensionalCompartments (DC) may be an abstract compartment or may have

concrete spatial Cartesian coordinates associated with them. Dimensional compartments

were constructed to be of any number of dimensions, for flexibility. DCs can consist of

points, edges, surfaces, volumes and even potentially higher dimensional solids. Each

DC may possess an InternalNetwork of reactions and reactants. The InternalNetwork

reactions operate solely within a DimensionalCompartment. Possessing an

InternalNetwork is akin to having a self contained Sigmoid Model within the

compartment. Of course, independent DCs can have independent copies of the same

InternalNetwork. For instance, one could build an array of cells with each possessing an

independent copy of an internal set of cellular reaction processes and associated reactant

species.

 An attribute of DimensionalCompartiments is that each DC may have multiple

CompartmentRelationshipPairs (CRPs). The CRPs are to serve as the framework for

links and associations between DCs. The “relationship” attribute in the CRP class is left

as a string to allow for an open-ended representation. We have defined some

straightforward relationships that will be used in SpatialModels. A “component”

relationship serves to define possession for an object for building a geometrical hierarchy

of possession. For instance, let us assume we’re building a rectangular solid to represent

a cell. Each edge, surface and point within the spatial (geometric) construction of the

object will be related to the cell (rectangular solid) as a “component” of that cell. The

component relationship should allow us to construct a hierarchy of spatial objects.

81

Another type of “relationship” will be a “neighbor” relationship to indicate adjacency

between neighboring DCs. Neighbor relationships will be useful for modeling

biochemical phenomena such as diffusion. Let us extend our example of a cell to

include several internal three-dimensional DCs to represent the cytosol of the cell.

Diffusion inside the cell could be modeled by establishing neighbor relationships

between these internal cellular compartments. Moreover, the neighbor relationship

between adjacent cells could also serve to model intracellular diffusion across an array of

cells. Also, “boundary” relationships will indicate a junction between neighboring DCs

where potential biochemical interactions can take place. A hypothetical biological

application of this would be to establish the exterior plane surfaces of our hypothetical

cell as boundaries where intracellular signaling could take place. Every CRP has a

“matrix” attribute which references a SparseMatrix to store references that specify

adjacency. Each CRP also possesses an ExternalNetwork (EN) attribute field, although

not all relationships between compartments, for example “component” relationships, will

have an associated EN.

 ExternalNetworks consist of a network of reactions each of which spans more

than one compartment. Biological processes such as transport, diffusion, osmosis, and

signaling can be expressed with ExternalNetworks. As with InternalNetworks, each

ExternalNetwork will be attributed with its own corresponding set of Reactions and

Reactants.

 The InternalNetwork and ExternalNetwork theme mirrors the Cellzilla approach

to model multicompartmental biochemical reaction networks. Since Sigmoid has built

considerable support for the xCellerator platform, supporting Cellzilla, an xCellerator

82

extension, is a logical choice in creating a multicompartmental simulator. Cellzilla uses

indices on the symbolic reactants of xCellerator to represent compartment identities. In

order to implement multiple compartments and reaction networks across compartments in

Sigmoid, we required a scheme of implementing indices for our Reactant and Reaction

classes.

Figure 2.49 DecoratedReactants contain a Reactant and a DecorationTypePair. The
DecorationTypePair class attribute “decoration” is used to store indices to be processed for
Cellzilla output. The “decorationType” attribute indicates the nature of the decoration for
instance a “neighbor”. The “decorationType2” attribute can establish a reference to a
DimensionalCompartment.

 In order to represent compartment indices for reactants, we constructed a

DecoratedReactant class that contains a Reactant and a DecorationTypePair (DTP). The

DecorationTypePair class has a “decoration” field that can be used to store index

variables that are passed to Cellzilla and indicate which compartment a Reactant is in.

The “decorationType” attribute of DTP stores the nature (or relationship) of the

decoration. An example would be a “neighbor” relationship for adjacent compartments.

DecoratedReactants are used by the BiReplicatedReaction class to implement

intercompartmental reactions.

83

Figure 2.50 The ReplicatedReaction and BireplicatedReactions were created to handle indices
for multicompartmental SpatialModels. The “sharedDecorations” attributes are used to store
indices for Cellzilla that correspond to compartments. For instance the “sharedDecoration”
attributes of a BireplicatedReaction could be decorated with indices “i” and “j”. The
BireplicatedReactions’ associated MathReaction could implement diffusion with a
DecoratedReactant Rea[i] as a substrate getting converted to product Rea[j]. The change of
index indicates a change in compartment.

 The ReplicatedReaction and BiReplicatedReaction classed were designed to

implement indices for multicompartment Reactions. A BireplicatedReaction contains a

Reaction and has fields for “sharedDecorations” that indicate the indexes for that

particular reaction. The Reaction should possess DecoratedReactants as participants.

The “sharedDecoration” fields store index variables that are to be passed to Cellzilla.

84

For instance the “sharedDecoration” attributes of a BireplicatedReaction could be

decorated with indices “i” and “j”. The BireplicatedReactions’ associated MathReaction

could implement diffusion with a DecoratedReactant Rea[i] as a substrate getting

converted to product Rea[j]. The change of index indicates a change in compartment.

 We have coded our first SpatialModel, the Shapiro_2008_WUS model, using the

Sigmoid API. Shapiro_2008_WUS is discussed in Section 4.1.7.

2.12 Other Systems

 Other packages, such as VCell, Sigpath, and JDesigner for example, have

functionalities that are similar to some of the features contained in Sigmoid. One notable

example that shares similarity with the Sigmoid system is the Biomodels database

(www.biomodels.net). The Biomodels database is maintained by the European

Bioinformatics Institute (EBI). EBI is part of the part of the European Molecular Biology

Laboratory (EMBL). Biomodels is an online database with a repository of SBML

models, support for Gene Ontologies, web based visualization of models, and possess

Mathematica simulation support for their SBML based models through MathSBML.

 While it is sound to have a number of parallel efforts across multiple research

groups, there are several features of the Sigmoid architecture that, in aggregate, position

it uniquely within realm of the currently available systems biology software systems.

Sigmoid introduced the web services framework [Cheng et al.2005] to create a truly

distributed system. This flexible framework offers powerful modularity that, in

conjunction with the generative nature of the Sigmoid coding cycle, offers a significantly

reduced development time for integration of new components and data structures. Also,

85

the OJB object relational bridge offers the advantages of oriented programming in

conjunction with a relational database. Sigmoid capitalizes on the robust mathematical

software tools and problem solving environment that Mathematica offers (along with the

xCellerator/kMech packages designed to facilitate biological modeling via automated

equation generation which other systems lack) while remaining open to other simulation

and analysis tools. Sigmoid defines its own set of biologically relevant classes as a

foundation for its database and modeling capabilities. These classes are not constrained

by conforming to exterior modeling formats such as SBML. The synthesis of these

features yields a flexible scalable architecture that not only allows for manageable, cost

effective, adoption of new system components, but may open the ability to play within

yet larger bioinformatics frameworks.

2.13 Conclusion

We have successfully extended the Sigmoid schema to implement an object-oriented

representation of parameters and parameter sets that work in conjunction with a set of

MathematicalReaction classes to produce, when translated by the middleware, executable

xCellerator notebooks. We have expanded the Reactant hierarchy to provide a useful

variety of biologically relevant objects that participate in biological processes across

several levels of scale and complexity. We have extended and reorganized the variety of

supported Reaction classes into sub-domains of Mathematical and Biological Reactions.

The new hierarchy of Reactions allows for a flexible abstraction between the

representation of biological processes and the mathematical functions that are used to

86

simulate them. There are new KnowledgeSource classes that allow us to store model

associated files and reference elements of external databases.

We have added schema support for Gene Ontologies in the form of a GOComponent

class in the Reactant hierarchy, and the GOFunction and GOProcess Reactions in the

Reaction hierarchy. These new classes allow us to support and incorporate specialized

ontological external datasets (see section 4.2.4) into Sigmoid.

Finally, we’ve constructed the SpatialModel and associated classes that allow for the

construction of geometric and compartmental objects to be used in Sigmoid.

Multicompartmental models can be constructed that have internal reaction networks and

intercompartmental reaction networks. As a first step for compatibility with Cellzilla,

these internal and external networks can be sent through a next version of the middleware

for simulation in Cellzilla.

87

Chapter 3. Enzyme Mechanism Representation: SigMech

 The set of currently available kMech reaction mechanisms has grown from just a

few initial reactions to a large array of descriptive enzymatic mechanisms. Over the

years, 35 enzymatic reaction mechanisms have been explicitly created. One version of

the enzymatic class hierarchy of the schema is shown for illustrative purposes in Figure

3.1.

 In order to function within the Sigmoid framework, a request for a kMech

reaction case would yield a requirement to process a schema, generate the Sigmoid Java

API classes, instantiate a new postgreSQL database, repopulate the database with model

code, set up a development environment for the particular schema release within Eclipse

(or equivalent), update the middleware Sigmoid-to-Cellerator code with the new kMech

translation, retask SME with the new Java API and test all these steps. This development

cycle, although designed for “rapid” development, still requires considerable personnel

resources.

 Common motifs can be seen in the Compound Enzyme reactions that express how

biologists approach the construction of these mechanisms. For instance, a biologist might

first describe and enzymatic reaction in terms of how many substrates and products it has.

For a simple case we will construct a reaction with two substrates and two products. This

is commonly called a BiBi reaction. The convention for this nomenclature follows uni,

bi, ter, tet etc. This is typically how a reaction is first described. The convention has

expanded to describing reactions as UniBi, BiUni, TerTer, and so forth. As more

concepts are added to visualize or model a potential reaction, the more parameters of

88

description will apply. For instance the reaction might be of type ping-pong (described

later in this chapter.) We will show that since these enzymatic reaction mechanisms are

built upon concepts, their descriptors can be identified as a set of motifs.

Figure 3.1 The Enzymatic MathematicalReactions section of the Sigmoid Schema consists of
compound MathReactions that can be represented more compactly. The three reactions in
purple on the right are xCellerator compound enzyme reactions

 We have developed a parameterized input notation for enzymatic mechanisms

that encompasses the motifs seen in the mathematical enzymatic reactions section of the

Sigmoid schema. In addition, a set of computational processes should produce the

requisite set of sub-reactions that compose the corresponding mechanism. The

parameterization and set of corresponding processes to generate mechanism reactions

should achieve a few things. First it should most accurately represent the concepts with

which a biologist constructs his enzymatic model and reflect a simple syntactic

compatibility to his/her description. That way the selection of a reaction mechanism will

89

be straight forward for the modeling biologist. Second, a general form, the

”parameterized representation”, and a corresponding set of reaction generation

procedures reduces coding iterations in the development cycle of our software system.

The development effort savings should prove considerable. In addition, the ever growing

number of classes required to represent enzymatic mechanisms in the schema can be

reduced to a more elegant representation, as demonstrated in Figure 3.2. The new classes

effectively solve the problem of the representation, within the scope of certain parameters

that will be discussed below, thus eliminating the need for frequent updates. Such a

generalization also increases the level of abstraction and allows us to focus our efforts to

expand the representation on the motif level. There may be more or new patterns of

biological relevance that may extend this approach.

Figure 3.2 The new KMech representation for enzymatic mechanisms. This set of data classes
should encompass all previous kMech compound reaction classes and many new cases of kMech
reactions that follow previous patterns.

 A set of motifs that can be used as parameters of an input notation for

procedurally generating a family (or set) of reaction mechanisms will be described. All

of the existing kMech reactions mechanisms and correlate Sigmoid schema

90

representations thereof (as of this writing) are encompassed by this set. We will name

this parameterized set of inputs, data structure, and corresponding set of Reaction

generation procedures as SigMech. “SigMech” is a contraction of Sigmoid enzyme

Mechanism. The data classes currently are termed with kMech terms. This reflects the

fact that these classes were constructed to encompass all the kMech classes. The utility

as a whole, providing additional functionality, will be called SigMech. The SigMech

utility, including all the procedures it uses to generate reaction mechanisms, has been

written with the Java language using the Sigmoid API.

 We can construct an enzyme mechanism with the SigMech utility by

implementing procedures for an enzymatic mechanism in three steps. First we should

look at how we wish to add substrates to an enzyme to form an enzyme substrate

complex. Second, we should determine how these bound substrates are converted to

product. Third, we should determine how products are to be released from complex.

3.1 Addition Strategy

 The patterns apparent in the kMech utility classes in the schema fall into three

categories. The three categories of reactant addition to enzymatically bound complex are

full addition, an ordered addition or, random addition strategy.

 The first motif we will address is the way in which the enzyme binds its substrates

into a complex. From here, depending on the context, the pattern with which substrates

are added to complex will be either referred to as an addition “strategy” in cases where

we’re describing the manner in which we’re constructing the elementary reaction

91

equations, or an addition “phase” when referring to that strategy as a portion of the entire

reaction mechanism.

 Consideration of previous kMech enzyme mechanisms revealed the three distinct

patterns of substrate enzyme complex formation that were just introduced. Parallel and

independent research also revealed these patterns of addition and applied them to an

oxidation reduction software supplement to kMech notebooks called RedoxMech [Chang

2011]. It appears that these patterns weren’t implemented in any form of a release phase

or conversion strategy (to be introduced in Sections 3.2 and 3.3) in RedoxMech.

 These patterns or strategies developed for implementation in SigMech will be

detailed below in a kMech notation to illustrate the elementary reactions:

3.1.1 Full Addition
 A full addition strategy indicates that all available substrate types are bound by

the enzyme in one reaction step. This motif will be termed “full addition”. For this

example the kMech notation [Yang 2005] for a BiBi reaction would appear as:

,_ሾሼS1ݖ݊ܧ S2_ሽ ⇄ ሼP1_, P2_ሽ
୉୬_

, BiBiሾkf_, kr_, k_ሿሿ ≔ ሼሼS1 ൅ S2 ൅ En

⇄ ሼNCሾEn, S1, S2ሿ, kf, krሽ, ሼNCሾEn, S1, S2ሿ → En ൅ P1 ൅ P2, ݇ሽሽ;

The kMech notation NC[En,a,b] indicates an enzyme complexed with a and b. kf, kr and

k are rate parameters.

