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Research summary: 

 Progress in systems biology critically depends on developing scalable informatics 

tools to model and visualize complex biological systems.  Flexibly storing information 

about these systems and their models for subsequent retrieval and analysis is also a key 

concern.  The focus of the research reported here has been the development of the 

Sigmoid project and associated pathway models.  The Sigmoid project 

(www.sigmoid.org) provides biologists with a database, modeling and simulation 

platform for signal transduction, metabolic and biosynthetic pathways.  Sigmoid has been 

implemented as a three-tier architecture, consisting of client, web service, and back end 

simulator/database.  Sigmoid provides a front end to the xCellerator / kMech / 

Mathematica  simulation platform and enables mathematical simulations of biochemical 

networks [Shapiro 2007] [Yang et al.2005b].   A visualization and simulation platform 
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such as this allows wet bench biologists to make targeted decisions about their 

experimental designs and save on unnecessary expenditures of wet bench resources.  

Many published models are currently available and functional within the Sigmoid 

framework. The models focus on virtual representation of intracellular pathways that 

include examples in signaling, metabolism, the cell cycle, and gene regulation. 

 To facilitate the modeling of organelle, multi-cellular and developmental models 

within the Sigmoid framework, a back-end representation for multi-compartmental 

modeling was added to the Sigmoid schema.  Although the Schema representation for 

this is more comprehensive, a first step compatibility with the xCellerator “Cellzilla” 

utility was implemented.   A model of Wuschel expression [Jönsson 2005] in the 

Arabidopsis thaliana shoot apical meristem has been completed with the Sigmoid 

representation.   

 kMech [Yang 2005] is an enzyme mechanism modeling tool designed for the 

mathematical modeling of enzymes.  It comprises a collection of single and multiple 

substrate enzyme reactions.  Over the years the library of requested enzymatic reactions 

implemented in the kMech utility and correspondingly in Sigmoid has grown 

substantially.  A new generalized version of the kMech enzyme mechanism modeling 

tool has been developed.  With this utility, SigMech, the approximately 35 existing 

enzyme mechanism models expressed explicitly in the kMech/Sigmoid platform can be 

expressed implicitly by a single parameterized input notation. Subsequent sub-reactions 

can be generated procedurally, and any potential “new” kMech enzyme mechanisms that 

fall within the pattern abstracted from previous motifs need not be created explicitly.   

 



 

1 

Chapter 1. Sigmoid Overview 

1.1 Introduction 

 As an introduction, this chapter reflects a team effort development of Sigmoid.  

To distinguish member contributions we will refer to the “Sigmoid team” as the 

contributing authors to the book chapter on Sigmoid published in Advances in 

Computational Biology [Compani, Su et al. 2010]. 

 Sigmoid is a generative, scalable software infrastructure for systems biology 

designed to facilitate global modeling of biological systems. SIGMOID if deciphered as 

an acronym, would translate into a SIGnal MOdeling Interface and Database. Here the 

term Signal, in a biological sense, is broadly interpreted. 

 Sigmoid supports the process of cycling between model building, hypothesis 

generation, biological experimentation and data gathering, by integrating the hypothesis 

and discovery phases of the research process. In Sigmoid, the Sigmoid team address the 

problem of creating a scalable expert assistance system for modeling biological 

pathways, using current software technology to decrease the difficulty and cost of 

building the system. The reason for building such a system is to provide computational 

support to biologists and computational scientists who need to create and explore 

predictive dynamical models of complex biological systems such as metabolic, gene 

regulation, or signal transduction pathways in living cells [Cheng et al. 2005]. 
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Figure 1.1  Sigmoid three-tier architecture. Separation of modules into a communicating distributed 
system increases scalability of the architecture. The Sigmoid simulation results are provided by the 
xCellerator model generator/ simulator.  The database is Sigmoid (autogenerated from a UML 
schema) and the user interface is the Sigmoid Model Explorer (SME).  
 

 The Sigmoid modeling system core consists of distributed modules implementing: 

(1) pathway/cell model generation and simulation (Cellerator [Shapiro et al. 2003]), (2) a 

pathway modeling database (Sigmoid proper), (3) a Web service-oriented middleware, 

(4) a world wide web model browser, and (5) a graphical user interface (Sigmoid Model 

Explorer) friendly to a biologist user. Other components have been integrated into the 

system such as a parameter optimization module and functional connections to 

compatible external data sources. These modules are organized in a classical three-tier 

architecture (Figure 1.1). The back-end currently consists of the database, the simulator, 

and other model manipulators. The GUI front-end does not access the back-end modules 
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directly but rather via a Web service middleware module. The extra development 

overhead introduced by the middle layer is more than compensated by its advantages in 

terms of distributed computing, performance, flexibility, and scalability.  With the 

exception of rapid model retrieval, the middleware layer brokers all communications 

between the GUI and the back-end components and also between the back end 

components themselves.  The Sigmoid team has found that storing binary instances of 

models in a database cache can provide significant improvements in model retrieval times 

in comparison to full model reconstruction and retrieval through the middleware layer. In 

the event that the rapid model retrieval interface is not accessible, the system will shift 

access to the database through the middleware. This infrastructure was created in a close 

collaboration between bioinformaticians and biologists.  The design of many of the 

essential software objects and their relationships became visible as the implementation 

proceeded. The Sigmoid team has coordinated the development of various software 

modules in Sigmoid by using the Universal Modeling Language (UML) to diagram the 

most important biological objects, notably reactions and molecular reactants. This UML 

diagram is used as a template to automatically generate several parts of Sigmoid, in 

particular a realization of the Sigmoid pathway modeling database (in SQL) and the 

corresponding Java object hierarchy along with support files for facilitating the object-

relational mapping. Also the Graphical User Interface (GUI) relies heavily on the Java 

reflection utility to automatically discover much of what it needs to know about the 

Sigmoid schema. Thus there is a guarantee that the software actually implements 

something very close to the UML construction of biological objects. In addition, coding 

time for different modules of the system is reduced. To keep the infrastructure flexible 
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and manageable as it grows, the Sigmoid team has resorted to a “generative” approach 

that seeks to partially automate the generation of both executable code and mathematical 

models. The Sigmoid team has applied this approach to as many of the modules in Figure 

1.1 as possible, starting from high-level inputs such as UML diagrams and reaction 

notations understandable to non-computer scientists. 

1.2 Methods 

1.2.1 Model Generation and Simulation: xCellerator 
 In order to facilitate the modeling of biochemical reactions a library of re-usable 

reaction models that can be expressed in a simple higher-level language that specifies the 

molecular species and the type of reaction is required. Cellerator [Shapiro et al.2003] 

code is implemented as a Mathematica notebook and is designed to facilitate biological 

modeling via automated equation generation. Sigmoid now supports xCellerator [B. 

Shapiro2007], the most recent version of Cellerator. 

 Many models of molecular interactions have been implemented in xCellerator 

using different formalisms, such as differential equations or stochastic molecular 

simulation formalism and ranging from the law of mass action and simple Michaelis- 

Menten models to more complex models of enzyme reactions (e.g. the Monod-Wyman-

Changeaux or MWC model for allosteric enzymes [Najdi et al.2005]) and gene 

regulation [Segel1992]. The list of reaction models continues to expand along with the 

library of actual pathway models comprising sets of coordinated reactions with 

parameters derived from the literature whenever possible. In addition, an extended set of 

enzyme mechanism models for single and multi-substrate, positively and negatively 

regulated and allosteric enzymes, called kMech, has been written for xCellerator and 
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continues to develop [Yang et al.2005b]. Sigmoid currently supports all the available 

xCellerator and kMech reaction models.  

 To illustrate xCellerator utility, consider the example of a three stage catalytic 

model. This reaction is a composite representation of 3 reversible reactions: substrate 

enzyme complex formation, the conversion of the substrate to product within the 

complex and, subsequent disassociation of the enzyme-product complex into free enzyme 

and product. When presented with the correct input notation, xCellerator will translate the 

symbolic reaction to differential equations. The resulting differential equations and 

variable definitions are passed to Mathematica where they are solved by the numeric 

solver function (NDSolve) and time plots are generated. For an example of these steps, 

see example in Figure 1.2. The parameters for this enzyme mechanism are stored in the 

Sigmoid Pathways Database. In short, xCellerator converts symbolic reactions to 

mathematical equations, and solves the corresponding equations. 
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Figure 1.2 Sigmoid Three Stage Catalytic model. From Top to bottom. xCellerator input 
notation, reaction cartoon, resulting differential equations and an example of numerical output. 

1.2.2 Sigmoid Pathway Database 
 The pathway model database is defined by a UML schema. Comprehensive UML 

class diagrams of the Sigmoid Schema can be found at www.sigmoid.org. The schema is 

organized into four main diagrams. The first diagram consists of the various top level 

container classes such as the Model Class and the Gene Ontology source class. The first 

diagram also contains the parameter set hierarchy, classes for graphical layout in SME, 

and various classes to handle units and measures. The three remaining diagrams consist 

of the three major class hierarchies: Reactions, Reactants and Knowledge Sources. 

Reactions utilize Reactants for their products, substrates, and enzymes, Models are 

composed of parameterized Reactions, and these three class hierarchies utilize 

Knowledge Sources in order to reference external information about themselves. 

 While initial versions of the Sigmoid database were implemented by hand, the  

Sigmoid team wished to automatically transform the class descriptions contained in the 
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high-level UML diagram of this hierarchy into a set of instantiable objects upon which 

applications may be built. The current approach to the process of auto-generating 

software components from a master UML diagram relies on the capabilities of several 

existing open-source projects [Cheng et al. 2005]. These pre-existing projects remove 

much of the core software development responsibilities and allow the team efforts to 

focus on tying them together to produce the specific software products needed. Object-

relational database code autogeneration from UML is itself a contribution of potentially 

general interest in database software engineering. The current version of Sigmoid is 

implemented using PostgreSQL the main Open Source database software. 

 

Figure 1.3 The Sigmoid Intelligent Middleware utilizing Apache Axis (SOAP) brokers 
transactions for the Sigmoid framework.  Clients such as SME can access the simulator and 
database back end components through the middleware.  The SQL database is accessed 
through an Object Relational Bridge (OJB).  The Mathematica/ xCellerator simulator is 
accessed through Mathematicas’ JLink utility. The figure was redrawn from [Cheng et al.2005] 

1.2.3 Sigmoid Web Middleware for Distributed Computing and Web Services 
 A new distributed Web middleware layer was built which accesses the Sigmoid 

Database (Figure 1.3) and translates reaction sets into the input language of the 

xCellerator cell model generator, then calls xCellerator with requests for model 

generation and simulation and receives output plots in response. All these functions are 
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exposed as Web services available to Java application programs and/or other clients. In 

addition to load balance and security management, the middleware provides a gateway 

between the front-end and the back-end of the architecture, allowing each one to evolve 

independently as long as the interface to the middleware is properly maintained. 

Furthermore, the middleware allows scalability in terms of the number of users that can 

be served simultaneously simply by increasing the computational and database server 

resources [Cheng et al.2005]. 

 

 

Figure 1.4  Sigmoid Model Explorer showing portion of MAPK pathway: (a) TreeView of 
compositional hierarchy. (b) network layout visualization. (c) parameter-editing panel. (d) output plot 
preview panel. Along the top are various action buttons for saving and running the model, and for 
switching the main panel to view output plots. User can select reaction icons. 

1.2.4 The Graphical User Interface: Sigmoid Model Explorer (SME) 
 A component of the system to be initiated by the Sigmoid team, and that has 

achieved functional maturity, is the SME Web-compatible Graphical User Interface. The 

GUI allows the user to visualize, design, edit, and store pathway models, parameters, and 
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initial conditions and their properties, to simulate the models by calling the simulator 

through the middleware, and to view and compare the properties of simulated models by 

viewing the temporal evolution of the concentration of chemical species under different 

conditions. The GUI runs from any Web browser as a Webstart or as a local client 

program. 

 Recent enhancements to SME by the Sigmoid team are as follows: (1) Model 

creation. There exists a new mechanism to create biological models completely from 

within SME and save them locally or, commit them to the database. To facilitate the 

construction of more complex biological processes, one-to-many mathematical reactions 

can be assigned to each biological reaction. Also, there are utilities to facilitate the use of 

web pages as source of information for data input and perform queries to the Gene 

Ontology database from within SME. Gene Ontology entities can either be used to tag 

Sigmoid objects or, instantiated directly as Sigmoid objects, i.e. Reactants or Biological 

reactions. (2) Numerous enhanced display features. (3) Model translation; SME can 

perform local translation of Sigmoid models to xCellerator code and can perform 

translation of SBML 1.0 to Mathematica code. (4) Model simulation. SME supports 

simulation through a local Mathematica license using the JLink library as well as through 

the remote server and there is an option to retrieve and display the output graphs for 

intermediate complexes generated by xCellerator/kMech reaction types. (5) Connectivity. 

SME now supports the Web Services Description Language (WSDL), which is an XML 

grammar for describing network services. Supporting WSDL expedites adoption of 

supplementary datasets and functionalities from other systems that support this standard. 
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Chapter 2. The Sigmoid Schema 

2.1 Introduction to the Schema and the Development Environment 

 The Sigmoid schema is an object-oriented set of Java classes designed within a 

Unified Modeling Language (UML) editor.  The use of the UML editor isn’t necessarily 

required but it is a helpful organizational tool can produce the requisite XMI (XML 

Metadata Interchange) files.  XMI files are a standard interchange format for the UML 

specification. In the Sigmoid development cycle, these XMI files are parsed by Pheno 

[Cheng et al. 2005] to produce the Sigmoid Java API, the PostGres database tables and 

the Object Relational Bridge (OJB) files needed to bridge Sigmoid Java programming 

with the relational database that Sigmoid is composed of.  Information on OJB can be 

found at http://db.apache.org/ojb/.  All of the Sigmoid schema UML development the 

author has performed was with the Poseidon for UML tool (available at 

www.gentleware.com).  There are other suitable UML modeling tools.  The only concern 

for a potential Sigmoid developer would be the requirement that the editor produces a 

properly formatted xmi document which can be fed to Pheno for processing. 

 Here we describe in detail the Sigmoid schema structure, and the logic behind it, 

as it evolved during the years 2004-2011.  Several factors influenced the growth and 

evolution of the Sigmoid schema.  The schema was constructed in response to 

contemporary modeling requirements and with intention to expand capacity for 

interconnectivity and interoperability with other systems.  A primary mission was to 

maximize compatibility and support for xCellerator as a base simulation platform.  This 
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compatibility was to be achieved without limiting Sigmoid to the representational system 

of an interpreted notebook such as xCellerator.  The Sigmoid Application Programming 

Interface (API) provides an object-oriented set of classes that can be utilized by modeling 

biologists. 

 While the Sigmoid schema conforms to the UML standard, there are few if any 

methods present in the Sigmoid schema classes. Attributes are listed in the section under 

the class name. In a UML class diagram, methods would normally appear in the bottom 

section of the class box under the attribute section.  Constructing these classes with an 

absence of methods reflects the intentional practice of separating data from 

implementation.  The schema classes should serve as data objects with which operations 

can be performed on by external operators or code. 

 In this dissertation, certain conventions are borrowed from Java programming and 

the style in which the Sigmoid components have been composed.  These conventions 

signify computational relevance and context.  In cases where a biological object or 

concept has a computational representation in the Sigmoid schema, it will be capitalized. 

For instance, if the word “model” appears it can be taken within context, if it appears as 

“Model” this refers to a Sigmoid Model Java class object or its corresponding database 

object. An additional indication of computational implications is the lack of spaces 

between words.  i.e. “MathematicalReaction” is a mathematical reaction representation 

within the schema. Non-capitalized words appearing with capitalization mid-word 

indicate a variable or attribute name.  i.e. “shortDescription” is a String attribute or 

variable of Model where short descriptions are stored.  In this way, an attempt was made 
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to construct these classes and attribute names with care.  Capitalization thus often carries 

the extra meaning of being a computational representation as well as a biological one. 

 The Sigmoid schema has been organized into four main class diagrams. These 

consist of: (1) The Model class diagram.  This comprises the Model class and relevant 

utility classes to support models.  The Model class is the main representational and 

container class for Sigmoid pathway models.  Models can be constructed without reaction 

kinetics strictly for network visualization.  In practice however, models are constructed to 

produce simulateable output through xCellerator.  The utility classes consist primarily of 

parameter set representations, classes for units and measure, and data structures designed 

to support external utilities.  (2) The Reactant class hierarchy and supporting classes. 

Reactants are data objects that represent biologically relevant entities. (3) The Reaction 

class diagram.  The diagram consists of a Reaction class hierarchy and supporting 

classes.  Reactions are data representations for processes that transform sets of Reactants 

into other sets of Reactants.  (4) The KnowledgeSource diagram.  KnowledgeSources 

serve to document and cite relevant information about Sigmoid Models, Reactants and 

Reactions.  Full diagrams are available at www.sigmoid.org.   

 In the class diagrams, the [*] designation specifies that multiplicity (zero to many) 

is enabled for the attribute at hand.  Attributes lacking this designation must possess zero 

or one instances of the attribute. 
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Figure 2.1 Sigmoid Schema Model Class Diagram includes supporting utility classes such as 
parameter sets, parameters, classes that define units of measure, classes for graph analysis and 
classes for compartmental modeling. 

2.2 Modeling Class Diagram 

 Figure 2.1 illustrates the classes contained in the Model class diagram for the 

Sigmoid schema.  All major components will be illustrated more closely and explained in 

detail below.  The classes contained in this diagram are primarily concerned with the top 

level Model class, its subclass for spatial and compartmental modeling, and supporting 

utility classes.  The Model class and compartmental classes appear to the right of the 

diagram.  Classes for parameter sets such as rate constants, rate equations and specie 

initial conditions appear on the left of the diagram.  The class groups will be discussed in 

more detail below.  Full diagrams of the Sigmoid schema are available at 

www.sigmoid.org. 

2.2.1 The Model Class 

 The Model class is the primary top level class used in producing all pathway 

model representations.  These models can model signal transduction, biosynthetic, 

metabolic, biochemical or other kinds of biological processes.  The primary components 
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that will comprise a model are the Model class itself containing Reactants, Reactions, 

InitialConditions (reactant concentrations) and ParameterSets which contain kinetic rates, 

hill exponents, algebraic expressions or any relevant quantitative variable representation 

that occurs in a mathematical reaction equation as an input parameter.  These are the bare 

minimum components to produce a model that is both viewable in SME and capable of 

being simulated by the back end Mathematica/xCellerator simulator.  There are cases 

where kinetic rate laws and chemical species initial conditions are not available for 

pathways obtained from other databases or literature.  In this case, it’s best simply to 

provide SME with a dummy ParameterSet to view the pathway.  Of course, simulation 

will not be available in that case. 
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Figure 2.2  The Sigmoid Model class is the main container class for all Sigmoid biochemical 
pathway models.  Essential components for a Model capable of display within the Sigmoid 
Model Explorer and simulation by the xCellerator/Mathematica simulator are: 1) A Model 
name. 2) A set of Reactants. 3) A set of Biological Reactions that only use Reactants specified in 
2. Each Biological Reaction must have at least one associated MathematicalReaction referenced 
for simulation capabilities.  Models that only possess a BiologicalReaction network may be 
visualized and edited within SME.  

 The Model class contains other notable objects.  KnowledgeSources are available 

for citation and relevant information associated with the model.  Of course the Model 

name is what the user intends to call the pathway, and the extendedDescription attribute 

is for a more descriptive title.  Keywords are provided for quick data searching (utilized 

by the Sigmoid website search) of models.  The modelLogandNotes and modelStatus 

attributes were included for pathway model developers to keep track of modeling 
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progress.  The associatedFiles attribute provides URL references to notable 

documentation and most importantly the pathway model Mathematica notebooks.   

 Since Sigmoid relies on Mathematica/xCellerator, the inlineFunctions attribute 

provides a location for snippets of Mathematica code to be passed through the Sigmoid to 

Mathematica translator and to be included in the notebook output fed that is to the 

simulator.  This allows raw Mathematica code to be inserted into notebook output 

allowing for deeper access to Mathematicas’ extensive mathematical capabilities. 

Likewise, “Instructions” are attributes intended for SBML support and “Graphs” are 

attributes intended for LEDA support which are discussed in Section 2.4.2. 

 

2.3 Parameters 

 

Figure 2.3 The Sigmoid Parameter Classes store values that serve as parameter inputs for the 
various Sigmoid Reaction classes.  Parameters store Java primitive types as data that can be 
used as inputs for computational or mathematical processing.  RateFuntions are designed to 
store algebraic expressions that are to be fed to external simulators. 

Parameters are used to store kinetic rate values for reaction equations, initial 

condition values for reactants, Hill equation exponents, stochiometery values for 
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reactants participating in reactions, or any reaction equation input parameter value stored 

in Sigmoid MathematicalReaction data classes for xCellerator compatibility.  There are 

currently seven classes that inherit from the Parameter super-class.  Every parameter 

possesses two key attributes. The Units attribute is a reference to (International System of 

Units) SI base unit classes which appear in the center of Figure 2.1 in yellow.  This is 

done in order to provide to the user with a clear reference and meaning for the value of 

the parameter. It also was included in the case that the Sigmoid system were to perform 

any sort of dimensional analysis.   The “owner” attribute references the ParameterSet in 

which a particular parameter belongs.  By this arrangement, a parameter points to its 

“owner” ParameterSet. 

The IntParameter and DoubleParameter classes as shown in Figure 2.3 are built to 

reference integer and Double value parameters respectively.  They posess a string 

attribute ”variableReferenceName” which is designed to handle variable declarations in 

models which implement any sort of rate equation.  Models that implement 

AlgebraicPassthrough reactions will require this field in cases where global variables 

(reactant names) or constants are to be set for the notebook model. 

The IntVector and DoubleVector Parameter classes have been constructed because a 

limitation in the OJB code implementation prohibits multiplicity from being used directly 

on Java primitive types. IntVector and DoubleVector serve as wrapper classes. 

RateFunction is the primary mechanism by which algebraic expressions are stored, 

as strings, for AlgebraicPassthrough Reactions.  These expressions are delivered to the 

xCellerator simulator.  StringParameters hold strings and similarly may be of use for the 

construction of models that utilize algebraic rate expressions.  The algebraic rate 
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expressions are important because they provide a modeling biologist with a  mechanism 

to implement custom or unsupported (by xCellerator) kinetics in reaction equations thus 

adding calculable flexibility to the Sigmoid simulation platform. 

2.4 Parameter Sets 

2.4.1 Object-oriented Parameters 

Parameter sets, illustrated in Figure 2.4, serve as a high level single grouping of 

parameters for models.  This grouping allows a modeler to store different sets of 

parameters that may yield differing behaviors in the model.  It simplifies the modeling 

process for the user and facilitates organized storage of information into the Sigmoid 

database.  For instance, if a modeling biologist discovers an interesting oscillatory 

behavior in a model, and wishes to store the kinetic rate parameters for further 

investigation, he or she may do so without abandoning other rate information or having to 

tediously change individual parameters.   Sigmoid models can be constructed with any 

number of parameter sets to represent model data. A limitation of the SME graphical user 

interface prevents Models without initial conditions or rate constants from being rendered 

[Su 2004].   Furthermore, models lacking kinetic rate constants or parameters will not 

translate to simulateable models for xCellerator.          
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Figure 2.4 ParameterSets are collections of Sigmoid Parameters that serve as inputs for the 
variety of Sigmoid Reaction classes, concentration information Reactants and parameterized 
inputs for exernal simulators and analysis tools. Collections of parameters are useful for 
organizing model behavior and analysis at a meta level. Also, the Optimization ParameterSet 
stores parameters for a simulated annealing optimizer [Zhang 2008] that has been incorporated 
into Sigmoid.  

