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1 Intro duction

This memd" provides a brief summary of various activities conducted by the author? in support of the
NSF-funded ComputablePlant project [6]. Much of the work was performed in collaboration with Adrienne
Roeder, a postdoctoral scholar working in the Caltech Biology Department in the lab of Professor Elliot
Meyerowitz.

The overall goalsof the project are: (1) to answer fundamertal questionsabout the role of geneticsand
ervironment in the developmert of complexorganismsand (2) to develop accurate, testable computer models
that capture the dewvelopmenal processat both structural (microtubule orientation, division planes, 3D
models of nuclei and cell compartmernts, etc.) and functional levels(generegulatory networks, ervironmental
signaling, etc.). Much of the input to the processcomesfrom imaging data collected with a confocal laser
scanning microscope (CLSM) of uorescently-tagged arabidopsis specimens, including both normal (wild
type) and mutant variations. A unique aspect of CLSM is that it allows repeated, non-destructive imaging
in 3D of live specimens,i.e., live imaging.

The project relies on a multidisciplinary approadc that combines traditional biology and live imaging
with automated image analysis and computer modeling. The main activities pursued by the author and
discussedin this memo are as follows:

Segmentation of Nuclei in 2D

Studies of Endoreduplication

Growth and Lineage Analysis

Recovering Nuclear Bounding Surfaces in 3D
Segmenting Cell Compartmen ts in 2D
Recovering Cell Compartmen t Mo dels in 3D

Additionally , two appendicesareincluded that discussmicroscope coordinate systemsand the various polyhe-
dral represerations that are usefulfor modeling 3D objects such asnuclei and cell compartments. A software
padkagecontaining nearly two hundred Matlab functions that implement various algorithms and experiments
wasdeliveredto the internal Computable Plant website[3] on 2008/09/03, alongwith a README documert
describing the basic capabilities of ead function.

1This document represerts preliminary work performed by the author. The content does not re ect the ocial policy or
position of the Jet Propulsion Laboratory or the United States Government. Secondary distribution, disclosure, or dissemination
of this document without the express permission of the author is prohibited.

2Total eort expended was approximately 0.4 FTEs (2 years 20%lyr).



2 Terminology and Conventions

CLSM imaging producesan image stack consisting of a set of slice images of equal size taken at various
depths (z-values)relative to the microscope. The slicesare \virtual* in the sensethat they are accomplished
with an optics trick that requires no (or little) physical harm to the specimen. Fluorescen tags and/or
dyesthat are sensitive to particular wavelengths of light are typically introduced into the specimensprior
to imaging to highlight di erent structures. For example, a nuclear-localizedcyan uorescent protein (CFP)
may be intro ducedto highlight nuclei, while a lipophilic uorescent dye, such as FM-64, may be intro duced
to highlight plasma membranes. We refer to the imagesthat are taken at di erent wavelengthsas channels

Image stadks, which are 3D, can also be obtained at di erent times over the course of developmert
(although these time snapshotscannot be spacedtoo close together due to sometrauma causedto the
specimenby the laser light, photo-bleaching, etc.). The raw output from a CLSM imaging experiment can
be written as:

le(X;Y;Z;t) (1)

where c represerts the wavelength channel, x and y represen the \horizontal" dimensions(within a single
stack frame image), z represerts the \v ertical® dimension (stack level or depth from the microscope), and t
represens the time dimension. When there is no danger of confusion, various unusedindiceswill be omitted
for clarity. For example, when talking about an imagein a particular channel at a particular time, we may
write |1(x;y) to simplify the notation.

Usually, it is conveniert to think of the various dimensionsin Expressionl asbeinginteger-valuedindices;
howevwer, it is sometimesnecessaryto work with the true real-valued units (meters, secondsgetc.). Appendix 1
discusseghe various coordinate systemsthat are relevant to the imaging experimerts.

A maximum intensity projection image of a stack over the z-dimensionis de ned as:

M(xy) = max 1(x; y;2) (2

It is also possibleto assaiate a depth with ead pixel in a maximum intensity projection, e.g., using the z
value that provided the maximum intensity value for ead (x; y) pixel in the maximum intensity projection,

Z(x;y) = argmzaxl(x;y;z) 3)

Segmentation of an image amourts to labeling a particular set of pixels as belongingto a speci c object
or structure. The result of segmemation is often represeried as a lakel image, L (x;y), where eac pixel in
L takeson an integer value represerting the ID of the object cortaining that pixel. A zerovalue is resened
for pixels belongingto the badkground. Typically, the pixels belongingto the individual segmers (objects)
are connectedand we can equivalertly represen a segmemation result with a set of boundary cortours (or
bounding surfacesin the 3D case). The conversionfrom a label imageto boundary contours is called contour
following and can be accomplishedwith the function icluster _contours.m , while the reverseoperation of
converting a set of boundary contours to a label image can be accomplishedby a polygon lling operation,
polygon _-mask.m which createsa binary image, followed by icluster.m . The regionsenclosedby the various
boundary contours must be disjoint for this operation to work properly.