The addition phase of this reaction is:

ሼNCሾEn, S1, S2ሿ, kf, krሽ

where all available substrates are bound in one reaction.

If this were a TerBi reaction with an input such as the following,

,_ሾሼS1ݖ݊ܧ S2_, S3_ሽ ⇄ ሼP1_, P2_ሽ
୉୬_

, TerBiሾkf_, kr_, k_ሿሿ: ൌ

92

Then the addition reaction (product generation omitted) would appear as

ሼሼS1 ൅ S2 ൅ ܵ3 ൅ En ⇄ NCሾEn, S1, S2, S3ሿ, kf, krሽ

For any number n of substrates the full addition pattern of substrates translates to:

,ሾ൛S1,ୗଶݖ݊ܧ . , . , Sn ൟ ⇄ ൛P1,୔ଶ ൟ

୉୬

, NBiሾkf_, kr_, k_ሿሿ: ൌ

ሼሼS1 ൅ S2൅ . . . ൅ܵ݊ ൅ En ⇄ NCሾEn, S1, S2, . , . , Snሿ, kf, krሽ,

3.1.2 Sequential Addition
 Sequential (ordered) addition is the case in which the enzyme binds a particular

substrate followed by sequentially specific substrates until all available substrates are

bound.

A BiBi example with ordered addition (conversion and release reactions omitted) would

appear as:

,_ሾሼS1ݖ݊ܧ S2_ሽ ⇄ ሼP1_, P2_ሽ
୉୬

, OrderedBiBiሾkf1_, kr1_, kf2_, kr2_, k_ሿሿ ≔

ሼሼS1 ൅ En ⇄ NCሾEn, S1ሿ, kf1, kr1ሽ,

ሼS2 ൅ NCሾEn, S1ሿ ⇄ NCሾEn, S1, S2ሿ, kf2, kr2ሽ,

The number of reactions necessary to fully complex all the substrates sequentially with

the enzyme will be equal to the number of substrates. The sequential addition yields n

number of reactions for n number of substrates.

Expanding out the example for n substrates,

,_ሾሼS1ݖ݊ܧ S2_, . , Snሽ ⇄ ሼP1_, P2_ ሽ
୉୬

,

OrderedAdditionNBiሾkf1_, kr1_, kf2_, kr2_, k_. . _, . , kfn_, krn_ ሿሿ ≔

93

ሼሼS1 ൅ En ⇄ NCሾEn, S1ሿ, kf1, kr1ሽ,

ሼS2 ൅ NCሾEn, S1ሿ ⇄ NCሾEn, S1, S2ሿ, kf2, kr2ሽ,

ሼS. . ൅NCሾEn, S1, S2ሿ ⇄ NCሾEn, S1, S2, S. . ሿ, kf. . , kr. . ሽ,…

ሼSn ൅ NCሾEn, S1, S2, S… ሿ ⇄ NCሾEn, S1, S2, S. . . , Snሿ, kfn, krnሽ

3.1.3 Random Addition
 In the case of a random strategy, the ordering of substrates is disregarded. The

enzyme will bind any available substrate for the first subreaction. From that state, the

enzyme/substrate complex will randomly choose an available substrate progressively

until all substrates are bound. In the example below we have an example of a kMech

reaction expressed by xCellerator input notation and kMech expansion.

EnzሾሼS1_, S2_, S3_ሽ ⇄ ሼP1_, P2_, P3_ሽ
୉୬

, RandomTerTerሾkf1_, kr1_, kf2_, kr2_, kf3_, kr3_, k_ሿሿ
≔ ሼ

 ሼS1 ൅ En ⇄ NCሾEn, S1ሿ, kf1, kr1ሽ,
ሼS2 ൅ En ⇄ NCሾEn, S2ሿ, kf2, kr2ሽ,
ሼS3 ൅ En ⇄ NCሾEn, S3ሿ, kf3, kr3ሽ,

ሼS1 ൅ NCሾEn, S2ሿ ⇄ NCሾEn, S1, S2ሿ, kf1, kr1ሽ,
ሼS1 ൅ NCሾEn, S3ሿ ⇄ NCሾEn, S1, S3ሿ, kf1, kr1ሽ,
ሼS2 ൅ NCሾEn, S1ሿ ⇄ NCሾEn, S1, S2ሿ, kf2, kr2ሽ,
ሼS2 ൅ NCሾEn, S3ሿ ⇄ NCሾEn, S2, S3ሿ, kf2, kr2ሽ,
ሼS3 ൅ NCሾEn, S1ሿ ⇄ NCሾEn, S1, S3ሿ, kf3, kr3ሽ,
ሼS3 ൅ NCሾEn, S2ሿ ⇄ NCሾEn, S2, S3ሿ, kf3, kr3ሽ,

ሼS1 ൅ NCሾEn, S2, S3ሿ ⇄ NCሾEn, S1, S2, S3ሿ, kf1, kr1ሽ,
ሼS2 ൅ NCሾEn, S1, S3ሿ ⇄ NCሾEn, S1, S2, S3ሿ, kf2, kr2ሽ,
ሼS3 ൅ NCሾEn, S1, S2ሿ ⇄ NCሾEn, S1, S2, S3ሿ, kf3, kr3ሽሽ

This example is of a TerTer “Random Addition” reaction case added to kMech [Najdi

2010] that generated a support request for Sigmoid. (As we are looking at only the

addition phase for this compound reaction, the reactions that generate product have been

omitted.)

94

The “random addition” strategy can be implemented for any number of substrates. Of

course the requisite number of intermediate complexes and reaction steps quickly grows

with the number of substrates. The number of reactions generated by a set of substrates

follows the sum of the coefficients of the binomial expansion.

3.2 Conversion Strategy

 The next motif we’ll define is how an enzyme converts substrates into product

form. The predominant form we’ve witnessed in the models we’ve built is the classic kcat

type conversion where conversion of the complexed substrate and subsequent release of

product are modeled as a one rate step. This has expanded to a bidirectional step and

then a two-step bidirectional process. The general form and strategy we’re adopting for

SigMech separates the release process of products from the conversion phase of

complexed substrate to product and will be termed the “conversion” phase or strategy.

Two forms of conversion have been implemented.

3.2.1 Instant Conversion
 The first form of conversion is an instant conversion where enzymatically-

complexed substrates are the entry point to the release phase; this is analogous to the kcat

example or the TwoStage catalytic reaction in the schema.

The kMech notation would appear as:

EnzሾሼS1 ሽ ⇄ ሼP1 ሽ
୉୬

, UniUniICሾkf_, kr_, kf1_, kr1_ሿሿ ≔

ሼሼS1 ൅ En ⇄ NCሾEn, S1ሿ, kf, krሽ,

ሼNCሾEn, ܵ1ሿ ⇄ En ൅ P1, ݂݇1, ;1ሽሽݎ݇

95

The last reaction equation in the example above converts the enzyme/substrate complex

to free enzyme and product in one step.

The conversion phase can be modeled independently of number of substrates and

products independently, translating to:

EnzሾሼS1_, S2_. . , Sn_ሽ ⇄ ሼP1_, P2_, . . , Pn_ሽ
୉୬

,MultiMultiICሾkf_, kr_, kf1_, kr1_ሿሿ ≔

ሼሼS1 ൅ S2൅. . ൅ܵ݊ ൅ En ⇄ NCሾEn, S1, S2, . . Snሿ, kf, krሽ,

ሼNCሾEn, S1, S2, . . Snሿ ⇄ En ൅ P1 ൅ P2൅. . ൅Pn, ݂݇1, ;1ሽሽݎ݇

3.2.2 OneStep Conversion
 The next form, adds a reaction step that converts complexed substrate into

enzymatically bound product. This form is analogous to the ThreeStageCatalytic reaction

in the schema. If written in kMech notation, the ThreeStageCatalytic reaction would

appear as:

EnzሾሼS1 ሽ ⇄ ሼP1 ሽ
୉୬

, UniUniOSCሾkf_, kr_, kf1_, kr1_, kf2, kr2ሿሿ ≔

ሼሼS1 ൅ En ⇄ NCሾEn, S1ሿ, kf, krሽ,

ሼሼNCሾEn, S1ሿ ⇄ NCሾEn, P1ሿ, kf2, kr2ሽ,

ሼNCሾEn, ܲ1ሿ ⇄ En ൅ P1, ݂݇1, ;1ሽሽݎ݇

OneStep Conversions can be modeled independently of the number of substrates and

products independently translating to:

EnzሾሼS1_, S2_. . , Sn_ሽ ⇄ ሼP1_, P2_, . . , Pn_ሽ
୉୬

,MultiMultiOSCሾkf_, kr_, kf1_, kr1_ሿሿ ≔

ሼሼS1 ൅ S2൅. . ൅ܵ݊ ൅ En ⇄ NCሾEn, S1, S2, . . Snሿ, kf, krሽ,

ሼNCሾEn, S1, S2, . . Snሿ ⇄ NCሾEn, P1, P2, . . Pnሿ, kf, krሽ,

ሼNCሾEn, P1, P2, . . Pnሿ ⇄ En ൅ P1 ൅ P2 ൅⋯൅ Pn, ݂݇1, ;1ሽሽݎ݇

96

3.3 Release Strategy

 Just as there is a strategy for addition of substrates into complex, there can be a

strategy for release of products from intermediate complex. The same algorithms that we

use for addition of substrates can be applied to the release of products.

3.3.1 Full Release
“Full release” names the case where all products are released in one reaction step.

The [Yang 2005] BiBi reaction is an example of a full release reaction where all products

are released in one step.

,_ሾሼS1ݖ݊ܧ S2_ሽ ⇄ ሼP1_, P2_ሽ
୉୬_

, BiBiሾkf_, kr_, k_ሿሿ ≔ ሼሼS1 ൅ S2 ൅ En

⇄ NCሾEn, S1, S2ሿ, kf, krሽ, ሼNCሾEn, S1, S2ሿ → En ൅ P1 ൅ P2, ݇ሽሽ;

A SigMech implementation general form with bidirectional reactions for the release

phase would appear as:

ሼNCሾEn, S1, S2, . , . , Snሿ ⇄ P1 ൅ P2൅ . . . ൅ܲ݊ ൅ En, kcf, kcrሽ.

The previous equation assumes an instant conversion. This assumption should be

relieved to become independent of the conversion phase. SP indicates an unknown

(either substrate or product.) Full release strategies translate to:

ሼNCሾEn, SP1, SP2, . , . , SPnሿ ⇄ P1 ൅ P2൅ . . . ൅ܲ݊ ൅ En, kcf, kcrሽ.

3.3.2 Sequential Release
Sequential release names the case in which products are assumed to release one after

another in a predetermined order. With addition and conversion phase reactions omitted,

sequential release may be expanded into more elementary reactions as follows:

EnzሾሼS1_, S2_, . , Snሽ ⇄ ሼP1_, P2_, . , Pnሽ
୉୬

,

97

OrderedReleaseሾkf1_, kr1_, kf2_, kr2_, kcf1_. . , kcr1_. . , kcfn_, kcrn_ ሿሿ ≔

ሼሼNCሾEn, SP1, SP2, . , . , SPnሿ ⇄ P1 ൅ NCሾEn, SP2, . , . , SPnሿ, kcf1, kcr1ሽ

ሼ NCሾEn, SP2, . , . , SPnሿ ⇄ P2 ൅ NCሾEn, SP . . , SPnሿ, kcf2, kcfr2ሽ

ሼ NCሾEn, SP . . , SPnሿ ⇄ P. . ൅ NCሾEn, SPnሿ, kcf. . , kcr. . ሽ

ሼNCሾEn, SPnሿ ⇄ Pn ൅ En, , kcfn, kcrnሽ.

3.3.3 Random Release
 Random release refers to the case in which products may disassociate from

complex in any order. The algorithm for generating the reactions is the same as it is for

random addition, except that the reaction equations are reversed and products are

generated from the intermediate complex.

 The strategies for addition, conversion and release can be independent of one

another. This is one characteristic that leads to representing many potential enzymatic

process mechanisms with a concise parameterized input.

3.4 Ping Pong Pattern

 Another case for enzymatic process exists: the ping pong mechanism. Enzymes

that operate with ping pong mechanisms have chemically modified intermediate states.

A particular substrate when converted to product leaves the enzyme chemically modified.

This modified intermediate enzyme state is then able, in turn, to bind to a different

substrate.

 A standard BiBi ping pong reaction is illustrated in Figure 3.3. Here a substrate

is bound by free enzyme. This substrate is converted to product and subsequently

dissociates from the enzyme leaving the enzyme in a different state. This alternate state

98

is required to bind a second substrate that in turn is catalyzed into product and free

enzyme.

 The ping pong pattern can be applied to any number of substrates so long as there

is an intermediate for each additional substrate.

Figure 3.3 A BiBi Ping Pong kMech Reaction. a: Cellerator input notation is shown below the
reaction cartoon. The enzyme has two states, free enzyme and chemically modified. The kMech
compound reaction shown in a) is translated to four sub-reactions shown in b: 1) The enzyme
binds to substrate S1. 2) Substrate is converted to product P1 and the enzyme is modified to a
state where it can bind S2. 3) The modified enzyme binds S2. 4) S2 is converted to product and
the enzyme is returned to its original state.

99

3.5 Inhibition Models

There are currently three inhibition models supported by kMech [Yang 2005]. The

equations below are xCellerator definitions derivative of the kMech implementation with

a slight difference. The difference is that the conversion of substrate-enzyme complex to

product in kMech appears as a unidirectional catalytic reaction. SigMech, in order to

fully generalize, currently uses bidirectional reactions for all mechanism sub-reactions.