An important attribute to note is the ParameterSet name.  This attribute must be set 

both in the ParameterSet and by reference within any corresponding reaction rate or 

InitialCondition. (Failure to do so will prevent SME and the ModelEmitter from 

functioning properly.)  Reaction equation parameters are attributes of 

MathematicalReaction class or data objects.  Each particular parameter possesses a 

corresponding “owner” ParameterSet thus being contained by external reference. 
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2.4.1.1 Rate Constants 

In the Sigmoid schema, MathematicalReactions (see Section 2.9) are classes that 

represent and store the reaction kinetics that simulate biological processes. Each 

MathematicalReaction has a set of attributes that consist of reaction input parameters that 

are sent through the middleware translator and converted to xCellerator functions for 

simulation. The MathematicalReaction attributes are stored as Parameters and these 

Parameters refer, via their “owner” attribute, back to their ParameterSet.  In this case the 

ParameterSets are RateConstants.  The naming of “RateConstants” is slightly misleading 

and should be changed to better reflect what RateConstants stores.  “Reaction 

Parameters” would probably be a better name.  The variableDeclarations attribute is 

useful when constructing models that use eitherAlgebraicPassthrough reactions, 

inlineFunctions or some cases of SBML support.  

2.4.1.2 Initial Conditions 

InitialConditions refer to the initial concentrations of Reactants in a Sigmoid model 

which serve as starting points for simulation runs.  Any model that is to be displayed by 

SME must possess this collection.  Failing to provide this will result in a display error. 

Upon simulation, any uninitialized reactant concentrations will most likely be set to zero 

by xCellerator.  
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2.4.1.3 Layout Nodes 

 

Figure 2.5 LayoutNode Class is used for storing graphical layout settings that determine the 
Sigmoid Model Explorer display behavior. Model icons are positioned via Cartesian 
coordinates.  Layouts were designed to be collapsible and thus can be stored in a nested fashion 
by using the “owner” reference.  Toggles for hiding particular icons and associations to other 
icons are stored via the “isHidden” and “edgesHidden” attributes. 
 

The Layout ParameterSet was included to allow multiple graphical layout 

representations to be shown by SME.  For reference the LayoutNode class is shown in 

Figure 2.5.  Layouts use Cartesian coordinates to position Sigmoid Icons.  The 

“expandable” attribute indicates that a node can be expanded into a sub-network of 

reactions or collapsed and represented by one icon. The expansion/contraction is 

coordinated with the ReactionGroup class which is comprised of collections of reactions.  

The idea behind this is to be able to treat a biological processes comprised of many 

subreactions as a unit.  For instance, DNA to RNA translation should require a whole 

network of reactions to achieve, but a modeler may wish to view the whole process as a 

signal-in product-out node in one instance, and in another may wish to examine the 

whole sub-network as it relates to other processes. ReactionGroups are explained in more 
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detail in Section 2.9.2.2. The “isHidden” attribute is used to hide nodes (icons) from 

layout view.  The “edgesHidden” attribute does the same for the SME/JGraph arrows that 

point to, or from, the icon.  The ‘size’ attribute can be used to scale Sigmoid icons.  

 A Simulated Annealing Optimizer (SAO) [Zhang 2008] has been integrated into 

Sigmoid through the web services interface. It uses a global optimization technique and 

Lam- Delosme schedule to make the optimization process faster and more efficient when 

compared with other general schedules available [Lam and Delosme1988]. It aims 

to reverse engineer model parameters (for example kinetic rate constants) given both the 

model structure (represented as ordinary differential equations) and empirical system 

dynamics as expressed by experimental time series data.[Compani et al. 2010] 

The Optimization ParameterSet, ExperimentalDataset, ReactantData and 

TimeValuePair classes are built to support the storage of the SAO parameters in the case 

that an expert user wishes to do multiple optimization runs with differing parameter 

settings or to simply save their optimization settings with a corresponding model. 
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Figure 2.6 Cellerator ParameterSets are a legacy representation from earlier versions of 
Sigmoid.  They are still a useful representation for initializing models that have corresponding 
Mathematica/xCellerator notebooks. 

 

 Sigmoid was developed with the idea of having an external simulation engine.  

The Cellerator, now xCellerator, package for Mathematica provides a powerful set of 

functions to model and simulate biochemical reaction networks. Earlier versions of 

Sigmoid (Pre Sigmoid 2.0) used a parameter representation that directly mirrored 

Cellerator’s structure.  Parameters were stored as NameValuePairs (Figure 2.7), just as 

Cellerator notebooks commonly set a name for a variable and a corresponding initial 

value.  The need to implement multiple parameter sets as well as the requirement to 

adhere to a more object-oriented design for parameter representation led to the 

abandonment of the use of CelleratorParameterSets within SME and Sigmoid.  

CelleratorParameterSets (CPS) are still useful however, during construction of hand 

coded models from Cellerator Notebooks.  In this case it’s useful to build a CPS from the 

notebook data and then run a translator method to build the Sigmoid model.  This point 

will be discussed further in Chapter 4. 
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Figure 2.7 NameValuePairs serve as a mirror representation of xCellerator notebook rules used 
to set initial conditions and rate constants for models. 

 

 The NameValuePair (NVP) class is still a valuable class in the construction of 

hand coded Sigmoid Models because it closely mirrors the structure of parameter 

initialization in xCellerator notebooks.   Although the NVP is not required for a 

functioning Sigmoid model, it provides the user with a useful handle and reference to 

existing Mathematica/xCellerator notebooks when building model code.  The 

“valueStatic” attribute can signal to the reaction translator that a value is to remain a 

constant. 

 The NVPbyCompartment class (NVP meaning Name Value Pair) was designed to 

store NVPs for compartmental models designed for the Sigmoid schema version 2.17.  

The version distinction is required because there are two differing representations in the 

schema for compartmental modeling.  Any class that refers to a Compartment will 

correspond to a representation built for the 2.17 version. References to SpatialModels and 

DimensionalCompartments were added to Sigmoid schema as of version 2.21. The 

representation for compartments spatial models will be discussed in Section 2.11.2. 
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2.4.2 LEDA 

Since Sigmoid was designed to be a database of biochemical reaction networks, at 

some point the database could become heavily populated. The array of available Models, 

Reactions and Reactants would overlap in scope and become interconnected.  At this 

point, the opportunity to perform graph analysis upon the vast biological networks 

represented within the Sigmoid 

framework could yield valuable 

inferences.  A likely candidate 

for graph analysis integration 

with Sigmoid is GraphCrunch 

[Milenković 2008]. Therefore, a 

set of data structure support 

classes was built for LEDA 

formatted graphs which scale up 

to large problem sizes.  A LEDA 

graph consists of an EdgeList 

and a NodeList with 

corresponding “type” descriptors.  

The graph may be directed or 

undirected so Edges possess “sourceNodes ” and ”targetNodes” as well as a Boolean 

toggle “isDirected”.    

 

Figure 2.8 The LEDA Graph data structure classes.
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2.5 The Reactant Hierarchy 

  

Figure 2.9 The entire Reactant class diagram.  The root node of the main tree of reactants is 
The Reactant class (red).  The main sub categories of Reactants are from left to right, Particles 
(in yellow), Molecules  (green), Proteins (purple),  BioComplexes (orange) and Structures (reds 
and pinks).  This hierarchy is expanded upon in more detail in subsequent figures. 

 The Reactant class diagram (Figure 2.9) for Sigmoid consists of a top level 

superclass Reactant (in red) with a corresponding hierarchy of reactant subclasses and a 

dozen or so supporting classes.  We will define the reactant hierarchy as the Reactant 

superclass and all classes that inherit from Reactant.  The tree shown in Figure 2.9 

indicates an “is a” relationship ie. an Enzyme “is a” Protein,  a Protein “is a” 

Macromolecule, and so forth where all classes below inherit the properties of the class 

above it, ultimately all being Reactants.  This hierarchy serves at least two main 

purposes.  First it produces an object-oriented representation of Reactant class objects to 

serve the software engineering requirements for the Sigmoid modeling system.  

Secondly, the hierarchy serves as a special-purpose ontology to represent relevant 

biological entities as objects within the Sigmoid framework.  The reactant hierarchy 

should be comprised of a wide domain of frequently referenced biological objects that 
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participate in biological reaction processes.  These reactants range greatly in scope in 

scale, composition and complexity. 

 An attempt was made to provide a distinguishable set of reactant objects that 

would both represent at least basic biological entities for modeling biologists and also 

interact properly with the software components of the system.  In order to reduce coding 

overhead, SME uses Java reflection to discover properties of the objects it wishes to 

display.  Java reflection discovers the class of its objects at runtime, to perform 

operations at runtime. This technique and level of abstraction allows SME to avoid hard 

coding behaviors based upon specific object types.  This approach from the SME client 

side was to parse the Reactant objects with reflection and to make display determinations 

based upon a Reactants’ class.  For instance, rules could be set to display SmallMolecules 

with a particular icon (a graphical file image that represents a node in the display network 

of SME) shape, color or size, and MacroMolecules with a different shape etc.  Also, SME 

makes determinations about display based on sub-class type. 

 For the most part, on a macroscopic level the objects denoted in  the reactant 

hierarchy diagram increase in scale and complexity from left to right in Figure 2.9.  The 

idea was to provide common biologically relevant objects for the biologist to utilize in 

constructing a model.  From left to right the major groups are Particles, SmallMolecules, 

MacroMolecules, Complexes and on the far right Organelles, Cells, CellularStructures 

and Organisms. 
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2.5.1 Particles 

 

Figure 2.10 Basic particle types are available for modeling. Photons are available for modeling 
of systems involving biological processes such as photosynthesis.  Electrons were included for 
modeling electromotive forces involved in mitochondrial ATP synthesis.  Protons are crucial for 
modeling acid-base chemistry and membrane bound proton pumps. Alpha particles and 
Photons could be useful in modeling cell damage induced by these forms of radiation. 
 

 The Particle class, and its subclasses, serve to cover the low end of the modeling 

scale for Sigmoid as described in Figure 2.10.  Particles inherit from Reactants (not 

shown on the diagram.)  Energy and charge attributes are available for particles. The 

particle classes arose as a modeling request at one point and should serve as a rough 

template for further development if necessary. Of the various particle types, Photons are 

available for modeling of systems involving biological processes such as photosynthesis.  

Electrons were included for modeling electro motive forces involved in mitochondrial 

ATP synthesis.  Protons are crucial for modeling acid-base chemistry and membrane 

bound proton pumps. Alpha particles and Photons could be useful in modeling cell 

damage induced by these forms of radiation. 
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2.5.2 Molecules 

 

 

 

Figure 2.11 The Molecule Sub-hierarchy of Reactants.  At the molecule level, the reactant tree is 
split into two categories, SmallMolecules (left branch) and MacroMolecules (right branch).  The 
MacroMolecule domain includes all types of Sigmoid Protein (Purple subtree).  Within the 
scope of existing and curated Sigmoid models, the molecule tree possesses the most frequently 
instantiated types of Sigmoid Reactants. 

 

 Molecule is a class that inherits from Reactant in the hierarchy and possesses a 

vast number of subclass types arranged into relevant biological groupings.  The major 

groups fall under SmallMolecules, MacroMolecules and Proteins.  These classes of 

molecules were chosen because of their biological significance.   This significance is 

recognized for many of the classes by other markup languages like KEGG and SBML.  

The intent was to provide a class array that would facilitate automated conversion of 
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information from other databases and markup languages to the object-oriented 

representation present in Sigmoid. 

 

2.5.3  SmallMolecules 

 

Figure 2.12 Several common kinds of biological SmallMolecules of are available for modeling. 
SmallMolecules possess the chemicalFormula designation.  The particular convention of 
molecular formula is unspecified for user flexibility.  Charged Ions can be used for use cases 
such as acid-base reactions. 
 

 Small molecules arise frequently in biochemical and pathway models.  A basic 

array of biological types is provided: Sugars, AminoAcids, Nucleotides, Fatty Acids, 

Ions, and a spot for CoEnzymes occur in the schema.  All these classes inherit a 

Composistion from SmallMolecule which basically stores a string for empirical, 

molecular or structural formulas.  No particular form is enforced by Sigmoid and this 

convention is left to the expert user. 

 
 

2.5.4 MacroMolecules 

 Basic support for common biological macromolecules such as DNA, RNA, 

Lipids, Carbohydrates and Proteins is provided by the classes shown in Figure 2.13. 
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(Although there are some lipid polymers such as Polyketides, Lipids should be relocated 

to the SmallMolecule tree.  Also, The Carbohydrate class should be re-termed 

Polysaccharide.) The “conformation” attribute is present to give the user some flexibility 

in storing relevant macromolecule information.  Its primitive type was left as a string for 

user flexibility until domain specific modeling requests or modeling plans determine 

specialized attributes.  Relevant sequence or domain specific molecule information could 

be placed here. 

 

Figure 2.13 The Sigmoid MacroMolecule classes represent common but pertinent classes of 
biological macromolecules.  Appearing from left to right are, Peptides which have the Protein 
subclass tree, Lipids, DNA, RNA, and Carbohydrates (Should be termed Polysaccharide).  The 
“conformation” attribute of Macromolecule can be used to store domain specific information 
about a particular macromolecule such as sequence information. 
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2.5.4.1 Proteins 

 

Figure 2.14 This class diagram presents some of the Classes that inherit the Protein designation.  
The six major types of enzymatic proteins are available as an Enzyme Reactant. Other Protein 
class names are designated by roles the protein might be playing in a particular Model or 
Reaction. Providing classes for these types of proteins allows a coding investigator to build 
models using objects that represent relevant biological entities.  The representation can be 
expanded, with a schema revision, to include additional attributes when a modeling demand 
arises.  For example, Odixoreductases have associated coenzymes or cofactors.  Naturally if 
analysis of this relationship were to become a modeling requirement, it could be added to the 
schema. 

 Several protein sub-classes are available to choose from.  The Protein class names 

correspond to common protein types and roles.  Markers and Receptors would indicate 

surface proteins, Messengers would be used for intercellular functions.  Six basic types of 

enzyme as categorized by activity (Oxidoreductase, Isomerase, Hydrolase, Lipase, Lyase 

and Transferase) are present and are marked by “ecNumber” to represent the Enzyme 

Commission number (EC number), which is the numerical classification scheme for 

enzymes.  Enzymes also inherit a reference to potentially many BiologicalReactions.  
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Since the EC number is a reference to enzyme-catalyzed reactions, the idea is to store the 

reactions in the “catalyzedReactions” attribute for an enzyme.  GateProtein and its three 

subclasses are available to represent trans-membrane types of proteins involved in 

potentially multi-compartment models, and therefore possess a reference to a set of 

associated “boundaryReaction” trans-membrane reactions.  HypotheticalProtein was 

included for potential gene products and has fields for the open reading frame and GO 

annotations.  Structural and Anitibody protein class designations are available for cases 

where that role must be indicated. 

 

 

Figure 2.15 Additional Protein class types include Gate Proteins that are involved in trans-
membrane or boundary Reactions, roles as Structural proteins and Antibodies.  
HypotheticalProteins are available to represent potential gene products and 
TranscriptionFractors can specify sequence specificity.  
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2.5.5 Complexes 

 Moving up in scale, next is the BioComplex group of Reactants.  BioComplexes 

have been designed to represent biological complexes, mainly of macro-molecules.  The 

BioComplex class has an “entryPoint” Reactant specified to be the root of a tree or graph 

structure.  This was included mainly to provide a focal point for the user.  The 

“collapsed” attribute is a logical operator included for display purposes in SME.  Since 

complexes under this representation have associated Reactions, the design intent was to 

include options for expanding or collapsing the reaction network display for a complex.  

“complexID” was and identifier similar to “uniqueDBID”.  Also, the “formationLogic” 

SyntaxTree provides a handle to include a formal grammar for the formation of potential 

complexes [Mjolsness 2007]. 
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Figure 2.16 The BioComplex sub-hierarchy of classes. 

  The BioComplex sub-hierarchy contains a couple branches of note.  There are 

several PrimalComplex subclasses built so that the class name describes the complexes’ 

respective components.    The other branch, GenericComplex was designed as a container 

class for assorted MacroMolecues.  The “otherReactants” attribute and were included in 

case the modeling biologist wises to use another reactant type in a complex.   The intent 
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behind the GenericComplex was to provide a data class that would serve as a bin for 

software processing and traversal of a complex network. StructuredComplex, inheriting 

from GenericComplex contains its respective Reaction vector.   

 

Figure 2.17 Structures are intended support large scale reactants with high complexity.  
Structures can contain other Reactants thus provide a nested representation for biologically 
complex entities. Every structure contains a collection of compartments.  For example, this can 
represent multi-compartmental Organs with cellular constituents that possess organelles. 

2.5.6 Structured Reactants 

 To the far right of the Reaction hierarchy are the Structured Reactants.  Structured 

Reactants are provided for cases where the complexity of a reactant exceeds 

macromolecules or complexes.  In left to right order of increasing complexity such 

reactants include Organelles, Viruses Cells, Organs, Organisms and Colonies.  Tissues 

should be added to this diagram as they participate in developmental models.  

Representational nesting of structures was included.  For instance, a multi-compartmental 

Organ, containing multi-compartmental Cells could contain multi-compartmental 
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Organelles. 

 

Figure 2.18 The available Organelle classes inherit from Structure and possess collections of 
compartments.  A set of classic cellular structures is available for the modeling biologist to 
choose from to construct Models. 

 Several class types for Organelles are illustrated in Figure 2.18.  These serve as 

templates for later expansion of the ontology. 

 Many classes in this hierarchy are lacking class specific attributes which, from an 

object-oriented perspective is perhaps an inefficient use of a class structure and tables in 

the database.  The long-term intention was to add relevant attributes to the classes as need 

emerged from modeling requirements and as the corresponding ontology evolved.  The 

author would classify a large amount of the ontology as mental place holders that still 

provide a decent handle when constructing new models as well as a coding convenience.  

Java code authors can simply instantiate a common biological component by name.  This 

is fairly important, as typically building new models yields a new modeling requirement 

for the Sigmoid system.  For instance, a user hand coding a Sigmoid model that 
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implements Transport, Pump, or Channel Proteins may have a domain-specific 

requirement for the representation in the form of class attributes or additional supporting 

classes. At that time, the new class requests can be considered for Sigmoid representation 

and added to the schema if necessary.  Having a basic Reactant class (for this example, 

the Transport, Pump or Channel Protein) to serve as a handle, at least allows a framework 

model to be encoded and tested until a schema revision, with the deeper representation, is 

available. 

  

Figure 2.19 The Reactant super class is the container class for all common Reactant attributes.  
It is abstract in that its biological role has not been explicitly designated.    Functionally at a 
minimum for xCellerator simulation the only required field for a Reactant is a “name”.  A 
corresponding initial condition should be specified. 

  

Furthermore, a substantial number of Reactant class types have designations in other 

biological markup languages such as Kyoto Encyclopedia of Genes and Genomes 
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(KEGG) Markup Language, (KGML) or the Systems Biology Markup Language  

(SBML).  A reservoir of compatible Sigmoid Reactant classes facilitates automated 

translation of models from the other markup languages to the Sigmoid database.   

 The Reactant class serves as the top level designation in the hierarchy and all 

other reactant classes inherit its attributes.  Reactants all should have basic attribute 

identifiers for use within the Sigmoid software system.  SME and the translation to 

xCellerator notebook require a “name” field in order to function. Names should not 

contain any spaces or special characters that Mathematica/xCellerator cannot parse.  A 

“shortDescription” serves for the purposes of pop-up text within SME and can also be a 

more descriptive name field.  ShortDescriptions are not parsed by the simulator and are 

not subject to restrictions.  Additional user notes or information can be stored in the 

“comment” field.  The license field was included in case there were any licensing issues 

with model data.  “Synonyms” were included for cases where something might have 

many names.  The need for a unique identifier, “uniqueSigmoidDBID”, arose because 

ultimately Sigmoid is to store relevant reactant and reaction data without redundancy.    

For instance the ATP molecule possesses its own unique attributes and should be stored 

in such a way that it can be used across all potential pathway models it may occur within.  

 With regard to the “constituents” field, Reactants were built to have references for 

recursive self containment in the event the modeler wanted to model one reactant as a 

conglomeration of reactants.  Reactants such as organelles or complexes may possess 

several distinct Reactant components.   

 The “state” attribute of StateVectors are an important representation for 

macromolecules, as discussed in the next section. 
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2.6 Reactant Utility Classes 

2.6.1 StateVectors and Modifications 

 The Reactant hierarchy has a few utility classes constructed to allow Reactants the 

ability to represent several states.  This is particularly important for macromolecule type 

reactants. For instance, proteins may undergo post-translational modifications such as 

phosphorilation, ubiquitination, methylation, etc. (See Section 2.9.3 for a much more 

extensive list.) The idea is to store a StateVector for a particular Reactant that would 

contain a vector of potential modification sites and bindingRegions for potential complex 

formation binding partners.  Each Site would have references to particular reactants that 

could modify the site.  Regions 

would reference those Reactants 

which might potentially interact or 

complex with a Reactant within a 

binding region.  Both Site and 

Region inherit from Locus and 

possess the Boolean “bound” 

attribute intended for the software 

system to record binding state 

(bound or unbound).  Reactants 

also possess Modifications which 

specify the Site of a modification 

and the modifying molecule type. 

 

Figure 2.20 StateVectors, Modifications and the 
Sigmoid 2.17 Compartment representation.
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2.6.2 Compartments 

 A Compartment class was also provided in the 2.17 schema to support multi-

compartmental models. The class is shown here because it was associated with the 

StateVector class.  Consideration was given to specifying a Reactants location by 

compartment within the StateVector, but this approach proves problematic because the 

presence of a Reactant within a compartment can be more properly modeled as a property 

of the compartment as opposed to being a property of the Reactant.  The Compartment 

class should be deprecated, since a more feasible approach is introduced in Section 2.11.2 

on spatial and compartmental modeling. 

2.6.3 Taxonomy 

 

Figure 2.21 A simple Taxon representation.  Taxonomic ancestor information can be stored in 
this simple recursive data structure.  The reference to Taxon is contained in the root Reactant 
class.  Although most entities in the Reactant hierarchy may have a taxonomic designation, a 
few exceptions are present. i.e. particles and small molecules do not inherently possess this 
attribute. 

 The Reactant class includes a taxonomy attribute mainly included for taxonomic 

references for proteins.  The Taxon Class has a simple recursive inheritance structure to 

indicate ancestors.  It’s recommended to either modify, or remove this from the schema 

for a couple reasons.  Reactants like a particle or small molecule will not possess 

taxonomy so, the Taxon attribute inherited from Reactant would be inapplicable.  Also, 
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the Gene Ontology classes provide a more robust representation that includes taxonomy 

identifier numbers for this function. The Gene Ontology classes are discussed in more 

detail in Section 2.11.1. 

2.6.4 Functional Ontology 

 

 

 

Figure 2.22 The Sigmoid functional ontology. 

 Certain classes were built to represent a functional ontology by a previous 

Sigmoid developer.  It appears as though the idea behind this was to provide a 

mechanism by which a modeler could specify a reference to particular Reactions that a 

reactant was involved in or would be activated by, thus indicating its function.  These 

classes were never used in any models and could possibly be better represented the by the 

GeneOntology (GO) classes in the schema along with a set of associated 

MathematicalReactions.   One argument in support of maintaining these classes and that 

distinguish it from a gene ontology representation is that these classes build a graph of 

MathematicalReaction relationships.  Function, ActivationPattern, ReactantFunction and 



43 
 

BooleanOverReactantState require evaluation (and consultation with the previous author) 

for effective integration with the GO annotated or other Reactions and should be 

scheduled for revision and/or possible deprecation.  Function and ReactantFunction 

appear might be better represented by GO Functions in the BiologicalReaction hierarchy  

ActivationPattern and BooleanOverReactantState might be better represented by 

StateVectors.  The recommendation for deprecation is made because these classes were 

introduced in an early schema version (Sigmoid v45 or prior) that did not have a 

distinction or separation between BiologicalReactions and MathematicalReactions.  

