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1 In tro duction

This memo1 provides a brief summary of various activities conducted by the author2 in support of the
NSF-funded ComputablePlant project [6]. Much of the work was performed in collaboration with Adrienne
Roeder, a postdoctoral scholar working in the Caltech Biology Department in the lab of Professor Elliot
Meyerowitz.

The overall goalsof the project are: (1) to answer fundamental questionsabout the role of geneticsand
environment in the development of complexorganismsand (2) to developaccurate, testablecomputer models
that capture the developmental processat both structural (microtubule orientation, division planes, 3D
modelsof nuclei and cell compartments, etc.) and functional levels(generegulatory networks, environmental
signaling, etc.). Much of the input to the processcomesfrom imaging data collected with a confocal laser
scanning microscope (CLSM) of uorescently-tagged arabidopsis specimens, including both normal (wild
type) and mutant variations. A unique aspect of CLSM is that it allows repeated, non-destructive imaging
in 3D of live specimens,i.e., live imaging.

The project relies on a multidisciplinary approach that combines traditional biology and live imaging
with automated image analysis and computer modeling. The main activities pursued by the author and
discussedin this memo are as follows:

� Segmentation of Nuclei in 2D
� Studies of Endoreduplication
� Gro wth and Lineage Analysis
� Recovering Nuclear Bounding Surfaces in 3D
� Segmenting Cell Compartmen ts in 2D
� Recovering Cell Compartmen t Mo dels in 3D

Additionally , two appendicesare included that discussmicroscopecoordinate systemsand the variouspolyhe-
dral representations that are useful for modeling 3D objects such asnuclei and cell compartments. A software
packagecontaining nearly two hundred Matlab functions that implement various algorithms and experiments
wasdeliveredto the internal Computable Plant website[3] on 2008/09/03, along with a README document
describing the basic capabilities of each function.

1This document represents preliminary work performed by the author. The content does not reect the o�cial policy or
position of the Jet Propulsion Laboratory or the United States Government. Secondary distribution, disclosure, or dissemination
of this document without the express permission of the author is prohibited.

2Total e�ort expended was approximately 0.4 FTEs (2 years � � 20%/yr).
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2 Terminology and Conventions

CLSM imaging producesan image stack consisting of a set of slice imagesof equal size taken at various
depths (z-values)relative to the microscope. The slicesare \virtual" in the sensethat they are accomplished
with an optics tric k that requires no (or little) physical harm to the specimen. Fluorescent tags and/or
dyes that are sensitive to particular wavelengths of light are typically intro duced into the specimensprior
to imaging to highlight di�eren t structures. For example,a nuclear-localizedcyan uorescent protein (CFP)
may be intro duced to highlight nuclei, while a lipophilic uorescent dye, such as FM-64, may be intro duced
to highlight plasma membranes. We refer to the imagesthat are taken at di�eren t wavelengthsas channels.

Image stacks, which are 3D, can also be obtained at di�eren t times over the course of development
(although these time snapshotscannot be spaced too close together due to some trauma causedto the
specimenby the laser light, photo-bleaching, etc.). The raw output from a CLSM imaging experiment can
be written as:

I c(x; y; z; t) (1)

where c represents the wavelength channel, x and y represent the \horizon tal" dimensions(within a single
stack frame image), z represents the \v ertical" dimension (stack level or depth from the microscope), and t
represents the time dimension. When there is no dangerof confusion,various unusedindiceswill be omitted
for clarit y. For example, when talking about an image in a particular channel at a particular time, we may
write I (x; y) to simplify the notation.

Usually, it is convenient to think of the various dimensionsin Expression1 asbeing integer-valued indices;
however, it is sometimesnecessaryto work with the true real-valuedunits (meters, seconds,etc.). Appendix 1
discussesthe various coordinate systemsthat are relevant to the imaging experiments.

A maximum intensity projection image of a stack over the z-dimension is de�ned as:

M (x; y)
4
= max

z
I (x; y; z) (2)

It is also possibleto associate a depth with each pixel in a maximum intensity projection, e.g., using the z
value that provided the maximum intensity value for each (x; y) pixel in the maximum intensity projection,

Z(x; y) = argmax
z

I (x; y; z) (3)

Segmentation of an image amounts to labeling a particular set of pixels as belonging to a speci�c object
or structure. The result of segmentation is often represented as a label image, L (x; y), where each pixel in
L takeson an integer value representing the ID of the object containing that pixel. A zero value is reserved
for pixels belonging to the background. Typically, the pixels belonging to the individual segments (objects)
are connectedand we can equivalently represent a segmentation result with a set of boundary contours (or
bounding surfacesin the 3D case). The conversionfrom a label imageto boundary contours is called contour
following and can be accomplishedwith the function icluster contours.m , while the reverseoperation of
converting a set of boundary contours to a label image can be accomplishedby a polygon �lling operation,
polygon mask.m, which createsa binary image,followedby icluster.m . The regionsenclosedby the various
boundary contours must be disjoint for this operation to work properly.