The unidirectional case can be recovered by setting the reverse reaction rate to zero. The

implementation of SigMech allows for multiple inhibitors to be assigned to a particular

enzymatic reaction within the schema, and in the GUI. The previous schema

representation suffered logistically from having to represent differing permutations of

reaction inhibitions. The schema representation shown in Figure 3.2 was built to store

these forms of inhibition. The SigMech implementation, using the Sigmoid Java API,

reconstructs these patterns of inhibition with bidirectional mass action reactions.

3.5.1 Competitive inhibition:
 The case of competitive inhibition exists where an enzyme is bound by an

inhibitor, forming an enzyme inhibitor complex, thus preventing substrate from biding to

the enzyme. This process consists of one additional reaction added to an enzyme

mechanism. This particular case is a SigMech adaptation of the kMech version of the

reaction equations. The difference is that bidirectional rates are used for the conversion

of substrate-enzyme complex to product and free enzyme. The reaction equations in

kMech notation are as follows:

100

EnzሾሼS ሽ ⇄ ሼP ሽ
୉୬

, UniUniሾkf_, kr_, kc1_, kcr1ሿ, ,_CIሾinhܯܵ kϐi_, kri_ሿሿ ≔

ሼሼܵ ൅ En ⇄ NCሾܵ, Enሿ, kf, krሽ,

ሼNCሾܵ, Enሿ ⇄ En ൅ ܲ, ݇ܿ1, ,2ሽݎܿ݇

ሼEn ൅ Inh ⇄ NCሾEn, Inhሿ, kϐi, kriሽሽ;

3.5.2 Uncompetitive inhibition:
 This case exists where the substrate-enzyme complex is targeted and bound by an

inhibitor thus preventing conversion or release of product.

EnzሾሼS ሽ ⇄ ሼP ሽ
୉୬

, UniUniሾkf_, kr_, kc1_, kcr1ሿ, ,_UCIሾinhܯܵ kϐi_, kri_ሿሿ ≔

ሼሼܵ ൅ En ⇄ NCሾܵ, Enሿ, kf, krሽ,

ሼNCሾܵ, Enሿ ⇄ En ൅ ܲ, ݇ܿ1, ,2ሽݎܿ݇

ሼNCሾܵ, Enሿ ൅ Inh ⇄ NCሾܵ, En, Inhሿ, kϐi, kriሽሽ;

3.5.3 Noncompetitive inhibition:
 An assumption is made that the inhibitor will not interfere with substrate binding

of the enzyme. This means the substrate can still be bound by the Enzyme-Inhibitor

complex. This generates two possible reaction paths. Either the free enzyme can be

bound by the inhibitor and then binds the substrate forming the

 substrate-enzyme-inhibitor complex, or the substrate-enzyme complex can be bound by

the inhibitor forming a substrate-enzyme-inhibitor complex. The following is an

example, in kMech notation, of noncompetitive inhibition:

EnzሾሼS ሽ ⇄ ሼP ሽ
୉୬

, UniUniሾkf_, kr_, kc1_, kcr1ሿ, NCIሾinh_, kϐi_, kri_ሿሿ ≔

ሼሼܵ ൅ En ⇄ NCሾܵ, Enሿ, kf, krሽ,

ሼNCሾܵ, Enሿ ⇄ En ൅ ܲ, ݇ܿ1, ,1ሽݎ݇

101

ሼEn ൅ Inh ⇄ NCሾEn, Inhሿ, kϐi, kriሽ,

ሼNCሾܵ, Enሿ ൅ Inh ⇄ NCሾܵ, En, Inhሿ, kϐi, kriሽ,

ሼܵ ൅ NCሾEn, Inhሿ ⇄ NCሾܵ, En, Inhሿ, kf, krሽሽ;

Noncompetitive inhibition possesses a residual reaction rate for enzyme-inhibitor

complexes. In some instances, bound enzyme complexes can still have some residual

activity to convert substrates to product. The kMech reaction notation for

noncompetitive inhibition (as implemented in SigMech) with a residual rate is as follows:

ሾሼS_ሽܼܰܧ ⇄ ሼP_ሽ
୉୬_

, UniUniሾkf_, kr_, kc1_, kcr1_ሿ, ,_NCIሾinhܯܵ kϐi_, kri_, residualRate_, rRrሿሿ:

ൌ ሼሼܵ ൅ En ⇄ NCሾܵ, Enሿ, kf, krሽ, ሼNCሾܵ, Enሿ ⇄ En ൅ ܲ, ݇, ,ሽݎ݇ ሼEn ൅ Inh

⇄ NCሾEn, Inhሿ, kϐi, kriሽ, ሼNCሾܵ, Enሿ ൅ Inh ⇄ NCሾܵ, En, Inhሿ, kϐi, kriሽ, ሼܵ ൅ NCሾEn, Inhሿ

⇄ NCሾܵ, En, Inhሿ, kf, krሽ, ሼNCሾܵ, En, Inhሿ ⇄ NCሾEn, Inhሿ ൅ ܲ, residualRate ∗ kc1, rRrሽሽ;

The enzyme Inhibitor complex may still bind its’ substrate and release a product in two

respective reaction steps. The respective residual rate is a fraction of the base enzymatic

rate for this reaction.

3.6 Parameter Summary

 In summary, the entire set of kMech instances (together with a few xCellerator

reactions) can be summarized by a set of specified input parameters.

These parameters are:

A vector of Substrates [] : [Uni, Bi , Ter, Tet, ...]

A vector of Products []: [Uni, Bi , Ter, Tet, ...]

102

AdditionStrategy: [Full, Ordered, Random]

ConversionStrategy: [Instant, One Step]

ReleaseStrategy: [Full, Ordered, Random]

PingPongCase: [Enzyme Intermediates] (This condition reduces the addition and release

strategies to a specific ordered case).

Inhibition Model: [Competitive, NonCompetitive, Uncompetitive]

These options sweep out a large cross-product space of reaction types.

 A biologist might describe a reaction as follows:

“We have an enzymatic BiBi reaction with random addition, ordered release and a

residual enzyme activity of the S1E complex. Also, we have competitive inhibition for

I1 and non competitive inhibition for I2”. This can be notated as parameterized reaction,

as follows [Bi, Bi, randomAddition[rates], orderedRelease,[rates][CI, Inhibitor,

[rates]][NCI, Inhibitor, [rates]]] From this description the subreactions can be

algorithmically generated from parameterized reaction notation like the following:

 [[subs[int], prods[int], addStrat[String], convertStrat[String],

 releaseStrat[String],[Inhibitions[Inhibitor, target, [kf, kr]]].

 This representation includes the conversion phase. The representation provides a

data framework and with a set of procedures we can generate a biological reaction

network. Each BiologicalReaction in the network will have a corresponding

MathematicalReaction. In version 1.0 of SigMech, Mass action

BidirectionalMathematical reactions are constructed to provide kinetics for simulation.

Ultimately, the mapping between the BiologicalReaction network and

MathematicalReactions should be flexible and allow for any relevant

103

MathematicalReaction (or set of reactions) to be associated with a particular biological

sub-reaction of the mechanism. The representation below is close to conforming to

regular expression notation. It should serve as an input notation that is to be parsed to

generate the mechanism.

[
 [
 subs[[substrate, kf, kr]*], prods[[product, kf, kr]*]
],
 [
 PingPong[[enzymeIntermediates]* |
 [
 AddStrat [full |ordered | random], ReleaseStrat[full | ordered | random]
],
 [
 ConversionStrat[instant | oneStep | multistep, [kf, kr]]
],
 [Inhibitions[inhibitor, target, [competitive | nonCompetitive
[ResidualRate[complex, substrate, product, [residualRate]]*, kf, kr] | uncompetitive],
[kf, kr]]*
]
Capitalization indicates a method to be run. Uncapitalized entities are variables . In all

cases, Capitalized words are procedures that generate reactions. An asterisk (*) indicates

a zero-to-many relationship. The pipe symbol (|) specifies an OR input condition. The

variables subs, prods and enzymeIntermediates should be stored in the form of ordered

lists.

3.7 User Interface:

 The SigMech user interface has been written in Java and may be run as a

standalone application or accessed from within SME by a button on the far top left of the

SME control panel as seen in Figure 3.4. After a suitable enzyme mechanism has been

designed, the corresponding reaction network may be viewed in the SME network view

104

panel by pressing the “View Enzyme Mechanism” button just to the right, also shown in

Figure 3.4.

Figure 3.4 The access buttons for SigMech from SME appear on the left of the taskbar. The
button on the far left opens the SigMech utility. The button to the right displays the enzyme
mechanism once it has been generated.

3.7.1 Accessing SigMech from SME
 Currently the user interface for SigMech, shown in Figure 3.5, consists of a

primary single user window designed to take in all the respective parameters necessary to

produce an enzyme mechanism. There are four addition panels, four drop down menus,

and access buttons for mechanism and enzyme attributes. The panels from left to right

are: the substrate list, the product list, the inhibitor list and the enzyme intermediate list.

Under each list are addition and removal buttons. A new reactant can be instantiated by

pressing the respective addition button. Version 1.0 queries for just a reactant name, but

a next version could provide access to more detailed reactant specifications. The inhibitor

105

addition process may query for inhibitor target information depending on the inhibition

type. The Enzyme Intermediates list is tied to the use of PingPong reaction types. The

console output should give an error message either when intermediates are present and

PingPong is turned off, or when ping pong is on but there are no intermediates specified.

Version 1.0 does not enforce these rules on generation of the mechanism. The

“Mechanism” button is used to change the mechanism name. The “Enzyme” button does

the same for the enzyme name. (The plan is for subsequent versions to have more

detailed access to the enzyme’s Sigmoid reactant attributes.) There is a button labeled

“Report” at the bottom designed to produce console feedback on the current mechanism

configuration and a button labeled “Generate” (bottom right) that instantiates all

respective Sigmoid reactants and reactions for the attributes currently specified in the

SigMech interface. If the console is active, Generate also calls the model emitter class to

report output of the entire mechanism model. Typically once a mechanism has been

designed, it can be viewed in the console as “Model emitter” output or the “View

Enzyme Mechanism” button in the main interface can be pressed in SME to view the

reactions in the SME network view panel.

106

Figure 3.5 The addition strategy selection menu appears at the far left bottom of the UI below
the list of participating substrates. Three addition strategies are available, Full Addition,
Random Addition or Sequential Addition.

3.7.2 Drop down Menus
 There are drop down menus available to select the strategies for building the

enzyme mechanism network. Figure 3.5 illustrates the addition menu when activated.

This menu is the drop down menu furthest to the left under the substrate addition panel.

Substrates can be added by pressing the” +Sub” button. Currently in version 1.0 of

SigMech will query the user for a substrate name and instantiates a Sigmoid reactant

class with that name. The long term intention here is to open a larger panel with

complete access to all the reactant attributes and subclasses. Figure 3.6 illustrates the

release menu. As with the addition menu, three independent alternatives are available for

generating the reactions via “Full”, “Sequential”, and “Random” strategies.

Figure 3.6 The release strategy selection menu appears beneath the list of participating
products. As with the addition strategy, three choices are available: Full Release, Random
Release, and Sequential Release.

107

3.7.3 TerTer Full Addition Full Release Example
 For our first example we construct a mechanism with both a full addition of

substrates and full release of products. The SigMech interface is shown in Figure 3.7 and

the SME network view is shown in Figure 3.8. Substrates are shown in red. Products are

shown in blue. In this example with “Full addition”, the binding of all substrates to the

free enzyme is modeled as one bidirectional mass action reaction. SME only illustrates

the Biological reactions in the network layout view. The corresponding mass-action

MathematicalReactions are accessible on the panel to the left.(Not shown)

Figure 3.7 Interface view for a Ter-Ter reaction with Full Addition and Full Release.

108

Figure 3.8 SME Network view of the Ter-Ter Full Addition Full Release Mechanism.
Substrates are on the left and products on the right.

This mechanism also has a “Full Release” of products, so the conversion of substrates to

product form, and subsequent disassociation (release) from complex are modeled as one

step. It should be noted that all reactions are modeled as bidirectional mass action

“MathematicalReaction” Sigmoid reactions. For a kcat approximation of this release

reaction the reverse rate should be set to zero.

 Of course, the number of reactants on each side of the equation is arbitrary, as can

be seen in Figure 3.9 and Figure 3.10. There just as well could be six reactants on the

substrate side and one on the product side. Addition to complex and release are

completely independent of one another. This simple example illustrates how the new

SigMech representation can express many previously hard-coded enzyme mechanisms

and procedurally generate the required subreactions.

109

Figure 3.9 SigMech Interface: BiBi Full Addition Full Release.

Figure 3.10 SME view of Bi-Bi Full Addition Full Release reaction.

3.7.4 TerTer Sequential Addition Full Release Example
 To further illustrate the independence of addition and release strategies a

sequential addition and full release mechanism will serve as an example. Substrates are

110

added to the enzyme complex in the order that they occur in the interface list shown in

Figure 3.11 (From top to bottom). In this example the full SME image is shown.

Substrates again are in red and products in blue. The release reaction is selected and the

corresponding MathematicalReaction attributes are displayed on the left panel, including

kinetic rates.

Figure 3.11 SigMech Interface: TerTer Sequential Addition Full Release.

Figure 3.12 SME: TerTer Sequential Addition Full Release. This illustrates that addition and
release mechanisms can be independent of one another.

111

 Addition and release strategies can be random as well. A random selection (in the

case of addition) produces reactions for every possible path to bind all available

substrates. This can be used when the intention is to model a mechanism in which any

substrate can bind in any order. Of course, specifying rates for such a strategy must be

given particular attention because the rates act in parallel to each other and produce sums

of enzymatic activity. A BiBi mechanism with random addition and full release is shown

in Figure 3.14.

Figure 3.13 SigMech Interface: BiBi Random Addition Full release.

112

Figure 3.14 SME: BiBi Random Addition Full release.

The Random strategy is also available to expert users for release of product from

enzyme/substrate complex. The next example illustrates a the BiBi mechanism with a

random strategy for both addition and release phases.