Schema v45 was structured so that all Reactions were closely representing Cellerator 

functions and thus were MathematicalReactions. 

2.7 Reactions 

 

 

Figure 2.23 The entire Sigmoid Reaction diagram.  This diagram is comprised of a Reaction 
hierarchy (yellow root class), a post-translational modification hierarchy (the green tree on 
bottom right), and supporting utility classes (top left).  The Reaction hierarchy is split into two 
major sections.  The top right most branch of the tree is composed of Biological Reactions.  The 
left branch is composed of Mathematical Reactions. Components and attributes of this diagram 
will be illustrated in more detail in the following sections. 

The Reaction class diagram of the schema shown in Figure 2.23 contains the 

hierarchical structure of Reactions, a hierarchical structure of 
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PostTranslationalModifications, and a few utility classes to support classes.  The 

Reaction hierarchy is comprised of groupings of Reactions.  Reactions are composed of 

biologically and mathematically relevant data classes constructed to facilitate the 

transformation of sets of Reactants to produce other sets of Reactants. The Post-

translational hierarchy consists of common chemical modifications of protein amino acid 

residues that have a functional impact on proteins.   The hierarchy of post-translational 

modifications appears to the bottom right of Figure 2.23, in green.  The 

PostTranslationalModification and the Reaction diagram supporting utility classes are 

discussed in more detail in subsequent subsections.   

 

2.7.1 The Reaction Super Class. 

 

Figure 2.24 Reaction is the root class of the entire Reaction Hierarchy.  Every class of Reaction 
will inherit its attributes.  The name attribute is requisite for display in SME and is required for 
simulation in xCellerator. KnowledgeSources, “shortDescription”, and the comment field are 
available for annotations. 
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 Reaction is the root of all Biological and Mathematical reactions. We will 

introduce the details of the class here because all subsequent Reaction subclasses inherit 

all of Reactions’ attributes. The “name” attribute is required for all Sigmoid Models that 

are to be either displayed within SME or simulated by xCellerator.  The name string is 

passed to both for model parsing.  “Comment” and “shortDescription” attributes are 

available for supplementary reaction information.  As with the Model and Reactant 

classes, KnowledgeSource serves as a reference for citation information and 

supplementary reactant documentation. 

 

Figure 2.25  Simplified version of the Sigmoid Schema Reaction hierarchy. (a.) There may exist 
a one to many relation between a particular biological reaction and potential functions 
(Mathematical-Reactions) that may be assigned to model the kinetics of the interaction. For 
instance numerous mathematical functions can be assigned to model a catalytic process. (b.) In 
reverse, the functional application of a particular set of differential equations may be conserved 
over a variety of biological phenomena so, there also may be a one to many association between 
a particular mathematical function (Reaction) and the biological scenarios it may be applied to. 
For instance a Hill equation may provide useful in modeling a catalytic reaction, transcriptional 
regulation or even a transport process. 
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 An essential function of Sigmoid is to assist in the translation of biological 

knowledge into mathematical form. The representation of Reactions in Sigmoid is aimed 

at this goal. Sigmoid Reactions represent biochemical processes that transform molecular 

or other biological objects that are represented as Sigmoid Reactants. A major design 

feature of Sigmoid is that, to support translation of biology to mathematics, Reactions are 

defined in two sub-hierarchies: Biological Reactions and Mathematical Reactions. The 

Biological Reaction hierarchy is intended to provide biologically oriented users with 

symbolic representations of a biochemical reaction or process. Attributes that represent 

the basic reactants with primary roles are included. The kinetics of the reaction are 

abstracted out and delegated to Mathematical Reactions. Mathematical Reactions 

constitute a type hierarchy of mathematical models of reactions or other processes in the 

Sigmoid schema. Such representations include particular rate laws, as well as the 

translation of compound reactions into a sub-network of more elementary reactions each 

of which has a more elementary mathematical model. With a few exceptions, 

Mathematical Reactions currently have direct xCellerator/kMech implementation 

functions associated with them. Numerical parameters associated with each reaction are 

contained by reference, which enables key reaction parameters to be shared within a 

MathematicalReaction or across a full reaction network. In this way the Sigmoid 

architecture can offer explicit support for the translation of biological processes into 

mathematical process models. Each type of biological reaction may in principle be 

translated into several alternative mathematical reaction models, and each mathematical 

reaction model can serve as the translation of several different biological reactions. An 
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example of the importance of many-to-many reaction translations is shown in Figure 

2.25. 

 

Figure 2.26 Other elements of the Reaction class diagram have been extracted to illustrate the 
Sigmoid Reaction Hierarchy of Biological and Mathematical reactions..  The top branch of this 
hierarchy consists of Biological Reactions.  Biological Reactions contain information about the 
players in a reaction and are classified according to category of biological process, but are 
abstract in that they contain no kinetic details about a reaction.  The bottom branch of the 
diagram consists of MathematicalReactions.  MathematicalReaction classes store parameter 
information about specific xCellerator functions designed to model reaction kinetics. 

 

 The Reaction hierarchy can be seen in Figure 2.26 independently of the other 

classes that appear in the Reaction class diagram.  Other elements of the Reaction class 

diagram have been extracted to highlight the Biological and Mathematical subdomains of 

Reaction.  Every BiologicalReaction contains a reference to a collection of 

MathematicalReactions.  This collection can contain one-to-many 

MathematicaReactions.  The mapping between biological and mathematical reactions is 

subject to applicability constraints.  An expert user is required to determine which 
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mathematical functions will map properly to a particular biological process.  SME 

implements a table of suggested mathematical reactions in the model creation portion of 

the program, but the implementation of this feature is immature and requires further 

development. 

2.8 The BiologicalReaction Sub-domain of Reactions. 

 

Figure 2.27  The BiologicalReaction sub-hierarchy of Reactions has two main branches.  The 
right branch is composed of Simple reactions, representing typically singular 
BiologicalReactions.  There are three sections of Simple Bio Reactions, NonCatalized (far right 
in cyan), CatayticEnzymatic (blue), and other Simple Reactions (purple).  The left branch of 
BioReactions (in green) is composed of CompoundBio Reactions.  CompoundBio reactions are 
composed of many Biological reactions and can represent complex systems of biological 
processes.  These Sections will be expanded upon in detail in the following sections. 

 The biological domain of Reactions in Sigmoid was designed to present a concise 

representation of biological process options.  An effort was made to cover the widest 

possible array of biological scenarios with a simple concise set of classes.  The 

BiologicalReactions (BioReactions) contain references to the players (Reactants) in the 

reactions along with certain character attributes that describe the Reaction process.  A 

common example of one of these attributes is reaction reversibility, typically stored as a 

Boolean value.  The BioReaction sub-hiearchy is split into two main branches as 

illustrated in Figure 2.27.  The left branch consists of non-catalyzed reactions, catalytic or 
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enzymatic reactions, and a few other reaction types that will be discussed in the following 

sections.  The right main branch is consists of CompoundBio Reactions.  The basic 

principle behind the CompoundBio reactions is that they are comprised of sets of 

BioReactions as opposed to being singular reaction processes. 

2.8.1 NonCatalyzed Reactions 

 

Figure 2.28 NonCatalyzed Reactions, inheriting from the Simple BioReaction class, were 
constructed to represent general chemical (or non-catalytic biochemical) processes.  
GeneralConversions is a generalized form of simple non catalytic reaction that converts any 
number of substrates into any number of products. It is the most flexible representation in this 
sub-tree of BioReactions and can functionally represent any reaction in this figure.  AcidBase, 
DoubleRelplacement and the OxidationReduction classes should be subclasses of, and inherit 
attributes from the GeneralConversions class.  This inheritance error was corrected in the 2.25 
schema update.  

 Although not shown in Figure 2.28, all NonCatalyzed BioReactoins inherit the 

“mathImplementation” attribute from the Simple BioReaction class and can have zero-to-

many associated MathematicalReactions (MathReaction).  The NonCatalyzed sub-

domain of BioReactions consists of a set of basic reactions that possess no explicit 
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enzyme or catalyst.   Basic chemical processes can be functionally represented by these 

reactions in the schema. 

 All of the reaction classes within this sub-domain of BioReactions, in practicality, 

can be functionally represented by the GeneralConversions class.  All other subclasses of 

NonCatalyzed are actually limited cases of GeneralConversion.  An important property of 

the Sigmoid classes is to provide a viable language for the modeling biologist to use in 

the creation of their models. These classes are within the schema because the class names 

are descriptive and confer biologically relevant information about common types of 

reactions.    These classes also provide constraints on the number of substrates and 

products of a reaction plus a Boolean attribute to set reaction reversibility.   

 The BioCreation or Annihilation classes are commonly used in the existing 

Sigmoid models that have been coded. Models typically feature creation or destruction of 

a reactant species without details of the process.  i.e Anabolic processes require an ATP 

(adenosine triphospate) source.  The only relevant detail may be the abstract 

manifestation of the product ATP at a certain rate.  Conversely with regard to 

BioAnnihilation, Reactant destruction may be required for a model, but including the 

details (enzyme that catalyzes the destruction) of that reaction not an important detail of 

the model reaction. 
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2.8.2 Catalytic and Enzymatic Biological Reactions 

 

Figure 2.29 Classes inheriting from CatalyticEnzymatic are designed to represent biological 
process reactions that involver either chemical catalysts or biological enzymes.  Key 
commonalities are that both catalysts and enzymes are not consumed in the reactions and 
modify the rates of their reaction processes.  The focus of these classes was primarily designed 
to support enzymatic processes but purely chemical processes and be represented by expert use. 

 

 Although not illustrated in Figure 2.29, all CatalyticEnzymatic inherit the 

“mathImplementation” attribute from the Simple BioReaction class and can have zero-to-

many associated MathematicalReactions.  Classes inheriting from CatalyticEnzymatic are 

designed to represent biological process reactions that involve either chemical catalysts or 

biological enzymesKey commonalities are that both catalysts and enzymes are not consumed 

in the reactions and modify the rates of their reaction processes.  These classes were primarily 

designed to support enzymatic processes but purely chemical processes and be represented as 

well if necessary.   
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 The GeneralCatalyzedReaction BioReaction was constructed to handle the 

general cases of enzymatic processes for zero-to-many substrates and products.  

Frequently, biologically catalyzed reactions posses a reverse reaction counterpart in 

which the reverse reaction is catalyzed by a different enzyme.  For instance, enzyme E 

may convert substrate A into product B.  The reverse enzyme E2 may convert product B 

back into substrate A.  Markup languages such as SBML or KGML typically provide 

reverse reactions when available.   The “intermediates” attribute of 

GeneralCatalyzedReaction specifies enzyme intermediate states for cases like PingPong 

Reactions.  The “modifiers” attribute is available for regulatory reactants.   The 

BioCatalyticCreation and BioCatalyticAnnihilation classes are special cases of 

GeneralCatalyzedReaction in that they designate the corresponding creation and 

destruction reactions.  The need to specifically designate inhibitors or activators can be 

accommodated by the CatalzyedWithInhibitorAndOrActivators  subclass of 

GeneralCatalyzedReaction. 

  Enzyme process models that specify allosteric regulation should be implemented 

by the CatalyticWithAllostericRegulation class.  A Sigmoid pathway model that uses this 

class is the (Yang 2005) model. 

 AutoCatalysis was included as a reaction class designation but a set of use cases 

have not stimulated the addition of relevant attributes for the class.  The stub class 

remains in the schema as an important biochemical process, but awaits implementation. 
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2.8.3 Additional Simple Biological Reactions 

 

 

Figure 2.30 Additional Simple reactions from right to left, BioRegulatoryRelationships for 
regulatory proceses, AllostericInteractions (attributes unimplemented), AssemblyDisassembly 
for complex formation, ConformationalIsomerizations (attributes unimplemented), 
Translocation for inter-compartmental reactions and the GeneOntologyFunction.  
GeneOntologyFunction is a class designed to represent reactions within a hierarchy of 
reactions. 

 A few additional Simple BioReaction classes have been included in the schema.  

BioRegulatoryRelationship is present to allow a regulatory system to be modeled where 

substrates are not specified.  Only single product reactions with multiple regulators are 

allowed for the BioRegulatoryRelationship class.  AssemblyDissasembly, a reversible 

reaction, was included for complex formation and specifies two binding partners and a 

single Reactant product.  Translocation is a class designed for movement of Reactants 

across compartments.  Source and destination compartments are specified for 

Translocation and the reaction is reversible.   ConformationalIsomerization is an 

important Reactant transformation reaction but has remained unimplemented and 

therefore possesses no attributes.  
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2.8.4 CompoundBio Reactions 

 

 

Figure 2.31 The CompoundBio reactions represent biological processes that span whole 
collections of biological processes.  CompoundBio contain other Biological Reactions, including 
other CompoundBio reactions, resulting in a nested structure that is built to represent highly 
complex and involved biological processes.  Of the vast number of complex biological processes, 
DNA replication, transcription and translation have been added as subclasses to CompoundBio 
because of their biological prominence.  To handle the vast array of biological processes, the 
GeneOntologyProcess class has been included. 

 CompoundBio Reactions are composed of collections of BioReactions and 

associated MathematicalReactions.  They are designed to provide a layer of abstraction 

and scalability within a model.  Many biological processes such as DNA replication, 

transcription and translation can be highly complex and involve many sub-processes and 
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reactions.  The CompoundBio reactions may assist modeling biologists to reference these 

sub-networks of reactions as a single process. Since CompoundBio Reactions contain 

other BioReactions by reference, biological processes can be represented in a nested 

fashion, thus adding a layer of scalability to the representation.  Although the number and 

attributes of biological processes is vast, only a few key subclasses of CompoundBio 

have been added to the schema.  To address the diversity of biological processes that 

require representation, the Gene Ontology process class was included.  Gene Ontologies 

provide access to a hierarchy of biological processes.  The Gene Ontology representation 

will be discussed in more detail in Section 2.11.1. 

 

2.9 MathematicalReactions 

2.9.1 The MathematicalReaction sub-domain. 

 

Figure 2.32 The MathematicalReaction domain of Reactions.  The branch of equation classes to 
the right is comprised of ODEReaction equations that have direct counterparts in xCellerator.  
The ODEReaction classes are data classes that store reaction parameters for simulation.  
Reactions on the large left branch are Compound reactions which comprise sets of 
ODEReactions.  The center Reactions in white are AlgebraicPassthrough reactions designed to 
pass algebraic expressions directly to the Mathematica simulator.  The small branch of 
reactions on the far left are reserved for stochastic simulations and serve as stub classes 
awaiting further implementation. 



56 
 

 The MathematicalReaction (MathReactions) sub-hierarchy serves as the data 

structures to store reactant and parameter information for all xCellerator and kMech 

reactions implemented by Sigmoid.  It should be clear that only MathReactions are 

processed by the middleware translation package and sent to xCellerator for simulation.  

BioReactions are not processed in this manner.  MathReactions are not visualized 

currently in the SME network layout view, but instead are referenced by BioReactions.  

MathReactions associated with a particular BioReaction are accessible in the side panel 

of SME when the BioReaction is selected (shown in Figure 1.4 as item C). 

 The MathReaction hierarchy of Reactions is composed of four main branches of 

MathReaction.  There are three reactions on the far left branch of Figure 2.32 which are 

stub classes reserved for stochastic simulation.  This type of modeling has not been 

implemented in Sigmoid so these classes serve as place holders awaiting further 

development.  Three major classifications of MathematicalReactions are present in the 

Schema.  First, Ordinary differential equation (ODE) ODEReactions are reactions that 

are direct parameterized representations of xCellerator functions.  Second, Compound 

MathReactions are reactions that consist of sets of reactions. Lastly, 

AlgebraicPassthrough Reactions are reactions that store algebraic expressions to be 

passed directly to Mathematica for processing.  These sub-domains of MathReaction will 

be discussed in more detail in the subsequent sections.   
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2.9.1.1 ODEReaction MathematicalReactions 

 

 

Figure 2.33 The ODEReactions are data representations designed to store reaction parameters 
for xCellerator simulator processing.  Each class shown here, with the exception of the attribute 
empty classes, possesses a directly corresponding xCellerator function. There are two main 
classifications of Reaction: Regulatory reactions appear in the right main (dark orange) branch;  
Nonregulatory reactions appear to the left.  Subsequent class diagrams will reveal the attributes 
in more detail. 

 The ODEReactions consist of MathematicalReactions that are parameter input 

representations for xCellerator [B. Shapiro2007] functions.  The ODEReaction are data 

classes designed to store parameter inputs for reaction equations consisting of ordinary 
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differential equations (ODE).  The particulars of the reaction equations themselves are 

located at http://xlr8r.info and deprecated functions (for older versions of Sigmoid) are 

located at http://cellerator.info.   

 

Figure 2.34 Massaction, MichaelisMenten, and a now deprecated 
SimplifiedNonSaturatedCatalytic enzymatic reaction appear in the ODEReaction tree. 

 Two forms of mass action kinetic equation data classes are available for 

modeling:  UnidirectionalMassAction, which stores only a forward rate, and a 

bidirectional subclass possessing a reverse rate.  The mass action equations form the basis 

of the Compound MathReactions.  All Compound MathReaction enzyme mechanisms 

(Section 2.9.1.2) are composed of sets of mass action reactions.  A classic 

MichaelisMenten parameter class is available to model enzyme kinetics.  The 

SimplifiedNonSaturatedCatalytic equation is a deprecated function and is now handled 
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by the TwoStageCatalytic Compound MathReaction.  SimplifiedNonSaturatedCatalytic 

persists in the schema to support some older Sigmoid models until they are recoded. 

 

Figure 2.35 There are several regulatory functions supported by xCellerator.  A regulation 
indicates that a particular Reactant modifies the kinetics of a reaction equation but is not 
consumed in the process.  The corresponding data classses appearing in the schema with all 
requisite xCellerator input parameters are, from left to right, Hill (regulatory) and its subclass 
CatalyticViaHill, GRN (Genetic Regulatory Network), NHCA (Non-heirarchical, Cooperative 
Activation), and SSystem.  Also, a UserDefinedRegulation exists, and a subsection of allosteric 
regulations is composed of three classes of the Monod-Wyman-Changeux (MWC) model. 
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 Several classes of RegulatoryFunctions are available in the ODEReaction portion 

of the schema.  Two forms of Hill equations are available, a purely regulatory form in 

which no substrate is consumed (Hill) and CatalyticViaHill version where the substrate is 

consumed.  A class for Genetic Regulator Network (GRN) reactions is available. Three 

forms of Monod-Wyman-Changeux are present for allosteric regulations.  The 

generalized form of MWC (GMWC) reaction equation is used in the Yang_2005_Ile-

Val-Leu model in the Sigmoid database [Najdi et al. 2005]  A regulatory function for 

Non-heirarchical Cooperative Activation (NHCA) is available as well as SSystem 

(Savageau  1969) (Savageau  1970), and a UserDefinedRegulation.  
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2.9.1.2  Compound MathematicalReactions. 

 

Figure 2.36 The Compound Reaction section of the Reaction hierarchy. Compound Reactions 
are conceptually single Reactions that are composed of sets of ODEReactions. The majority are 
enzymatic processes.  Reactions shown in purple on the right are catalytic reactions that have 
direct analogs with xCellerator reactions.  Reactions illustrated in either red or white are direct 
representations of existing kMech reaction equations.  Classes shown in while are classes to 
support more recent additions to kMech. Reactions shown in yellow are part of the 
KMechReaction representation which is a parameterized version of the kMech reactions shown 
in white and red.  The KMechReaction set of classes is processed by the SigMech Utility to 
produce all of the associated sub-reactions. 

 The Compound Mathematical Reactions portion of the MathReaction hierarchy 

featured in Figure 2.36 consists of enzymatic Reactions that are composed of sets of sub-

Reactions.  The ThreeStageCatalytic reaction featured previously in Figure 1.2 is an 

example of an xCellerator compound reaction.  It is a single parameterized reaction like 

process that possesses six sub-reactions.  All Compound Reaction class instances have 

corresponding xCellerator or kMech reactions.  The majority of CompoundReactions are 

kMech enzymatic reactions. 

 The Compound section of the schema began has grown as new compound 

reactions have been added to kMech and xCellerator. It has become apparent that the 
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additional kMech reactions are built on a few general principles and that storing instances 

of enzyme mechanisms as a hierarchy of classes would be a cumbersome process for the 

design cycle of Sigmoid. Each instance of a new kMech reaction case would yield a 

requirement to process a schema, generate the Java API classes, set up a development 

environment for the particular schema release, update the middleware Sigmoid-to-

Cellerator code, and retask SME with the new Java API. To alleviate this coding burden, 

the new KMechReaction Classes featured in Figure 2.37 are built to replace the previous 

strategy of adding new enzyme mechanism reactions as they are requested by modeling 

biologists. 

 

Figure 2.37 The KMechReaction classes are designed to be a replacement representation for all 
(self excluded) existing compound enzymatic reactions featured in Figure 2.36.  The 
representation is a generalized form of previous enzymatic reaction mechanism classes within 
the Sigmoid schema.  The KMechReaction class must be processed by SigMech (0) in order to 
generate associated sub-reactions.  

 The KMechReaction class has been designed as a replacement representation for 

all existing compound enzymatic reactions in the CompoundReaction portion of the 

MathReaction hierarchy of Reaction classes.  These reactions consist of three xCellerator 

enzymatic compound reactions and over 30 kinds of kMech reaction classes.  
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Furthermore, all potential new kMech reaction classes that follow previous motifs will be 

encompassed by the new representation. The KMechReaction representation relies upon 

a parameterized set of inputs and a set of procedures (SigMech) that generate the sub-

reactions of the enzyme mechanism.  In this representation Substrate, Product, 

kMechInhibitor, and enzymeIntermediate Reactants are stored as vectors along with 

associated kinetic parameters.  A set of “strategies” is stored to designate sub-reaction 

generation procedures and process models of inhibitions are specified for 

kMechInhibitors. SigMech is described in detail in 0. 

2.9.1.3  AlgebraicPassthrough MathematicalReactions 

 

Figure 2.38  The AlgebraicPassthrough subclasses of MathematicalReaction were constructed 
to pass algebraic rate laws directly to Mathematica for processing. Three classes noncatalytic, a 
catalyzed version that includes a field for an enzyme (or catalyst) and a bidirectional version 
that includes a reference for an enzyme that catalyzes an additional reverse reaction. 
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 The AlgebraicPassthrough reactions provide a mechanism by which raw algebraic 

expressions can be passed through the middleware to Mathematica for processing.  The 

“rateLaw” attributes store instances of RateFunction which inherits from 

DoubleParameter. A catalytic version of the passthrough class and a bidirectional 

passthrough reaction are present in the schema as illustrated by Figure 2.38.  The 

AlgebraicPassthrough reactions were incorporated into the schema for two primary 

reasons.  First, the representation allows for user defined functions that may not 

correspond directly to existing xCellerator or kMech functions.  Secondly, pathway 

models stored by the SBML markup language have their rate laws in algebraic form.  

These SBML functions do not necessarily map directly to xCellerator.  As will be 

explained in more detail in chapter 4, automated populator programs have been 

developed to automatically load SBML models into the Sigmoid database.  Since the 

SBML format does not directly translate to xCellerator functions, a mechanism was 

needed to pass these SBML rate functions through to Mathematica for processing.  Also, 

the same limitation applied to SBML models coded by hand from the Biomodels model 

repository.  Some of these models contain expressions that do not easily translate to 

xCellerator functions. 

2.9.2  Reaction Utility Classes. 

Classes other than Reactions are present in the UML Reaction class diagram.  A few 

utility classes exist that are necessary to support the Reaction classes and their handling 

of parameters.  Other classes are designed to group Reactions for organizational and 

display purposes.  These support classes are described in this section. 
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2.9.2.1  Parameter Wrapper Classes 

 

 

Figure 2.39 There are three frequently used parameter wrapper classes in the Reaction class 
diagram.  ReactantCoefficientPairs are used to specify the stoichiometry of reaction equations.  
ReactantKineticPairs are a mechanism to store values such as substrate affinity for substrate 
binding of an enzyme or, rates for inhibitor binding. SubstrateCompetitvieInhibitorSets were 
provided to store parameters for enzymatic inhibitors specific to a particular substrate. 