3 Nucleus Segmentation in 2D

Reliable 2D segmentation of nuclei in CLSM imagery of uorescently-tagged arabidopsissamplesis important
for a number of downstream applications, including studies of endoreduplication (Section 4), growth and
lineage (Section 5), and extracting polyhedral models that represent the nuclear bounding surfacesin 3D
(Section6). Two distinct approachesto nucleussegmentation werepursuedat di�eren t times and for di�eren t
purposesover the courseof the project. One approach is basedon edgedetection and �nding closedcontours;
the other approach usesthresholding and morphology.
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Figure 1: The grayscale image is the nucleus channel image from a particular stack level (17). Nucleus
boundary contours at this stack level, as determined by the edge-basednucleus segmentation method, are
overlaid in red.

3.1 Edge-Based Nucleus Segmentation

We initially pursued an approach to nucleus segmentation based on edge detection. This technique was
targeted for �nding nuclei in each individual image frame in an image stack. Each frame I , taken from
the appropriate uorescence channel containing the nuclei, is �rst smoothed in both the horizontal (x-y)
and the vertical (z) directions via convolution with a compact Gaussian-like kernel. Edge contours are then
extracted basedon the spatial gradient of the smoothed frame using a proceduresimilar to the Canny edge
detector [5]. Detected contours are evaluated to seewhether they meet length and closure tests3. Any
contour meeting both the test criteria is declared to be a bounding contour of a nucleus. Figure 1 shows a
set of nuclear contours detected with this method on a particular frame from an image stack. The function
nucleus stack.m in the software delivery usesthis approach to convert a stack of images into a stack of
contours.

On the positive side, the edgedetection approach is straightforward, very fast, and providessomerobust-
nessto background levelsthat may vary acrossthe image. On the negativeside,small quirks in the boundary
of a given nucleus may result in complete rejection of the nucleus (e.g., if the edgedetector wanders into
the interior of the nucleus due to someirregularit y in its boundary and texture in its interior, the nucleus
will likely be rejected by the closure test). Also, nuclei that appear to overlap (for example, this happens

3The closure test merely compares the Euclidean distance between the start point and end point of a contour against a
distance threshold.
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Figure 2: Initial segmentation of a nucleuschannel image into blobs. The blobs shown in red were identi�ed
as needing further splitting based either on the presenceof multiple local maxima within the region or
deviation of the boundary contour from elliptical.

frequently in maximum intensity projections) will be lumped together within a single contour. Another
drawback is that the smoothing neededto help insure that edgedetection is reliable may slightly distort the
sizeand shape of the nuclei (expanding the e�ectiv e point spreadfunction (PSF) of the microscope).

3.2 Thresholding and Morphology-Based Nucleus Segmentation

Later in the project, a thresholding and morphology-basedapproach to nucleussegmentation wasdeveloped.
This approach was targeted toward segmentation of nuclei in projection images(usually of the plant sepal),
but likely can provide reliable results in the stack frame case. With this approach, a (3 � 3) median
�lter is applied to clean up the incoming nucleus channel image. The output from the median �lter is
thresholded4, and any pixels above the threshold are clustered into blobs using a generalizedconnected
components algorithm (icluster.m ). This initial segmentation into blobs is represented by a label image
as discussedin Section 2. Several tests are applied to determine whether a particular blob needsto be split
further. For example,we evaluate the number of local maxima from the median �ltered image that fall into
each blob. We also consider the boundary of the blob and its departure from elliptical. Blobs that need
splitting are then split using Matlab's built-in watershed function. Figure 2 show a set of detected blobs.
Those shown in red are identi�ed as needingsplitting.

4We have only used a single global threshold across the image, but adaptiv e thresholding could be investigated.
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Figure 3: The boundary contours of various nuclei detected in the sepalof a smr1 mutant using the thresh-
olding and morphology approach are shown overlaid in random colors on the membrane channel (red) and
nucleuschannel (green).

No blobs are currently rejected basedon size, but this can be easily accomplishedin a post-processing
step (e.g., using icluster moments.m, icluster ellipse params.m, and icluster elim ). The overall
thresholding and morphology based segmentation function is called sepal nuclei.m , although it is not
speci�cally limited to sepalnuclei. Figure 3 shows the segmentation of various nuclei detected in the sepalof
a smr1 mutant using randomly-colored boundary contours overlaid on the combined membrane and nucleus
channels.