3 Nucleus Segmentation in 2D

Reliable 2D segmemation of nucleiin CLSM imagery of uorescently-tagged arabidopsissamplesis important
for a number of downstream applications, including studies of endoreduplication (Section 4), growth and
lineage (Section 5), and extracting polyhedral models that represen the nuclear bounding surfacesin 3D
(Section6). Two distinct approachesto nucleussegmetation werepursuedat di erent times and for di erent
purposesover the courseof the project. One approac is basedon edgedetection and nding closedcontours;
the other approach usesthresholding and morphology.
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Figure 1: The grayscaleimage is the nucleus channel image from a particular stack level (17). Nucleus
boundary cortours at this stack level, as determined by the edge-basedhucleus segmemation method, are
overlaid in red.

3.1 Edge-Based Nucleus Segmentation

We initially pursued an approach to nucleus segmermation basedon edge detection. This technique was
targeted for nding nuclei in ead individual image frame in an image stadk. Each frame |, taken from
the appropriate uorescence channel cortaining the nuclei, is rst smoothed in both the horizontal (x-y)
and the vertical (z) directions via convolution with a compact Gaussian-like kernel. Edge cortours are then
extracted basedon the spatial gradient of the smoothed frame using a procedure similar to the Canny edge
detector [5]. Detected contours are evaluated to seewhether they meet length and closure tests®. Any
cortour meeting both the test criteria is declaredto be a bounding contour of a nucleus. Figure 1 shows a
set of nuclear contours detected with this method on a particular frame from an image stack. The function
nucleus _stack.m in the software delivery usesthis approach to convert a stack of imagesinto a stack of
contours.

On the positive side, the edgedetection approad is straightforward, very fast, and provides somerobust-
nessto badkground levelsthat may vary acrossthe image. On the negative side, small quirks in the boundary
of a given nucleus may result in complete rejection of the nucleus (e.g., if the edgedetector wandersinto
the interior of the nucleusdue to someirregularity in its boundary and texture in its interior, the nucleus
will likely be rejected by the closuretest). Also, nuclei that appear to overlap (for example, this happens

3The closure test merely compares the Euclidean distance between the start point and end point of a contour against a
distance threshold.
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Figure 2: Initial segmemation of a nucleuschannelimageinto blobs. The blobs showvn in red wereidenti ed
as needing further splitting based either on the presenceof multiple local maxima within the region or
deviation of the boundary contour from elliptical.

frequertly in maximum intensity projections) will be lumped together within a single contour. Another
drawbad is that the smoothing neededto help insure that edgedetection is reliable may slightly distort the
sizeand shape of the nuclei (expanding the e ectiv e point spreadfunction (PSF) of the microscope).

3.2 Thresholding and Morphology-Based Nucleus Segmentation

Later in the project, a thresholding and morphology-basedapproadc to nucleussegmemiation wasdeveloped.
This approach wastargeted toward segmenmation of nuclei in projection images(usually of the plant sepal),
but likely can provide reliable results in the stack frame case. With this approach, a (3 3) median
Iter is applied to clean up the incoming nucleus channel image. The output from the median Iter is
thresholded*, and any pixels above the threshold are clustered into blobs using a generalized connected
componerts algorithm (icluster.m ). This initial segmemation into blobs is represeried by a lakel image
asdiscussedin Section2. Seeral tests are applied to determine whether a particular blob needsto be split
further. For example, we evaluate the number of local maxima from the median Itered imagethat fall into
ead blob. We also considerthe boundary of the blob and its departure from elliptical. Blobs that need
splitting are then split using Matlab's built-in watershed function. Figure 2 showv a set of detected blobs.
Those shawn in red are identi ed as needing splitting.

4We have only used a single global threshold acrossthe image, but adaptiv e thresholding could be investigated.
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Figure 3: The boundary contours of various nuclei detectedin the sepalof a smrl mutant using the thresh-
olding and morphology approach are shown overlaid in random colors on the membrane channel (red) and
nucleuschannel (green).

No blobs are currently rejected basedon size, but this can be easily accomplishedin a post-processing
step (e.g., using icluster _moments.m icluster _ellipse _params.m and icluster _elim). The overall
thresholding and morphology based segmetation function is called sepal _nuclei.m , although it is not
speci cally limited to sepalnuclei. Figure 3 showns the segmeration of various nuclei detectedin the sepalof
a smrl mutant using randomly-colored boundary contours overlaid on the combined membrane and nucleus
channels.

3.3 Rening Segmentation Results

Although both segmetation algorithms generally work well, the results are never perfect. Depending upon
the intended use for the segmetation results, it may be desirable to apply automatic and/or manually
editting. As mertioned above, rejection basedon size and/or shape constraints can be accomplishedwith
the icluster _*.m tools. An interactive segmeration editor is also available as segmentation _editor.m .
Basically, this function takesasinput the raw image, the label image producedby the automatic segmetation
algorithm, the colors assaiated with ead blob, and the set of boundary contours for the blobs. Through
mouse clicks, blobs can be added or deleted. At this time, there is a constraint that blobs cannot be
overlapping. Referto the function documertation for more details on the user interface. The end result is
a new label image, color set, and contour set, which represerts the revised segmetation results. Figure 4
shows the di erence betweena rev0 (raw segmettation) product and a revl (edited segmetation) product.
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Figure 4: (a) Raw nucleussegmenation (rev0) for an smrlimage. (b) Corresponding nucleussegmetation
after manual revision (revl).