 A few parameter wrapper classes were designed to coordinate with the Reaction 

classes.  In cases where stochiometry is involved in reaction equations, integer 

coefficients are required.  The ReactantCoefficientPair class handles stoichiometric 

coefficients for particular reactants in reaction equations.  ReactantKineticPairs store 

parameter information specific to a particular Reactant within a Reaction.  For instance a 

Reactant may have a particular binding rate to an enzyme.  SubstrateCompetitiveInhibitor 

sets store substrate and activator parameter information for the GeneralizedMWC (MWC 
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Monod-Wyman-Changeux) MathReaction which implements an allosteric form of 

cooperativity [Najdi et al. 2005]. 

2.9.2.2  Reaction Groups 

 

Figure 2.40 Reaction groups serve as an organizational tool to reference groups of related 
reactions.  They’re available to the user interface (SME) to hide or expand portions of the 
pathway networks.  The KMechReactionGroup serves an additional purpose. Since SigMech 
builds sets of sub-reactions from a parameterized set of inputs (a KMechReaction), The 
KMechReactionGroups are present to store these sets of Reactions in the database. 
(KMechReactionGroup could be renamed SigMechReactionGroup because it was designed to 
store the output of SigMech). 

 Reaction groups were included in the schema as a mechanism by which sections 

of pathways could be partitioned.  This partitioning is to assist with the organization of 

Reactions for of the modeling biologist.  For example, enabling the collapse and 

expansion of relevant portions of pathways, within SME, could prove useful for large 

interconnected models. In theory, sections of pathways could be collapsed and iconically 

represented with a few remaining input and output reaction arrows remaining. In cases 

where pathways are large and highly interconnected the number of reaction arrows in 

pathway network view of SME can become overbearing.  Partitioning should serve to 

alleviate this logistical obstacle.  Larger models containing multiple related pathways can 

be more ideally managed.  For example, the [Najdi 2011] fatty acid biosynthesis model, 
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shown in Figure 2.41, contains portions of the pentose phosphate pathway, glycolysis, 

and an engineered fatty acid biosynthesis pathway.  These sections could be managed 

separately, expanded and contracted within the SME (or other) viewer so that 

visualization could be more easily directed by the modeling biologist.  SME implemented 

the reaction groups in conjunction with the LayoutNode class to enable hiding of 

reactions, reactants and reaction arrows.  Actual visual contraction and expansion of 

groups hasn’t been implemented. 

 Furthermore, compound reactions that contain multiple sub-reactions like the 

SigMech reactions (Chapter 3) could implement ReactionGroups to manage the sub-

reactions.  The class KMechReactionGroup was added for this purpose.  The idea behind 

this design is that an enzyme mechanism consisting of multiple sub-reactions, 

conceptually can be seen as one reaction, and the details of the particular enzyme 

mechanism should be hidden.  When the network of sub-reactions may be of interest, 

particularly when the mechanism is being modeled, the sub-reactions could be expanded.  

Ultimately, proper implementation of reactions groups should provide differing levels of 

pathway model examination. 
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Figure 2.41 The [Najdi 2011] fatty acid biosynthesis model contains portions of the pentose 
phosphate, glycolysis and fatty acid biosynthetic pathways.  The implementation of reaction 
groups enable the hiding or highlighting of pathway sections and reaction arrows to more 
clearly show portions of the overall model. This particular model has been organized fairly well 
but other more interconnected models can become cumbersome to visualize.  Commonly 
connected reactant molecules such as ATP can generate many edges in a network that can 
quickly clutter network visualization.  
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2.9.3 Post Translational Modification Hierarchy  

 

 

Figure 2.42 The post translational modification hierarchy contains a structured organization of 
common chemical modifications of protein amino acid residues. Since this figure is difficult to 
read a comprehensive list of these modification classes is provided in Appendix 0.   

 The Post-translational hierarchy consists of common chemical modifications of 

protein amino acid residues.  Since Figure 2.42 is difficult to read, a list of 

posttranslational modification classes is provided in Appendix 0.  These modifications 

are important as they have functional impact upon the protein.  This domain of 

modifications was included in the schema because two sequence-identical proteins can 

have many functional differences.  Saving separate instances for the same protein with 

different modification states in the database wouldn’t be feasible, as a single protein may 

have multiple modification types over numerous locations.  The cross product of 

modification states becomes enormous quickly, and they can’t be stored in the database 

as individual proteins.  A more feasible approach would be to store a protein base form 

and to “decorate” the protein with modifications.  A corresponding table of states could 

then be attached to the particular reactant.  The post translational modification hierarchy 
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of modification should integrate with Section 2.6.1 concerning state vectors and 

modifications. 

 Although this hierarchy appears in the reaction diagram, this set of modifications 

does not inherit class attributes of the Reaction base class.   Post-translational 

modifications can be modeled as either a state property of a polypeptide or a biological 

reaction process.  For instance, examination of the phosphorylation of a protein by a 

particular enzyme, can take differing perspectives.  If our goal is to address the functional 

and regulatory properties of the protein itself by examining the state of the protein, in this 

case the quantity and location of the phosphorylation sites, will yield information about 

the enzymes functional activity.  Another perspective is to view the biological process of 

phosphorylation as a biochemical event with other Reactants participating and playing 

various roles such as catalyst and substrate i.e. a kinase attaching a phosphate group to 

the protein.  Since the Gene Ontology (GO) classes in Sigmoid (for greater detail see 

Section 2.11.1) can already provide a gateway to compilations of data concerning cellular 

processes and functional events, developing an independent ontology of these events may 

not be the most efficient use of resources for Sigmoid development.  If however, we wish 

to develop a system of examining the state of a particular polypeptide, in terms of the 

product of multiple post-translational modifications, a system of recording the state of the 

polypeptide must be implemented.  The modifications in terms of state are treated as 

decorative properties of proteins. If this is to be the approach, the 

PostTranslationalModification hierarchy either should be more closely tied to the 

Reactant diagram or, deserves its own diagram and should be relocated to a 
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“Modification” class diagram, perhaps to be shared with other potential macromolecule 

type decorations. 

 

2.10 Knowledge Sources 

 

Figure 2.43 The entire KnowledgeSource class diagram consists of data classes designed to 
provide citation information and documentation references for Sigmoid Models, Reactants and 
Reactions.  The Citation domain of subclasses (Blue and purple classes) provide references to 
model research publications.  The Knowledgesource classes are expanded for legibility in 
subsequent figures. 

 Knowledge sources are designed to provide investigators with references to 

relevant Model, Reactant, and Reaction documentation.  The KnowledgeSource class 

diagram is illustrated in Figure 2.43.  A large subclass of KnowledgeSource is the 

Citation class (illustrated in more detail in Figure 2.45).  The Citation class and its 

subclasses follow BibTex conventions for document citation.  Storing relevant model 

citation information provides investigators with valuable access to previous research.  In 

addition, proper population of the Sigmoid database with publication information, and 

some integration with word processing utilities like Latex could facilitate research 

publication of pathway models.  No features of this sort have been implemented for 



72 
 

Sigmoid so its integration with word processing utilities remains an open problem.  Some 

KnowledgeSource classes such as the Citationn MathematicaNotebook and MiscFiles 

classes are accessed and displayed by the model browse feature of the sigmoid website at 

www.sigmoid.org as shown in Figure 2.46. 

 The Citation class (shown in Figure 2.45) has been implemented for storing 

relevant publication information associated with user constructed Sigmoid models 

[Cheng et al.2005], and has been integrated with the Sigmoid web search utility at 

www.sigmoid.org.  Relevant model publication reference information for Sigmoid 

models is available in the model browsing section illustrated in Figure 2.46.  The 

MathematicaNotebook class includes URLs and file information for associated Model 

notebooks.  This is an important reference since all of the persistent models currently in 

the database possess associated Mathematica notebooks.  These notebooks are also linked 

through www.sigmoid.org. 

 Classes designed to access external pathway markup language documents are 

present in the KnowledgeSource tree (See Figure 2.44).  Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathways are referenced through the KEGGInfo class.  Attributes 

for KEGG pathways include Universal Resource Locators (URLs), pathway titles, 

associated organisms and the KEGG release number.  Similar classes are available for, 

Gene Ontologies (GOAnnotation class) and the Systems Biology Markup Languge 

(SBML, SBMLRepresentation class). 

  WebKnowledgeSources are simple URL wrapper classes to reference web data.  

A subclass of WebKnowledgeSource is CGIKnowledgeSource and contains fields to 
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perform CGI queries.  The MiscFile class is a useful class for storing miscellaneous files 

associated with pathway models or model components. 

 The Database Class includes a “jdbcURL” and fields for associated database 

queries.  Database opens up queries to other bioinformatics databases that implement the 

Java Database Connectivity Application Programming Interface (JDBC API).  The JDBC 

API is the designed for database-independent connectivity between Java applications and 

a wide range of databases including SQL databases (Oracle 2012). 

 

Figure 2.44 A subset of KnowledgeSource (KS) subclasses are designed for references to 
external databases, files and markup languages.  KEGGInfo is a KS for the Kyoto Encyclopedia 
of Genes and Genomes.  SBMLRepresentation is a KS forthe Systems Biology Markup 
Language.  KSs are provided for Universal Resource Locators (WebKS).  Miscellaneous files 
and Mathematica notebooks associated with pathway models stored on the Sigmoid servers are 
referenced by the MiscFile and MathematicaNotebook classes.  These MiscFiles and 
MathematicaNotebooks are accessed and displayed by the Sigmoid website. 
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Figure 2.45 The Citation KnowledgeSource provides a set of subclasses designed for publication 
citation information that follow the BibTex conventions [Cheng et al.2005].  Citations for model 
pathways are accessed and displayed by the Sigmoid website the browse models section. 
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Figure 2.46 Some KnowledgeSource information such as Model Citations are accessible 
through the “Browse Models” utility at www.sigmoid.org.  Model xCellerator notebooks and 
model graphic files, which are also referenced by KnowledgeSource, are also accessible there. 
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2.11 Additional supporting classes 

2.11.1 Gene Ontologies 

 

 

Figure 2.47 The Sigmoid schema implements classes for a Gene Ontology representation.  The 
GeneOntologyComponent class (On left) has been implemented as a subclass of Reactant 
because the GO component most closely correlates to biological objects.  The 
GeneOntologyFunction (On right) has been implemented as a subclass of Simple BioReactions 
because of its close correlation to simple biological reaction processes.  The 
GeneOntologyProcess class (middle) has been implemented as a subclass of CompoundBio 
reactions because GO processes, which are composed of sets of GOFunctions, most closely 
parallel the complex biological processes represented by CompoundBio reactions.    

 Classes have been incorporated into the Sigmoid data structures to build 

compatibility with the Gene Ontologies Project (GO).   The GO project is intended to 
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unify a controlled-vocabulary representation of annotated gene and gene product 

attributes across species. In addition, the GO project provides a set of tools to access and 

process GO data.  The GO project provides ontology over three domains: 1) The Cellular 

Component domain represents cellular components or elements of cellular structures.  

Cellular components are not only (single or conglomerates) gene products, but the gene 

products existing within the context of a larger cellular structure thus establishing it being 

a component.   2) Molecular functions exist to represent molecular level activities of 

generally single gene products.  Gene product functions are what tasks the gene products 

perform or what roles they play within a cell.  Catalysis events and protein activities are 

included within this scope.  3) Biological processes in GO represent series of events that 

are composed of sets of GO molecular functions.   The GO definition states that a process 

should have a distinct beginning and end.  Also, processes can be composed of processes. 

 GO components most closely map to Reactants in the Sigmoid schema as they are 

biological objects and with discretion can be treated as Sigmoid Reactants.  Some care 

must be used because some GO components can be large, complicated structures.  For 

example a cell membrane is a potential GO component, that is a child to a cell, and a 

parent to cell membrane proteins in the GO hierarchy.  Sigmoid’s mathematical reaction 

equations are designed mostly for molecular biochemical reactions, so it is left to the 

expert user to either determine applicability or extend the computational features of the 

simulator to fit the context with which a GO component would be applied. GO functions 

which are molecular activities most closely resemble Simple reactions therefore have 

been implemented as a subclass of Simple BioReaction.  There are many protein 

activities available in the GO datasets that could be represented by the set of existing 
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Cellerator functions.  The GO processes have been set to inherit from the CompoundBio 

Reaction class as they consist of sets of GO functions just as CompoundBio Reactions 

consists of sets of BioReactions.  Again discretion must be applied by the expert user as 

some GO processes do not directly map to the simulation capabilities of xCellerator.  For 

example, a muscle fiber contraction is a potential GO process, which of course involves a 

network of biochemical reactions.   A fiber contraction has other process attributes such 

as spatial dynamics.  These dynamics within the context of the GO term could be the 

primary focus of the term.  As spatial modeling in Sigmoid is in its infancy, modeling 

considerations and development would have to be made to model a muscle fiber 

contraction.  None the less, the three GO categories of classification share enough 

commonalities with their positions within the schema that they can be of use for a 

modeling biologist. 

2.11.2 Spatial and Compartmental Modeling 

 We have added to Sigmoid a representation intended to support the development 

of compartmental pathway models.  This representation may be used for developmental 

modeling and simulation, or for the modeling of spatially extended systems more 

complex than a simple “well mixed” model of the locus of a pathway.  Although the 

representation is intended to be more comprehensive and flexible, a basic support class 

structure exists to produce models for the Cellzilla (www.xlr8r.info) modeling tool 

available with xCellerator.   
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Figure 2.48 Classes to support Spatial and Compartmental Models are located in the Model 
class diagram.  SpatialModel is a subclass of Model and inherits all Models’ attributes.  A 
Spatial model is composed of DimensionalCompartments (DCs) that possess sets of 
InternalNetworks and ExternalNetworks.  InternalNetworks are composed of sets of Reactants 
and Reactions that are contained within particular DCs.  ExternalNetworks have Reactants and 
Reactions that participate across DCs.  DCs have references for Catesian coordinates to 
incorporate spatial components of n dimensions to the model if necessary.  DCs have 
CompaortmentRelationshipPairs to specify relationship specificity between DCs.  Since Cellzilla 
utilizes indices for multi-compartmental reaction modeling, a set of Index, IndexNode and 
SparceArray classes are associated with DCs to reference DCs for simulation. 

 SpatialModel inherits all the class attributes of a model.  The main distinction is 

that it contains DimensionalCompartments.  The intention behind spatial models is to 

provide a framework to construct objects for the representation of biological structures, 

systems, and processes.  The classes associated with SpatialModel may be used to 
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construct geometric and multicompartmental biochemical representations for the 

SpatialModel. 

 DimensionalCompartments (DC) may be an abstract compartment or may have 

concrete spatial Cartesian coordinates associated with them.  Dimensional compartments 

were constructed to be of any number of dimensions, for flexibility.  DCs can consist of 

points, edges, surfaces, volumes and even potentially higher dimensional solids.  Each 

DC may possess an InternalNetwork of reactions and reactants.  The InternalNetwork 

reactions operate solely within a DimensionalCompartment.  Possessing an 

InternalNetwork is akin to having a self contained Sigmoid Model within the 

compartment.  Of course, independent DCs can have independent copies of the same 

InternalNetwork.  For instance, one could build an array of cells with each possessing an 

independent copy of an internal set of cellular reaction processes and associated reactant 

species.   

 An attribute of DimensionalCompartiments is that each DC may have multiple 

CompartmentRelationshipPairs (CRPs).  The CRPs are to serve as the framework for 

links and associations between DCs.  The “relationship” attribute in the CRP class is left 

as a string to allow for an open-ended representation.  We have defined some 

straightforward relationships that will be used in SpatialModels.  A “component” 

relationship serves to define possession for an object for building a geometrical hierarchy 

of possession.  For instance, let us assume we’re building a rectangular solid to represent 

a cell.   Each edge, surface and point within the spatial (geometric) construction of the 

object will be related to the cell (rectangular solid) as a “component” of that cell.   The 

component relationship should allow us to construct a hierarchy of spatial objects.   
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Another type of “relationship” will be a “neighbor” relationship to indicate adjacency 

between neighboring DCs.  Neighbor relationships will be useful for modeling 

biochemical phenomena such as diffusion.    Let us extend our example of a cell to 

include several internal three-dimensional DCs to represent the cytosol of the cell.  

Diffusion inside the cell could be modeled by establishing neighbor relationships 

between these internal cellular compartments.  Moreover, the neighbor relationship 

between adjacent cells could also serve to model intracellular diffusion across an array of 

cells.  Also, “boundary” relationships will indicate a junction between neighboring DCs 

where potential biochemical interactions can take place.  A hypothetical biological 

application of this would be to establish the exterior plane surfaces of our hypothetical 

cell as boundaries where intracellular signaling could take place.  Every CRP has a 

“matrix” attribute which references a SparseMatrix to store references that specify 

adjacency.   Each CRP also possesses an ExternalNetwork (EN) attribute field, although 

not all relationships between compartments, for example “component” relationships, will 

have an associated EN.    

 ExternalNetworks consist of a network of reactions each of which spans more 

than one compartment.  Biological processes such as transport, diffusion, osmosis, and 

signaling can be expressed with ExternalNetworks.  As with InternalNetworks, each 

ExternalNetwork will be attributed with its own corresponding set of Reactions and 

Reactants. 

 The InternalNetwork and ExternalNetwork theme mirrors the Cellzilla approach 

to model multicompartmental biochemical reaction networks.  Since Sigmoid has built 

considerable support for the xCellerator platform, supporting Cellzilla, an xCellerator 
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extension, is a logical choice in creating a multicompartmental simulator.  Cellzilla uses 

indices on the symbolic reactants of xCellerator to represent compartment identities.  In 

order to implement multiple compartments and reaction networks across compartments in 

Sigmoid, we required a scheme of implementing indices for our Reactant and Reaction 

classes. 

 

Figure 2.49 DecoratedReactants contain a Reactant and a DecorationTypePair.  The 
DecorationTypePair class attribute “decoration” is used to store indices to be processed for 
Cellzilla output.  The “decorationType” attribute indicates the nature of the decoration for 
instance a “neighbor”.  The “decorationType2” attribute can establish a reference to a 
DimensionalCompartment. 

 In order to represent compartment indices for reactants, we constructed a 

DecoratedReactant class that contains a Reactant and a DecorationTypePair (DTP).    The 

DecorationTypePair class has a “decoration” field that can be used to store index 

variables that are passed to Cellzilla and indicate which compartment a Reactant is in.  

The “decorationType” attribute of DTP stores the nature (or relationship) of the 

decoration.   An example would be a “neighbor” relationship for adjacent compartments.   

DecoratedReactants are used by the BiReplicatedReaction class to implement 

intercompartmental reactions. 
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Figure 2.50  The ReplicatedReaction and BireplicatedReactions were created to handle indices 
for multicompartmental SpatialModels. The “sharedDecorations” attributes are used to store 
indices for Cellzilla that correspond to compartments.  For instance the “sharedDecoration” 
attributes of a BireplicatedReaction could be decorated with indices “i” and “j”.   The 
BireplicatedReactions’ associated MathReaction could implement diffusion with a 
DecoratedReactant Rea[i] as a substrate getting converted to product Rea[j].  The change of 
index indicates a change in compartment. 

 The ReplicatedReaction and BiReplicatedReaction classed were designed to 

implement indices for multicompartment Reactions.   A BireplicatedReaction contains a 

Reaction and has fields for “sharedDecorations” that indicate the indexes for that 

particular reaction.  The Reaction should possess DecoratedReactants as participants.  

The “sharedDecoration” fields store index variables that are to be passed to Cellzilla.   
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For instance the “sharedDecoration” attributes of a BireplicatedReaction could be 

decorated with indices “i” and “j”.   The BireplicatedReactions’ associated MathReaction 

could implement diffusion with a DecoratedReactant Rea[i] as a substrate getting 

converted to product Rea[j].  The change of index indicates a change in compartment. 

 We have coded our first SpatialModel, the Shapiro_2008_WUS model, using the 

Sigmoid API.  Shapiro_2008_WUS is discussed in Section 4.1.7. 

2.12  Other Systems 

 Other packages, such as VCell, Sigpath, and JDesigner for example, have 

functionalities that are similar to some of the features contained in Sigmoid. One notable 

example that shares similarity with the Sigmoid system is the Biomodels database 

(www.biomodels.net).  The Biomodels database is maintained by the European 

Bioinformatics Institute (EBI).  EBI is part of the part of the European Molecular Biology 

Laboratory (EMBL).  Biomodels is an online database with a repository of SBML 

models, support for Gene Ontologies, web based visualization of models, and possess 

Mathematica simulation support for their SBML based models through MathSBML. 

 While it is sound to have a number of parallel efforts across multiple research 

groups, there are several features of the Sigmoid architecture that, in aggregate, position 

it uniquely within realm of the currently available systems biology software systems. 

Sigmoid introduced the web services framework [Cheng et al.2005] to create a truly 

distributed system. This flexible framework offers powerful modularity that, in 

conjunction with the generative nature of the Sigmoid coding cycle, offers a significantly 

reduced development time for integration of new components and data structures. Also, 
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the OJB object relational bridge offers the advantages of oriented programming in 

conjunction with a relational database. Sigmoid capitalizes on the robust mathematical 

software tools and problem solving environment that Mathematica offers (along with the 

xCellerator/kMech packages designed to facilitate biological modeling via automated 

equation generation which other systems lack) while remaining open to other simulation 

and analysis tools.  Sigmoid defines its own set of biologically relevant classes as a 

foundation for its database and modeling capabilities. These classes are not constrained 

by conforming to exterior modeling formats such as SBML.  The synthesis of these 

features yields a flexible scalable architecture that not only allows for manageable, cost 

effective, adoption of new system components, but may open the ability to play within 

yet larger bioinformatics frameworks. 

2.13 Conclusion 

We have successfully extended the Sigmoid schema to implement an object-oriented 

representation of parameters and parameter sets that work in conjunction with a set of 

MathematicalReaction classes to produce, when translated by the middleware, executable 

xCellerator notebooks.  We have expanded the Reactant hierarchy to provide a useful 

variety of biologically relevant objects that participate in biological processes across 

several levels of scale and complexity. We have extended and reorganized the variety of 

supported Reaction classes into sub-domains of Mathematical and Biological Reactions.  

The new hierarchy of Reactions allows for a flexible abstraction between the 

representation of biological processes and the mathematical functions that are used to 
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simulate them.  There are new KnowledgeSource classes that allow us to store model 

associated files and reference elements of external databases. 

We have added schema support for Gene Ontologies in the form of a GOComponent 

class in the Reactant hierarchy, and the GOFunction and GOProcess Reactions in the 

Reaction hierarchy.  These new classes allow us to support and incorporate specialized 

ontological external datasets (see section 4.2.4) into Sigmoid. 

Finally, we’ve constructed the SpatialModel and associated classes that allow for the 

construction of geometric and compartmental objects to be used in Sigmoid.   

Multicompartmental models can be constructed that have internal reaction networks and 

intercompartmental reaction networks.  As a first step for compatibility with Cellzilla, 

these internal and external networks can be sent through a next version of the middleware 

for simulation in Cellzilla.  
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Chapter 3. Enzyme Mechanism Representation: SigMech 

 The set of currently available kMech reaction mechanisms has grown from just a 

few initial reactions to a large array of descriptive enzymatic mechanisms.   Over the 

years, 35 enzymatic reaction mechanisms have been explicitly created.  One version of 

the enzymatic class hierarchy of the schema is shown for illustrative purposes in Figure 

3.1.   