3.3 Re�ning Segmentation Results

Although both segmentation algorithms generally work well, the results are never perfect. Depending upon
the intended use for the segmentation results, it may be desirable to apply automatic and/or manually
editting. As mentioned above, rejection basedon size and/or shape constraints can be accomplishedwith
the icluster *.m tools. An interactive segmentation editor is also available as segmentation editor.m .
Basically, this function takesasinput the raw image,the label imageproducedby the automatic segmentation
algorithm, the colors associated with each blob, and the set of boundary contours for the blobs. Through
mouse clicks, blobs can be added or deleted. At this time, there is a constraint that blobs cannot be
overlapping. Refer to the function documentation for more details on the user interface. The end result is
a new label image, color set, and contour set, which represents the revised segmentation results. Figure 4
shows the di�erence betweena rev0 (raw segmentation) product and a rev1 (edited segmentation) product.
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Figure 4: (a) Raw nucleussegmentation (rev0) for an smr1 image. (b) Corresponding nucleussegmentation
after manual revision (rev1).

Note that the edge-basedsegmentation approach of Section 3.1 doesnot directly produce a label image
and hence cannot be immediately used with the segmentation editor. However, we can apply the extra
step discussedtoward the end of Section 2 to convert the boundary contours into a label image. It is then
necessaryto re-extract the contours from the label image to insure that the ID numbers associated with the
contours match the ID numbers usedin the label image.

4 Endoreduplication

Several studies wereconducted to gain insight into the mechanism of endoreduplication that is hypothesized
to give rise to the giant cells that appear in the sepalsof normal (wild type) arabidopsisplants. In a typical
cell cycle, a cell replicates its DNA, then divides with half of the (now doubled) DNA going to each daughter
cell. In endoreduplication, the cell replicatesits DNA, but fails to divide; oncea cell enters endoreduplication,
it doesnot divide in future cell cyclesleading to an increasein its DNA content at each step that presumably
goesin powers of two.

One investigation consideredthe useof nuclear volumeasa proxy for DNA content. (We alsoinvestigated
the use of integrated intensity after removing the base background level as a di�eren t measurefor DNA
content.) Generally with the sepalwe work with 2D projection imagesso it is not feasibleto recover a true
nucleusvolume. Instead we construct a pseudo-volume by �tting a 2D ellipse to each segmented 2D nucleus.
The principal axesof the 2D ellipse, � min and � max , are usedto de�ne the pseudo-volume as follows:

~V =
4�
3

� � max � � min � � min (4)

This calculation basically assumesthat the long dimension of the nucleus lies in a plane parallel to the
imaging plane and that the nucleus is an ellipsoid of revolution about its long axis.

The nucleussegmentation procedurefrom the previous section (the thresholding and morphology based
method) was applied to roughly a dozen sepal projection images from wild type, as well as to a similar
number of imagesfrom the mutants smr1 and E10 19. The raw segmentations (rev0 products) were re�ned
through manual editing to produce rev1 versions of the segmentations. From the cleanedsegmentations,
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Figure 5: Histograms of nucleus pseudo-volumesover sepal for wild type, smr1, and E10-19 variants. The
stronger upper tail for wild type (blue) seemsto con�rm the presenceof more giant cells.

we extracted ellipse parameters and calculated pseudo-volumes for each detected nucleus. A normalized
histogram showing the resulting distribution of pseudo-volumes for each of the three variants is shown in
Figure 5 using a log2 scaleon the x-axis. The heavier upper tail on the wild type (blue) curve along with
the appearanceof discernible semi-regularpeaksin the histograms are noteworthy.

However, some follow-on experiments conducted by A. Roeder using a di�eren t direct mechanism5 to
measurehistograms of ploidy level (DNA content) seemto indicate that the imaging approach with the
particular uorescent marker that was useddoesnot provide a reliable enoughmeasureof DNA content.

5 Gro wth and Lineage Analysis

Another pursuit during the project was to estimate growth rates and to follow cell divisions to establish
lineage and progeny. The input for these studies consisted of time sequencesin which a particular plant
was imaged at (t ypically) eight hour intervals for several days. A. Roeder provided hand tracking over the
sequencesfor a subsetof the visible nuclei.

Considerablee�ort was required to convert the hand-tracking data into machine-usableform. For future
work, this step should be better streamlined. More speci�cally , what is neededis a tracking table: a simple
text �le containing one line for each observation of each nucleusover the duration of the sequencealong with
the observed position coordinates and a nucleusID that is persistent over time. The nucleusID could be in
ancestor label form or lineage label form. Ancestor labels use the ID of the earliest ancestorof a particular
cell, while lineagelabelskeeptrack of cell divisions. Table 1 givesan exampleof a tracking table with lineage
id labels. The label '2.1' in the id column indicates that this cell is the �rst daughter cell of cell number 2
(where the distinction between�rst and seconddaughter is arbitrary).