Note that the edge-basedsegmetmation approach of Section 3.1 doesnot directly produce a label image
and hence cannot be immediately used with the segmermation editor. However, we can apply the extra
step discussedtoward the end of Section 2 to cornvert the boundary contours into a label image. It is then
necessanto re-extract the contours from the label imageto insure that the ID numbers assa@iated with the
cortours match the ID numbers usedin the label image.

4 Endoreduplication

Seweral studies were conductedto gain insight into the mecanism of endoreduplication that is hypothesized
to give rise to the giant cellsthat appear in the sepalsof normal (wild type) arabidopsisplants. In a typical
cell cycle, a cell replicatesits DNA, then divides with half of the (now doubled) DNA goingto ead daughter
cell. In endoreduplication, the cell replicatesits DNA, but fails to divide; oncea cell enters endoreduplication,
it doesnot divide in future cell cyclesleadingto an increasein its DNA content at ead step that presumably
goesin powers of two.

Oneinvestigation consideredthe useof nuclear volume asa proxy for DNA content. (We alsoinvestigated
the use of integrated intensity after removing the base background level as a di erent measurefor DNA
content.) Generally with the sepalwe work with 2D projection imagessoit is not feasibleto recover a true
nucleusvolume. Instead we construct a pseudo-wlume by tting a 2D ellipseto eath segmened 2D nucleus.
The principal axesof the 2D ellipse, min and max, are usedto de ne the pseudo-wlume as follows:

v = 3 max min min (4)
This calculation basically assumesthat the long dimension of the nucleus lies in a plane parallel to the
imaging plane and that the nucleusis an ellipsoid of revolution about its long axis.

The nucleussegmeration procedurefrom the previous section (the thresholding and morphology based
method) was applied to roughly a dozen sepal projection images from wild type, as well as to a similar
number of imagesfrom the mutants smrl and E10_19. The raw segmetations (rev0 products) were re ned
through manual editing to produce revl versionsof the segmemations. From the cleaned segmemations,

1000
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Figure 5: Histograms of nucleus pseudo-wlumesover sepalfor wild type, smrl, and E10-19variants. The
stronger upper tail for wild type (blue) seemsto con rm the presenceof more giant cells.

we extracted ellipse parameters and calculated pseudo-wlumes for eat detected nucleus. A normalized
histogram showing the resulting distribution of pseudo-wlumesfor ead of the three variants is shawvn in
Figure 5 using a log, scaleon the x-axis. The heavier upper tail on the wild type (blue) curve along with
the appearanceof discernible semi-regularpeaksin the histograms are noteworthy.

However, some follow-on experiments conducted by A. Roeder using a di erent direct medanism® to
measure histograms of ploidy level (DNA content) seemto indicate that the imaging approach with the
particular uorescent marker that was useddoesnot provide a reliable enoughmeasureof DNA cortent.

5 Growth and Lineage Analysis

Another pursuit during the project was to estimate growth rates and to follow cell divisions to establish
lineage and progery. The input for these studies consisted of time sequencesn which a particular plant
was imaged at (typically) eight hour intervals for seweral days. A. Roeder provided hand tracking over the
sequencesor a subsetof the visible nuclei.

Considerablee ort wasrequired to convert the hand-tracking data into machine-usableform. For future
work, this step should be better streamlined. More speci cally, what is neededis a tracking table a simple
text le containing oneline for eat obsenation of ead nucleusover the duration of the sequencealong with
the obsened position coordinates and a nucleusID that is persistert over time. The nucleusID could be in
ancestor label form or lineage label form. Ancestor labels usethe ID of the earliest ancestor of a particular
cell, while lineagelabelskeeptrack of cell divisions. Table 1 givesan exampleof a tracking table with lineage
id labels. The label '2.1" in the id column indicates that this cell is the rst daughter cell of cell number 2
(where the distinction between rst and seconddaughter is arbitrary).

Two data sequencesvere examined: one, known as flower5 , contained 3D nucleus positions, while the
other, known as flower6 , provided only 2D nucleuspositions.

5Flow cytometry .
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Table 1: Example tracking table usedasinput by the various growth analysisfunctions. Each obsenation of
ead nucleusover the duration of the sequencds recordedas a line in the table. The rst column indicates
the frame number (equivalently, time) of the obsenation, the next two (or three) columns indicate the
coordinates of the nucleus certroid, and the nal column indicates the id label. The id label may be an
ancestor label or a lineagelabkel, as shown here.