 In order to function within the Sigmoid framework, a request for a  kMech 

reaction case would yield a requirement to process a schema, generate the Sigmoid  Java 

API classes, instantiate a new postgreSQL database, repopulate the database with model 

code, set up a development environment for the particular schema release within Eclipse 

(or equivalent), update the middleware Sigmoid-to-Cellerator code with the new kMech 

translation, retask SME with the new Java API and test all these steps.  This development 

cycle, although designed for “rapid” development, still requires considerable personnel 

resources.  

 Common motifs can be seen in the Compound Enzyme reactions that express how 

biologists approach the construction of these mechanisms.  For instance, a biologist might 

first describe and enzymatic reaction in terms of how many substrates and products it has.  

For a simple case we will construct a reaction with two substrates and two products. This 

is commonly called a BiBi reaction.  The convention for this nomenclature follows uni, 

bi, ter, tet etc. This is typically how a reaction is first described.  The convention has 

expanded to describing reactions as UniBi, BiUni, TerTer, and so forth.  As more 

concepts are added to visualize or model a potential reaction, the more parameters of 



88 
 

description will apply.  For instance the reaction might be of type ping-pong (described 

later in this chapter.)  We will show that since these enzymatic reaction mechanisms are 

built upon concepts, their descriptors can be identified as a set of motifs. 

 

 

Figure 3.1 The Enzymatic MathematicalReactions section of  the Sigmoid Schema consists of 
compound MathReactions that can be represented more compactly.  The three reactions in 
purple on the right are xCellerator compound enzyme reactions 
   

 We have developed a parameterized input notation for enzymatic mechanisms 

that encompasses the motifs seen in the mathematical enzymatic reactions section of the 

Sigmoid schema.  In addition, a set of computational processes should produce the 

requisite set of sub-reactions that compose the corresponding mechanism.  The 

parameterization and set of corresponding processes to generate mechanism reactions 

should achieve a few things.   First it should most accurately represent the concepts with 

which a biologist constructs his enzymatic model and reflect a simple syntactic 

compatibility to his/her description.  That way the selection of a reaction mechanism will 
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be straight forward for the modeling biologist.   Second, a general form, the 

”parameterized representation”,  and a corresponding set of reaction generation 

procedures reduces coding iterations in the development cycle of our software system.  

The development effort savings should prove considerable.  In addition, the ever growing 

number of classes required to represent enzymatic mechanisms in the schema can be 

reduced to a more elegant representation, as demonstrated in Figure 3.2. The new classes 

effectively solve the problem of the representation, within the scope of certain parameters 

that will be discussed below, thus eliminating the need for frequent updates.  Such a 

generalization also increases the level of abstraction and allows us to focus our efforts to 

expand the representation on the motif level.   There may be more or new patterns of 

biological relevance that may extend this approach. 

 

Figure 3.2 The new KMech representation for enzymatic mechanisms.  This set of data classes 
should encompass all previous kMech compound reaction classes and many new cases of kMech 
reactions that follow previous patterns. 
  

 A set of motifs that can be used as parameters of an input notation for 

procedurally generating a family (or set) of reaction mechanisms will be described.  All 

of the existing kMech reactions mechanisms and correlate Sigmoid schema 
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representations thereof (as of this writing) are encompassed by this set.  We will name 

this parameterized set of inputs, data structure, and corresponding set of Reaction 

generation procedures as SigMech.  “SigMech” is a contraction of Sigmoid enzyme 

Mechanism.  The data classes currently are termed with kMech terms.  This reflects the 

fact that these classes were constructed to encompass all the kMech classes.  The utility 

as a whole, providing additional functionality, will be called SigMech. The SigMech 

utility, including all the procedures it uses to generate reaction mechanisms, has been 

written with the Java language using the Sigmoid API. 

 We can construct an enzyme mechanism with the SigMech utility by 

implementing procedures for an enzymatic mechanism in three steps.   First we should 

look at how we wish to add substrates to an enzyme to form an enzyme substrate 

complex.  Second, we should determine how these bound substrates are converted to 

product.  Third, we should determine how products are to be released from complex.   

3.1  Addition Strategy 

 The patterns apparent in the kMech utility classes in the schema fall into three 

categories.  The three categories of reactant addition to enzymatically bound complex are 

full addition, an ordered addition or, random addition strategy.    

 The first motif we will address is the way in which the enzyme binds its substrates 

into a complex. From here, depending on the context, the pattern with which substrates 

are added to complex will be either referred to as an addition “strategy” in cases where 

we’re describing the manner in which we’re constructing the elementary reaction 
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equations, or an addition “phase” when referring to that strategy as a portion of the entire 

reaction mechanism.   

   Consideration of previous kMech enzyme mechanisms revealed the three distinct 

patterns of substrate enzyme complex formation that were just introduced.  Parallel and 

independent research also revealed these patterns of addition and applied them to an 

oxidation reduction software supplement to kMech notebooks called RedoxMech [Chang 

2011].  It appears that these patterns weren’t implemented in any form of a release phase 

or conversion strategy (to be introduced in Sections 3.2 and 3.3) in RedoxMech. 

 These patterns or strategies developed for implementation in SigMech will be 

detailed below in a kMech notation to illustrate the elementary reactions:  

3.1.1 Full Addition 
 A full addition strategy indicates that all available substrate types are bound by 

the enzyme in one reaction step.  This motif will be termed “full addition”.  For this 

example the kMech notation [Yang 2005] for a BiBi reaction would appear as: 

,_ሾሼS1ݖ݊ܧ S2_ሽ ⇄ ሼP1_, P2_ሽ
୉୬_

, BiBiሾkf_, kr_, k_ሿሿ ≔ ሼሼS1 ൅ S2 ൅ En

⇄ ሼNCሾEn, S1, S2ሿ, kf, krሽ, ሼNCሾEn, S1, S2ሿ → En ൅ P1 ൅ P2, ݇ሽሽ; 

The kMech notation NC[En,a,b] indicates an enzyme complexed with a and  b.  kf, kr and 

k are rate parameters.   

The addition phase of this reaction is: 

ሼNCሾEn, S1, S2ሿ, kf, krሽ 

where all available substrates are bound in one reaction. 

If this were a TerBi reaction with an input such as the following, 

,_ሾሼS1ݖ݊ܧ S2_, S3_ሽ ⇄ ሼP1_, P2_ሽ
୉୬_

, TerBiሾkf_, kr_, k_ሿሿ: ൌ 
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Then the addition reaction (product generation omitted) would appear as 

ሼሼS1 ൅ S2 ൅ ܵ3 ൅ En ⇄ NCሾEn, S1, S2, S3ሿ, kf, krሽ 

For any number n of substrates the full addition pattern of substrates translates to: 

,ሾ൛S1,ୗଶݖ݊ܧ . , . , Sn ൟ ⇄ ൛P1,୔ଶ ൟ

୉୬

, NBiሾkf_, kr_, k_ሿሿ: ൌ 

ሼሼS1 ൅ S2൅ . . . ൅ܵ݊ ൅  En ⇄ NCሾEn, S1, S2, . , . , Snሿ, kf, krሽ, 

 

3.1.2 Sequential Addition 
 Sequential (ordered) addition is the case in which the enzyme binds a particular 

substrate followed by sequentially specific substrates until all available substrates are 

bound. 

A BiBi example with ordered addition (conversion and release reactions omitted) would 

appear as: 

,_ሾሼS1ݖ݊ܧ S2_ሽ ⇄ ሼP1_, P2_ሽ
୉୬

, OrderedBiBiሾkf1_, kr1_, kf2_, kr2_, k_ሿሿ ≔ 

ሼሼS1 ൅ En ⇄ NCሾEn, S1ሿ, kf1, kr1ሽ, 

ሼS2 ൅ NCሾEn, S1ሿ ⇄ NCሾEn, S1, S2ሿ, kf2, kr2ሽ, 

  

The number of reactions necessary to fully complex all the substrates sequentially with 

the enzyme will be equal to the number of substrates.  The sequential addition yields n 

number of reactions for n number of substrates.   

Expanding out the example for n substrates, 

,_ሾሼS1ݖ݊ܧ S2_, . , Snሽ ⇄ ሼP1_, P2_ ሽ
୉୬

, 

OrderedAdditionNBiሾkf1_, kr1_, kf2_, kr2_, k_. . _, . , kfn_, krn_ ሿሿ ≔ 
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ሼሼS1 ൅ En ⇄ NCሾEn, S1ሿ, kf1, kr1ሽ, 

ሼS2 ൅ NCሾEn, S1ሿ ⇄ NCሾEn, S1, S2ሿ, kf2, kr2ሽ, 

ሼS. . ൅NCሾEn, S1, S2ሿ ⇄ NCሾEn, S1, S2, S. . ሿ, kf. . , kr. . ሽ,… 

ሼSn ൅ NCሾEn, S1, S2, S… ሿ ⇄ NCሾEn, S1, S2, S. . . , Snሿ, kfn, krnሽ   

3.1.3 Random Addition  
 In the case of a random strategy, the ordering of substrates is disregarded.  The 

enzyme will bind any available substrate for the first subreaction.  From that state, the 

enzyme/substrate complex will randomly choose an available substrate progressively 

until all substrates are bound.      In the example below we have an example of a kMech 

reaction expressed by xCellerator input notation and kMech expansion. 

 

EnzሾሼS1_, S2_, S3_ሽ ⇄ ሼP1_, P2_, P3_ሽ
୉୬

, RandomTerTerሾkf1_, kr1_, kf2_, kr2_, kf3_, kr3_, k_ሿሿ
≔   ሼ 

          ሼS1 ൅ En ⇄ NCሾEn, S1ሿ, kf1, kr1ሽ, 
ሼS2 ൅ En ⇄ NCሾEn, S2ሿ, kf2, kr2ሽ, 
ሼS3 ൅ En ⇄ NCሾEn, S3ሿ, kf3, kr3ሽ, 

ሼS1 ൅ NCሾEn, S2ሿ ⇄ NCሾEn, S1, S2ሿ, kf1, kr1ሽ, 
ሼS1 ൅ NCሾEn, S3ሿ ⇄ NCሾEn, S1, S3ሿ, kf1, kr1ሽ, 
ሼS2 ൅ NCሾEn, S1ሿ ⇄ NCሾEn, S1, S2ሿ, kf2, kr2ሽ, 
ሼS2 ൅ NCሾEn, S3ሿ ⇄ NCሾEn, S2, S3ሿ, kf2, kr2ሽ, 
ሼS3 ൅ NCሾEn, S1ሿ ⇄ NCሾEn, S1, S3ሿ, kf3, kr3ሽ, 
ሼS3 ൅ NCሾEn, S2ሿ ⇄ NCሾEn, S2, S3ሿ, kf3, kr3ሽ, 

ሼS1 ൅ NCሾEn, S2, S3ሿ ⇄ NCሾEn, S1, S2, S3ሿ, kf1, kr1ሽ, 
ሼS2 ൅ NCሾEn, S1, S3ሿ ⇄ NCሾEn, S1, S2, S3ሿ, kf2, kr2ሽ, 
ሼS3 ൅ NCሾEn, S1, S2ሿ ⇄ NCሾEn, S1, S2, S3ሿ, kf3, kr3ሽሽ  

This example is of a TerTer “Random Addition” reaction case added to kMech [Najdi 

2010] that generated a support request for Sigmoid. (As we are looking at only the 

addition phase for this compound reaction, the reactions that generate product have been 

omitted.)  
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The “random addition” strategy can be implemented for any number of substrates.  Of 

course the requisite number of intermediate complexes and reaction steps quickly grows 

with the number of substrates. The number of reactions generated by a set of substrates 

follows the sum of the coefficients of the binomial expansion. 

3.2 Conversion Strategy 

 The next motif we’ll define is how an enzyme converts substrates into product 

form.  The predominant form we’ve witnessed in the models we’ve built is the classic kcat 

type conversion where conversion of the complexed substrate and subsequent release of 

product are modeled as a one rate step.   This has expanded to a bidirectional step and 

then a two-step bidirectional process.   The general form and strategy we’re adopting for 

SigMech separates the release process of products from the conversion phase of 

complexed substrate to product and will be termed the “conversion” phase or strategy.  

Two forms of conversion have been implemented. 

3.2.1 Instant Conversion 
  The first form of conversion is an instant conversion where enzymatically-

complexed substrates are the entry point to the release phase; this is analogous to the kcat 

example or the TwoStage catalytic reaction in the schema.   

The kMech notation would appear as: 

EnzሾሼS1 ሽ ⇄ ሼP1 ሽ
୉୬

, UniUniICሾkf_, kr_, kf1_, kr1_ሿሿ ≔ 

ሼሼS1 ൅ En ⇄ NCሾEn, S1ሿ, kf, krሽ, 

ሼNCሾEn, ܵ1ሿ ⇄ En ൅ P1, ݂݇1,  ;1ሽሽݎ݇
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The last reaction equation in the example above converts the enzyme/substrate complex 

to free enzyme and product in one step. 

The conversion phase can be modeled independently of number of substrates and 

products independently, translating to: 

EnzሾሼS1_, S2_. . , Sn_ሽ ⇄ ሼP1_, P2_, . . , Pn_ሽ
୉୬

,MultiMultiICሾkf_, kr_, kf1_, kr1_ሿሿ ≔ 

ሼሼS1 ൅ S2൅. . ൅ܵ݊ ൅ En ⇄ NCሾEn, S1, S2, . . Snሿ, kf, krሽ, 

ሼNCሾEn, S1, S2, . . Snሿ ⇄ En ൅ P1 ൅ P2൅. . ൅Pn, ݂݇1,  ;1ሽሽݎ݇

3.2.2 OneStep Conversion 
 The next form, adds a reaction step that converts complexed substrate into 

enzymatically bound product.  This form is analogous to the ThreeStageCatalytic reaction 

in the schema.  If written in kMech notation, the ThreeStageCatalytic reaction would 

appear as: 

EnzሾሼS1 ሽ ⇄ ሼP1 ሽ
୉୬

, UniUniOSCሾkf_, kr_, kf1_, kr1_, kf2, kr2ሿሿ ≔ 

ሼሼS1 ൅ En ⇄ NCሾEn, S1ሿ, kf, krሽ, 

ሼሼNCሾEn, S1ሿ ⇄ NCሾEn, P1ሿ, kf2, kr2ሽ, 

ሼNCሾEn, ܲ1ሿ ⇄ En ൅ P1, ݂݇1,  ;1ሽሽݎ݇

OneStep Conversions can be modeled independently of the number of substrates and 

products independently translating to: 

EnzሾሼS1_, S2_. . , Sn_ሽ ⇄ ሼP1_, P2_, . . , Pn_ሽ
୉୬

,MultiMultiOSCሾkf_, kr_, kf1_, kr1_ሿሿ ≔ 

ሼሼS1 ൅ S2൅. . ൅ܵ݊ ൅ En ⇄ NCሾEn, S1, S2, . . Snሿ, kf, krሽ, 

ሼNCሾEn, S1, S2, . . Snሿ ⇄ NCሾEn, P1, P2, . . Pnሿ, kf, krሽ, 

ሼNCሾEn, P1, P2, . . Pnሿ ⇄ En ൅ P1 ൅ P2 ൅⋯൅ Pn, ݂݇1,  ;1ሽሽݎ݇
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3.3 Release Strategy 

 Just as there is a strategy for addition of substrates into complex, there can be a 

strategy for release of products from intermediate complex.  The same algorithms that we 

use for addition of substrates can be applied to the release of products.    

3.3.1 Full Release 
“Full release” names the case where all products are released in one reaction step.   

The [Yang 2005] BiBi reaction is an example of a full release reaction where all products 

are released in one step. 

,_ሾሼS1ݖ݊ܧ S2_ሽ ⇄ ሼP1_, P2_ሽ
୉୬_

, BiBiሾkf_, kr_, k_ሿሿ ≔ ሼሼS1 ൅ S2 ൅ En

⇄ NCሾEn, S1, S2ሿ, kf, krሽ, ሼNCሾEn, S1, S2ሿ → En ൅ P1 ൅ P2, ݇ሽሽ; 

A SigMech implementation general form with bidirectional reactions for the release 

phase would appear as: 

ሼNCሾEn, S1, S2, . , . , Snሿ ⇄ P1 ൅ P2൅ . . . ൅ܲ݊ ൅  En, kcf, kcrሽ. 

The previous equation assumes an instant conversion.  This assumption should be 

relieved to become independent of the conversion phase.  SP indicates an unknown 

(either substrate or product.) Full release strategies translate to:  

ሼNCሾEn, SP1, SP2, . , . , SPnሿ ⇄ P1 ൅ P2൅ . . . ൅ܲ݊ ൅  En, kcf, kcrሽ. 

3.3.2 Sequential Release 
Sequential release names the case in which products are assumed to release one after 

another in a predetermined order. With addition and conversion phase reactions omitted, 

sequential release may be expanded into more elementary reactions as follows:  

EnzሾሼS1_, S2_, . , Snሽ ⇄ ሼP1_, P2_, . , Pnሽ
୉୬

, 
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OrderedReleaseሾkf1_, kr1_, kf2_, kr2_, kcf1_. . , kcr1_. . , kcfn_, kcrn_ ሿሿ ≔ 

ሼሼNCሾEn, SP1, SP2, . , . , SPnሿ ⇄ P1 ൅  NCሾEn, SP2, . , . , SPnሿ, kcf1, kcr1ሽ 

ሼ NCሾEn, SP2, . , . , SPnሿ ⇄ P2 ൅  NCሾEn, SP . . , SPnሿ, kcf2, kcfr2ሽ 

ሼ NCሾEn, SP . . , SPnሿ ⇄ P. . ൅ NCሾEn, SPnሿ, kcf. . , kcr. . ሽ 

ሼNCሾEn, SPnሿ ⇄ Pn ൅  En, , kcfn, kcrnሽ. 

3.3.3 Random Release  
 Random release refers to the case in which products may disassociate from 

complex in any order.  The algorithm for generating the reactions is the same as it is for 

random addition, except that the reaction equations are reversed and products are 

generated from the intermediate complex. 

 The strategies for addition, conversion and release can be independent of one 

another.  This is one characteristic that leads to representing many potential enzymatic 

process mechanisms with a concise parameterized input. 

3.4 Ping Pong Pattern 

  Another case for enzymatic process exists: the ping pong mechanism.  Enzymes 

that operate with ping pong mechanisms have chemically modified intermediate states.  

A particular substrate when converted to product leaves the enzyme chemically modified.  

This modified intermediate enzyme state is then able, in turn, to bind to a different 

substrate. 

 A standard BiBi ping pong reaction is illustrated in Figure 3.3.   Here a substrate 

is bound by free enzyme.  This substrate is converted to product and subsequently 

dissociates from the enzyme leaving the enzyme in a different state.  This alternate state 
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is required to bind a second substrate that in turn is catalyzed into product and free 

enzyme. 

 The ping pong pattern can be applied to any number of substrates so long as there 

is an intermediate for each additional substrate.   

 

Figure 3.3 A BiBi Ping Pong kMech Reaction. a: Cellerator input notation is shown below the 
reaction cartoon.  The enzyme has two states, free enzyme and chemically modified. The kMech 
compound reaction shown in a) is translated to four sub-reactions shown in b:  1) The enzyme 
binds to substrate S1.  2)  Substrate is converted to product P1 and the enzyme is modified to a 
state where it can bind S2.  3) The modified enzyme binds S2.  4) S2 is converted to product and 
the enzyme is returned to its original state. 
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3.5 Inhibition Models 

There are currently three inhibition models supported by kMech [Yang 2005].  The 

equations below are xCellerator definitions derivative of the kMech implementation with 

a slight difference.  The difference is that the conversion of substrate-enzyme complex to 

product in kMech appears as a unidirectional catalytic reaction.  SigMech, in order to 

fully generalize, currently uses bidirectional reactions for all mechanism sub-reactions.  

The unidirectional case can be recovered by setting the reverse reaction rate to zero.  The 

implementation of SigMech allows for multiple inhibitors to be assigned to a particular 

enzymatic reaction within the schema, and in the GUI.  The previous schema 

representation suffered logistically from having to represent differing permutations of 

reaction inhibitions.  The schema representation shown in Figure 3.2 was built to store 

these forms of inhibition.  The SigMech implementation, using the Sigmoid Java API, 

reconstructs these patterns of inhibition with bidirectional mass action reactions. 

 

3.5.1 Competitive inhibition: 
 The case of competitive inhibition exists where an enzyme is bound by an 

inhibitor, forming an enzyme inhibitor complex, thus preventing substrate from biding to 

the enzyme. This process consists of one additional reaction added to an enzyme 

mechanism.  This particular case is a SigMech adaptation of the kMech version of the 

reaction equations.  The difference is that bidirectional rates are used for the conversion 

of substrate-enzyme complex to product and free enzyme.  The reaction equations in 

kMech notation are as follows: 
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EnzሾሼS ሽ ⇄ ሼP ሽ
୉୬

, UniUniሾkf_, kr_, kc1_, kcr1ሿ, ,_CIሾinhܯܵ kϐi_, kri_ሿሿ ≔ 

ሼሼܵ ൅ En ⇄ NCሾܵ, Enሿ, kf, krሽ, 

ሼNCሾܵ, Enሿ ⇄ En ൅ ܲ, ݇ܿ1,    ,2ሽݎܿ݇

ሼEn ൅ Inh ⇄ NCሾEn, Inhሿ, kϐi, kriሽሽ;    

3.5.2 Uncompetitive inhibition: 
 This case exists where the substrate-enzyme complex is targeted and bound by an 

inhibitor thus preventing conversion or release of product. 

EnzሾሼS ሽ ⇄ ሼP ሽ
୉୬

, UniUniሾkf_, kr_, kc1_, kcr1ሿ, ,_UCIሾinhܯܵ kϐi_, kri_ሿሿ ≔ 

ሼሼܵ ൅ En ⇄ NCሾܵ, Enሿ, kf, krሽ, 

ሼNCሾܵ, Enሿ ⇄ En ൅ ܲ, ݇ܿ1,  ,2ሽݎܿ݇

ሼNCሾܵ, Enሿ ൅ Inh ⇄ NCሾܵ, En, Inhሿ, kϐi, kriሽሽ; 

3.5.3 Noncompetitive inhibition: 
  An assumption is made that the inhibitor will not interfere with substrate binding 

of the enzyme.  This means the substrate can still be bound by the Enzyme-Inhibitor 

complex.  This generates two possible reaction paths.  Either the free enzyme can be 

bound by the inhibitor and then binds the substrate forming  the 

 substrate-enzyme-inhibitor complex, or the substrate-enzyme complex can be bound by 

the inhibitor forming a substrate-enzyme-inhibitor complex.  The following is an 

example, in kMech notation, of noncompetitive inhibition: 

EnzሾሼS ሽ ⇄ ሼP ሽ
୉୬

, UniUniሾkf_, kr_, kc1_, kcr1ሿ, NCIሾinh_, kϐi_, kri_ሿሿ ≔ 

ሼሼܵ ൅ En ⇄ NCሾܵ, Enሿ, kf, krሽ, 

ሼNCሾܵ, Enሿ ⇄ En ൅ ܲ, ݇ܿ1,  ,1ሽݎ݇
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ሼEn ൅ Inh ⇄ NCሾEn, Inhሿ, kϐi, kriሽ, 

ሼNCሾܵ, Enሿ ൅ Inh ⇄ NCሾܵ, En, Inhሿ, kϐi, kriሽ, 

ሼܵ ൅ NCሾEn, Inhሿ ⇄ NCሾܵ, En, Inhሿ, kf, krሽሽ; 

 

Noncompetitive inhibition possesses a residual reaction rate for enzyme-inhibitor 

complexes. In some instances, bound enzyme complexes can still have some residual 

activity to convert substrates to product.  The kMech reaction notation for 

noncompetitive inhibition (as implemented in SigMech) with a residual rate is as follows: 

ሾሼS_ሽܼܰܧ ⇄ ሼP_ሽ
୉୬_

, UniUniሾkf_, kr_, kc1_, kcr1_ሿ, ,_NCIሾinhܯܵ kϐi_, kri_, residualRate_, rRrሿሿ:

ൌ ሼሼܵ ൅ En ⇄ NCሾܵ, Enሿ, kf, krሽ, ሼNCሾܵ, Enሿ ⇄ En ൅ ܲ, ݇, ,ሽݎ݇ ሼEn ൅ Inh

⇄ NCሾEn, Inhሿ, kϐi, kriሽ, ሼNCሾܵ, Enሿ ൅ Inh ⇄ NCሾܵ, En, Inhሿ, kϐi, kriሽ, ሼܵ ൅ NCሾEn, Inhሿ

⇄ NCሾܵ, En, Inhሿ, kf, krሽ, ሼNCሾܵ, En, Inhሿ ⇄ NCሾEn, Inhሿ ൅ ܲ, residualRate ∗ kc1, rRrሽሽ; 

 

The enzyme Inhibitor complex may still bind its’ substrate and release a product in two 

respective reaction steps.  The respective residual rate is a fraction of the base enzymatic 

rate for this reaction. 