Two data sequenceswere examined: one, known as flower5 , contained 3D nucleuspositions, while the
other, known as flower6 , provided only 2D nucleuspositions.

5Flow cytometry .
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t x y z id

1 10.3 20.4 3.8 1
1 30.8 40.7 6.2 2
1 50.1 10.4 2.8 3
2 12.3 18.5 3.3 1
2 31.2 43.2 5.8 2.1
2 29.7 38.6 5.6 2.2
2 14.0 13.8 3.0 3
2 17.0 60.8 4.2 4
...

...
...

...
...

Table 1: Example tracking table usedas input by the various growth analysisfunctions. Each observation of
each nucleusover the duration of the sequenceis recordedas a line in the table. The �rst column indicates
the frame number (equivalently , time) of the observation, the next two (or three) columns indicate the
coordinates of the nucleus centroid, and the �nal column indicates the id label. The id label may be an
ancestor label or a lineage label, as shown here.

5.1 Principal Gro wth Rates

Given tracking data in the form of Table 1, we can easily determine correspondencesbetweenentries at time
t and at time t + 1. Suppose there are N correspondences. Assuming 3D coordinate data, let ( t ) X and
( t +1) X be de�ned as follows:

( t ) X =

2

6
6
6
4

x1 y1 z1

x2 y2 z2
...

...
...

xN yN zN

3

7
7
7
5

(5)

( t +1) X =

2

6
6
6
4

x0
1 y0

1 z0
1

x0
2 y0

2 z0
2

...
...

...
x0

N y0
N z0

N

3

7
7
7
5

(6)

where point (xk ; yk ; zk ) in frame t corresponds with the point (x0
k ; y0

k ; z0
k ) in frame t + 1. For 2D coordinate

data, the third (z) column would simply be omitted from each data matrix.
Given the data matrices, we can try to solve for the best a�ne transformation ( t +1) A ( t ) from time t to

time t + 1:

( t +1) X T � ( t +1) A ( t ) �
�

( t ) X T

1T
N

�
(7)

where for 3D data A is (3 � 4) and for 2D data A is (2 � 3). The vector 1N is an (N � 1) vector of ones.
The best solution for A in a least squaressenseis given by:

( t +1) A ( t ) = ( t +1) X T �
�

( t ) X T

1T
N

� #

(8)

where # represents the pseudo-inverse. Note that A can be broken down as follows:

A =
h

B
... t

i
(9)

For the 3D caseB is (3 � 3) and t is (3 � 1), and for the 2D caseB is (2 � 2) and t is (2 � 1). The B portion
represents rotation, scaling, and shearing,while t represents translation.
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Principal growth directions and rates can be obtained by factoring B using the singular value decompo-
sition (SVD).

B = USV T (10)

where U and V are (3 � 3) orthonormal matrices and S is a (3 � 3) diagonal matrix with non-negative
elements in descendingorder along the diagonal. Consider two points in frame t: p0 and p1 = p0 + v1,
where v1 is the �rst column of V . Where do thesepoints map in frame t + 1?

p0
0 = Bp 0 + t (11)

p0
1 = Bp 0 + Bv 1 + t (12)

The displacement vector d betweenthe two points in frame t is given by:

d = p1 � p0

= v1 (13)

while the displacement vector in frame t + 1 is given by:

d0 = Bv 1

= USV T v1

= US

2

4
1
0
0

3

5

= s1 � u1 (14)

The length of d is 1 (since v1 is a unit vector) while the length of d0 is s1 (since u1 is also a unit vector).
Thus, the distance between p0 and p1 is scaledby s1 as a result of the transformation. It turns out that
for any direction (unit length displacement vector) we could have picked in frame t, the vector v 1 is the
one that gets scaledby the biggest factor. Thus, v 1 is the principal growth direction and s1 is the principal
growth rate. In 3D, there is a 2D subspaceorthogonal to v 1 and we can ask what displacement vector in
this subspacegets scaledby the biggest factor; not surprisingly the answer is v 2 and the scalefactor is s2.

Another way to think of B in the 3D caseis that it transforms the three orthogonal unit vectors v 1, v2

and v3 from frame t into the three orthogonal vectors u1, u2 and u3 in frame t + 1 with lengths s1, s2, and
s3, respectively. Figure 6 illustrates this interpretation. In 2D the interpretation is similar except that B
transforms the two orthogonal unit vectors v 1 and v2 from frame t to the two orthogonal vectors u1 and u2

in frame t + 1 with lengths s1 and s2, respectively.
Figure 7 shows growth rate curvesextracted from the Flower 6 data. The principal (major and minor)

growth rates are determined using corresponding nuclei betweeneach pair of adjacent frames. The rates are
then compound to show the cumulativ e growth relative to frame 1. Although we loosely refer to the two
curvesas \length" and \width"', there is no guarantee that the principal growth directions align with our
macroscopicconcept of length and width from looking at the sepal. There is also no guarantee that the
principal growth direction remains consistent betweenall pairs of frames.