5.1 Principal Growth Rates

Giventracking data in the form of Table 1, we can easily determine correspondencesbetweenertries at time
t and at time t + 1. Supposethere are N correspondences. Assuming 3D coordinate data, let (VX and
(t*1) X be de ned as follows:

2 3
X1 Y1 41
X2 Y2 22
Ox = E . z (5)
XN YN 2N
2 0 0 3
I
() = E X_2 y_2 2_2 z 6)

where point (Xk;Yk; z«) in frame t correspondswith the point (x2;y?;z?) in framet + 1. For 2D coordinate
data, the third (z) column would simply be omitted from ead data matrix.

Given the data matrices, we can try to solve for the best ane transformation (t*1) Ay from time t to
time t + 1:

MxT
(t+1) X T (t+1) A ® 1_’5 (7)

where for 3D data A is (3 4) and for 2D data A is (2 3). The vector 1y isan (N 1) vector of ones.
The best solution for A in a least squaressenseis given by:

myt #
(t+1) A(t) — (t+1) XT lT (8)
N
where# represens the pseudo-inverse. Note that A can be broken down as follows:
h [
A= B it ©)

For the 3D caseB is (3 3)andt is (3 1), andfor the 2D caseB is(2 2)andt is(2 1). The B portion
represerts rotation, scaling, and shearing, while t represerts translation.



Principal growth directions and rates can be obtained by factoring B using the singular value decompo-
sition (SVD).

B = USVT (10)

where U and V are (3 3) orthonormal matrices and S is a (3  3) diagonal matrix with non-negative
elemers in descendingorder along the diagonal. Consider two points in frame t: po and p1 = po + Vg,
wherev; is the rst column of V. Where do thesepoints map in framet + 1?

Bpo+t (112)
Bpo+ Bvi+t (12)

© ©
oo
I

The displacemen vector d betweenthe two points in frame t is given by:

d = p1 Ppo
= v, (13)

while the displacemern vector in framet + 1 is given by:
do = Bvi
USy, "vi,
1

us4 05
0

= 51 Up (14)

The length of d is 1 (since v is a unit vector) while the length of d°is s; (since u; is also a unit vector).
Thus, the distance betweenpo and p; is scaledby s; as a result of the transformation. It turns out that
for any direction (unit length displacemen vector) we could have picked in frame t, the vector v, is the
onethat getsscaledby the biggestfactor. Thus, v, is the principal growth direction and s; is the principal
growth rate. In 3D, there is a 2D subspaceorthogonal to v; and we can ask what displacemen vector in
this subspacegets scaledby the biggestfactor; not surprisingly the answer is v, and the scalefactor is s,.

Another way to think of B in the 3D caseis that it transforms the three orthogonal unit vectorsvi, v,
and v3 from framet into the three orthogonal vectorsuj, u, and us in framet + 1 with lengths s;, s;, and
s3, respectively. Figure 6 illustrates this interpretation. In 2D the interpretation is similar exceptthat B
transforms the two orthogonal unit vectorsv; and v, from framet to the two orthogonal vectorsu; and u
in framet + 1 with lengths s; and s;, respectively.

Figure 7 shows growth rate curvesextracted from the Flower 6 data. The principal (major and minor)
growth rates are determined using corresponding nuclei betweenead pair of adjacert frames. The rates are
then compound to show the cumulative growth relative to frame 1. Although we loosely refer to the two
curvesas\length" and \width™, there is no guarantee that the principal growth directions align with our
macroscopicconcept of length and width from looking at the sepal. There is also no guarantee that the
principal growth direction remains consistert betweenall pairs of frames.

5.2 Bounding Box Growth Rates

The fact that the principal growth directions are not necessarilyconsistert with our macroscopicconcept of
length and width can be problematic. Hence, we deweloped another method to measuregrowth rates that
rst aligns the data points to an \atlas" in which the axescorrespond to the macroscopiclength and width
directions. We then look at the growth rate of the axis-aligned bounding box.

Figure 8 shaws the extracted nuclei from 6 frames of the Flower 6 data. All nuclei from the sameframe
are shown in one color; hence,red shows nuclei from frame 1, greenfrom frame 2, blue from frame 3 and
soon. The colored rectanglesshow the (length-width) axis-aligned rectanglesfrom eac frame. The olive
greenlines show the tracking of eat nucleusover the sequence.The black circle in the certer represernts the
hypothesizedsingle primordial nucleusbefore any divisions have taken place. Figure 9 shows the growth in
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Figure 6: Principal growth directions and rates can be found from the singular value decomgosition of the
non-translation portion of the a ne transformation betweenframe t and frame t + 1. In particular, the
vector v is the principal growth direction and s; is the principal growth rate.
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Figure 7: Growth rate curvesextracted from Flower 6 data using the compounded principal growth rates
method. The magerta curve shows the compounded major growth rate starting from 1 at t = 0. The cyan
curve shows the compounded minor growth rate starting from 1 at t = 0. The greencurvesshov exponertial
ts to the growth curves.
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Figure 8: Growth rate curvesextracted from Flower 6 data using the macroscopiclength and width axes
and bounding box method. Nuclei from eat frame are mapped to a coordinate frame that roughly aligns
with the macroscopiclength and width axesof the sepal. Nuclei from a given frame are shown in the same
color along with a rectangle designating the axis-aligned bounding box. The olive greenbranchesshow the
tracking of individual nuclei over time.

the bounding box length (red) and width (blue) over the sequence.Comparing with Figure 7, we seethat
in this case,at least, the two methods are reasonablyconsistert exceptat the tail end (betweenh = 48 and
h = 60). Here, the principal growth axesbetweenthe last two framesin the sequenceswapped from being
roughly alongthe macroscopiclength axis to being along the macroscopicwidth axis, which is probably not
what we want (since the growth in width direction betweenthe nal two frames gets compounded with the
growth in length direction from the earlier framesto yield the magena curve of Figure 7).