3.6 Parameter Summary 

 In summary, the entire set of kMech instances (together with a few xCellerator 

reactions) can be summarized by a set of specified input parameters. 

These parameters are: 

A vector of Substrates [] : [Uni, Bi , Ter, Tet, ...] 

A vector of Products []: [Uni, Bi , Ter, Tet, ...] 
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AdditionStrategy: [Full, Ordered, Random] 

ConversionStrategy: [Instant, One Step] 

ReleaseStrategy: [Full, Ordered, Random] 

PingPongCase: [Enzyme Intermediates] (This condition reduces the addition and release 

strategies to a specific ordered case). 

Inhibition Model: [Competitive, NonCompetitive, Uncompetitive] 

These options sweep out a large cross-product space of reaction types. 

 A biologist might describe a reaction as follows: 

“We have an enzymatic BiBi reaction with random addition, ordered release and a 

residual enzyme activity of the S1E complex.   Also, we have competitive inhibition for 

I1 and non competitive inhibition for I2”.  This can be notated as parameterized reaction, 

as follows [Bi, Bi, randomAddition[rates], orderedRelease,[rates][CI, Inhibitor, 

[rates]][NCI, Inhibitor, [rates]]]  From this description the subreactions can be 

algorithmically generated from parameterized reaction notation like the following:  

  [[subs[int], prods[int], addStrat[String], convertStrat[String],   

  releaseStrat[String],[Inhibitions[Inhibitor, target, [kf, kr]]]. 

 This representation includes the conversion phase.  The representation provides a 

data framework and with a set of procedures we can generate a biological reaction 

network. Each BiologicalReaction in the network will have a corresponding 

MathematicalReaction.   In version 1.0 of SigMech, Mass action 

BidirectionalMathematical reactions are constructed to provide kinetics for simulation.  

Ultimately, the mapping between the BiologicalReaction network and 

MathematicalReactions should be flexible and allow for any relevant 
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MathematicalReaction (or set of reactions) to be associated with a particular biological 

sub-reaction of the mechanism. The representation below is close to conforming to 

regular expression notation.  It should serve as an input notation that is to be parsed to 

generate the mechanism. 

[ 
 [   
  subs[ [substrate, kf, kr]*], prods[ [product, kf, kr]*]   
 ],  
 [  
  PingPong[ [enzymeIntermediates]* | 
  [ 
   AddStrat [ full |ordered | random ], ReleaseStrat[ full | ordered | random ]  
  ], 
 [ 
  ConversionStrat[ instant | oneStep | multistep, [kf, kr] ] 
  ], 
 [Inhibitions[inhibitor, target, [ competitive | nonCompetitive 
[ResidualRate[complex, substrate,  product, [residualRate]]*, kf, kr] | uncompetitive ], 
[kf, kr]]*  
] 
Capitalization indicates a method to be run.  Uncapitalized entities are variables .  In all 

cases, Capitalized words are procedures that generate reactions. An asterisk (*) indicates  

a zero-to-many relationship.  The pipe symbol ( | ) specifies an OR input condition.  The 

variables subs, prods and enzymeIntermediates should be stored in the form of ordered 

lists. 

3.7 User Interface: 

 The SigMech user interface has been written in Java and may be run as a 

standalone application or accessed from within SME by a button on the far top left of the 

SME control panel as seen in Figure 3.4.   After a suitable enzyme mechanism has been 

designed, the corresponding reaction network may be viewed in the SME network view 
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panel by pressing the “View Enzyme Mechanism” button just to the right, also shown in 

Figure 3.4. 

 

Figure 3.4 The access buttons for SigMech from SME appear on the left of the taskbar.  The 
button on the far left opens the SigMech utility.  The button to the right displays the enzyme 
mechanism once it has been generated. 
  

3.7.1 Accessing SigMech from SME 
 Currently the user interface for SigMech, shown in Figure 3.5, consists of a 

primary single user window designed to take in all the respective parameters necessary to 

produce an enzyme mechanism.  There are four addition panels, four drop down menus, 

and access buttons for mechanism and enzyme attributes.  The panels from left to right 

are: the substrate list, the product list, the inhibitor list and the enzyme intermediate list.  

Under each list are addition and removal buttons.  A new reactant can be instantiated by 

pressing the respective addition button.  Version 1.0 queries for just a reactant name, but 

a next version could provide access to more detailed reactant specifications. The inhibitor 
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addition process may query for inhibitor target information depending on the inhibition 

type.  The Enzyme Intermediates list is tied to the use of PingPong reaction types.   The 

console output should give an error message either when intermediates are present and 

PingPong is turned off, or when ping pong is on but there are no intermediates specified.  

Version 1.0 does not enforce these rules on generation of the mechanism.   The 

“Mechanism” button is used to change the mechanism name.  The “Enzyme” button does 

the same for the enzyme name. (The plan is for subsequent versions to have more 

detailed access to the enzyme’s Sigmoid reactant attributes.) There is a button labeled 

“Report” at the bottom designed to produce console feedback on the current mechanism 

configuration and a button labeled “Generate” (bottom right) that instantiates all 

respective Sigmoid reactants and reactions for the attributes currently specified in the 

SigMech interface.  If the console is active, Generate also calls the model emitter class to 

report output of the entire mechanism model.  Typically once a mechanism has been 

designed, it can be viewed in the console as “Model emitter” output or the “View 

Enzyme Mechanism” button in the main interface can be pressed in SME to view the 

reactions in the SME network view panel. 
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Figure 3.5 The addition strategy selection menu appears at the far left bottom of the UI below 
the list of participating substrates.  Three addition strategies are available, Full Addition, 
Random Addition or Sequential Addition. 
 

3.7.2 Drop down Menus 
 There are drop down menus available to select the strategies for building the 

enzyme mechanism network. Figure 3.5 illustrates the addition menu when activated.  

This menu is the drop down menu furthest to the left under the substrate addition panel.  

Substrates can be added by pressing the” +Sub” button.  Currently in version 1.0 of 

SigMech will query the user for a substrate name and instantiates a Sigmoid reactant 

class with that name.  The long term intention here is to open a larger panel with 

complete access to all the reactant attributes and subclasses.  Figure 3.6 illustrates the 

release menu.  As with the addition menu, three independent alternatives are available for 

generating the reactions via  “Full”,  “Sequential”, and “Random” strategies.  

 

Figure 3.6 The release strategy selection menu appears beneath the list of participating 
products.  As with the addition strategy, three choices are available: Full Release, Random 
Release, and Sequential Release. 
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3.7.3 TerTer Full Addition Full Release Example 
 For our first example we construct a mechanism with both a full addition of 

substrates and full release of products.  The SigMech interface is shown in Figure 3.7 and 

the SME network view is shown in Figure 3.8.  Substrates are shown in red.  Products are 

shown in blue.  In this example with “Full addition”, the binding of all substrates to the 

free enzyme is modeled as one bidirectional mass action reaction.  SME only illustrates 

the Biological reactions in the network layout view.  The corresponding mass-action 

MathematicalReactions are accessible on the panel to the left.(Not shown) 

 

Figure 3.7  Interface view for a Ter-Ter reaction with Full Addition and Full Release. 
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Figure 3.8 SME Network view of the Ter-Ter Full Addition Full Release Mechanism.  
Substrates are on the left and products on the right.   
 

This mechanism also has a “Full Release” of products, so the conversion of substrates to 

product form, and subsequent disassociation (release) from complex are modeled as one 

step.  It should be noted that all reactions are modeled as bidirectional mass action 

“MathematicalReaction” Sigmoid reactions.  For a kcat approximation of this release 

reaction the reverse rate should be set to zero.   

 Of course, the number of reactants on each side of the equation is arbitrary, as can 

be seen in Figure 3.9 and Figure 3.10.  There just as well could be six reactants on the 

substrate side and one on the product side.  Addition to complex and release are 

completely independent of one another.  This simple example illustrates how the new 

SigMech representation can express many previously hard-coded enzyme mechanisms 

and procedurally generate the required subreactions. 
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Figure 3.9 SigMech Interface: BiBi Full Addition Full Release. 

 

Figure 3.10 SME view of Bi-Bi Full Addition Full Release reaction. 
  

3.7.4 TerTer Sequential Addition Full Release Example 
 To further illustrate the independence of addition and release strategies a 

sequential addition and full release mechanism will serve as an example.  Substrates are 
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added to the enzyme complex in the order that they occur in the interface list shown in 

Figure 3.11 (From top to bottom).  In this example the full SME image is shown.  

Substrates again are in red and products in blue.  The release reaction is selected and the 

corresponding MathematicalReaction attributes are displayed on the left panel, including 

kinetic rates.   

 

Figure 3.11 SigMech Interface: TerTer  Sequential Addition Full Release. 

 

Figure 3.12 SME: TerTer Sequential Addition Full Release.  This illustrates that addition and 
release mechanisms can be independent of one another. 
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 Addition and release strategies can be random as well. A random selection (in the 

case of addition) produces reactions for every possible path to bind all available 

substrates.  This can be used when the intention is to model a mechanism in which any 

substrate can bind in any order.  Of course, specifying rates for such a strategy must be 

given particular attention because the rates act in parallel to each other and produce sums 

of enzymatic activity.  A BiBi mechanism with random addition and full release is shown 

in Figure 3.14.  

 

Figure 3.13 SigMech Interface: BiBi Random Addition Full release. 
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Figure 3.14  SME: BiBi Random Addition Full release. 
 

The Random strategy is also available to expert users for release of product from 

enzyme/substrate complex.  The next example illustrates a the BiBi mechanism with a 

random strategy for both addition and release phases. 

 

Figure 3.15 SigMech: BiBi Random Addition Random Release. 
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Figure 3.16 SME Overview: BiBi Random Addition Random Release. 
 

   The user may define any number of substrates and products with this strategy in 

either the addition or release phases, but the number of reactions and reactants increases 

rapidly with higher numbers of substrates or products.  A TerTer Random Addition 

Random Release network is shown in Figure 3.17.  Substrates are indicated by the yellow 

balls in the top center.  Products are blue at bottom center. 
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Figure 3.17 SME Overview: TerTer Random Addition Random Release. 
 

3.7.5 BiBi Ping Pong Example 
 Ping  Pong reactions can be built with SigMech.  Substrates are again shown in 

red and products in blue.  The classic BiBi Ping Pong reaction is illustrated in Figure 3.18 

and Figure 3.19. 

 

Figure 3.18 SigMech Interface: Classic BiBi Ping Pong reaction. 
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Figure 3.19 SME: Classic BiBi Ping Pong reaction.  Substrates (in red) are sequentially 
converted to product (in blue) leaving the enzyme in a changed state. 
 
Enzyme states are represented as circles and complexes as rectangles.  A constraint that 

limits SigMech but is not intrinsic to its architecture is that an enzyme intermediate state 

must exist for each catalysis reaction that is present.  Also, splitting or combining of 

substrates into product hasn’t been implemented.  Version 1.0 of SigMech requires that 

the number of substrates, products and enzyme states all be equal. This version will allow 

any number of sequential intermediates to function, provided they convert one substrate 

to one product.   

3.7.6 TerTer Ping Pong Example 
Note in Figure 3.20 there are two intermediates listed.  The reaction is a TerTer reaction.  

If the free enzyme state is included, there are a total of three states.  SigMech supports 

any number of ping pong steps provided that the number of substrates, products and total 

number of enzyme states is equal. 
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Figure 3.20 SigMech Interface: TerTer Ping Pong. 

 

Figure 3.21 SME Overview Panel: TerTer Ping Pong reaction mechanism. Substrates (in red) 
are sequentially converted to product (in blue) leaving the enzyme in a changed state.  Ping 
pong mechanisms can be built for any number of stages provided that the number of substrates, 
products and enzyme states are all equal. 
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3.7.7 Conversion Phase 
 The conversion menu has selections for instant conversion, one step, and multi-

step conversion.   The terminology might need to be adjusted in the user interface.  

“Instant Conversion” might not be the best way to name it but, SigMech Version 1.0 

displays it as such. 

 Instant conversion is implemented in SigMech as a bidirectional reaction with 

corresponding forward and reverse rates.  This choice of representing the catalytic 

process by one bidirectional reaction was made because it allows for greater flexibility.  

In a case where the intention is to model without a reverse reaction, the reverse rate can 

simply be set to zero.  The simplest representation for a catalytic reaction, as reflected in 

the schema is to have a reaction with one forward rate.  Using one forward rate to model 

a reaction might approximate the conditions of catalytic activity where the forward rate is 

many order of magnitudes faster than the reverse rate for the reaction.   Even though a 

reverse reaction and corresponding rate exists in nature, this reverse reaction is ignored in 

many cases.    Biologists may choose to model this reverse reaction, and reactions are 

available in xCellerator and the Sigmoid schema, as a TwoStageCatalytic Reaction, to 

facilitate such use. A reaction equation equivalent appears in Section 3.2.1. 

 

Figure 3.22 The Conversion menu. 
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 A one-step conversion is a modeling feature added in order to emulate the three 

stage catalytic modeling option available in Sigmoid and xCellerator (although not 

specifically termed as such in xCellerator). The three stage catalytic reaction, shown in 

Figure 3.23, consists of three consecutive mass action reactions, substrate binding to 

enzyme, conversion of the substrate to product while complexed, and then subsequent 

release of product from complex.  

 

Figure 3.23 The ThreeStageCatalytic MathReaction in the schema illustrates the 
implementation of a central  “conversion ” reaction where enzymatically bound substrates are 
converted to product.  Release of product is modeled as a third reaction step. 
 
  Reverse rates for each reaction are available for a total of six reaction rates, three 

forward and three reverse.   This modeling option is toggle-able for any enzyme 
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mechanism reaction.  The conversion menu appears right under the inhibitors list as 

shown in Figure 3.22 .  There is no conceptual relation between the conversion menu and 

the inhibitors.  The positioning is simply coincidental.   

  A simple case example can be seen in Figure 3.24 and Figure 3.25 where one 

substrate is converted to one product though this mechanism.  

 

Figure 3.24 SigMech UI: UniUni reaction with OneStep Conversion activated. 

 

Figure 3.25  SME view: A UniUni Reaction with a OneStep Conversion phase. 
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  This case is the same as the ThreeStageCatalytic reaction.  Since there are 

bidirectional mass action reactions on the attached to these BiologicalReactions, there are 

six overall rates, three foreward and three reverse.  More involved examples show that 

this feature can be implemented independently of the addition and release strategies.  For 

instance, Figure 3.12 illustrated an example of a Ter-Ter sequential addition and full 

release reaction.  A version of this reaction with a one step conversion phase is shown in 

Figure 3.26 and Figure 3.27.  

 

Figure 3.26 SigMech Interface: TerTer  Sequential Addition Full Release One Step Conversion. 



121 
 

 

Figure 3.27 SME: TerTer  Sequential Addition Full Release with a One Step Conversion. 
 

 Even further, the one-step conversion can be implemented in cases for Ping Pong 

class reactions.  If the example shown in Figure 3.21 used as a starting point and a “One 

Step Conversion” is added we the result shown in Figure 3.29. Each binding of a 

substrate to an enzyme state yields a conversion reaction in which substrate is converted 

to product, and a subsequent release of product reaction. 

 

Figure 3.28 SigMech Interface: TerTer Ping Pong with One Step Conversion. 
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Figure 3.29 SME Overview Panel: TerTer Ping Pong One with Step Conversion. 
 

 

 In Figure 3.22, the “Multi Step Conversion” option is viewable in the GUI version 

1.0 but the corresponding strategy is hypothetical and has not been implemented, so 

selecting this option will yield no results.  This option could be used for processes that 

have either multiple energetic barriers to overcome or some deeper complexity, so the 

option was included as a possibility.  Further collaboration with modeling biologists will 

reveal whether this is a useful option.   

3.7.8 Inhibition Examples: 

3.7.8.1 Competitive Inhibition Example 
 Competitive inhibitors can be added to the inhibition list.  Competitive inhibitors 

bind free enzyme and prevent substrate binding.  (Please note in the example, the icon 
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choice could have been better, but the network is correct in Figure 3.31).  Any number of 

competitive inhibitors may be specified.

 

Figure 3.30 SigMech UniUni with Competitive Inhibitor. 

 

Figure 3.31 SME Overview Panel: UniUni with Competitive inhibitor.  Competitive inhibitors 
bind free enzyme thus preventing substrate binding. 
 

 Competitive inhibitors, since they act on free enzyme, may operate independently 

of one another. Many may be present and they function irrespective of addition strategy, 
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release strategy, conversion strategy or cases of ping pong reactions.  A simple example 

of this independence is illustrated in Figure 3.32 where a “One Step Conversion” reaction 

is active.  The network is illustrated in Figure 3.33. 

 

Figure 3.32 SigMech UniUni with Competitive Inhibitor and a One Step Conversion.  

 

Figure 3.33 SME Overview Panel: UniUni with Competitive inhibitor and a One Step 
Conversion.  The enzyme-substrate to enzyme-product conversion appears in yellow at the 
bottom. 
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3.7.8.2 UnCompetitive Inhibition Example 
  UnCompetitive inhibitors target an enzyme-substrate complex.  A simple UniUni 

case is exhibited in Figure 3.34 .   When specifying an Un-Competitive Inhibitor, the user 

interface asks for a target.  This target should correspond to enzyme/substrate complex 

that the user intends to be inhibited.  SigMech does not currently enforce any rules about 

this specification.  For instance if the user accidentally specified a product, the product 

would get bound by the inhibitor. Also, if the name does not match a reactant, the 

mechanism  may be unusable. The user-assigned name of this complex must conform to 

the rule $EnzymeName$ReactantName$ (+ AdditionalReactantName$ +....)  A next 

version of SigMech could pre-parse the reaction network and generate consistently 

named complexes that can be referenced by the software to avoid this complication. 

 

Figure 3.34 SigMech: UniUni with an UnCompetitive Inhibitor (UCI). 
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Figure 3.35 SME Overview: UniUni with an UnCompetitive Inhibitor (UCI).  UCIs  bind 
enzyme-substrate complexes to inhibit the activity of an enzyme. 
 

3.7.8.3 NonCompetitive Inhibition Example 
 NonCompetitive Inhibition is the third option for inhibitors in SigMech.  A 

NonCompetitive inhibitor (NCI) can bind either free enzyme or enzyme already bound to 

substrate.  A NonCompetitive inhibitor may not completely shut down the enzyme’s 

activity, but rather it may have a residual activity.  The corresponding NCI reactions are 

shown in Figure 3.37.  . Since the GUI does not yet enforce rules on the input parameters, 

various addition and release strategies can produce unwanted or erroneous reaction 

results.  Certain combinations of strategies may produce a set of reactions that have no 

bearing on the particular biochemistrys at hand for a particular intended enzyme 

mechanism if the user does not carefully construct the mechanism.  It is left to the expert 

user to use scrutiny when applying this form of inhibition.  In multiple subsrtate, multiple 
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product reactions, the inhibition must be set up carefully as the inhibitor procedure 

generates reactions for the target complex formation and generates residual product from 

that. A next version of SigMech could check specified inputs and inhibitions to make 

sure the mechanism is valid. 

 

Figure 3.36 SigMech UniUni reaction with a NonCompetitive Inhibitor(NCI). 
 

 

Figure 3.37 SME: UniUni reaction with a NonCompetitive Inhibitor (NCI).  NonCompetitive 
inhibitors may possess a residual enzymatic activity that generates product from inhibitor 
bound enzyme.  NCIs can either bind free enzyme or enzyme-substrate complexes. 
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3.8 Sigmoid Model Explorer integration. 

 SigMech can be run as a standalone application or within SME.  SigMech version 

1.0 generates a Sigmoid Model class and adds the respective sub-reactions, reactants and 

relevant parameters to the Model.  Each BiologicalReaction SigMech generates has a 

corresponding BidirectionalMassAction MathReaction with rates initialized to arbitrary 

values.  When SigMech is run from SME, the reaction network is displayed as a model in 

the network layout view panel.  The rate parameters can be edited in the reaction panel in 

SME (item C in Figure 1.4).  As with any Sigmoid model, the model can be sent to 

Mathematica/xCellerator for simulation.  When SigMech is run as a standalone 

application, the model reaction network can be examined by pressing the “Report” button 

on the interface (Figure 3.5).  The Report button will also function when SigMech is run 

from within SME and reports to the Java console, if open. 

 The next step in SME integration would be to utilize the ReactionGroup class in 

the schema by adding all  of a particular enzyme mechanism’s sub-reactions to the group 

instead of instantiating a separate model.  SME should then be able to hide the sub-

network of reactions from a larger pathway model.  Inputs and outputs of the mechanism 

would be viewable at the higher level pathway view but the sub-reactions would be 

represented by one reaction icon.  In this way, the user could zoom in to view the details 

of the mechanism and zoom out to hide the details. 

 One intended feature of SigMech is to generate a BiologicalReaction network and 

reference MathematicalReactions for the kinetics.  Presently, SigMech 1.0 assigns strictly 

BidirectionalMassAction Reactions with default rates to each BioReaction, as this option 

provides everything necessary to represent all previous Sigmoid Complex BioReactions.  
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Rate parameters from the resulting network of reactions can be edited in SME, but the 

intention is to allow a user to edit the MathReactions referenced by BioReactions from 

within SME so that alternate kinetics can be applied to one or many of the Mechanism 

subreactions.   SME does have model creation and editing capabilities but it’s not clear 

that this feature can be implemented properly without a SME update.  Alternatively a 

next version SigMech could implement another feature layer providing greater access to 

other MathReactions, such as the AlgebraicPassthrough reactions and a matrix of 

initialization rates.  

3.9 Conclusion 

 The highly parameterized reaction types of SigMech, together with the 

kMechReaction classes, provide a parameterized representation that encompasses all 

previous Compound reactions that were present in the Sigmoid schema, and can generate 

these and other novel reaction mechanisms from the cross product of the valid SigMech 

input parameters.  This development effectively renders kMech integration a solved 

problem within the scope of previous reaction motifs, and will vastly reduce the need for 

frequent updates of the schema, database, middleware translation and GUI.  SigMech 

combines the reaction motifs of previous kMech reaction mechanisms, with the 

conversion phase that was implemented in the three-stage xCellerator reaction 

(ThreeStageCatalytic in the Sigmoid schema) yielding a greater parameter space of 

possible enzymatic reaction mechanisms that can be generated on the fly inside SME, and 

that can consequently be simulated by Mathematica/ xCellerator. 
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Chapter 4. Population Strategies for the Sigmoid Database. 

In chapter two we discussed the structure and schematics of the Sigmoid database 

and Java class API.  In this chapter we will discuss populating the database pathway with 

models of biological significance.    