5.2 Bounding Box Gro wth Rates

The fact that the principal growth directions are not necessarilyconsistent with our macroscopicconcept of
length and width can be problematic. Hence,we developed another method to measuregrowth rates that
�rst aligns the data points to an \atlas" in which the axescorrespond to the macroscopiclength and width
directions. We then look at the growth rate of the axis-aligned bounding box.

Figure 8 shows the extracted nuclei from 6 frames of the Flower 6 data. All nuclei from the sameframe
are shown in one color; hence,red shows nuclei from frame 1, green from frame 2, blue from frame 3 and
so on. The colored rectanglesshow the (length-width) axis-aligned rectangles from each frame. The olive
greenlines show the tracking of each nucleusover the sequence.The black circle in the center represents the
hypothesizedsingle primordial nucleusbefore any divisions have taken place. Figure 9 shows the growth in
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Figure 7: Growth rate curves extracted from Flower 6 data using the compounded principal growth rates
method. The magenta curve shows the compounded major growth rate starting from 1 at t = 0. The cyan
curve shows the compoundedminor growth rate starting from 1 at t = 0. The greencurvesshow exponential
�ts to the growth curves.
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Figure 8: Growth rate curves extracted from Flower 6 data using the macroscopiclength and width axes
and bounding box method. Nuclei from each frame are mapped to a coordinate frame that roughly aligns
with the macroscopiclength and width axesof the sepal. Nuclei from a given frame are shown in the same
color along with a rectangle designating the axis-aligned bounding box. The olive greenbranchesshow the
tracking of individual nuclei over time.

the bounding box length (red) and width (blue) over the sequence.Comparing with Figure 7, we seethat
in this case,at least, the two methods are reasonablyconsistent except at the tail end (betweenh = 48 and
h = 60). Here, the principal growth axesbetweenthe last two frames in the sequenceswapped from being
roughly along the macroscopiclength axis to being along the macroscopicwidth axis, which is probably not
what we want (since the growth in width direction betweenthe �nal two frames gets compounded with the
growth in length direction from the earlier frames to yield the magenta curve of Figure 7).

5.3 Lineage Analysis

Knowing the detailed lineagehistory of particular cells is often a requirement for further analysis. Figure 10
shows lineagelabels that were produced from the Flower 5 image sequence.In particular, Figure 10c shows
the number of descendents that were produced by cells starting at various locations in the early (t = 1)
sepal.

With detailed tracking and lineagedata, wecanalsoconduct studiesto look at the propertiesof individual
cell lines versus time. Figure 11 shows a plot of nucleus area versus time for several sepal cells over the
Flower 6 sequence.The coloredcurvesare for giant cells, which are not dividing. The black curvesare for a
single normal cell that is dividing, along with its daughters, granddaughters, etc. This experiment con�rms
that the nucleusarea for dividing cells uctuates within a fairly narrow range,while the nucleusarea for the
non-dividing giant cells grows exponentially over time.
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Figure 9: Growth rate curves extracted from Flower 6 data using the bounding box method. The red
curve represents compounded growth along the macroscopic length axis, while the blue curve represents
compounded growth along the macroscopicwidth axis. Note that something unusual happens at the �nal
time point, presumably due to an out-of-plane rotation of the sepalwhen placed under the microscope.

6 Nuclear Bounding Surfaces in 3D

Early in the project, a method was developed to recover nuclear bounding surfacesin 3D from an image
stack and output the results as a triangulated hypersurface that is directly loadable by Amira [1]. The
basic idea is to locate nucleuscontours at each stack level and then link theseacrossstack levels basedon a
contour distance measure(relativ e area of intersection could be usedas an alternativ e) betweencontours on
adjacent levels. Once contours are linked acrossstack levels, the contours corresponding to the sameobject
are resampledto have the samenumber of points and similar origin, which makesthe processof constructing
a surfacetriangulation easy.

Figure 12ashowsa maximum intensity projection imageof real nuclei and plasmamembranesin Flower 74.
Figure 12b shows a similar image in which the real nuclei have been replacedby the extracted 3D nuclear
bounding surfaces.Further details are available in [2].

Nucleus volume can be easily calculated from the surface triangulation assuming the nuclei are star
convexwith respect to their centroids. Essentially each surfacetriangle is connectedto the object centroid
to form a tetrahedron. Summing the individual volume contributions from each of the tetrahedrons gives
the overall volume. Seefunction volumes from triangulated.m . There is an issue,of course,on whether
the volume inside the recoverednuclear envelope matchesthe true nucleusvolume due to things such as the
point spreadfunction (PSF) of the microscope (particularly in the z-direction). Note, in particular, that the
nuclei in Figure 12b appear to be cylindrical or rod-shaped; this shape is likely to be an artifact of the PSF.