5.3 Lineage Analysis

Knowing the detailed lineagehistory of particular cellsis often a requiremert for further analysis. Figure 10
shows lineagelabels that were produced from the Flower 5 image sequence.In particular, Figure 10c shows
the number of descendets that were produced by cells starting at various locations in the early (t = 1)
sepal.

With detailed tracking and lineagedata, we can alsoconduct studiesto look at the properties of individual
cell lines versustime. Figure 11 shows a plot of nucleus area versustime for seweral sepal cells over the
Flower 6 sequence.The colored curvesare for giant cells, which are not dividing. The black curvesare for a
single normal cell that is dividing, along with its daughters, granddaugkhters, etc. This experiment con rms
that the nucleusareafor dividing cells uctuates within a fairly narrow range, while the nucleusareafor the
non-dividing giant cells grows exponertially over time.

11
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Figure 9: Growth rate curves extracted from Flower 6 data using the bounding box method. The red
curve represens compounded growth along the macroscopiclength axis, while the blue curve represens
compounded growth along the macroscopicwidth axis. Note that something unusual happensat the nal
time point, presumably due to an out-of-plane rotation of the sepalwhen placed under the microscope.

6 Nuclear Bounding Surfaces in 3D

Early in the project, a method was deweloped to recover nuclear bounding surfacesin 3D from an image
stack and output the results as a triangulated hypersurfacethat is directly loadable by Amira [1]. The
basicideais to locate nucleuscontours at ead stack level and then link theseacrossstack levelsbasedon a
cortour distance measure(relativ e area of intersection could be usedas an alternativ ) betweencontours on
adjacert levels. Once contours are linked acrossstadk levels, the contours corresponding to the sameobject
are resampledto have the samenumber of points and similar origin, which makesthe processof constructing
a surfacetriangulation easy

Figure 12ashowsamaximum intensity projection imageof real nuclei and plasmamembranesin Flower 74.
Figure 12b shows a similar image in which the real nuclei have beenreplacedby the extracted 3D nuclear
bounding surfaces. Further details are available in [2].

Nucleus volume can be easily calculated from the surface triangulation assuming the nuclei are star
convexwith respect to their certroids. Esserially eat surfacetriangle is connectedto the object certroid
to form a tetrahedron. Summing the individual volume cortributions from ead of the tetrahedrons gives
the overall volume. Seefunction volumes_from _triangulated.m . There is an issue, of course,on whether
the volume inside the recovered nuclear envelope matchesthe true nucleusvolume due to things such asthe
point spreadfunction (PSF) of the microscope (particularly in the z-direction). Note, in particular, that the
nuclei in Figure 12b appear to be cylindrical or rod-shaped; this shape is likely to be an artifact of the PSF.

7 Cell Compartmen t Segmentation and Analysis

A limited e ort wasalsomadeto segmet cell compartments from imagesof meristem provided by M. Heisler.
A thresholding and morphology approad, similar to that usedfor segmeting sepal nuclei, provided some
success. The procedure works as follows. The initial image is inverted, thresholded, and median- ltered
to highlight the interiors of the cell compartments. Connectedcomponerts are identi ed with icluster.m

12
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Figure 10: (a) Nucleuslabelsfor the rst imagein sequencegt = 1). (b) Lineagelabelsfor the nal framein
sequencgt = 17). Note that the nucleusat the bottom middle (11.2.2.2.3 has undergonemultiple rounds
of division over the course of the sequence,while other nuclei (40, 12) have not divided even once. (c)
Mapping of nuclei from frame 1 to frame 17 with color coding of displacemen vectorsindicating number of
descendets (red=1, green=2, blue=3, cyan = 4 or more).
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Figure 11: The colored curves show nucleus area versustime for seweral sepalgiant cells over the Flower 6
sequence.The black curvesshow nucleusareaversustime for a normal sepalcell that is undergoingdivision.
As the cell divides, we track ead of the daughter cells (and their daughters), recording the nucleusarea at
ead obsenation time. As expected, the nucleus area for the dividing cell remains within a fairly narrow
range, while for the non-dividing giant cells, the area appearsto grow exponertially versustime.