Figure 3.15 SigMech: BiBi Random Addition Random Release.

113

Figure 3.16 SME Overview: BiBi Random Addition Random Release.

 The user may define any number of substrates and products with this strategy in

either the addition or release phases, but the number of reactions and reactants increases

rapidly with higher numbers of substrates or products. A TerTer Random Addition

Random Release network is shown in Figure 3.17. Substrates are indicated by the yellow

balls in the top center. Products are blue at bottom center.

114

Figure 3.17 SME Overview: TerTer Random Addition Random Release.

3.7.5 BiBi Ping Pong Example
 Ping Pong reactions can be built with SigMech. Substrates are again shown in

red and products in blue. The classic BiBi Ping Pong reaction is illustrated in Figure 3.18

and Figure 3.19.

Figure 3.18 SigMech Interface: Classic BiBi Ping Pong reaction.

115

Figure 3.19 SME: Classic BiBi Ping Pong reaction. Substrates (in red) are sequentially
converted to product (in blue) leaving the enzyme in a changed state.

Enzyme states are represented as circles and complexes as rectangles. A constraint that

limits SigMech but is not intrinsic to its architecture is that an enzyme intermediate state

must exist for each catalysis reaction that is present. Also, splitting or combining of

substrates into product hasn’t been implemented. Version 1.0 of SigMech requires that

the number of substrates, products and enzyme states all be equal. This version will allow

any number of sequential intermediates to function, provided they convert one substrate

to one product.

3.7.6 TerTer Ping Pong Example
Note in Figure 3.20 there are two intermediates listed. The reaction is a TerTer reaction.

If the free enzyme state is included, there are a total of three states. SigMech supports

any number of ping pong steps provided that the number of substrates, products and total

number of enzyme states is equal.

116

Figure 3.20 SigMech Interface: TerTer Ping Pong.

Figure 3.21 SME Overview Panel: TerTer Ping Pong reaction mechanism. Substrates (in red)
are sequentially converted to product (in blue) leaving the enzyme in a changed state. Ping
pong mechanisms can be built for any number of stages provided that the number of substrates,
products and enzyme states are all equal.

117

3.7.7 Conversion Phase
 The conversion menu has selections for instant conversion, one step, and multi-

step conversion. The terminology might need to be adjusted in the user interface.

“Instant Conversion” might not be the best way to name it but, SigMech Version 1.0

displays it as such.

 Instant conversion is implemented in SigMech as a bidirectional reaction with

corresponding forward and reverse rates. This choice of representing the catalytic

process by one bidirectional reaction was made because it allows for greater flexibility.

In a case where the intention is to model without a reverse reaction, the reverse rate can

simply be set to zero. The simplest representation for a catalytic reaction, as reflected in

the schema is to have a reaction with one forward rate. Using one forward rate to model

a reaction might approximate the conditions of catalytic activity where the forward rate is

many order of magnitudes faster than the reverse rate for the reaction. Even though a

reverse reaction and corresponding rate exists in nature, this reverse reaction is ignored in

many cases. Biologists may choose to model this reverse reaction, and reactions are

available in xCellerator and the Sigmoid schema, as a TwoStageCatalytic Reaction, to

facilitate such use. A reaction equation equivalent appears in Section 3.2.1.

Figure 3.22 The Conversion menu.

118

 A one-step conversion is a modeling feature added in order to emulate the three

stage catalytic modeling option available in Sigmoid and xCellerator (although not

specifically termed as such in xCellerator). The three stage catalytic reaction, shown in

Figure 3.23, consists of three consecutive mass action reactions, substrate binding to

enzyme, conversion of the substrate to product while complexed, and then subsequent

release of product from complex.

Figure 3.23 The ThreeStageCatalytic MathReaction in the schema illustrates the
implementation of a central “conversion ” reaction where enzymatically bound substrates are
converted to product. Release of product is modeled as a third reaction step.

 Reverse rates for each reaction are available for a total of six reaction rates, three

forward and three reverse. This modeling option is toggle-able for any enzyme

119

mechanism reaction. The conversion menu appears right under the inhibitors list as

shown in Figure 3.22 . There is no conceptual relation between the conversion menu and

the inhibitors. The positioning is simply coincidental.

 A simple case example can be seen in Figure 3.24 and Figure 3.25 where one

substrate is converted to one product though this mechanism.

Figure 3.24 SigMech UI: UniUni reaction with OneStep Conversion activated.

Figure 3.25 SME view: A UniUni Reaction with a OneStep Conversion phase.

120

 This case is the same as the ThreeStageCatalytic reaction. Since there are

bidirectional mass action reactions on the attached to these BiologicalReactions, there are

six overall rates, three foreward and three reverse. More involved examples show that

this feature can be implemented independently of the addition and release strategies. For

instance, Figure 3.12 illustrated an example of a Ter-Ter sequential addition and full

release reaction. A version of this reaction with a one step conversion phase is shown in

Figure 3.26 and Figure 3.27.

Figure 3.26 SigMech Interface: TerTer Sequential Addition Full Release One Step Conversion.

121

Figure 3.27 SME: TerTer Sequential Addition Full Release with a One Step Conversion.

 Even further, the one-step conversion can be implemented in cases for Ping Pong

class reactions. If the example shown in Figure 3.21 used as a starting point and a “One

Step Conversion” is added we the result shown in Figure 3.29. Each binding of a

substrate to an enzyme state yields a conversion reaction in which substrate is converted

to product, and a subsequent release of product reaction.

Figure 3.28 SigMech Interface: TerTer Ping Pong with One Step Conversion.

122

Figure 3.29 SME Overview Panel: TerTer Ping Pong One with Step Conversion.

 In Figure 3.22, the “Multi Step Conversion” option is viewable in the GUI version

1.0 but the corresponding strategy is hypothetical and has not been implemented, so

selecting this option will yield no results. This option could be used for processes that

have either multiple energetic barriers to overcome or some deeper complexity, so the

option was included as a possibility. Further collaboration with modeling biologists will

reveal whether this is a useful option.

3.7.8 Inhibition Examples:

3.7.8.1 Competitive Inhibition Example
 Competitive inhibitors can be added to the inhibition list. Competitive inhibitors

bind free enzyme and prevent substrate binding. (Please note in the example, the icon

123

choice could have been better, but the network is correct in Figure 3.31). Any number of

competitive inhibitors may be specified.

Figure 3.30 SigMech UniUni with Competitive Inhibitor.

Figure 3.31 SME Overview Panel: UniUni with Competitive inhibitor. Competitive inhibitors
bind free enzyme thus preventing substrate binding.

 Competitive inhibitors, since they act on free enzyme, may operate independently

of one another. Many may be present and they function irrespective of addition strategy,

124

release strategy, conversion strategy or cases of ping pong reactions. A simple example

of this independence is illustrated in Figure 3.32 where a “One Step Conversion” reaction

is active. The network is illustrated in Figure 3.33.

Figure 3.32 SigMech UniUni with Competitive Inhibitor and a One Step Conversion.

Figure 3.33 SME Overview Panel: UniUni with Competitive inhibitor and a One Step
Conversion. The enzyme-substrate to enzyme-product conversion appears in yellow at the
bottom.

125

3.7.8.2 UnCompetitive Inhibition Example
 UnCompetitive inhibitors target an enzyme-substrate complex. A simple UniUni

case is exhibited in Figure 3.34 . When specifying an Un-Competitive Inhibitor, the user

interface asks for a target. This target should correspond to enzyme/substrate complex

that the user intends to be inhibited. SigMech does not currently enforce any rules about

this specification. For instance if the user accidentally specified a product, the product

would get bound by the inhibitor. Also, if the name does not match a reactant, the

mechanism may be unusable. The user-assigned name of this complex must conform to

the rule $EnzymeName$ReactantName$ (+ AdditionalReactantName$ +....) A next

version of SigMech could pre-parse the reaction network and generate consistently

named complexes that can be referenced by the software to avoid this complication.

Figure 3.34 SigMech: UniUni with an UnCompetitive Inhibitor (UCI).

126

Figure 3.35 SME Overview: UniUni with an UnCompetitive Inhibitor (UCI). UCIs bind
enzyme-substrate complexes to inhibit the activity of an enzyme.

3.7.8.3 NonCompetitive Inhibition Example
 NonCompetitive Inhibition is the third option for inhibitors in SigMech. A

NonCompetitive inhibitor (NCI) can bind either free enzyme or enzyme already bound to

substrate. A NonCompetitive inhibitor may not completely shut down the enzyme’s

activity, but rather it may have a residual activity. The corresponding NCI reactions are

shown in Figure 3.37. . Since the GUI does not yet enforce rules on the input parameters,

various addition and release strategies can produce unwanted or erroneous reaction

results. Certain combinations of strategies may produce a set of reactions that have no

bearing on the particular biochemistrys at hand for a particular intended enzyme

mechanism if the user does not carefully construct the mechanism. It is left to the expert

user to use scrutiny when applying this form of inhibition. In multiple subsrtate, multiple

127

product reactions, the inhibition must be set up carefully as the inhibitor procedure

generates reactions for the target complex formation and generates residual product from

that. A next version of SigMech could check specified inputs and inhibitions to make

sure the mechanism is valid.

Figure 3.36 SigMech UniUni reaction with a NonCompetitive Inhibitor(NCI).

Figure 3.37 SME: UniUni reaction with a NonCompetitive Inhibitor (NCI). NonCompetitive
inhibitors may possess a residual enzymatic activity that generates product from inhibitor
bound enzyme. NCIs can either bind free enzyme or enzyme-substrate complexes.

128

3.8 Sigmoid Model Explorer integration.

 SigMech can be run as a standalone application or within SME. SigMech version

1.0 generates a Sigmoid Model class and adds the respective sub-reactions, reactants and

relevant parameters to the Model. Each BiologicalReaction SigMech generates has a

corresponding BidirectionalMassAction MathReaction with rates initialized to arbitrary

values. When SigMech is run from SME, the reaction network is displayed as a model in

the network layout view panel. The rate parameters can be edited in the reaction panel in

SME (item C in Figure 1.4). As with any Sigmoid model, the model can be sent to

Mathematica/xCellerator for simulation. When SigMech is run as a standalone

application, the model reaction network can be examined by pressing the “Report” button

on the interface (Figure 3.5). The Report button will also function when SigMech is run

from within SME and reports to the Java console, if open.

 The next step in SME integration would be to utilize the ReactionGroup class in

the schema by adding all of a particular enzyme mechanism’s sub-reactions to the group

instead of instantiating a separate model. SME should then be able to hide the sub-

network of reactions from a larger pathway model. Inputs and outputs of the mechanism

would be viewable at the higher level pathway view but the sub-reactions would be

represented by one reaction icon. In this way, the user could zoom in to view the details

of the mechanism and zoom out to hide the details.

 One intended feature of SigMech is to generate a BiologicalReaction network and

reference MathematicalReactions for the kinetics. Presently, SigMech 1.0 assigns strictly

BidirectionalMassAction Reactions with default rates to each BioReaction, as this option

provides everything necessary to represent all previous Sigmoid Complex BioReactions.

129

Rate parameters from the resulting network of reactions can be edited in SME, but the

intention is to allow a user to edit the MathReactions referenced by BioReactions from

within SME so that alternate kinetics can be applied to one or many of the Mechanism

subreactions. SME does have model creation and editing capabilities but it’s not clear

that this feature can be implemented properly without a SME update. Alternatively a

next version SigMech could implement another feature layer providing greater access to

other MathReactions, such as the AlgebraicPassthrough reactions and a matrix of

initialization rates.

3.9 Conclusion

 The highly parameterized reaction types of SigMech, together with the

kMechReaction classes, provide a parameterized representation that encompasses all

previous Compound reactions that were present in the Sigmoid schema, and can generate

these and other novel reaction mechanisms from the cross product of the valid SigMech

input parameters. This development effectively renders kMech integration a solved

problem within the scope of previous reaction motifs, and will vastly reduce the need for

frequent updates of the schema, database, middleware translation and GUI. SigMech

combines the reaction motifs of previous kMech reaction mechanisms, with the

conversion phase that was implemented in the three-stage xCellerator reaction

(ThreeStageCatalytic in the Sigmoid schema) yielding a greater parameter space of

possible enzymatic reaction mechanisms that can be generated on the fly inside SME, and

that can consequently be simulated by Mathematica/ xCellerator.

130

Chapter 4. Population Strategies for the Sigmoid Database.

In chapter two we discussed the structure and schematics of the Sigmoid database

and Java class API. In this chapter we will discuss populating the database pathway with

models of biological significance.

Pheno [Cheng et al.2005] translates the Sigmoid schema diagrams into PostgreSQL

database tables and a corresponding set of Java Classes that comprise the Sigmoid API

Java Classes. A direct Object Relational Bridge (OJB) mapping exists between the

Sigmoid Java classes and the relational database. These Java Classes can be used to

compose Sigmoid pathway models. Two main strategies exist for populating the

Sigmoid database with models. A straightforward method is to code Java models

directly and store the models in the database via the OJB interface to the database. This

method is where a user focuses on the production of one particular pathway. Another

strategy is to build automated populator programs, also through OJB, that are designed to

translate other pathway markup languages or database resources via web services to the

Sigmoid representation. We will discuss individual models coded by users in Section

4.1. We will address the implementation of population programs in Section 4.2

131

4.1 User Coded Models

Although any Java development environment would suffice, the Eclipse Java

development platform (www.eclipse.org) was used for the Sigmoid population classes.

Eclipse possesses built in Concurrent Versions System (CVS) interface functions that

facilitated group population efforts. The CVS repository at sigmoid.sourceforge.net

proved to be a useful tool for coordinating the development efforts of several team

members for the set of Sigmoid pathway population programs and proved to be a viable

repository for other portions of the Sigmoid code.