7 Cell Compartmen t Segmentation and Analysis

A limited e�ort wasalsomadeto segment cell compartments from imagesof meristemprovided by M. Heisler.
A thresholding and morphology approach, similar to that used for segmenting sepal nuclei, provided some
success. The procedure works as follows. The initial image is inverted, thresholded, and median-�ltered
to highlight the interiors of the cell compartments. Connectedcomponents are identi�ed with icluster.m .
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Figure 10: (a) Nucleuslabels for the �rst image in sequence(t = 1). (b) Lineagelabels for the �nal frame in
sequence(t = 17). Note that the nucleusat the bottom middle (11.2.2.2.3) has undergonemultiple rounds
of division over the course of the sequence,while other nuclei (40, 12) have not divided even once. (c)
Mapping of nuclei from frame 1 to frame 17 with color coding of displacement vectors indicating number of
descendents (red=1, green=2, blue=3, cyan = 4 or more).
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Figure 11: The colored curvesshow nucleusarea versustime for several sepalgiant cells over the Flower 6
sequence.The black curvesshow nucleusareaversustime for a normal sepalcell that is undergoingdivision.
As the cell divides, we track each of the daughter cells (and their daughters), recording the nucleusarea at
each observation time. As expected, the nucleus area for the dividing cell remains within a fairly narrow
range, while for the non-dividing giant cells, the area appears to grow exponentially versustime.

Thesecomponents are then re�ned by eliminating regionsthat are too large or too small. Finally, boundary
contours are extracted around each of the regions. Figure 13 show a meristem plasma membrane channel
image and the corresponding compartment segmentation. Although we did not explore this option, we
could potentially use the nucleus channel data in conjunction with the plasma membrane channel data to
identify placeswhere adjacent cell compartments were inappropriately joined into a singlecomponent. Such
\sup er-cells" could then be split using watershedas in the sepalnuclei case(or the voronoi criteria).

8 Cell Compartmen t Mo dels in 3D

Applying the 2D cell compartment segmentation approach of the previous section to each layer in a stack
provides a set of contours versusstack level. Linking thesecontours acrossstack level as in the 3D nuclear
boundary recovery algorithm enablesall the contours from a particular cell compartment to be associated
with one another. A triangulated polyhedron model of each cell compartment can then be recovered as
shown in Figure 14.

The method for turning the 2D segmentations into a collection of 3D polyhedra is basically agnostic
to the underlying 2D segmentation method. For example, planar junction graphs, such as those recovered
by H. Jonnson, are often used to represent the network structure of the cell walls (edgesand vertices).
This representation can be easily transformed into a standard 2D segmentation (label image) or to a set of
polygonal 2D cell compartment boundaries. The results can then be usedas above to create 3D polyhedral
representations of the cell compartments.

A slight drawback of the \union of polyhedra" representation shown in Figure 14 is that the contact
betweenadjacent compartments which share a common cell wall is not explicit. In fact, there is is a small
gap between adjacent polyhedra. A representation of the cell compartments in which adjacent compart-
ments sharea planar facet may be better-suited for certain typesof computer modeling, for example, if the
transport of somesignaling chemical, such as auxin, from one compartment to the next is hypothesizedto
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Figure 12: (a) Maximum intensity projection image of ower74 with membrane channels in red and nuclei
in green. (b) Maximum intensity projection image of ower74 with nucleuschannel replacedby randomly-
colored, triangulated 3D nuclear bounding surfacesegmentations.
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Figure 13: (a) Meristem image with squareroot (
p

�) scaling. (b) Segmentation of meristem image into 2D
cell compartments.

be proportional to the surfaceareaof the contact region betweenthe two compartments then it is somewhat
di�cult to get at this information from the \union of polyhedra" representation.

A seriesof experiments with synthetic data wasconducted to explore algorithms for recovering a faceted
\shared wall" representation of cell compartments. More details are provided in [4], but the main ideasare
summarized here. The basic idea is to take a set of nuclei positions in 3D and construct an arti�cial 3D
assembly of cell compartments using the voronoi criteria. Figure 16 shows a triangulated surfacerendering
of onesuch construction, along with equivalent voxelized representations (samecells, unfortunately di�eren t
color schemefor the voxelized and triangulated versions).

Slice images were then obtained by mathematically transecting a plane (parallel to the x-y plane at
various depths z) through the cell compartment assembly to producea stack of 2D segmentations. Figure 17
shows a set of mathematical slices through a 3D Voronoi cell assembly at two adjacent slice levels. Here
the 2D cell compartment regionsare consistently-colored from one slice to the next (ground truth), but this
would not be the caseif the 2D regionswere identi�ed with a real segmentation algorithm.