Thesecomponerts are then re ned by eliminating regionsthat are too large or too small. Finally, boundary
cortours are extracted around ead of the regions. Figure 13 show a meristem plasma membrane channel
image and the corresponding compartment segmemation. Although we did not explore this option, we
could potentially usethe nucleus channel data in conjunction with the plasma membrane channel data to
identify placeswhere adjacert cell compartments were inappropriately joined into a single componert. Such
\sup er-cells" could then be split using watershedasin the sepalnuclei case(or the voronoi criteria).

8 Cell Compartmen t Mo dels in 3D

Applying the 2D cell compartment segmemation approad of the previous sectionto eadt layer in a stack
provides a set of contours versusstack level. Linking these contours acrossstack level asin the 3D nuclear
boundary recovery algorithm enablesall the contours from a particular cell compartment to be assaiated
with one another. A triangulated polyhedron model of eact cell compartment can then be recovered as
shown in Figure 14.

The method for turning the 2D segmetations into a collection of 3D polyhedra is basically agnostic
to the underlying 2D segmemation method. For example, planar junction graphs, suc as those recovered
by H. Jonnson, are often used to represen the network structure of the cell walls (edgesand vertices).
This represenation can be easily transformed into a standard 2D segmetmation (label image) or to a set of
polygonal 2D cell compartment boundaries. The results can then be usedas above to create 3D polyhedral
represenations of the cell compartmerts.

A slight drawbadk of the \union of polyhedra" represenation shown in Figure 14 is that the contact
betweenadjacert compartments which sharea common cell wall is not explicit. In fact, there is is a small
gap between adjacernt polyhedra. A represenation of the cell compartments in which adjacert compart-
ments sharea planar facet may be better-suited for certain typesof computer modeling, for example, if the
transport of somesignaling chemical, such as auxin, from one compartmernt to the next is hypothesizedto

14



Figure 12: (a) Maximum intensity projection image of ower74 with membrane channelsin red and nuclei
in green. (b) Maximum intensity projection image of ower74 with nucleuschannel replaced by randomly-
colored, triangulated 3D nuclear bounding surface segmerations.

15



Figure 13: (a) Meristem image with squareroot (p ") scaling. (b) Segmemation of meristem image into 2D
cell compartmernts.

be proportional to the surfaceareaof the cortact region betweenthe two compartments then it is somewhat
dicult to getat this information from the \union of polyhedra" represenation.

A seriesof experiments with synthetic data was conductedto explore algorithms for recovering a faceted
\shared wall" represeration of cell compartments. More details are provided in [4], but the main ideasare
summarized here. The basic idea is to take a set of nuclei positions in 3D and construct an arti cial 3D
assenbly of cell compartments using the voronoi criteria. Figure 16 shows a triangulated surfacerendering
of one such construction, along with equivalent voxelized represertations (samecells, unfortunately di erent
color schemefor the voxelized and triangulated versions).

Slice images were then obtained by mathematically transecting a plane (parallel to the x-y plane at
various depths z) through the cell compartment assenbly to producea stadk of 2D segmenations. Figure 17
shows a set of mathematical slicesthrough a 3D Voronoi cell assenbly at two adjacert slice levels. Here
the 2D cell compartmernt regionsare consisterly-colored from onesliceto the next (ground truth), but this
would not be the caseif the 2D regionswere identi ed with a real segmetation algorithm.

The task then is to look at how these 2D segmetations with inconsistent labels between slicescan be
usedto recover the 3D cell compartment structure. The rst stepin our proposedalgorithm is to create a
layered a nity graph in which the nodesat layer i consist of the segmens found at the layer. Edgesare
de ned basedon the strength of connection betweena segmen in stack layeri and a segmen in stadk layer
i + 1. As shown in Figure 18, we usedthe relative area of overlap (square root of the area of intersection
divided by areaof union) asour measureof connectionstrength. Edgesin the a nit y graph are then pruned
basedon strength and by applying a mutual nearestneighbor criteria. If segmen A on stack level i hasits
best match on leveli + 1 assegmen B (and the match was of su cien t quality accordingto the relative area
of overlap), then we also chedk whether the best match for segmen B on level i is segmen A. If so, these
two segmens were mutually the best match for eat other, and the edgebetweenthem is retained. We refer
to this asthe forward-badkward consistencyched and is similar to the left-right consistencyched that is
commonly usedto verify hypothesizedcorrespondencesn various stereovision algorithms. Figure 19 shows
the consistencychedk in more detail. Figure 20 shawsthe a nit y graph after the consistencyched hasbeen
usedto prune links. In Figure 20b, false positive indicates that a link remains betweentwo regionsthat is
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Figure 14: Combination of 2D cell compartment segmenmations into a collection of 3D compartment models.
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Figure 15: An alternativ e represenation of 2D cell compartment structure is the planar junction graph in
which cell walls are edgesand vertices betweenwalls are nodes. This represenation can be corverted to a
standard 2D label image (\segmentation”) and then to boundary contours. Graphic courtesy H. Jonnson.
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Figure 16: A synthetic 3D cell assenbly created by applying the Voronoi construction to a set of 3D nucleus
positions. (a) Triangulated represenation. Each color represents a distinct cell compartment. (b) Voxelized

represenation from one viewpoint. (c) Voxelized represenation from another viewpoint.
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Figure 17: Transectingthe 3D Voronoi cell assmeblywith planesat di erent slicelevelsgives2D sliceimages.
(a) Slice 56. (b) Slice 57. Note that here the regions are consisterlly colored between slicesaccording to
the color of the 3D parent compartment; hence,the colorsrepresen ground truth. This consistert coloring
would not exist if the 2D regions were independertly identied in ead slice using a real 2D segmenation
algorithm.
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Figure 18: Our de nition of a nit y betweentwo regionsfrom adjacert stack levelsis the squareroot of the
area of intersection divided by the area of union.