We developed a set of template classes (Java programs) that are designed for

pathway model construction. These classes have customized methods for model,

reactant, reaction, parameter set and knowledge source creation. There are administrative

classes designed to delete and populate the database with sets of models. There are

reporting classes designed to survey the database contents. The ModelEmitter class,

which is fairly useful for model development and debugging, is designed to report model

reactant and reaction attributes to the Java console. Some initial code to query the

database for a model and to enter a model into the database was provided by Lucas

Scharenbroich. Some methods from these classes were reworked and expanded over

several iterations to comprise a portion of the template class functionality.

These template classes were used by Sigmoid team members to generate Sigmoid

pathway models. Although several team members created models for Sigmoid,

construction of the template classes, final debugging of pathway models, entry of models

132

into, and administration of the database was performed by the author in the course of

work for dissertation.

 The generative version of Sigmoid has been successfully populated with over

twenty published models that range from simple molecular interactions to complex cell

fate decision networks. A comprehensive list of the models is provided in Figure 4.1. A

majority of the models in the database focus on virtual representation of intracellular

pathways that include examples in signaling, metabolism, the cell cycle, and gene

regulation.

133

Figure 4.1 A comprehensive list of pathway models stored in the Sigmoid database can be
browsed in the Models section of the Sigmoid website at www.sigmoid.org. A majority of the
models in the database focus on virtual representation of intracellular pathways that include
examples in signaling, metabolism, the cell cycle, and gene regulation.

134

4.1.1 Sigmoid Database Population From xCellerator notebooks.

Since Sigmoid leverages the numerical computational power of Cellerator and its

successor xCellerator as its primary simulation platform, existing xCellerator notebooks

have been an important source of pathway models. Early in the development of Sigmoid

a survey of existing Cellerator notebooks was taken and an attempt was made to adapt the

schematic representation of Sigmoid so that the greatest compatibility between Sigmoid

and Cellerator could be achieved. The classes in the MathematicalReaction section of

Chapter 2 reflect the direct compatibility between Sigmoid and xCellerator functions.

For the greatest part, all user coded models present in the public version of the

Sigmoid database exist as Cellerator notebooks. These notebooks were either part of the

Cellerator notebook library, or the Cellerator notebooks were created as an aid in

constructing the Sigmoid Java coded pathway models. The notebooks provide a valuable

testing reference for Sigmoid models and proof that the pathway model will function in

xCellerator. They are not absolutely necessary, but as there is such a great parallelism

between existing Sigmoid simulation capability and Cellerator, generating notebooks for

every model has proven to be a useful device.

4.1.2 SBML as a Source of Pathway Models.

 Another valuable source of pathway models comes from Systems Biology

Markup Language SBML. SBML is an XML extended interchange format designed to

represent computational models of biological processes. SBML strives to provide a

common interchange format for the variety of tools designed to model biological

networks. SBML has been developed in “levels” to provide stable releases of the format

135

for developers. Currently SBML possesses three levels of development [Hucka et al.

2003] [Finney and Hucka 2003]. Information about SBML can be found at

www.SBML.org.

 The Biomodels.net database served as a valuable repository for peer-reviewed

SBML models based on publications. Our team surveyed this repository in the early

stages of its release and selected several models from the Biomodels database that were

to be converted and stored in the Sigmoid database.

 Converting SBML formatted models into Sigmoid models has presented an

interesting set of challenges, both for user coded models and the automated SBML reader

to be discussed in the next section. There are a few features of SBML models, such as

SBML Events and Functions, which are not entirely supported by Sigmoid. Some steps

have been taken to incorporate storage for them in the schema (in the form of fields to

store the strings), but implementation in the form of translation to xCellerator has not

commenced nor has an attempt been made to construct models with these features. A

decision was made to pursue the conversion of other SBML models that had a feature set

more easily incorporated into the Sigmoid classes.

 A particularly interesting challenge in converting SBML to Sigmoid is that the

kinetic rate laws stored in SBML are in the form of algebraic expressions. This differs

from the current approach of Sigmoid. As discussed in Section 2.9, Sigmoid handles the

kinetics of reaction equations by the storing sets of parameterized inputs for xCellerator.

These input parameters are passed through the middleware and converted to xCellerator

functions which are composed into notebooks. The notebooks are consequently sent to

136

and processed by Mathematica/xCellerator thereby generating simulation output [Cheng

2005][Compani, Su et al. 2010].

 The challenge lies in converting the algebraic rate law expressions into

xCellerator format. For user coded models, the solution consisted of using the SBML

reader that we constructed (discussed in Section 4.2) to generate text file outputs of the

SBML models, and manually examining the rate law expressions. MathSBML , a

Mathematica extension written by Bruce Shaprio (available at

http://sourceforge.net/projects/sbml/files/mathsbml/) , also became available and

provided a function to translate SBML to a human-readable form. Models that were

composed of readily identifiable rate expressions such as Michaelis Menten, mass action

and hill functions were selected for coding using the Sigmoid API classes.

 Another fraction of the SBML models contained algebraic expressions that could

be passed, with minor syntactic adjustments, directly to Mathematica for processing

along with xCellerator code. In order to overcome this challenge, a set of

AlgebraicPassthrough classes (see Section 2.9.1.3), a RateFunction parameter (see

Section 2.3), and variable declarations field in the RateConstants class (see Section

2.4.1.1) were constructed and added to the schema. The adjustments to the

RateConstants class allowed us to make variable declarations for reactants that were

expressed in the algebraic expressions. The variable declarations and the algebraic

expressions in the AlgebraicPassthrough MathReactions are passed though the

middleware as strings to Mathmatica for processing inside the xCellerator notebook. We

have several curated models in the database that use these features.

137

4.1.3 Sigmoid Team Population Effort.

 The population of the Sigmoid database with pathway models has been the

product of the efforts of many individuals. Since it would be prohibitive to address

authorship details throughout the text of this dissertation, a comprehensive table of

member contributions with regard to database population has been provided in Appendix

B. Sigmoid models derived from the Biomodels.net SBML repository are also indicated

in Appendix B.

 Large-scale models of the signaling pathways include the mammalian Epidermal

Growth Factor Receptor (EGFR) pathway [Kholodenko et al.1999] and the yeast

pheromone response pathway [Kofahl and Klipp2004], while other models represent

common aspects of metabolism that include the anabolic Calvin cycle in plants [Poolman

et al.2004], two models of branched chain amino acid biosynthesis in bacteria [Najdi et

al.2006], [Yang et al.2005a], and catabolic glycolysis [Nielsen et al.1998]. Furthermore,

a simple model of the circadian clock [Tyson et al.1999] and two models of intracellular

calcium flux [Borghans et al.1997] demonstrate oscillating outputs. Separate models of

the NFkB [Hoffmann et al.2002], Calcineurin [Hilioti et al.2004] and the p53 [Bullock

and Fersht2001] regulatory networks demonstrate how transcription factors and their

ability to activate or inhibit gene expression are regulated. Lastly, some models in the

database represent diverse processes, including the mechanism of degradation of

enzymes during industrial food processing [Brands and van Boekel2002] and the cell fate

decisions of protists in the presence of far-red light under starvation conditions

[Marwan2003].

138

 Computational models of the mitogen-activated protein kinase (MAPK) cascade

are also present in the Sigmoid database. Several models derived from [Markevich et

al.2004] examine the same MAPK cascade with two separate mechanisms, mass action

and Michaelis-Menten, for each of the phosphorylation and dephosphorylation events.

For each of these mechanisms, the models increase in complexity as the site and order of

phosphorylation are taken into account in the set of reactions. In contrast to these models,

Huang_1996_MAPK and its xCellerator notebook “MAPK cascade: Huang and Ferrell

1996”, present the celebrated [1996] model that demonstrates the connection between a

nonprocessive, twocollision dual-phosphorylation mechanism of kinase activation and an

ultrasensitive, switch-like response. The model

Bardwell_2007_MAPK_VariableFeedback and corresponding notebook “MAPK

Cascade with Variable Feedback” extend this model to include a simple feedback

phosphorylation of an upstream kinase by the MAPK. The effects of the feedback loop

on the system depend upon the nature of the feedback: if feedback phosphorylation

increases the activity of the upstream kinase (positive feedback), a bistable, all-or-none

response may result [Ferrell and Machleder.1998]. In contrast, if feedback

phosphorylation decreases the activity of the upstream kinase (negative feedback), then

the result may be damped or sustained oscillation of the activity of the kinases in the

cascade [Kholodenko2000]. The notebook contains examples of parameter values that

will generate either of these outcomes, illustrating how complex, diverse and biologically

useful behaviors can emerge from the combination of an ultrasensitive cascade

architecture and a simple feedback loop.

139

4.1.4 The Najdi_2009_Xyl_Ara_Et hModel
 An unpublished xCellerator notebook model of engineered strains of yeast was

constructed by Dr. Tarek Najdi. The modeling goal of the notebook was to perform

mathematical modeling of proposed pathways to increase the yields of ethanol (Eth)

production from Saccharomyces cerevisiae. A great portion of plant carbon sources

consisting of the monosaccharide sugars xylulose (Xyl) and arabinose (Ara) go largely

unmetabolized by wild type strains of S. cerevisiae. The goal of the project was to

engineer metabolic pathways for yeast that would convert these sugars to ethanol with

high yields, thus increasing overall yields of commercial ethanol production. The fairly

large (60 reactions) notebook contained portions of the pentose phosphate pathway,

glycolysis, and xylose metabolism. We constructed a Sigmoid coding of the notebook for

visualization and simulation within the Sigmoid system. This pathway model required

extensions to the kMech reaction equations. The requirement for these extensions also

prompted the development of SigMech described in 0.

140

Figure 4.2 The Najdi_2010_FattyAcidBiosynthesis model contains portions of the pentose
phosphate pathway, glycolysis and fatty acid biosynthesis.

4.1.5 The Najdi_2010_FattyAcidBiosynthesis Model
 A one-quarter cross-training laboratory rotation was spent in Suzanne

Sandmeyer’s laboratory on a project that was directed toward engineering a transgenic

strain of Saccharomyces cerevisiae with the ultimate goal of producing high yields of

short chain fatty acids for use as platform chemicals for industry. Within this context a

pathway optimization was being proposed to generate higher yields of fatty acids.

Models were built to better understand these processes. Dr. Tarek Najdi composed

Mathematica notebooks to represent the pathway model and proposed optimizations.

New kMech reaction equations were developed for the notebook to address the need for

141

enzyme models that have three substrates and three products. We constructed a Sigmoid

version of this model (Najdi_2010_FattyAcidBiosynthesis), illustrated in Figure 4.2, and

extended the functionality of the Sigmoid system to meet the models’ requirements.

These extensions consisted of new kMech reaction equations one of which is detailed in

Section 3.1.3). The requirement for these extensions also prompted the development of

SigMech described in 0. The model contains sections of the pentose phosphate pathway,

glycolysis and fatty acid biosynthesis.

 ATP-Citrate Lyase (ACL) is present in oleaginous yeasts known to accumulate

fatty acids but not in S. cerevisiae. The goal of the project was to engineer a strain of S.

cerevisiae that produces higher levels of cytosolic acetyl-CoA by introducing ACL.

Normally, in S. cerevisiae, cytosolic acetyl-CoA (the precursor for de novo fatty acid

synthesis) only comes from pyruvate decarboxylases (PDCs) acting on pyruvate.

Pyruvate also goes into the mitochondria and is converted by pyruvate dehydrogenase

(PDH) into acetyl-CoA that goes to the TCA cycle. If ACL were to compensate for a

PDC knockout, that would prove that ACL can function in S. cerevisiae.

 The goal of the portion of the project was to produce strains of yeast with a

knockout of the PDC 1,5 and 6 genes. We attempted knocking out the PDC 5 and 6

genes from a previous strain that was PDC 1 deficient. We were not able to generate any

viable strains of yeast with more than a PDC 1 deficiency. These findings suggest that

knocking out both genes weakened the cell strain past the threshold of viability.

4.1.6 The Middleton_2008_AuxinModel
 Auxin is a plant hormone that plays a regulatory role in developmental processes

in Arabidopsis thaliana. Auxin signal transduction is an essential pathway modeled in

142

[Middleton 2010]. As part of an iPlant initiative a Sigmoid model was constructed from

the AUXIAA-AM-3 xCellerator notebook for this model, and loaded into the under

review section of the public Sigmoid database. The Sigmoid framework was sufficient to

properly represent the regulatory network of reactions.

4.1.7 The Wushel Compartmental and SpatialModel Model

Figure 4.3 The Wuschel-Model-for-iPlant Cellzilla notebook [Shapiro 2008] implements the
Wuschel pattern formation model of [Jönsson 2005]. The model = { …}; section contains the
InternalNetwork of reactions and the diffusingSpecies = {…}; section contains the
ExternalNetwork of reactions.

 A Sigmoid model named Shapiro_2008_WUS was built using the Wuschel-

Model-For-iPlant xCellerator/Cellzilla notebook (see Figure 4.3) implementing the

Wuschel pattern formation model of [Jönsson 2005]. This model differs from the other

models coded for Sigmoid in that it is a computational model designed for a multicellular

developmental system of plant growth in Arabidopsis thaliana. This model is the first

multicompartmental or multicellular SpatialModel built with the Sigmoid schema classes.

143

The two-dimensional model uses classes discussed in Section 2.11.2. The model consists

of: 1) a set of cell centers modeled as DimensionalCompartments (DC), 2) an

InternalNetwork of BioReactions and MathReactions that represents biochemical and

regulatory reactions that take place within each separate DC, and 3) an ExternalNetwork

of BiReplicated Reactions that represent diffusion reactions between adjacent

DimensionalCompartments. Certain Reactants that are involved in the ExternalNetwork

are DecoratedReactants (DR). DRs are “decorated” with variables that serve as indices

for their corresponding Cellzilla compartment representation. The SpatialModel is a

complete Sigmoid representation of the CellzillaNotebook. The ModelEmitter class in

the population library of Sigmoid produces console output of the model details. The

model currently requires Sigmoid to Cellzilla translation code from the middleware in

order to be sent to Cellzilla for simulation. Also, SME will display the model just as for

any other Sigmoid model, but the multi-cellular aspects of the model will require

additional development in the front end for them to appear and be properly represented.