Pheno [Cheng et al.2005] translates the Sigmoid schema diagrams into PostgreSQL 

database tables and a corresponding set of Java Classes that comprise the Sigmoid API 

Java Classes.  A direct Object Relational Bridge (OJB) mapping exists between the 

Sigmoid Java classes and the relational database.  These Java Classes can be used to 

compose Sigmoid pathway models.  Two main strategies exist for populating the 

Sigmoid database with models.   A straightforward method is to code Java models 

directly and store the models in the database via the OJB interface to the database.  This 

method is where a user focuses on the production of one particular pathway.   Another 

strategy is to build automated populator programs, also through OJB, that are designed to 

translate other pathway markup languages or database resources via web services to the 

Sigmoid representation.  We will discuss individual models coded by users in Section 

4.1.  We will address the implementation of population programs in Section 4.2 
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4.1 User Coded Models 

Although any Java development environment would suffice, the Eclipse Java 

development platform (www.eclipse.org) was used for the Sigmoid population classes.  

Eclipse possesses built in Concurrent Versions System (CVS) interface functions that 

facilitated group population efforts.  The CVS repository at sigmoid.sourceforge.net 

proved to be a useful tool for coordinating the development efforts of several team 

members for the set of Sigmoid pathway population programs and proved to be a viable 

repository for other portions of the Sigmoid code.   

We developed a set of template classes (Java programs) that are designed for 

pathway model construction.  These classes have customized methods for model, 

reactant, reaction, parameter set and knowledge source creation.  There are administrative 

classes designed to delete and populate the database with sets of models.  There are 

reporting classes designed to survey the database contents. The ModelEmitter class, 

which is fairly useful for model development and debugging, is designed to report model 

reactant and reaction attributes to the Java console.  Some initial code to query the 

database for a model and to enter a model into the database was provided by Lucas 

Scharenbroich.  Some methods from these classes were reworked and expanded over 

several iterations to comprise a portion of the template class functionality. 

These template classes were used by Sigmoid team members to generate Sigmoid 

pathway models.  Although several team members created models for Sigmoid, 

construction of the template classes, final debugging of pathway models, entry of models 
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into, and administration of the database was performed by the author in the course of 

work for dissertation.     

 The generative version of Sigmoid has been successfully populated with over 

twenty published models that range from simple molecular interactions to complex cell 

fate decision networks.  A comprehensive list of the models is provided in Figure 4.1. A 

majority of the models in the database focus on virtual representation of intracellular 

pathways that include examples in signaling, metabolism, the cell cycle, and gene 

regulation. 
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Figure 4.1 A comprehensive list of pathway models stored in the Sigmoid database can be 
browsed in the Models section of the Sigmoid website at www.sigmoid.org.  A majority of the 
models in the database focus on virtual representation of intracellular pathways that include 
examples in signaling, metabolism, the cell cycle, and gene regulation. 
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4.1.1 Sigmoid Database Population From xCellerator notebooks. 

Since Sigmoid leverages the numerical computational power of Cellerator and its 

successor xCellerator as its primary simulation platform, existing xCellerator notebooks 

have been an important source of pathway models.  Early in the development of Sigmoid 

a survey of existing Cellerator notebooks was taken and an attempt was made to adapt the 

schematic representation of Sigmoid so that the greatest compatibility between Sigmoid 

and Cellerator could be achieved.  The classes in the MathematicalReaction section of 

Chapter 2 reflect the direct compatibility between Sigmoid and xCellerator functions. 

For the greatest part, all user coded models present in the public version of the 

Sigmoid database exist as Cellerator notebooks.  These notebooks were either part of the 

Cellerator notebook library, or the Cellerator notebooks were created as an aid in 

constructing the Sigmoid Java coded pathway models.  The notebooks provide a valuable 

testing reference for Sigmoid models and proof that the pathway model will function in 

xCellerator.  They are not absolutely necessary, but as there is such a great parallelism 

between existing Sigmoid simulation capability and Cellerator, generating notebooks for 

every model has proven to be a useful device. 

4.1.2 SBML as a Source of Pathway Models. 
 
 Another valuable source of pathway models comes from Systems Biology 

Markup Language SBML.  SBML is an XML extended interchange format designed to 

represent computational models of biological processes. SBML strives to provide a 

common interchange format for the variety of tools designed to model biological 

networks.  SBML has been developed in “levels” to provide stable releases of the format 
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for developers.  Currently SBML possesses three levels of development [Hucka et al. 

2003] [Finney and Hucka 2003].   Information about SBML can be found at 

www.SBML.org.  

 The Biomodels.net database served as a valuable repository for peer-reviewed 

SBML models based on publications.  Our team surveyed this repository in the early 

stages of its release and selected several models from the Biomodels database that were 

to be converted and stored in the Sigmoid database.   

 Converting SBML formatted models into Sigmoid models has presented an 

interesting set of challenges, both for user coded models and the automated SBML reader 

to be discussed in the next section.  There are a few features of SBML models, such as 

SBML Events and Functions, which are not entirely supported by Sigmoid.  Some steps 

have been taken to incorporate storage for them in the schema (in the form of fields to 

store the strings), but implementation in the form of translation to xCellerator has not 

commenced nor has an attempt been made to construct models with these features.  A 

decision was made to pursue the conversion of other SBML models that had a feature set 

more easily incorporated into the Sigmoid classes. 

 A particularly interesting challenge in converting SBML to Sigmoid is that the 

kinetic rate laws stored in SBML are in the form of algebraic expressions.   This differs 

from the current approach of Sigmoid.  As discussed in Section 2.9, Sigmoid handles the 

kinetics of reaction equations by the storing sets of parameterized inputs for xCellerator.  

These input parameters are passed through the middleware and converted to xCellerator 

functions which are composed into notebooks.  The notebooks are consequently sent to 
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and processed by Mathematica/xCellerator thereby generating simulation output [Cheng 

2005][Compani, Su et al. 2010].      

 The challenge lies in converting the algebraic rate law expressions into 

xCellerator format.  For user coded models, the solution consisted of using the SBML 

reader that we constructed (discussed in Section 4.2) to generate text file outputs of the 

SBML models, and manually examining the rate law expressions.  MathSBML , a 

Mathematica extension written by Bruce Shaprio (available at 

http://sourceforge.net/projects/sbml/files/mathsbml/) , also became available and 

provided a function to translate SBML to a human-readable form.  Models that were 

composed of readily identifiable rate expressions such as Michaelis Menten, mass action 

and hill functions were selected for coding using the Sigmoid API classes. 

  Another fraction of the SBML models contained algebraic expressions that could 

be passed, with minor syntactic adjustments, directly to Mathematica for processing 

along with xCellerator code.  In order to overcome this challenge, a set of 

AlgebraicPassthrough classes (see Section 2.9.1.3), a RateFunction parameter (see 

Section 2.3), and variable declarations field in the RateConstants class (see Section 

2.4.1.1) were constructed and added to the schema.  The adjustments to the 

RateConstants class allowed us to make variable declarations for reactants that were 

expressed in the algebraic expressions.  The variable declarations and the algebraic 

expressions in the AlgebraicPassthrough MathReactions are passed though the 

middleware as strings to Mathmatica for processing inside the xCellerator notebook.   We 

have several curated models in the database that use these features. 

 



137 
 

4.1.3 Sigmoid Team Population Effort. 
 

 The population of the Sigmoid database with pathway models has been the 

product of the efforts of many individuals.  Since it would be prohibitive to address 

authorship details throughout the text of this dissertation, a comprehensive table of 

member contributions with regard to database population has been provided in Appendix 

B.  Sigmoid models derived from the Biomodels.net SBML repository are also indicated 

in Appendix B. 

 Large-scale models of the signaling pathways include the mammalian Epidermal 

Growth Factor Receptor (EGFR) pathway [Kholodenko et al.1999] and the yeast 

pheromone response pathway [Kofahl and Klipp2004], while other models represent 

common aspects of metabolism that include the anabolic Calvin cycle in plants [Poolman 

et al.2004], two models of branched chain amino acid biosynthesis in bacteria [Najdi et 

al.2006], [Yang et al.2005a], and catabolic glycolysis [Nielsen et al.1998]. Furthermore, 

a simple model of the circadian clock [Tyson et al.1999] and two models of intracellular 

calcium flux [Borghans et al.1997] demonstrate oscillating outputs. Separate models of 

the NFkB [Hoffmann et al.2002], Calcineurin [Hilioti et al.2004] and the p53 [Bullock 

and Fersht2001] regulatory networks demonstrate how transcription factors and their 

ability to activate or inhibit gene expression are regulated. Lastly, some models in the 

database represent diverse processes, including the mechanism of degradation of 

enzymes during industrial food processing [Brands and van Boekel2002] and the cell fate 

decisions of protists in the presence of far-red light under starvation conditions 

[Marwan2003].  
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 Computational models of the mitogen-activated protein kinase (MAPK) cascade 

are also present in the Sigmoid database. Several models derived from [Markevich et 

al.2004] examine the same MAPK cascade with two separate mechanisms, mass action 

and Michaelis-Menten, for each of the phosphorylation and dephosphorylation events. 

For each of these mechanisms, the models increase in complexity as the site and order of 

phosphorylation are taken into account in the set of reactions. In contrast to these models, 

Huang_1996_MAPK and its xCellerator notebook “MAPK cascade: Huang and Ferrell 

1996”, present the celebrated [1996] model that demonstrates the connection between a 

nonprocessive, twocollision dual-phosphorylation mechanism of kinase activation and an 

ultrasensitive, switch-like response. The model 

Bardwell_2007_MAPK_VariableFeedback and corresponding notebook “MAPK 

Cascade with Variable Feedback” extend this model to include a simple feedback 

phosphorylation of an upstream kinase by the MAPK. The effects of the feedback loop 

on the system depend upon the nature of the feedback: if feedback phosphorylation 

increases the activity of the upstream kinase (positive feedback), a bistable, all-or-none 

response may result [Ferrell and Machleder.1998]. In contrast, if feedback 

phosphorylation decreases the activity of the upstream kinase (negative feedback), then 

the result may be damped or sustained oscillation of the activity of the kinases in the 

cascade [Kholodenko2000]. The notebook contains examples of parameter values that 

will generate either of these outcomes, illustrating how complex, diverse and biologically 

useful behaviors can emerge from the combination of an ultrasensitive cascade 

architecture and a simple feedback loop. 
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4.1.4 The Najdi_2009_Xyl_Ara_Et hModel 
 An unpublished xCellerator notebook model of engineered strains of yeast was 

constructed by Dr. Tarek Najdi.  The modeling goal of the notebook was to perform 

mathematical modeling of proposed pathways to increase the yields of ethanol (Eth) 

production from Saccharomyces cerevisiae.  A great portion of plant carbon sources 

consisting of the monosaccharide sugars xylulose (Xyl) and arabinose (Ara) go largely 

unmetabolized by wild type strains of S. cerevisiae.  The goal of the project was to 

engineer metabolic pathways for yeast that would convert these sugars to ethanol with 

high yields, thus increasing overall yields of commercial ethanol production.  The fairly 

large (60 reactions) notebook contained portions of the pentose phosphate pathway, 

glycolysis, and xylose metabolism. We constructed a Sigmoid coding of the notebook for 

visualization and simulation within the Sigmoid system.  This pathway model required 

extensions to the kMech reaction equations.   The requirement for these extensions also 

prompted the development of SigMech described in 0.   
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Figure 4.2 The Najdi_2010_FattyAcidBiosynthesis model contains portions of the pentose 
phosphate pathway, glycolysis and fatty acid biosynthesis. 
 

4.1.5 The Najdi_2010_FattyAcidBiosynthesis Model 
 A one-quarter cross-training laboratory rotation was spent in Suzanne 

Sandmeyer’s laboratory on a project that was directed toward engineering a transgenic 

strain of Saccharomyces cerevisiae with the ultimate goal of producing high yields of 

short chain fatty acids for use as platform chemicals for industry.  Within this context a 

pathway optimization was being proposed to generate higher yields of fatty acids.  

Models were built to better understand these processes.  Dr. Tarek Najdi composed 

Mathematica notebooks to represent the pathway model and proposed optimizations.  

New kMech reaction equations were developed for the notebook to address the need for 
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enzyme models that have three substrates and three products.  We constructed a Sigmoid 

version of this model (Najdi_2010_FattyAcidBiosynthesis), illustrated in Figure 4.2, and 

extended the functionality of the Sigmoid system to meet the models’ requirements.  

These extensions consisted of new kMech reaction equations one of which is detailed in 

Section 3.1.3).  The requirement for these extensions also prompted the development of 

SigMech described in 0.  The model contains sections of the pentose phosphate pathway, 

glycolysis and fatty acid biosynthesis.  

 ATP-Citrate Lyase (ACL) is present in oleaginous yeasts known to accumulate 

fatty acids but not in S. cerevisiae.  The goal of the project was to engineer a strain of S. 

cerevisiae that produces higher levels of cytosolic acetyl-CoA by introducing ACL. 

Normally, in S. cerevisiae, cytosolic acetyl-CoA (the precursor for  de novo fatty acid 

synthesis) only comes from pyruvate decarboxylases (PDCs) acting on pyruvate.  

Pyruvate also goes into the mitochondria and is converted by pyruvate dehydrogenase 

(PDH) into acetyl-CoA that goes to the TCA cycle. If ACL were to compensate for a 

PDC knockout, that would prove that ACL can function in S. cerevisiae. 

 The goal of the portion of the project was to produce strains of yeast with a 

knockout of the PDC 1,5 and 6 genes.  We attempted knocking out the PDC 5 and 6 

genes from a previous strain that was PDC 1 deficient. We were not able to generate any 

viable strains of yeast with more than a PDC 1 deficiency.  These findings suggest that 

knocking out both genes weakened the cell strain past the threshold of viability.   

4.1.6 The Middleton_2008_AuxinModel 
 Auxin is a plant hormone that plays a regulatory role in developmental processes 

in Arabidopsis thaliana.  Auxin signal transduction is an essential pathway modeled in  
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[Middleton 2010].  As part of an iPlant initiative a Sigmoid model was constructed from 

the AUXIAA-AM-3 xCellerator notebook for this model, and loaded into the under 

review section of the public Sigmoid database. The Sigmoid framework was sufficient to 

properly represent the regulatory network of reactions. 

4.1.7 The Wushel Compartmental and SpatialModel Model 

 

Figure 4.3  The Wuschel-Model-for-iPlant Cellzilla notebook [Shapiro 2008] implements the 
Wuschel pattern formation model of [Jönsson 2005].  The model = { …}; section contains the 
InternalNetwork of reactions and the diffusingSpecies = {…}; section contains the 
ExternalNetwork of reactions. 
 

 A Sigmoid model named Shapiro_2008_WUS was built using the Wuschel-

Model-For-iPlant xCellerator/Cellzilla notebook (see Figure 4.3) implementing the 

Wuschel pattern formation model of [Jönsson 2005].  This model differs from the other 

models coded for Sigmoid in that it is a computational model designed for a multicellular 

developmental system of plant growth in Arabidopsis thaliana.  This model is the first 

multicompartmental or multicellular SpatialModel built with the Sigmoid schema classes.  
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The two-dimensional model uses classes discussed in Section 2.11.2.  The model consists 

of: 1) a set of cell centers modeled as DimensionalCompartments (DC), 2) an 

InternalNetwork of BioReactions and MathReactions that represents biochemical and 

regulatory reactions that take place within each separate DC, and 3) an ExternalNetwork 

of BiReplicated Reactions that represent diffusion reactions between adjacent 

DimensionalCompartments.  Certain Reactants that are involved in the ExternalNetwork 

are DecoratedReactants (DR). DRs are “decorated” with variables that serve as indices 

for their corresponding Cellzilla compartment representation.  The SpatialModel is a 

complete Sigmoid representation of the CellzillaNotebook.   The ModelEmitter class in 

the population library of Sigmoid produces console output of the model details.  The 

model currently requires Sigmoid to Cellzilla translation code from the middleware in 

order to be sent to Cellzilla for simulation.  Also, SME will display the model just as for 

any other Sigmoid model, but the multi-cellular aspects of the model will require 

additional development in the front end for them to appear and be properly represented. 

4.1.8 Zhang Optimizer Models 

Four models were constructed for the Simulated Annealing Optimizer (SAO) that 

was integrated into Sigmoid from xCellerator notebooks.  The SAO is discussed in 

Section 5.1.  The four models that were created by Li Zhang [Zhang2008] consist of: 

 1) The Zhang_2007_SEP model is a simple enzymatic process model.  The model 

reactions present in the Zhang_2007_SEP model parallel the UniUni kMech reaction for 

simple catalysis of one substrate (S) by an enzyme (E) into product (P) (SEP).  The 

kMech reaction notation [Yang 2005] is as follows: 
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EnzሾሼS_ሽ ⇄ ሼP_ሽ
୉୬_

, UniUniሾkf_, kr_, kcat_ሿሿ: ൌ ሼሼܵ ൅ En ⇄ NCሾܵ, Enሿ, kf, krሽ, ሼNCሾܵ, Enሿ

→ En ൅ ܲ,  ;ሽሽݐܽܿ݇

2) The Zhang_2007_ATM model is a mathematical model for the DNA damage and 

response signaling transduction pathway focusing on a critical sensor protein called 

phosphoprotein kinase (Ataxia Telangiectasia-Mutated (ATM)) activation by infrared 

radiation. 

  3)  The Zhang_2007_ATM_PP2A_MRN is an expanded model of 

Zhang_2007_ATM that includes an upstream input and positive regulator of ATM, the 

MRE11-RAD50-NBS1 complex (MRN), and protein phosphatase 2A which is a negative 

regulator of ATM. 

4) Phosphatidylinositol 3 kinase (PI3k) is believed to contribute to cellular 

transformation and the development of cancer. The Zhang_2007_PI3k  model is 

composed of three Compound enzymatic MathematicalReactions involved in PI3k the 

membrane-bond network. 

4.1.9 Demonstration Models 

Several demonstration and test models were constructed to provide simple examples 

of basic Sigmoid functions.  These models are the MAP-K Demo Reactions, the 

Algebraic Demo, and the AlgebraicEnz demo.  The MAP-K Demo is a simple one-

reaction model designed for short demonstrations of Sigmoid.  The Algebraic Demo and 

AlgebraicEnz Demo were designed to demonstrate and test the AlgebraicPassthrough 

Reactions in Sigmoid and to pass algebraic rate law expressions to Mathematica for 
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processing.  AlgebraicPassthrough reactions consist of algebraic rate expressions that do 

not have corresponding specific xCellerator functions. 

4.2 Automated Population of the Sigmoid Database 

 Since the flexible but comprehensive schema of the Sigmoid database allows us 

to easily leverage other databases, we have developed “populator” programs which 

capture community input from external databases and markup languages for entry into 

Sigmoid.  

4.2.1 Kyoto Encyclopedia of Genes and Genomes  

The Kyoto Encyclopedia of Genese and Genomes (KEGG) consists of a growing set 

of databases.  The KEGG database is located at http://www.kegg.jp/kegg/ and has been in 

development since 1995 by Kanehisa Laboratories. The KEGG database serves as a 

knowledge base for integration and interpretation of large-scale molecular data sets 

generated by genome sequencing and other high-throughput experimental technologies. 

One of their main systems biology databases, in particular the KEGG PATHWAY 

database, is a collection of pathway maps focusing on molecular interaction and reaction 

networks [Ogata 1999] [Kanehisa 2006].  These pathway maps are graphical diagrams of 

biochemical and regulatory pathways, cellular processes, pathway systems on the scale of 

organisms, genetic information processing, and signal transduction.   The pathway maps 

contain reaction equations that indicate participating molecules, cofactors, and enzymes. 

Molecular information consisting of naming and synonyms, reaction references, 

participating pathways, associated enzymes, molecular formulas, molecular structure, and 

links to external molecular databases are referenced by the KEGG pathway maps as well.  
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The KEGG PATHWAY maps are stored in the exchange format KGML files and are 

publicly available.  KGML is an extension to the XML format. SBML translations of 

KGML have been provided at the KEGG website in the past and can also be produced 

with one of the KEGG to SBML converters available.  One of the more recent converters 

is KEGGConverter [Moutselos et al.2009]. 

  The KEGG pathway maps are particularly suitable for Sigmoid integration because 

the mapping of reactant and reaction data between the KGML format and Sigmoid 

schema is fairly straightforward.   

Early on, we were able to develop an XML parser that translated KEGG biological 

entities such as genes, proteins, small molecules and reactions into Sigmoid Reactants 

and Reactions.  It became apparent that SBML was becoming a prominent systems 

biology interchange format and our efforts shifted to developing an SBML translator for 

Sigmoid.  Some effort was expended on developing our own SBML/XML parser and 

then libSBML became available.  LibSBML is an Application Programming Interface 

(API) for reading, writing and manipulating SBML files and data streams [Bornstein et 

al. 2008].  To avoid duplication of effort, we used libSBML to build an SBML-to-

Sigmoid translation program.    This translation program provided a mechanism that 

could be used to automate the population of the Sigmoid database with the KEGG 

pathway models.  We were able to successfully populate the Sigmoid database with 

hundreds of KEGG pathway models.  These models were composed of networks of 

Sigmoid Reactants and BiologicalReactions. Since KEGG pathway models lack kinetic 

parameter and rate laws they are excellent candidates to serve as “template pathways” for 

users in Sigmoid.  Users could, with a properly functioning pathway editor in the GUI, 
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add MathematicalReactions and corresponding rate parameters to the BiologicalReaction 

network to produce simulateable Models.  Sabio-RK, discussed in Section 4.2.5, may be 

a good source for rate expressions and parameters. 

4.2.2 SBML 
 

 In Section 4.1.2 we discussed constructing user coded models from preexisting 

SBML models.  Since the number of available models in the SBML format continues to 

grow and SBML is supported by a variety of systems biology applications, developing a 

fully capable automated reader for SBML would be advantageous. 

 We discussed in the last section that we have an SBML reader that can read the 

Biologcal reaction network from an SBML file.  An important challenge that we’ve 

identified, discussed in Section 4.1.2, is that SBML stores reaction kinetics as algebraic 

rate law expressions that differ from the xCellerator based parameterized reactions that 

Sigmoid implements.  Automated conversion of these algebraic expressions into a 

Sigmoid / xCellerator form will require several things.   A parser must be constructed to 

identify the symbolic representations of reactants in the rate expressions and to extract 

the mathematical operators of the expressions.  An algebraic expression can have many 

equivalent forms.  Identifying a particular function (a Michaelis-Menten reaction 

equation for example) in an algebraic expression, when the form of the expression is a 

variable poses an interesting challenge in pattern recognition and symbolic manipulation.   

 An alternative approach would be to construct a parser that makes extensive use 

of the AlgebraicPassthrough reactions and avoid implementing kinetics as xCellerator 

functions.  There are other SBML features that will require implementation and 
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translation to Sigmoid model format such as SBML events, functions, and the SBML 

representation of compartments in order to fully support SBML reading into Sigmoid. 

4.2.3 Gene Networks 

 Original software for the formalized modeling of various levels of genetic 

systems was developed by the Institute for Cytology and Genetics (ICG) of the Siberian 

branch of the Russian Academy of Sciences in Novosibirsk.  A language, named SiBML, 

for specification of these models was developed.  SiBML is oriented to the construction 

of mathematical models of molecular genetic systems.  Another ICG technology, 

GeneNet (Ananko et al. 2002, 2005), enables the accumulation of information on gene 

and metabolic networks.  A software system was developed by an ICG / UC Irvine team 

to translate the GeneNet data to the Sigmoid schema.  GeneNet data is stored in format 

based on XML. Each XML diagram file consists of a Header and list of Nodes.  The 

Header possesses GeneNet identifier information, dates of creation and modification, and 

a description of the biological functions of the gene network.  The Nodes consist of 

genes, proteins, substance, RNAs, reactions and regulatory events. 