incorrect. Sud links are often the result of what we call the \snowman problem" illustrated in Figure 21;
basically, two cell compartments are stacked directly on top of ead other with their separatingwall parallel
to the slice planes. A false negative indicates that a true link was pruned. Usually, these occur only at the
very top or very bottom slice level where the tapering shape of the cell compartment may result in a small
2D regionin the sliceimagethat is not well-linked to anything accordingto the a nit y criterion.

Assuming we are able to link the individual 2D regions together acrossslice levels, the next step is
to identify separating planes between objects that have contact with ead other. Contact can be easily
determined from a voxelized represenation by looking in someneighborhood of ead voxel that is marked as
belongingto object k to seewhat other voxel labels appear nearby. Figure 22 shows a situation in which two
objects are adjacert and we would like to recover a planar separating surface. Two approacheswere tried.
The rst usedonly pixels at the cortact region and tried to robustly t a plane basedon those pixels using
a variation of the RANSAC algorithm [7]. This method sometimesgives spurious results, especially when
the contact region was relatively small (unstable t). A more reliable method was obtained by using all of
the voxels from object k and object k + 1 in a supervised machine learning framework in which a maximum
margin linear separating hyperplane was found using the support vector machine approach. Figure 22b
shows the separating plane recovered by linear SVM. Combining the set of planesbounding ead object into
a set of inequalities gives a represeration of the cell compartment as a polytope. The polytope form can
then be corverted into a facets form as discussedaheadin Appendix 2.

There are seeral important limitations with this technique. First, it assumeghat the cell compartments
can be well represened by polytopes, which meansthe cell compartments must be convex. If we attempt
to apply this approac to a \super cell* that resulted from a snovman situation, the results are likely to
be poor as the polytope is de ned by the intersection of half-spacesfrom all the planar facet constraints.
Another problem is with cell compartments that border the badkground as they may have multiple planar
contacts with the badground, but the SVM tries to t a single plane that best separatethe object from all
voxelsthat are marked as badkground.
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Figure 19: The forward-badkward consistencyched prunes links betweenslice layersthat do not represert
a mutual nearest neighbor relationship betweennodes. In the illustration only the link betweennode i in
slicez and nodej in slicez + 1 survivesthe consistencyched.

Figure 20: The anit y graph betweenregionsin adjacert slice images after pruning using the forward-
badkward (mutual nearest neighbor) consistencychedk. (a) View showing all slice levels. (b) Zoomed in
view of the a nit y graph for slicelevels 35to 45.
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Figure 21: The \snowman problem" occurs when two cell compartments are stacked on top of one another
with their separating cell wall parallel to the slice direction. Typically, this results in falsely linked objects.
Using additional information, such as nucleusposition, might o er somedefenseagainst thesesituations but
has not beenevaluated in our work to date.
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Figure 22: (a) Two objects with contact. (b) Planar separating surface. In this case,both RANSAC and
the linear SVM give essetially the sameanswer.
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Figure 23: Recovered polytope for one cell compartment. Each planar facet is determined by the separating
plane betweenthis object and ead of the adjacert neighboring objects.
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9 Conclusion

In this memo, a number of algorithms developed by the author to support the Computable Plant project
have beendescribed. The main areasof activity included:

Segmentation of Nuclei in 2D

Studies of Endoreduplication

Growth and Lineage Analysis

Recovering Nuclear Bounding Surfaces in 3D
Segmenting Cell Compartmen ts in 2D
Recovering Cell Compartmen t Mo dels in 3D

Additional detail about the various algorithms can be found by studying the Matlab software padkage([3] or
by contacting the author.
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App endix 1: Microscop e Coordinate Frames

Figure 24 shows sewral coordinate systemsthat are relevant to the imaging experiments. The metric
microsmpe coordinate system(M-fr ame) de nes positions in spacerelative to an origin point Oy, , which can
be taken to be any conveniert point along the optical axis of the microscope, e.g., at the \center" of the
microscope or at the point wherethe optical axis exits the microscope. Positions are speci ed in appropriate
metric units (m, mm, or m). The metric stack coordinate system (S-frame) de nes positions relative to
an origin point Os which is taken to be at the upper left corner of the top image in the stack. Positions
are again speci ed in corveniert metric units. The S-systemis clearly related to the M-system by a rigid
transformation (translation and rotation) that can be described as follows:

2 3

oo g SRu : StMé 15

000 : 1

where SRy, is the (3 3) rotation matrix between the two coordinate systemsand Sty is the (3 1)
translation vector. More precisely the columns of SRy, expressthe coordinate axes of the M-frame with
respect to the S-frame. Thus, the rst column expresseghe X axis with respect to the S-frameand soon.
The translation vector expressesghe origin of the M-frame, Oy, , with respect to the S-frame. Note that STy,
isa (4 4) transformation matrix betweenhomogeneousoordinates, so given a point P whosecoordinates
with respect to the M-frame are MP, we can nd its coordinates with respect to the S-frame as follows:

SP MP

S

1 Twm 1 (16)

Similarly, we can transform in the reversedirection using M T g, which is given by:

1
MTs = STw (17)
2 3
MR s : M ts
= g é (18)
000 : O
Note that
M s T
Rg = Rwm (19)
T

Mis = SRy St (20)

For the M-frame and S-frame, there is typically no rotation, so MRg will be the (3 3) identity matrix.
Hence,the M-coordinates and S-coordinates are related by a simple translation.

Although it is not shown in the gure, the index-basel stack coordinate system(lI-fr ame) is very important
and closely related to the S-frame. Positions in the I-frame are specied basedon integer indices for the
pixels (or voxels). The I-frame and S-frame are related through scaling and possibly translation:

2 3 2 3

SEES Y

1

PN < X
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2, 3
L0 0 tx X
2 3
0 L 0 tyY 3
_ s (22)
0o 0 2 z Zs
z tz 1
0 0 0
2 3
(Xs tx)=X
(Ys ty)=Y
- 23
(Zs tz)=Z (23)
1

For a 0-basedindexing scheme(asin the C programming language),the integer coordinates of the rst voxel
are (0; 0;0)), sothe translations tx , ty, and tz must all be zero making the S-frame and I-frame related
purely by scaling. For a 1-basedindexing scheme (as in Matlab), the integer coordinates of the rst voxel
are (1; 1; 1), sothe translation parametersmust betx = X,ty = Y,andtz; = Z.

Finally, there is a metric object coordinate system (O-frame) in which a macroscopiccoordinate system
is attached to the particular specimenbeingimaged. For the (hypothetical) leaf exampleshown in Figure 24
we de ne the O-frame to have its origin at someconveniert landmark (intersection of two lateral veins with
the medial vein), the X o axis to be along the medial axis, the Z¢ axis to be an outward normal to the plane
of the leaf, and the Yo axisto beZo X to form a right-handed coordinate system.

For some applications, it may also be cornveniert to de ne a metric staging platform coordinate sys-
tem (P-frame). The procedure for describing this frame relative to the other frames already discussedis
straightforward.

The poseof a specimenis de ned by the relationship betweenthe O-frame and one of the other metric
coordinate frames. Depending on the situation, the M-frame, S-frame, or P-frame could be used as the
re,{/lerenc?/lframe. Assuming the M-frame is used, the posewould be represeried asMT o or equivalertly as

Ro; "to
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Figure 24: Various coordinate systemsrelevant to the imaging experimerts: the metric microscope coordinate
system (M-frame), the metric stack coordinate system (S-frame), and the metric object coordinate system
(O-frame). The index-basedstadck coordinate system (I-frame), which usesinteger-valued indicesto describe
the locations of pixels and voxels within the image stad, is not explicitly shown, but is very important and

closely related to the S-system. For some applications, introducing a staging platform coordinate system
(P-frame) may also be useful.
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App endix 2: Polyhedral Representations

There are seweral forms for represering polyhedrons. A number of software functions were developed for
manipulating and converting betweenthe various forms.

facets: In the facetsrepresenation, the bounding polygon for eadh planar facet is given. The vertices
of a facet must be ordered accordingto a consistert corvention to indicate the direction of the outward
surfacenormal. The facetsform can be usedto represen polyhedronswith concavities.

triangulated: In the triangulated represeration, the surfaceof the polyhedron is described by a set
of triangles, which are in turn expressedhrough a set of vertices (taken over all triangles) and a set of
index triples (indicating which three vertices form ead particular triangle). Each index triple de nes
onetriangle. As with the facet represenation, the ordering of the indicesin the triple is important as
it signalsthe direction of the outward surfacenormal.

normals (or polytop e form): In the normals represeration, which can only be used for convex
polyhedrons, the outward surface normal (unit vector) and distance from the origin along the normal
direction is given for ead facet. A point [x;y;z] on the facet satis es:

2

OzaTg

where a consists of the unit normal and the (negative) distance from the origin. Combining the
constraints of all the facetsinto a matrix A allowsthe polytopeto be expressedasa matrix inequality:

N < X

(24)

=

Ap 0 (25)

where p is a point in homogeneoudorm asin Equation 24

voxels: In the voxel represertation, a 3D volume is broken up into discrete elemens (small cubesor
rectangular prisms) known as voxels. Each voxel contains an integer-valued ID indicating the identit y
of the object containing that voxel. This represertation is analogousto the label image usedto represen
2D segmetmation results. It can be usedto represen objects with concavities and even objects with
disconnectedpieces.
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