The task then is to look at how these 2D segmentations with inconsistent labels between slicescan be
used to recover the 3D cell compartment structure. The �rst step in our proposedalgorithm is to create a
layered a�nity graph in which the nodes at layer i consist of the segments found at the layer. Edgesare
de�ned basedon the strength of connection betweena segment in stack layer i and a segment in stack layer
i + 1. As shown in Figure 18, we used the relative area of overlap (square root of the area of intersection
divided by areaof union) asour measureof connectionstrength. Edgesin the a�nit y graph are then pruned
basedon strength and by applying a mutual nearestneighbor criteria. If segment A on stack level i has its
best match on level i + 1 assegment B (and the match wasof su�cien t quality accordingto the relative area
of overlap), then we also check whether the best match for segment B on level i is segment A. If so, these
two segments weremutually the best match for each other, and the edgebetweenthem is retained. We refer
to this as the forward-backward consistencycheck and is similar to the left-righ t consistencycheck that is
commonly usedto verify hypothesizedcorrespondencesin various stereovision algorithms. Figure 19 shows
the consistencycheck in more detail. Figure 20 shows the a�nit y graph after the consistencycheck hasbeen
used to prune links. In Figure 20b, false positive indicates that a link remains between two regions that is
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Figure 14: Combination of 2D cell compartment segmentations into a collection of 3D compartment models.
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Figure 15: An alternativ e representation of 2D cell compartment structure is the planar junction graph in
which cell walls are edgesand vertices betweenwalls are nodes. This representation can be converted to a
standard 2D label image (\segmentation") and then to boundary contours. Graphic courtesy H. Jonnson.
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Figure 16: A synthetic 3D cell assembly createdby applying the Voronoi construction to a set of 3D nucleus
positions. (a) Triangulated representation. Each color represents a distinct cell compartment. (b) Voxelized
representation from one viewpoint. (c) Voxelized representation from another viewpoint.
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Figure 17: Transectingthe 3D Voronoi cell assmeblywith planesat di�eren t slicelevelsgives2D sliceimages.
(a) Slice 56. (b) Slice 57. Note that here the regions are consistently colored between slicesaccording to
the color of the 3D parent compartment; hence,the colors represent ground truth. This consistent coloring
would not exist if the 2D regions were independently identi�ed in each slice using a real 2D segmentation
algorithm.
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Figure 18: Our de�nition of a�nit y betweentwo regionsfrom adjacent stack levels is the squareroot of the
area of intersection divided by the area of union.

incorrect. Such links are often the result of what we call the \snowman problem" illustrated in Figure 21;
basically, two cell compartments are stacked directly on top of each other with their separating wall parallel
to the slice planes. A false negative indicates that a true link was pruned. Usually, theseoccur only at the
very top or very bottom slice level where the tapering shape of the cell compartment may result in a small
2D region in the slice image that is not well-linked to anything according to the a�nit y criterion.

Assuming we are able to link the individual 2D regions together acrossslice levels, the next step is
to identify separating planes between objects that have contact with each other. Contact can be easily
determined from a voxelizedrepresentation by looking in someneighborhood of each voxel that is marked as
belonging to object k to seewhat other voxel labelsappear nearby. Figure 22 shows a situation in which two
objects are adjacent and we would like to recover a planar separating surface. Two approacheswere tried.
The �rst usedonly pixels at the contact region and tried to robustly �t a plane basedon those pixels using
a variation of the RANSAC algorithm [7]. This method sometimesgives spurious results, especially when
the contact region was relatively small (unstable �t). A more reliable method was obtained by using all of
the voxels from object k and object k + 1 in a supervisedmachine learning framework in which a maximum
margin linear separating hyperplane was found using the support vector machine approach. Figure 22b
shows the separatingplane recoveredby linear SVM. Combining the set of planesbounding each object into
a set of inequalities gives a representation of the cell compartment as a polytope. The polytope form can
then be converted into a facets form as discussedaheadin Appendix 2.

There are several important limitations with this technique. First, it assumesthat the cell compartments
can be well represented by polytopes, which meansthe cell compartments must be convex. If we attempt
to apply this approach to a \sup er cell" that resulted from a snowman situation, the results are likely to
be poor as the polytope is de�ned by the intersection of half-spacesfrom all the planar facet constraints.
Another problem is with cell compartments that border the background as they may have multiple planar
contacts with the background, but the SVM tries to �t a single plane that best separatethe object from all
voxels that are marked as background.
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Figure 19: The forward-backward consistencycheck prunes links betweenslice layers that do not represent
a mutual nearest neighbor relationship between nodes. In the illustration only the link between node i in
slice z and node j in slice z + 1 survivesthe consistencycheck.