4.1.8 Zhang Optimizer Models

Four models were constructed for the Simulated Annealing Optimizer (SAO) that

was integrated into Sigmoid from xCellerator notebooks. The SAO is discussed in

Section 5.1. The four models that were created by Li Zhang [Zhang2008] consist of:

 1) The Zhang_2007_SEP model is a simple enzymatic process model. The model

reactions present in the Zhang_2007_SEP model parallel the UniUni kMech reaction for

simple catalysis of one substrate (S) by an enzyme (E) into product (P) (SEP). The

kMech reaction notation [Yang 2005] is as follows:

144

EnzሾሼS_ሽ ⇄ ሼP_ሽ
୉୬_

, UniUniሾkf_, kr_, kcat_ሿሿ: ൌ ሼሼܵ ൅ En ⇄ NCሾܵ, Enሿ, kf, krሽ, ሼNCሾܵ, Enሿ

→ En ൅ ܲ, ;ሽሽݐܽܿ݇

2) The Zhang_2007_ATM model is a mathematical model for the DNA damage and

response signaling transduction pathway focusing on a critical sensor protein called

phosphoprotein kinase (Ataxia Telangiectasia-Mutated (ATM)) activation by infrared

radiation.

 3) The Zhang_2007_ATM_PP2A_MRN is an expanded model of

Zhang_2007_ATM that includes an upstream input and positive regulator of ATM, the

MRE11-RAD50-NBS1 complex (MRN), and protein phosphatase 2A which is a negative

regulator of ATM.

4) Phosphatidylinositol 3 kinase (PI3k) is believed to contribute to cellular

transformation and the development of cancer. The Zhang_2007_PI3k model is

composed of three Compound enzymatic MathematicalReactions involved in PI3k the

membrane-bond network.

4.1.9 Demonstration Models

Several demonstration and test models were constructed to provide simple examples

of basic Sigmoid functions. These models are the MAP-K Demo Reactions, the

Algebraic Demo, and the AlgebraicEnz demo. The MAP-K Demo is a simple one-

reaction model designed for short demonstrations of Sigmoid. The Algebraic Demo and

AlgebraicEnz Demo were designed to demonstrate and test the AlgebraicPassthrough

Reactions in Sigmoid and to pass algebraic rate law expressions to Mathematica for

145

processing. AlgebraicPassthrough reactions consist of algebraic rate expressions that do

not have corresponding specific xCellerator functions.

4.2 Automated Population of the Sigmoid Database

 Since the flexible but comprehensive schema of the Sigmoid database allows us

to easily leverage other databases, we have developed “populator” programs which

capture community input from external databases and markup languages for entry into

Sigmoid.

4.2.1 Kyoto Encyclopedia of Genes and Genomes

The Kyoto Encyclopedia of Genese and Genomes (KEGG) consists of a growing set

of databases. The KEGG database is located at http://www.kegg.jp/kegg/ and has been in

development since 1995 by Kanehisa Laboratories. The KEGG database serves as a

knowledge base for integration and interpretation of large-scale molecular data sets

generated by genome sequencing and other high-throughput experimental technologies.

One of their main systems biology databases, in particular the KEGG PATHWAY

database, is a collection of pathway maps focusing on molecular interaction and reaction

networks [Ogata 1999] [Kanehisa 2006]. These pathway maps are graphical diagrams of

biochemical and regulatory pathways, cellular processes, pathway systems on the scale of

organisms, genetic information processing, and signal transduction. The pathway maps

contain reaction equations that indicate participating molecules, cofactors, and enzymes.

Molecular information consisting of naming and synonyms, reaction references,

participating pathways, associated enzymes, molecular formulas, molecular structure, and

links to external molecular databases are referenced by the KEGG pathway maps as well.

146

The KEGG PATHWAY maps are stored in the exchange format KGML files and are

publicly available. KGML is an extension to the XML format. SBML translations of

KGML have been provided at the KEGG website in the past and can also be produced

with one of the KEGG to SBML converters available. One of the more recent converters

is KEGGConverter [Moutselos et al.2009].

 The KEGG pathway maps are particularly suitable for Sigmoid integration because

the mapping of reactant and reaction data between the KGML format and Sigmoid

schema is fairly straightforward.

Early on, we were able to develop an XML parser that translated KEGG biological

entities such as genes, proteins, small molecules and reactions into Sigmoid Reactants

and Reactions. It became apparent that SBML was becoming a prominent systems

biology interchange format and our efforts shifted to developing an SBML translator for

Sigmoid. Some effort was expended on developing our own SBML/XML parser and

then libSBML became available. LibSBML is an Application Programming Interface

(API) for reading, writing and manipulating SBML files and data streams [Bornstein et

al. 2008]. To avoid duplication of effort, we used libSBML to build an SBML-to-

Sigmoid translation program. This translation program provided a mechanism that

could be used to automate the population of the Sigmoid database with the KEGG

pathway models. We were able to successfully populate the Sigmoid database with

hundreds of KEGG pathway models. These models were composed of networks of

Sigmoid Reactants and BiologicalReactions. Since KEGG pathway models lack kinetic

parameter and rate laws they are excellent candidates to serve as “template pathways” for

users in Sigmoid. Users could, with a properly functioning pathway editor in the GUI,

147

add MathematicalReactions and corresponding rate parameters to the BiologicalReaction

network to produce simulateable Models. Sabio-RK, discussed in Section 4.2.5, may be

a good source for rate expressions and parameters.

4.2.2 SBML

 In Section 4.1.2 we discussed constructing user coded models from preexisting

SBML models. Since the number of available models in the SBML format continues to

grow and SBML is supported by a variety of systems biology applications, developing a

fully capable automated reader for SBML would be advantageous.

 We discussed in the last section that we have an SBML reader that can read the

Biologcal reaction network from an SBML file. An important challenge that we’ve

identified, discussed in Section 4.1.2, is that SBML stores reaction kinetics as algebraic

rate law expressions that differ from the xCellerator based parameterized reactions that

Sigmoid implements. Automated conversion of these algebraic expressions into a

Sigmoid / xCellerator form will require several things. A parser must be constructed to

identify the symbolic representations of reactants in the rate expressions and to extract

the mathematical operators of the expressions. An algebraic expression can have many

equivalent forms. Identifying a particular function (a Michaelis-Menten reaction

equation for example) in an algebraic expression, when the form of the expression is a

variable poses an interesting challenge in pattern recognition and symbolic manipulation.

 An alternative approach would be to construct a parser that makes extensive use

of the AlgebraicPassthrough reactions and avoid implementing kinetics as xCellerator

functions. There are other SBML features that will require implementation and

148

translation to Sigmoid model format such as SBML events, functions, and the SBML

representation of compartments in order to fully support SBML reading into Sigmoid.

4.2.3 Gene Networks

 Original software for the formalized modeling of various levels of genetic

systems was developed by the Institute for Cytology and Genetics (ICG) of the Siberian

branch of the Russian Academy of Sciences in Novosibirsk. A language, named SiBML,

for specification of these models was developed. SiBML is oriented to the construction

of mathematical models of molecular genetic systems. Another ICG technology,

GeneNet (Ananko et al. 2002, 2005), enables the accumulation of information on gene

and metabolic networks. A software system was developed by an ICG / UC Irvine team

to translate the GeneNet data to the Sigmoid schema. GeneNet data is stored in format

based on XML. Each XML diagram file consists of a Header and list of Nodes. The

Header possesses GeneNet identifier information, dates of creation and modification, and

a description of the biological functions of the gene network. The Nodes consist of

genes, proteins, substance, RNAs, reactions and regulatory events.

 A collaborative effort facilitated loading the GeneNet data into the Sigmoid

database [Podkolodny et al. 2006]. The Sigmoid schema representation was sufficient to

allow a direct mapping of the GeneNet genes, proteins, supplementary information,

comments, and substances (molecules). GeneNet and Sigmoid possess different

perspectives on how gene regulation should be modeled. In GeneNet the regulatory

events could be organized in cascades, meaning a regulatory event could regulate another

regulatory event. In Sigmoid, regulation is modeled so that a regulatory Reactant

participates as modifier of a reaction and is not consumed. The GeneNet reaction and

149

regulatory events were mapped to Sigmoid as activators, inhibitors, enzymes and

regulators of reactions.

4.2.4 Gene Ontologies
 Without much effort we were able to populate Sigmoid with the yeast GOnet

database [Irwin et al.2005], which contains information about yeast ORFs and their

annotations, gene ontology (GO), and protein-protein interactions. The population was

accomplished by a Java code translation program. The GOnet database itself is

periodically updated and integrates information from three different sources: (1) ORFs

(description, mutant phenotype, gene product, etc.) from the Saccharomyces Genome

DataBase (SGD); (2) GO term annotation from the Gene Ontology Consortium arranged

in the three categories of Molecular Function, Biological Process, and Cellular

Component; and (3) genetic and physical interactions information from the General

Repository for Interaction Datasets (GRID) [Compani, Su et al. 2010].

 Also, another team member (Trent Su) was able to establish a web service

connection to this database so that GO data could be browsed and then instantiated as

Sigmoid GO Reactants in SME. Establishing web service interfaces to other databases

provides a valuable mechanism to incorporate data into the Sigmoid framework. One

advantage of using the web service interface is that the connection provides users with

access to current versions of data from specialized external databases. Data acquisition

can be done on-the-fly. Thus, if the data set is rapidly changing, users will always be

able to access the most recent changes. Unfortunately, relying on the external database

for data can present a drawback if the external database or database web service format is

150

unstable or discontinued. This was the case with the GOnet database, as the database has

disappeared intermittently because of personnel or administrative changes.

4.2.5 SabioR-K

The Sabio Reaction Kinetics database (Sabio-RK) is a database for storing kinetic

properties for biochemical reactions. The database is located at http://sabiork.h-its.org.

Kinetic parameters and rate equations for biochemical reactions are stored in their

relational database along with the experimental conditions with which the parameters

were measured. The Sabio-RK system provides SBML exports of their data and a set of

web services for data acquisition. One of their stated missions is to provide support for

the development of biochemical network models [Wittig 2006, 2011]. Sabio-RK data

could be a key component for expanded Sigmoid models derived from KEGG pathway

models, as the majority of their reaction pathway networks are extracted from KGML

datasets. Their kinetics data is compiled and curated manually from literature. Since

KEGG data is easily converted into Sigmoid BiologicalReaction networks (see Section

4.2.1), a corresponding MathematicalReaction network could be created with curated

kinetic data and rate expressions from Sabio-RK.

Web services were established by another team member (Trent Su) in spring 2009.

It was possible to browse their rate expressions and kinetic parameters from within SME.

The Sabio-RK schema and web services were rapidly evolving at the time, so permanent

web service connections will require more development and maintenance. Since the

Sabio-RK interface now generates SBML, a SBML translator for Sigmoid may provide

more stable access to Sabio kinetic data. An alternate strategy (if Sabio-RK web services

151

have not stabilized) would be to restore the web service interface and to extract all Sabio-

RK data at one time or periodically, for storage within Sigmoid for investigation.

152

Chapter 5. Support for Exterior Simulators and Utilities

5.1 Parameter Optimization

 A Simulated Annealing Optimizer [Zhang2008] has been integrated into Sigmoid

through the web services interface. It uses a global optimization technique and Lam-

Delosme schedule to make the optimization process faster and more efficient when

compared with other general schedules available [Lam and Delosme1988]. It aims to

reverse engineer model parameters (for example: kinetic rate constants) given both the

model structure (represented as ordinary differential equations) and empirical system

dynamics as expressed by time series experimental data [Compani, Su et al. 2010].

5.2 Alternate Simulators

 The modularity of Sigmoid along with its separation of biological and

mathematical representations enables us to build interfaces to additional computer

algebra systems outside of the Mathematica/Cellerator superstructure. SAGE [Stein

2012)] for instance, an open source mathematics software program largely constructed

upon the Python framework provides a gateway to a broad array of open source math

programs such as Axiom, GAP, GP/PARI, Macaulay2, Maxima, Octave, and Singular. In

addition, the SAGE language includes interfaces to commercial mathematics programs

like Magma, Maple, Mathematica, MATLAB, and MuPAD as well. Constructing a

language interface to SAGE or some similar project would enable Sigmoid to harness the

additional functional functionality provided by these packages

153

5.3 Graph Crunch

Sigmoid has already incorporated into its schema a representation for Library of

Efficient Data types and Algorithms (LEDA) formatted graphs (see Section 2.4.2).

LEDA supplies implementations for common algorithms used in graph theory and

computational geometry [Mehlhorn 1999]. GraphCrunch is an open source software

utility that uses LEDA to perform graph analysis on biological networks and is a likely

candidate for integration with Sigmoid. GraphCrunch would enable comparison of

Sigmoid BiologicalReaction networks with sets of user specified random graph models.

GraphCrunch supports five different types of random graphs. Furthermore, GraphCrunch

generates statistics of network property similarities between data and model networks

[Milenković 2008].

154

Chapter 6. Conclusion

We have successfully extended the capabilities of Sigmoid and improved the object

oriented representation for the modeling, storage and simulation of biological

components and processes. Parameter sets and parameters are now structured in an

improved class structure where reaction parameters are stored by reference within

Sigmoid, MathReactions and Sigmoid Models can use multiple sets of parameters.

Previously parameters were stored as symbol-value pairs that were more closely tied to

the Cellerator notebook structure.

The biological Reactant hierarchy has been expanded to incorporate additional

relevant classes of biological entities. These classes span several scales of size and

complexity. Sigmoid reactant class groups listed in increasing complexity are Particles,

SmallMolecules, MacroMolecules, Complexes, and Structured Reactants of even greater

scales such as, organelles, cells, colonies, and organisms.