 A collaborative effort facilitated loading the GeneNet data into the Sigmoid 

database [Podkolodny et al. 2006].   The Sigmoid schema representation was sufficient to 

allow a direct mapping of the GeneNet genes, proteins, supplementary information, 

comments, and substances (molecules).  GeneNet and Sigmoid possess different 

perspectives on how gene regulation should be modeled.  In GeneNet the regulatory 

events could be organized in cascades, meaning a regulatory event could regulate another 

regulatory event.  In Sigmoid, regulation is modeled so that a regulatory Reactant 

participates as modifier of a reaction and is not consumed.  The GeneNet reaction and 
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regulatory events were mapped to Sigmoid as activators, inhibitors, enzymes and 

regulators of reactions.  

4.2.4 Gene Ontologies 
 Without much effort we were able to populate Sigmoid with the yeast GOnet 

database [Irwin et al.2005], which contains information about yeast ORFs and their 

annotations, gene ontology (GO), and protein-protein interactions. The population was 

accomplished by a Java code translation program.  The GOnet database itself is 

periodically updated and integrates information from three different sources: (1) ORFs 

(description, mutant phenotype, gene product, etc.) from the Saccharomyces Genome 

DataBase (SGD); (2) GO term annotation from the Gene Ontology Consortium arranged 

in the three categories of Molecular Function, Biological Process, and Cellular 

Component; and (3) genetic and physical interactions information from the General 

Repository for Interaction Datasets (GRID) [Compani, Su et al. 2010]. 

 Also, another team member (Trent Su) was able to establish a web service 

connection to this database so that GO data could be browsed and then instantiated as 

Sigmoid GO Reactants in SME.  Establishing web service interfaces to other databases 

provides a valuable mechanism to incorporate data into the Sigmoid framework.  One 

advantage of using the web service interface is that the connection provides users with 

access to current versions of data from specialized external databases.  Data acquisition 

can be done on-the-fly.  Thus, if the data set is rapidly changing, users will always be 

able to access the most recent changes.  Unfortunately, relying on the external database 

for data can present a drawback if the external database or database web service format is 
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unstable or discontinued.  This was the case with the GOnet database, as the database has 

disappeared intermittently because of personnel or administrative changes. 

4.2.5 SabioR-K 

The Sabio Reaction Kinetics database (Sabio-RK) is a database for storing kinetic 

properties for biochemical reactions. The database is located at http://sabiork.h-its.org.  

Kinetic parameters and rate equations for biochemical reactions are stored in their 

relational database along with the experimental conditions with which the parameters 

were measured.  The Sabio-RK system provides SBML exports of their data and a set of 

web services for data acquisition.  One of their stated missions is to provide support for 

the development of biochemical network models [Wittig 2006, 2011].  Sabio-RK data 

could be a key component for expanded Sigmoid models derived from KEGG pathway 

models, as the majority of their reaction pathway networks are extracted from KGML 

datasets.  Their kinetics data is compiled and curated manually from literature.  Since 

KEGG data is easily converted into Sigmoid BiologicalReaction networks (see Section 

4.2.1), a corresponding MathematicalReaction network could be created with curated 

kinetic data and rate expressions from Sabio-RK. 

Web services were established by another team member (Trent Su) in spring 2009.  

It was possible to browse their rate expressions and kinetic parameters from within SME.  

The Sabio-RK schema and web services were rapidly evolving at the time, so permanent 

web service connections will require more development and maintenance.  Since the 

Sabio-RK interface now generates SBML, a SBML translator for Sigmoid may provide 

more stable access to Sabio kinetic data.  An alternate strategy (if Sabio-RK web services 
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have not stabilized) would be to restore the web service interface and to extract all Sabio-

RK data at one time or periodically, for storage within Sigmoid for investigation. 
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Chapter 5. Support for Exterior Simulators and Utilities 

5.1 Parameter Optimization 

 A Simulated Annealing Optimizer [Zhang2008] has been integrated into Sigmoid 

through the web services interface. It uses a global optimization technique and Lam- 

Delosme schedule to make the optimization process faster and more efficient when 

compared with other general schedules available [Lam and Delosme1988]. It aims to 

reverse engineer model parameters (for example: kinetic rate constants) given both the 

model structure (represented as ordinary differential equations) and empirical system 

dynamics as expressed by time series experimental data [Compani, Su et al. 2010]. 

5.2 Alternate Simulators 

 The modularity of Sigmoid along with its separation of biological and 

mathematical representations enables us to build interfaces to additional computer 

algebra systems outside of the Mathematica/Cellerator superstructure. SAGE [Stein 

2012)] for instance, an open source mathematics software program largely constructed 

upon the Python framework provides a gateway to a broad array of open source math 

programs such as Axiom, GAP, GP/PARI, Macaulay2, Maxima, Octave, and Singular. In 

addition, the SAGE language includes interfaces to commercial mathematics programs 

like Magma, Maple, Mathematica, MATLAB, and MuPAD as well. Constructing a 

language interface to SAGE or some similar project would enable Sigmoid to harness the 

additional functional functionality provided by these packages 
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5.3 Graph Crunch 

Sigmoid has already incorporated into its schema a representation for Library of 

Efficient Data types and Algorithms (LEDA) formatted graphs (see Section 2.4.2).  

LEDA supplies implementations for common algorithms used in graph theory and 

computational geometry [Mehlhorn 1999].  GraphCrunch is an open source software 

utility that uses LEDA to perform graph analysis on biological networks and is a likely 

candidate for integration with Sigmoid.  GraphCrunch would enable comparison of 

Sigmoid BiologicalReaction networks with sets of user specified random graph models. 

GraphCrunch supports five different types of random graphs. Furthermore, GraphCrunch 

generates statistics of network property similarities between data and model networks 

[Milenković 2008]. 
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Chapter 6. Conclusion 

We have successfully extended the capabilities of Sigmoid and improved the object 

oriented representation for the modeling, storage and simulation of biological 

components and processes.  Parameter sets and parameters are now structured in an 

improved class structure where reaction parameters are stored by reference within 

Sigmoid, MathReactions and Sigmoid Models can use multiple sets of parameters.  

Previously parameters were stored as symbol-value pairs that were more closely tied to 

the Cellerator notebook structure.  

The biological Reactant hierarchy has been expanded to incorporate additional 

relevant classes of biological entities. These classes span several scales of size and 

complexity.  Sigmoid reactant class groups listed in increasing complexity are Particles, 

SmallMolecules, MacroMolecules, Complexes, and Structured Reactants of even greater 

scales such as, organelles, cells, colonies, and organisms.    

The Reaction hierarchy has been reorganized and expanded to separate biological 

classification from mathematical implementation.  Groupings of simple, catalytic, and 

CompoundBio (CompoundBio reactions are a subnetwork of biological reactions) 

reactions provide the flexibility that biologists can use to model biological reaction 

networks and regulatory processes.  The representation of kinetics is now separated from 

BioReactions and exists within the MathematicalReaction subhierarchy of Reactions.  

Currently Sigmoid supports a great portion of xCellerator Mathematica functions and a 

large library of kMech enzyme mechanisms. 
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Support for GeneOntoloties has been successfully integrated into the Sigmoid 

schema allowing us to populate the database with the yeast GOnet database [Irwin et 

al.2005], which contains information about yeast ORFs and their annotations, gene 

ontology (GO), and protein-protein interactions.  In addition another team member was 

able to utilize the schema support to add a web service interface to the GOnet database 

thereby allowing for user construction of models incorporating GO components into 

Sigmoid Models. 

 We have designed a new utility SigMech and its corresponding KMechReaction 

that more efficiently represents enzymatic processes.  The KMechReaction and 

associated classes can represent all the previously existing kMech enzyme reactions in a 

parameterized form.  This parameterized representation can subsequently be processed by 

SigMech to generate a subreaction network of bidirectional mass action reactions that 

constitute the enzyme mechanism.  Additionally, SigMech processes enzyme mechanism 

descriptions, entered by a user into a GUI, which can be accessed from SME.  SigMech 

processes the descriptions into sets of corresponding subreactions that constitute the 

enzyme mechanism.  SigMech combines the reaction motifs of previous kMech reaction 

mechanisms with a flexible conversion phase that was implemented in the three-stage 

xCellerator reaction (ThreeStageCatalytic in the Sigmoid schema) yielding a greater 

parameter space of possible enzymatic reaction mechanisms that can be generated on the 

fly inside SME, and that can consequently be simulated by Mathematica/ xCellerator. 

We’ve included classes for Library of Efficient Data types and Algorithms (LEDA) 

formatted graphs.  The LEDA graph representation can provide a framework to assist 

with graph analysis of biological reaction networks stored within the Sigmoid database. 
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A likely graph analysis candidate for integration with Sigmoid is GraphCrunch.  

GraphCrunch would enable comparison of Sigmoid BiologicalReaction networks with 

sets of user specified random graph models. 

 We now have a spatial and compartmental modeling representation in Sigmoid.  

Although we intend our representation to be more comprehensive than simply supporting 

Cellzilla, Cellzilla support is a valuable first step as the simulation platform is already 

part of xCellerator.  Our SpatialModel classes were flexible enough to construct a 

multicompartmental developmental Sigmoid SpatialModel that implements the Wuschel 

pattern formation model of [Jönsson 2005], as part of an “iPlant” exploratory project.  

 A Simulated Annealing Optimizer (SAO) [Zhang2008] has been integrated into 

Sigmoid that uses a global optimization technique and Lam-Delosme schedule [Lam and 

Delosme1988].  Integration consists of web services and a set of SAO parameter sets in 

the schema.  Four SAO integrated Models have been constructed:  one simple enzymatic 

reaction model and three other models focusing on DNA damage and response of a 

critical sensor protein called phosphoprotein kinase (Ataxia Telangiectasia-Mutated 

(ATM)) activation by infrared radiation. 

 The classes that constitute the schema were sufficient to allow us to populate the 

Sigmoid database with over twenty published models, the majority of which focus on 

virtual representation of intracellular pathways that include examples in signaling, 

metabolism, the cell cycle, and gene regulation.  Some of the models, such as the 

Bardwell_2007_MAPK_VariableFeedback model, exhibit varying behaviors when 

switching between different parameter sets.  
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 We’ve developed automated database population programs that can convert 

pathway models derived from the Kyoto Enzyclopedia of Genes and Genomes (KEGG) 

into Sigmoid models.  These programs initially translated data from the KEGG format 

KGML to Sigmoid.  Further integration of KEGG pathways and SABIO-RK derived 

kinetics may constitute an abundant source of pathway models for Sigmoid.   

 The process of developing an SBML-to-Sigmoid translator revealed an interesting 

challenge.  SBML reaction kinetics are expressed in the form of algebraic expressions, 

whereas xCellerator generates sets of ordinary differential equations from an arrow input 

notation.  Translating common reaction kinetics written as algebraic expressions, that 

may be present in variable but equivalent forms, into specific xCellerator functions is a 

problem in symbolic pattern recognition and manipulation that will require some 

investigation.   
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Appendix: 

A. Sigmoid Class Authorship 
Key: 

 CA: B. Compani is the author. 

 CAE: B. Compani has edited the class attributes. 

 CR: B. Compani has revised this class. 

 PA: Previous authors include Lucas Scharenbroich and Jainlin Cheng. 

 USE: A U indicates the class has experienced some use, either in a model, or by 
 Sigmoid related code such as SME, a populator program or SigMech.  Entries in 
 this column are a rough estimate from my recollection of their use in Sigmoid.  

 X: Indicates authorship.  (or use in the Use column) 

 m: Indicates a change in the class due to a change in class inheritance.  

Sigmoid Class  CSA  CAE  CR  PA  USE 

AcidBase  X             

AcidsAmines                

ActivationPattern     X     X    

Acylation  X             

AdjacencyMatrix  X             

AffinityColumnMassSpect           X    

AffinityDerivedComplex        X  X    

AlgebraicPassthrough  X           U 

Allosteric     X  X  X    

AllostericInteraction  X             

Alpha  X             

Amines  X             

AminoAcid  X             

AminoAcidSequence        X  X    

Ampere  X             

Antibody  X             

Article     m  m  X  U 

AssemblyDisassembly  X             

Author  X           U 

AutoCatalysis  X           U 

BiBi     X  X  X  U 

BiBiCompetitive  X           U 

BidirectionalCatalyticAlgebraicPassthrough  X           U 

BidirectionalMassAction  X           U 
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BindingPair  X           U 

BioAnnihilation  X           U 

BioCatalyticAnnihilation  X           U 

BioCatalyticCreation  X           U 

BioComplex     X  X  X  U 

BioCreation  X             

BiologicalProcess           X    

BiologicalReaction     X   X  X  U 

BioRegulatoryRelationship  X           U 

Biotinylation  X             

BireplicatedReaction  X           U 

BirthProcess           X    

BiTer  X             

BIUni  X           U 

BiUniCompetitive  X           U 

BiUniCompetitiveNonCompetitive  X             

Book     m  m  X    

Booklet     m  m  X    

BooleanOverReactantState           X    

BooleanParameter  X           U 

Candela  X             

Carbohydrate  X           U 

Carbohydrates  X             

Carboxylation  X             

Cartesian2D  X           U 

Cartesian3D  X             

Catalytic     X  X  X  U 

CatalyticAlgebraicPassthrough  X           U 

CatalyticEnzymatic  X             

CatalyticViaHill  X           U 

CatalyticViaMichaelisMenten  X           U 

CatalyticWithAllostericRegulation  X           U 

CatalyzedWithInhibitorsAndOrActivators  X           U 

Cell  X             

CelleratorModel        X  X    

CelleratorParameterSet  X           U 

CellMembrane  X             

Centriole  X             

CGIKnowledgeSource     X  X  X    

Channel  X             

Chloroplast  X             
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Citation     m  X  X  U 

Class_3                

CoEnzyme  X           U 

Colony  X             

Combination  X             

Compartment  X  X     X    

CompartmentRelationshipPair  X           U 

Composition  X             

CompoundBio  X             

CompoundReaction     X  X  X  U 

Conference     m  m  X    

ConformationalIsomerization  X             

ConstantNode           X    

CoordinateBin                

Coordinates  X           U 

CRUserDefinedModule  X             

CTerminalAmidation  X             

CuboidMatrix  X             

Culture  X             

Cysteinylation  X             

Cytosol  X             

Database        X  X    

DataElement  X             

DataElementIDReference  X             

Dataset           X    

Deamidation  X             

DeathProcess           X    

DecomposedTranscription        X  X    

Decomposition  X             

DecoratedReactant  X           U 

DecorationTypePair  X             

DecorativeActivation           X    

DecorativeActivationModification  X             

DecorativeActivationModifications           X    

Deoxyhexoses  X             

DerivedUnit  X             

DimensionalCompartment  X           U 

DisulphideBond  X             

DNA        X  X  U 

DNADNA  X             

DNAProtein  X             
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DNARNAProtein  X             

DocumentedProtein        X  X    

DoubleElement           X  U 

DoubleParameter  X           U 

DoubleReplacement  X           U 

DoubleVector  X           U 

Edge  X           U 

EdgeList  X           U 

Electron  X             

EndoplasmicReticulum  X             

EnzymaticReaction     X  X  X  U 

Enzyme  X           U 

EnzymeSubstrate  X           U 

Events  X             

ExclusiveGroup  X           U 

ExperimentalDataset  X             

ExternalNetwork  X           U 

Farnesylation  X             

FattyAcid  X             

Formylation  X             

Function     X     X    

FunctionDefinition  X             

FunctionNode           X    

Gate  X             

Gene        X  X    

GeneOntologyComponent  X           U 

GeneOntologyComponents  X           U 

GeneOntologyFunction  X           U 

GeneOntologyProcess  X           U 

GeneOntologyProcesses  X           U 

GeneOntologySource  X           U 

GeneralCatalyzedReaction  X           U 

GeneralConversions  X           U 

GeneralizedMWC     X  X  X  U 

GeneralizedMWCCompetitive  X           U 

GenericComplex  X             

Geranylgeranylation  X             

GlobalParameters  X           U 

Glutathionylation  X             

Glycosylation  X             

GOAnnotation  X           U 
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GolgiApparatus  X             

Graph  X             

GRN  X             

Hexosamines  X             

Hexoses  X             

Hill     X  X  X  U 

Hormone  X             

Hydrolase  X             

Hydroxylation  X             

HydroxylGroups  X             

HypotheticalProtein        X  X    

InBook     m  m  X    

InCollection     m  m  X    

Index  X           U 

IndexNode  X           U 

InitialConditions  X           U 

InlineFunction  X             

InProceedings     m  m  X    

IntegerElement           X  U 

InternalNetwork  X           U 

InternalNetworks                

IntParameter  X           U 

IntVector  X           U 

Ion  X           U 

Isomerase  X             

KEGGInfo  X           U 

Kelvin  X             

Kilogram  X             

KMechIndexedReactant  X           U 

kMechInhibitor  X           U 

KMechProduct  X           U 

KMechReaction  X           U 

KMechReactionGroup  X           U 

KMechResidualEnzActivity  X           U 

KMechSubstrate  X           U 

KnowledgeSource     X     X  U 

Layout  X           U 

LayoutNode  X           U 

LedaEdge  X             

LedaGraph  X             

License  X             
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Lipase  X             

Lipid        X  X    

LipoicAcid  X             

ListHead  X             

Locus           X    

Lyase  X             

Lysosome  X             

MacroMolecule  X           U 

Manual     m  m  X    

Marker  X             

MastersThesis     m  m  X    

MathematicalReaction     X  X  X  U 

MathematicaNotebook  X           U 

Messenger  X             

Metaconstraint           X    

Meter  X             

Methylation  X             

MichaelisMenten  X           U 

MiscCitation     m  m  X    

MiscFile  X             

Mitochondrion  X             

Model     X  X  X  U 

Modification     X     X    

Mole  X             

Molecule        X  X  U 

MultiMulti  X           U 

MWC  X           U 

Myristoylation  X             

NAcetylhexosamines  X             

NameSymbolPair           X    

NameValuePair     X     X  U 

NeuroTransmitter  X             

NHCA     X  X  X    

NHCACompetitive     X  X  X    

Node  X           U 

NodeList  X           U 

NonCatalyzed  X           U 

NTerminalFormylation  X             

NTerminalMyristylation  X             

Nucleotide  X             

NucleotideSequence  X             
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Nucleus  X             

NVPbyCompartment  X             

ODEReaction  X           U 

ODEUserDefinedModule  X             

OMethylesterification  X             

Optimization  X           U 

OrderedBiBi  X           U 

ORF        X  X    

Organ  X             

Organelle  X             

Organism  X             

Organisms        X   X    

OrganizationalGroup  X           U 

Oxidation  X             

OxidationReduction  X             

Oxidoreductase  X             

Palmitoylation  X             

Parameter  X           U 

ParameterizedCell  X             

ParameterSet     X  X  X  U 

Particle  X             

Pathway           X    

Pentoses  X             

Peptide        X  X    

Peroxisome  X             

PhDThesis     m  m  X    

PhenomenologicalRegtranscription        X  X    

Phosphorylation  X             

Photon  X             

Phylum           X    

PingPongBiBi  X           U 

PingPongCompetitiveNonCompetitive  X           U 

PingPongDifferentialNonCompetitiveResidual  X           U 

PingPongNonCompetitive  X           U 

PingPongNonCompetitive2ndsub  X             

PingPongNonCompetitive3Inhibitor  X             

PingPongNonCompetitiveResidual  X           U 

PingPongTerTerOrderedAdditionRandomRelease X             

PingPongTerTerRandomAdditionOrderedRelease X             

PosttranslationalModification  X             

PreDefinedCell                
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Prenylation  X             

PrimalComplex  X             

Proceedings     m  m  X    

Protein        X  X    

ProteinMultimer     X  X  X    

ProteinProtein  X             

Protocol     m  m  X    

Proton  X             

PubMethod           X    

Pump  X             

Pyroglutamicacid  X             

Quantity                

RateConstants  X           U 

RateFunction  X           U 

Reactant     X     X  U 

ReactantCoefficientPair  X           U 

ReactantData                

ReactantFunction     X     X    

ReactantKineticPair  X           U 

ReactantLocationPair  X           U 

Reactantmod                

Reactants                

Reaction     X    X  X    

ReactionConstraint           X    

ReactionGroup  X           U 

Receptor  X             

Region  X     X        

RegulatoryFunction  X             

ReplicatedReaction  X           U 

Replication  X             

Ribosome  X             

RNA        X  X  U 

RNADNA  X             

RNAProtein  X             

RNARNA  X             

Rules  X             

SBMLInstructions  X             

SBMLRepresentation  X             

SDE  X             

Second  X             

SialicAcid  X             



171 
 

SIBaseUnit  X             

SIDerivedUnit  X             

Sign                

Simple  X             

SimpleValue           X    

SimplifiedNonSaturatedCatalytic     X  X  X  U 

SingleReplacement  X           U 

Site     X     X    

SmallMolecule        X  X  U 

SMolecular                

SparceArray                

SparseArray  X             

SparseMatrixElement  X             

SpatialModel  X           U 

Species           X    

SSystem  X             

StateVector  X             

Stearoylation  X             

StochasticReaction  X             

StringElement  X           U 

Stringl                

StringParameter  X           U 

Structural                

Structure  X             

StructuredComplex  X             

SubstrateC                

SubstrateCompetitiveInhibitorSet  X             

Sugar  X           U 

Sulfation  X             

Sulphydryls  X             

SymbolicReactant           X    

SymbolicReaction           X    

SymbolicValue           X    

SyntaxTree           X    

SyntaxTreeNode           X    

Taxon           X    

TechReport     m  m  X    

TerBi  X             

TerTer  X             

TerTerCompetitive  X             

ThreeStageCatalytic  X           U 
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TimeValuePair  X             

Transcription  X             

TranscriptionalRegulation  X             

TranscriptionalTranslationalControl  X             

TranscriptionFactor  X             

Transferase  X             

Translation  X             

Translocation  X             

Transport  X             

TwoStageCatalytic  X           U 

UncertainValue           X    

UniBi  X           U 

UniBiCompetitive  X           U 

UniBiCompetitiveNonCompetitive  X             

UnidirectionalMassAction  X           U 

Units     X  X  X    

UniUni  X           U 

UniUniCompetitive  X           U 

UniUniCompetitiveResidual  X             

UniUniNonCompetitive  X             

UniUniNonCompetitiveResidual  X             

UniUniUncompetitive  X             

UniUniUncompetitiveResidual  X             

Unpublished     m  m  X    

UserDefinedPC                

UserDefinedRegulation  X             

UserOrganelle                

UserSpecifiedPTM  X             

UserUnit  X             

Vacuole  X             

Value           X    

VariableNode  X             

Vesicle  X             

Virus  X             

WebKnowledgeSource     m  m  X  U 

YeastProteomeDatabase     m  m  X    

YeastTwoHybridSystem     m  m  X    
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B. Model Code Authorship 
 
Author Key: Compani is Behnam Compani. Tom is Thomas Whisenant.  Kandarp is 
Kandarp Shah.  Najdi is Tarek Najdi. Zhang is Li Zhang.   Vadim is Vadim Bichiutsky. 
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C. Posttranslational Modification Classes. 
 

A list of posttranslational modification classes available in the Sigmoid schema. 

Subclasses of a class are in parenthesis.  Class attributes follow the colon. 

 

AcidsAmines: EDQN- String (Deamidation QorN: String, Pyroglutamicacid Q:String, 

Carboxylation EorD:String)   

Amines: KorNTerminus:String (Formylation, Myristoylation, Stearoylation, 

Biotinylation, Farnesylation, Acylation, Palmitoylation, Geranylgeranylation, 

LipoicAcid, Methylation) 

Carbohydrates: STN-String (Hexosamines, Deoxyhexoses, Hexoses, 

NAcetylhexosamines, Pentoses, SialicAcid) 

CTerminalAmidation 

Glycosylation LinkOorN- String 

Hydroxylation 

HydroxylGroups: STY -String (Phosphorylation, Sulfation) 

NTerminalFormylation 

NTerminalMyristylation 

OMethylesterification 

Prenylation 

Sulphydryls: (Cysteinylation, DisulphideBond, Oxidation, Glutathionylation) 
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UserSpecifiedPTM kind-String 

 

 