The Reaction hierarchy has been reorganized and expanded to separate biological

classification from mathematical implementation. Groupings of simple, catalytic, and

CompoundBio (CompoundBio reactions are a subnetwork of biological reactions)

reactions provide the flexibility that biologists can use to model biological reaction

networks and regulatory processes. The representation of kinetics is now separated from

BioReactions and exists within the MathematicalReaction subhierarchy of Reactions.

Currently Sigmoid supports a great portion of xCellerator Mathematica functions and a

large library of kMech enzyme mechanisms.

155

Support for GeneOntoloties has been successfully integrated into the Sigmoid

schema allowing us to populate the database with the yeast GOnet database [Irwin et

al.2005], which contains information about yeast ORFs and their annotations, gene

ontology (GO), and protein-protein interactions. In addition another team member was

able to utilize the schema support to add a web service interface to the GOnet database

thereby allowing for user construction of models incorporating GO components into

Sigmoid Models.

 We have designed a new utility SigMech and its corresponding KMechReaction

that more efficiently represents enzymatic processes. The KMechReaction and

associated classes can represent all the previously existing kMech enzyme reactions in a

parameterized form. This parameterized representation can subsequently be processed by

SigMech to generate a subreaction network of bidirectional mass action reactions that

constitute the enzyme mechanism. Additionally, SigMech processes enzyme mechanism

descriptions, entered by a user into a GUI, which can be accessed from SME. SigMech

processes the descriptions into sets of corresponding subreactions that constitute the

enzyme mechanism. SigMech combines the reaction motifs of previous kMech reaction

mechanisms with a flexible conversion phase that was implemented in the three-stage

xCellerator reaction (ThreeStageCatalytic in the Sigmoid schema) yielding a greater

parameter space of possible enzymatic reaction mechanisms that can be generated on the

fly inside SME, and that can consequently be simulated by Mathematica/ xCellerator.

We’ve included classes for Library of Efficient Data types and Algorithms (LEDA)

formatted graphs. The LEDA graph representation can provide a framework to assist

with graph analysis of biological reaction networks stored within the Sigmoid database.

156

A likely graph analysis candidate for integration with Sigmoid is GraphCrunch.

GraphCrunch would enable comparison of Sigmoid BiologicalReaction networks with

sets of user specified random graph models.

 We now have a spatial and compartmental modeling representation in Sigmoid.

Although we intend our representation to be more comprehensive than simply supporting

Cellzilla, Cellzilla support is a valuable first step as the simulation platform is already

part of xCellerator. Our SpatialModel classes were flexible enough to construct a

multicompartmental developmental Sigmoid SpatialModel that implements the Wuschel

pattern formation model of [Jönsson 2005], as part of an “iPlant” exploratory project.

 A Simulated Annealing Optimizer (SAO) [Zhang2008] has been integrated into

Sigmoid that uses a global optimization technique and Lam-Delosme schedule [Lam and

Delosme1988]. Integration consists of web services and a set of SAO parameter sets in

the schema. Four SAO integrated Models have been constructed: one simple enzymatic

reaction model and three other models focusing on DNA damage and response of a

critical sensor protein called phosphoprotein kinase (Ataxia Telangiectasia-Mutated

(ATM)) activation by infrared radiation.

 The classes that constitute the schema were sufficient to allow us to populate the

Sigmoid database with over twenty published models, the majority of which focus on

virtual representation of intracellular pathways that include examples in signaling,

metabolism, the cell cycle, and gene regulation. Some of the models, such as the

Bardwell_2007_MAPK_VariableFeedback model, exhibit varying behaviors when

switching between different parameter sets.

157

 We’ve developed automated database population programs that can convert

pathway models derived from the Kyoto Enzyclopedia of Genes and Genomes (KEGG)

into Sigmoid models. These programs initially translated data from the KEGG format

KGML to Sigmoid. Further integration of KEGG pathways and SABIO-RK derived

kinetics may constitute an abundant source of pathway models for Sigmoid.

 The process of developing an SBML-to-Sigmoid translator revealed an interesting

challenge. SBML reaction kinetics are expressed in the form of algebraic expressions,

whereas xCellerator generates sets of ordinary differential equations from an arrow input

notation. Translating common reaction kinetics written as algebraic expressions, that

may be present in variable but equivalent forms, into specific xCellerator functions is a

problem in symbolic pattern recognition and manipulation that will require some

investigation.

158

Bibliography:

[Ananko 2002]Ananko E.A. et al. (2002) GeneNet: a database on structure and functional
organisation of genenetworks. Nucl. Acids Res., 30, 398–401.

[Ananko 2005]Ananko E.A. et al. (2005) GeneNet in 2005. Nucl. Acids Res., 33,
Database issue D425–D427.

[Ashburner et al. 2000] Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry
JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L,
Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G
The Gene Ontology Consortium "Gene Ontology: tool for the unification of biology".
Nature Genetics 25 (1): 25–29. (2000).

[Borghans et al.1997] J. M. Borghans, G. Dupont, and A. Goldbeter. Complex
intracellular calcium oscillations. a theoretical exploration of possible mechanisms.
Biophys Chem., 66(1):25–41, 1997.

[Bornstein et al. 2008] Bornstein, B. J., Keating, S. M., Jouraku, A., and Hucka M.
(2008) LibSBML: An API Library for SBML. Bioinformatics, 24(6):880–881,
doi:10.1093/bioinformatics/btn051.

[Brands and van Boekel2002] C. M. Brands and M. A. van Boekel. Kinetic modeling of
reactions in heated monosaccharide-casein systems. J Agric Food Chem., 50(23):6725–
39, 2002.

[Bullock and Fersht2001] A. N. Bullock and A. R. Fersht. Rescuing the function of
mutant p53. Nat Rev Cancer, 1(1):68–76, 2001.

[Chang 2011] PhD. Dissertation, Integrative Modeling of Mitochondrial Bioenergetics
and Application to Clinical Diagnostics of Mitochondrial Disorders Chang, Ivan; Baldi,
Pierre F.; Mjolsness, Eric; Lee, Abraham P.. University of California, Irvine, 2011. 2011.
3491269.

[Cheng et al.2005] J. Cheng, L. Scharenbroich, P. Baldi, and E. Mjolsness. Sigmoid:
Towards a generative, scalable software infrastructure for pathway bioinformatics and
systems biology. IEEE Intelligent Systems, 20(3):68–75, 2005.

[Compani, Su et al. 2010] B. Compani, T. Su, I. Chang, J. Cheng, K. H. Shah, T.
Whisenant, Y. Dou, A. Bergmann, R. Cheong, B. Wold, L. Bardwell, A. Levchenko, P.
Baldi, and E. Mjolsness, A Scalable and Integrative System for Pathway Bioinformatics
and Systems Biology. Adv Exp Med Biol. 2010; 680: 523–534.

[Ferrell and Machleder.1998] J. E. Ferrell and E. M. Machleder. The biochemical basis of
an all-or-none cell fate switch in xenopus oocytes. Science, 280:895–898, 1998.

159

[Finney and Hucka 2003] Finney, A., and Hucka, M. (2003). Systems Biology Markup
Language: Level 2 and Beyond. Biochemical Society Transactions, vol. 31, part 6.

[Hilioti et al.2004] Z. Hilioti, D. A. Gallagher, S. T. Low-Nam, P. Ramaswamy, P. Gajer,
T. J. Kingsbury, C. J. Birchwood, A. Levchenko, and K. W. Cunningham. Gsk-3 kinases
enhance calcineurin signaling by phosphorylation of rcns. Genes Dev., 18(1):35–47,
2004.

[Hoffmann et al.2002] A. Hoffmann, A. Levchenko, M. L. Scott, and D. Baltimore. The
ikappab-nf-kappab signaling module: temporal control and selective gene activation.
Science, 298(5596):1241–5, 2002.

[Hucka et al. 2003] Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C.,
Kitano, H., Arkin, A. P., Bornstein, B. J., Bray, D., Cornish-Bowden, A. , Cuellar, A. A.,
Dronov, S., Gilles, E. D., Ginkel, M., Gor, V., Goryanin, I. I., Hedley, W. J., Hodgman,
T. C., Hofmeyr, J.-H., Hunter, P. J., Juty, N. S., Kasberger, J. L., Kremling, A., Kummer,
U., Le Novère, N., Loew, L. M., Lucio, D., Mendes, P., Minch, E., Mjolsness, E. D.,
Nakayama, Y., Nelson, M. R., Nielsen, P. F., Sakurada, T., Schaff, J. C., Shapiro, B. E.,
Shimizu, T. S., Spence, H. D., Stelling, J., Takahashi, K., Tomita, M., Wagner, J., Wang,
J. (2003). The Systems Biology Markup Language (SBML): A medium for
representation and exchange of biochemical network models. Bioinformatics, vol. 19, no.
4, pp. 524–531.

[Irwin et al.2005] B. Irwin, M. Aye, P. Baldi, N. Beliakova-Bethell, H. Cheng, Y. Dou,
W. Liou, and S. Sandmeyer. Retroviruses and yeast retrotransposons use overlapping sets
of host genes. Genome Research, 15:641–654, 2005.

[Jönsson 2005] Jönsson H, Heisler M, Reddy GV, Agrawal V, Gor V, Shapiro BE,
Mjolsness E, Meyerowitz EM (2005) "Modeling the organization of the Wuschel domain
in the shoot apical meristem," Bioinformatics 21(S1): i232-i240

[Kanehisa 2006] Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M,
Kawashima S et al. (2006). "From genomics to chemical genomics: new developments in
KEGG.". Nucleic Acids Res 34 (Database issue): D354-7.

[Kholodenko et al.1999] B. N. Kholodenko, O. V. Demin, G. Moehren, and J. B. Hoek.
Quantification of short term signaling by the epidermal growth factor receptor. J Biol
Chem., 274(42):30169–81, 1999.

[Kholodenko2000] B. N. Kholodenko. Negative feedback and ultrasensitivity can bring
about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem,
267:1583–1588, 2000.

[Kofahl and Klipp2004] B. Kofahl and E. Klipp. Modelling the dynamics of the yeast
pheromone pathway. Yeast., 21(10):831–50, 2004.

160

[Lam and Delosme1988] J. Lam and J. Delosme. Performance of a new annealing
schedule. Pages 306–311. 1988.

[Markevich et al.2004] N. I. Markevich, J. B. Hoek, and B. N. Kholodenko BN.
Signaling switches and bistability arising from multisite phosphorylation in protein
kinase cascades. J Cell Biol, 164(3):353–9, 2004.

[Marwan2003] W. Marwan. Theory of time-resolved somatic complementation and its
use to explore the sporulation control network in physarum polycephalum. Genetics,
164(1):105–15, 2003.

[Mehlhorn 1999] Mehlhorn, K., Näher S. LEDA: A Platform for Combinatorial and
Geometric Computing, Cambridge University Press 1999 ISBN 0-521-56329-1.

[Middleton 2010] Middleton AM, King JR, Bennett MJ, Owen MR. Mathematical
modelling of the Aux/IAA negative feedback loop. Bull Math Biol. 2010
Aug;72(6):1383-407.

[Milenković 2008] Tijana Milenković, Jason Lai, and Nataša Pržulj, GraphCrunch: a tool
for large network analyses, BMC Bioinformatics 2008, 9:70.

[Mjolsness 2007] Towards a Calculus of Biomolecular Complexes at Equilibrium. Eric
Mjolsness, Briefings in Bioinformatics, 8(4):226-33 July 2007.

[Moutselos et al. 2009] K. Moutselos, I. Kanaris, A. Chatziioannou, I. Maglogiannis,and
F. Kolisis KEGGconverter: a tool for the in-silico modelling of metabolic networks of the
KEGG Pathways database BMC Bioinformatics. 2009; 10: 324.

[Najdi et al.2005] T. S. Najdi, C. R. Yang, B. E. Shapiro, G.Wesley Hatfield, and E. D.
Mjolsness. The generalized Monod, Wyman, Changeux model for mathematical
modeling of metabolic enzymes with allosteric regulation. In Proc. IEEE Computational
Systems Bioinformatics Conference, Stanford University, CA, 2005.

[Najdi et al.2006] T. S. Najdi, C. R. Yang, B. E. Shapiro, G. W. Hatfield, and E. D.
Mjolsness. Application of a generalized MWC model for the mathematical simulation of
metabolic pathways regulated by allosteric enzymes. J Bioinform Comput Biol.,
4(2):335–55, 2006.

[Najdi 2010]Najdi TS, Hatfield GW, Mjolsness ED. A 'random steady-state' model for
the pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase enzyme complexes.
Phys Biol. 2010; 7:16016.

[Najdi 2010] TerTer Random Addition kMech Reaction, via private communication
Tarik Najdi. June, 2010.

161

[Nielsen et al.1998] K. Nielsen, P. G. Sarensen, F. Hynne, and H. G. Busse. Sustained
oscillations in glycolysis: an experimental and theoretical study of chaotic and complex
periodic behavior and of quenching of simple oscillations. Biophys Chem., 72(1-2):49–
62, 1998.

[Ogata 1999] H Ogata, S Goto, K Sato, W Fujibuchi, H Bono, and M Kanehisa KEGG:
Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999 January 1; 27(1):
29–34

[Oracle 2012] The Java database connectivity API.
URL: http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html. Last
accessed on March 8, 2012

[Podkolodny et al. 2006] Podkolodny NL, Podkolodnaya NN, Miginsky DS, Poplavsky
AS, Likhoshvai VA, Compani B, Mjolsness E. An integration of the descriptions of gene
networks and their models presented in Sigmoid (Cellerator) and GeneNet, 5th
International Conference on the Bioinformatics of Genome Regulation and Function
(BGRS-2006), Volume 3, pp. 86-90.

[Poolman et al.2004] M. G. Poolman, H. E. Assmus, and D. A. Fell. Applications of
metabolic modelling to plant metabolism. J Exp Bot., 55(400):1177–86, 2004.

[Savageau 1969] Savageau M.A. Biochemical systems analysis. II. The steady-state
solutions for an n-pool system using a power-law approximation. J Theor Biol 1969
25:370-379.

[Savageau 1970] Savageau M.A. Biochemical systems analysis. 3. Dynamic solutions
using a power-law approximation. J Theor Biol 1970 26:215-226.

[Segel 1992] I. H. Segel. Enzyme Kinetics. Behavior and Analysis of Rapid Equilibrium
and Steady State Enzyme Systems. Wiley, New York, NY, 1992.

[Shapiro et al.2003] B. E. Shapiro, A. Levchenko, E. M. Meyerowitz, B. J.Wold, and E.
D. Mjolsness. Cellerator: Extending a computer algebra system to include biochemical
arrows for signal transduction simulations. Bioinformatics, 19(5):677–678, 2003.

[Shapiro 2007] M. Hucka E. Mjolsness B. Shapiro, J. Lu. Mathematica platforms for
modeling in systems biology: Recent developments in mathsbml and cellerator. 2007.

[Stein 2012] W. Stein. SAGE: Software for Algebra and Geometry Experimentation.
http://www.sagemath.org/ and http://sage.scipy.org/. Last accessed March 2012.

[Su 2004] T. Su, Web-based visualization and manipulation tool for systems biology
models Dissertation Thesis (M.S., Information and Computer Science)--University of
California, Irvine, LD 791.8 .I5 2004 S8, 2004.

162

[Tyson et al.1999] J. J. Tyson, C. I. Hong, C. D. Thron, and B. Novak. A simple model of
circadian rhythms based on dimerization and proteolysis of per and tim. Biophys J.,
77(5):2411–7, 1999.

[Wittig et al. 2006] Wittig U.,Golebiewski, M., Kania, R., Krebs, O., Mir, S.,
Weidemann, A., Anstein, S., Saric, J. and Rojas, I., SABIO-RK: Integration and Curation
of Reaction Kinetics Data Wittig U. In proceedings of the 3rd International workshop on
Data Integration in the Life Sciences 2006 (DILS'06). Hinxton, UK. Lecture Notes in
Bioinformatics, 4075: 94-103(2006).

[Wittig et al. 2011] Wittig, U.; Kania, R.; Golebiewski, M.; Rey, M.; Shi, L.; Jong, L.;
Algaa, E.; Weidemann, A. et al (2011). "SABIO-RK--database for biochemical reaction
kinetics". Nucleic Acids Research 40 (Database issue): D790–6.

[Yang et al.2005a] C. R. Yang, B. E. Shapiro, S. P. Hung, E. D. Mjolsness, and G. W.
Hatfield. A mathematical model for the branched chain amino acid biosynthetic pathways
of Escherichia coli k12. J Biol Chem., 280(12):11224–32, 2005.

[Yang et al.2005b] C. R. Yang, B. E. Shapiro, E. D. Mjolsness, and G. W. Hatfield. An
enzyme mechanism language for the mathematical modeling of metabolic pathways.
Bioinformatics, 21:774–780, 2005.

[Zhang2008] L. Zhang. Dynamic Biological Signaling Pathway Modeling and Parameter
Estimation Through Optimization. PhD thesis, Information and Computer Science:
University of California, Irvine, 2008. LD 791.9 I5 2008 Z43, OCLC:276454918.

163

Appendix:

A. Sigmoid Class Authorship
Key:

 CA: B. Compani is the author.

 CAE: B. Compani has edited the class attributes.

 CR: B. Compani has revised this class.

 PA: Previous authors include Lucas Scharenbroich and Jainlin Cheng.

 USE: A U indicates the class has experienced some use, either in a model, or by
 Sigmoid related code such as SME, a populator program or SigMech. Entries in
 this column are a rough estimate from my recollection of their use in Sigmoid.

 X: Indicates authorship. (or use in the Use column)

 m: Indicates a change in the class due to a change in class inheritance.

Sigmoid Class CSA CAE CR PA USE

AcidBase X

AcidsAmines

ActivationPattern X X

Acylation X

AdjacencyMatrix X

AffinityColumnMassSpect X

AffinityDerivedComplex X X

AlgebraicPassthrough X U

Allosteric X X X

AllostericInteraction X

Alpha X

Amines X

AminoAcid X

AminoAcidSequence X X

Ampere X

Antibody X

Article m m X U

AssemblyDisassembly X

Author X U

AutoCatalysis X U

BiBi X X X U

BiBiCompetitive X U

BidirectionalCatalyticAlgebraicPassthrough X U

BidirectionalMassAction X U

164

BindingPair X U

BioAnnihilation X U

BioCatalyticAnnihilation X U

BioCatalyticCreation X U

BioComplex X X X U

BioCreation X

BiologicalProcess X

BiologicalReaction X X X U

BioRegulatoryRelationship X U

Biotinylation X

BireplicatedReaction X U

BirthProcess X

BiTer X

BIUni X U

BiUniCompetitive X U

BiUniCompetitiveNonCompetitive X

Book m m X

Booklet m m X

BooleanOverReactantState X

BooleanParameter X U

Candela X

Carbohydrate X U

Carbohydrates X

Carboxylation X

Cartesian2D X U

Cartesian3D X

Catalytic X X X U

CatalyticAlgebraicPassthrough X U

CatalyticEnzymatic X

CatalyticViaHill X U

CatalyticViaMichaelisMenten X U

CatalyticWithAllostericRegulation X U

CatalyzedWithInhibitorsAndOrActivators X U

Cell X

CelleratorModel X X

CelleratorParameterSet X U

CellMembrane X

Centriole X

CGIKnowledgeSource X X X

Channel X

Chloroplast X

165

Citation m X X U

Class_3

CoEnzyme X U

Colony X

Combination X

Compartment X X X

CompartmentRelationshipPair X U

Composition X

CompoundBio X

CompoundReaction X X X U

Conference m m X

ConformationalIsomerization X

ConstantNode X

CoordinateBin

Coordinates X U

CRUserDefinedModule X

CTerminalAmidation X

CuboidMatrix X

Culture X

Cysteinylation X

Cytosol X

Database X X

DataElement X

DataElementIDReference X

Dataset X

Deamidation X

DeathProcess X

DecomposedTranscription X X

Decomposition X

DecoratedReactant X U

DecorationTypePair X

DecorativeActivation X

DecorativeActivationModification X

DecorativeActivationModifications X

Deoxyhexoses X

DerivedUnit X

DimensionalCompartment X U

DisulphideBond X

DNA X X U

DNADNA X

DNAProtein X

166

DNARNAProtein X

DocumentedProtein X X

DoubleElement X U

DoubleParameter X U

DoubleReplacement X U

DoubleVector X U

Edge X U

EdgeList X U

Electron X

EndoplasmicReticulum X

EnzymaticReaction X X X U

Enzyme X U

EnzymeSubstrate X U

Events X

ExclusiveGroup X U

ExperimentalDataset X

ExternalNetwork X U

Farnesylation X

FattyAcid X

Formylation X

Function X X

FunctionDefinition X

FunctionNode X

Gate X

Gene X X

GeneOntologyComponent X U

GeneOntologyComponents X U

GeneOntologyFunction X U

GeneOntologyProcess X U

GeneOntologyProcesses X U

GeneOntologySource X U

GeneralCatalyzedReaction X U

GeneralConversions X U

GeneralizedMWC X X X U

GeneralizedMWCCompetitive X U

GenericComplex X

Geranylgeranylation X

GlobalParameters X U

Glutathionylation X

Glycosylation X

GOAnnotation X U

167

GolgiApparatus X

Graph X

GRN X

Hexosamines X

Hexoses X

Hill X X X U

Hormone X

Hydrolase X

Hydroxylation X

HydroxylGroups X

HypotheticalProtein X X

InBook m m X

InCollection m m X

Index X U

IndexNode X U

InitialConditions X U

InlineFunction X

InProceedings m m X

IntegerElement X U

InternalNetwork X U

InternalNetworks

IntParameter X U

IntVector X U

Ion X U

Isomerase X

KEGGInfo X U

Kelvin X

Kilogram X

KMechIndexedReactant X U

kMechInhibitor X U

KMechProduct X U

KMechReaction X U

KMechReactionGroup X U

KMechResidualEnzActivity X U

KMechSubstrate X U

KnowledgeSource X X U

Layout X U

LayoutNode X U

LedaEdge X

LedaGraph X

License X

168

Lipase X

Lipid X X

LipoicAcid X

ListHead X

Locus X

Lyase X

Lysosome X

MacroMolecule X U

Manual m m X

Marker X

MastersThesis m m X

MathematicalReaction X X X U

MathematicaNotebook X U

Messenger X

Metaconstraint X

Meter X

Methylation X

MichaelisMenten X U

MiscCitation m m X

MiscFile X

Mitochondrion X

Model X X X U

Modification X X

Mole X

Molecule X X U

MultiMulti X U

MWC X U

Myristoylation X

NAcetylhexosamines X

NameSymbolPair X

NameValuePair X X U

NeuroTransmitter X

NHCA X X X

NHCACompetitive X X X

Node X U

NodeList X U

NonCatalyzed X U

NTerminalFormylation X

NTerminalMyristylation X

Nucleotide X

NucleotideSequence X

169

Nucleus X

NVPbyCompartment X

ODEReaction X U

ODEUserDefinedModule X

OMethylesterification X

Optimization X U

OrderedBiBi X U

ORF X X

Organ X

Organelle X

Organism X

Organisms X X

OrganizationalGroup X U

Oxidation X

OxidationReduction X

Oxidoreductase X

Palmitoylation X

Parameter X U

ParameterizedCell X

ParameterSet X X X U

Particle X

Pathway X

Pentoses X

Peptide X X

Peroxisome X

PhDThesis m m X

PhenomenologicalRegtranscription X X

Phosphorylation X

Photon X

Phylum X

PingPongBiBi X U

PingPongCompetitiveNonCompetitive X U

PingPongDifferentialNonCompetitiveResidual X U

PingPongNonCompetitive X U

PingPongNonCompetitive2ndsub X

PingPongNonCompetitive3Inhibitor X

PingPongNonCompetitiveResidual X U

PingPongTerTerOrderedAdditionRandomRelease X

PingPongTerTerRandomAdditionOrderedRelease X

PosttranslationalModification X

PreDefinedCell

170

Prenylation X

PrimalComplex X

Proceedings m m X

Protein X X

ProteinMultimer X X X

ProteinProtein X

Protocol m m X

Proton X

PubMethod X

Pump X

Pyroglutamicacid X

Quantity

RateConstants X U

RateFunction X U

Reactant X X U

ReactantCoefficientPair X U

ReactantData

ReactantFunction X X

ReactantKineticPair X U

ReactantLocationPair X U

Reactantmod

Reactants

Reaction X X X

ReactionConstraint X

ReactionGroup X U

Receptor X

Region X X

RegulatoryFunction X

ReplicatedReaction X U

Replication X

Ribosome X

RNA X X U

RNADNA X

RNAProtein X

RNARNA X

Rules X

SBMLInstructions X

SBMLRepresentation X

SDE X

Second X

SialicAcid X

171

SIBaseUnit X

SIDerivedUnit X

Sign

Simple X

SimpleValue X

SimplifiedNonSaturatedCatalytic X X X U

SingleReplacement X U

Site X X

SmallMolecule X X U

SMolecular

SparceArray

SparseArray X

SparseMatrixElement X

SpatialModel X U

Species X

SSystem X

StateVector X

Stearoylation X

StochasticReaction X

StringElement X U

Stringl

StringParameter X U

Structural

Structure X

StructuredComplex X

SubstrateC

SubstrateCompetitiveInhibitorSet X

Sugar X U

Sulfation X

Sulphydryls X

SymbolicReactant X

SymbolicReaction X

SymbolicValue X

SyntaxTree X

SyntaxTreeNode X

Taxon X

TechReport m m X

TerBi X

TerTer X

TerTerCompetitive X

ThreeStageCatalytic X U

172

TimeValuePair X

Transcription X

TranscriptionalRegulation X

TranscriptionalTranslationalControl X

TranscriptionFactor X

Transferase X

Translation X

Translocation X

Transport X

TwoStageCatalytic X U

UncertainValue X

UniBi X U

UniBiCompetitive X U

UniBiCompetitiveNonCompetitive X

UnidirectionalMassAction X U

Units X X X

UniUni X U

UniUniCompetitive X U

UniUniCompetitiveResidual X

UniUniNonCompetitive X

UniUniNonCompetitiveResidual X

UniUniUncompetitive X

UniUniUncompetitiveResidual X

Unpublished m m X

UserDefinedPC

UserDefinedRegulation X

UserOrganelle

UserSpecifiedPTM X

UserUnit X

Vacuole X

Value X

VariableNode X

Vesicle X

Virus X

WebKnowledgeSource m m X U

YeastProteomeDatabase m m X

YeastTwoHybridSystem m m X

173

B. Model Code Authorship

Author Key: Compani is Behnam Compani. Tom is Thomas Whisenant. Kandarp is
Kandarp Shah. Najdi is Tarek Najdi. Zhang is Li Zhang. Vadim is Vadim Bichiutsky.

174

C. Posttranslational Modification Classes.

A list of posttranslational modification classes available in the Sigmoid schema.

Subclasses of a class are in parenthesis. Class attributes follow the colon.

AcidsAmines: EDQN- String (Deamidation QorN: String, Pyroglutamicacid Q:String,

Carboxylation EorD:String)

Amines: KorNTerminus:String (Formylation, Myristoylation, Stearoylation,

Biotinylation, Farnesylation, Acylation, Palmitoylation, Geranylgeranylation,

LipoicAcid, Methylation)

Carbohydrates: STN-String (Hexosamines, Deoxyhexoses, Hexoses,

NAcetylhexosamines, Pentoses, SialicAcid)

CTerminalAmidation

Glycosylation LinkOorN- String

Hydroxylation

HydroxylGroups: STY -String (Phosphorylation, Sulfation)

NTerminalFormylation

NTerminalMyristylation

OMethylesterification

Prenylation

Sulphydryls: (Cysteinylation, DisulphideBond, Oxidation, Glutathionylation)

175

UserSpecifiedPTM kind-String