Figure 20: The a�nit y graph between regions in adjacent slice images after pruning using the forward-
backward (mutual nearest neighbor) consistencycheck. (a) View showing all slice levels. (b) Zoomed in
view of the a�nit y graph for slice levels 35 to 45.
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Figure 21: The \snowman problem" occurs when two cell compartments are stacked on top of one another
with their separating cell wall parallel to the slice direction. Typically, this results in falsely linked objects.
Using additional information, such asnucleusposition, might o�er somedefenseagainst thesesituations but
has not beenevaluated in our work to date.
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Figure 22: (a) Two objects with contact. (b) Planar separating surface. In this case,both RANSAC and
the linear SVM give essentially the sameanswer.
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Figure 23: Recoveredpolytope for onecell compartment. Each planar facet is determined by the separating
plane betweenthis object and each of the adjacent neighboring objects.
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9 Conclusion

In this memo, a number of algorithms developed by the author to support the ComputablePlant project
have beendescribed. The main areasof activit y included:

� Segmentation of Nuclei in 2D
� Studies of Endoreduplication
� Gro wth and Lineage Analysis
� Recovering Nuclear Bounding Surfaces in 3D
� Segmenting Cell Compartmen ts in 2D
� Recovering Cell Compartmen t Mo dels in 3D

Additional detail about the various algorithms can be found by studying the Matlab software package[3] or
by contacting the author.
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App endix 1: Microscop e Coordinate Frames

Figure 24 shows several coordinate systems that are relevant to the imaging experiments. The metric
microscope coordinate system(M-fr ame) de�nes positions in spacerelative to an origin point OM , which can
be taken to be any convenient point along the optical axis of the microscope, e.g., at the \center" of the
microscope or at the point where the optical axis exits the microscope. Positions are speci�ed in appropriate
metric units (m, mm, or � m). The metric stack coordinate system (S-frame) de�nes positions relative to
an origin point OS which is taken to be at the upper left corner of the top image in the stack. Positions
are again speci�ed in convenient metric units. The S-systemis clearly related to the M-system by a rigid
transformation (translation and rotation) that can be described as follows:

ST M =

2

6
6
4

SR M
... St M

� � � � � �

0 0 0
... 1

3

7
7
5 (15)

where SR M is the (3 � 3) rotation matrix between the two coordinate systems and St M is the (3 � 1)
translation vector. More precisely, the columns of SR M expressthe coordinate axes of the M-frame with
respect to the S-frame. Thus, the �rst column expressesthe X M axis with respect to the S-frameand soon.
The translation vector expressesthe origin of the M-frame, OM , with respect to the S-frame. Note that ST M
is a (4 � 4) transformation matrix betweenhomogeneouscoordinates, so given a point P whosecoordinates
with respect to the M-frame are M P, we can �nd its coordinates with respect to the S-frameas follows:

�
SP
1

�
= ST M �

�
M P
1

�
(16)

Similarly, we can transform in the reversedirection using M T S, which is given by:
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(17)
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Note that

M R S =
�

SR M

� T
(19)

M t S = �
�

SR M

� T
St M (20)

For the M-frame and S-frame, there is typically no rotation, so M R S will be the (3 � 3) identit y matrix.
Hence,the M-coordinates and S-coordinates are related by a simple translation.

Although it is not shown in the �gure, the index-based stackcoordinate system(I-fr ame) is very important
and closely related to the S-frame. Positions in the I-frame are speci�ed basedon integer indices for the
pixels (or voxels). The I-frame and S-frame are related through scaling and possibly translation:
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For a 0-basedindexing scheme(as in the C programming language),the integer coordinates of the �rst voxel
are (0; 0; 0)), so the translations tX , tY , and tZ must all be zero making the S-frame and I-frame related
purely by scaling. For a 1-basedindexing scheme(as in Matlab), the integer coordinates of the �rst voxel
are (1; 1; 1), so the translation parametersmust be tX = � �X , tY = � �Y , and tZ = � �Z .

Finally, there is a metric object coordinate system(O-fr ame) in which a macroscopiccoordinate system
is attached to the particular specimenbeing imaged. For the (hypothetical) leaf exampleshown in Figure 24
we de�ne the O-frame to have its origin at someconvenient landmark (intersection of two lateral veins with
the medial vein), the X O axis to be along the medial axis, the ZO axis to be an outward normal to the plane
of the leaf, and the YO axis to be ZO � X O to form a right-handed coordinate system.

For some applications, it may also be convenient to de�ne a metric staging platform coordinate sys-
tem (P-frame). The procedure for describing this frame relative to the other frames already discussedis
straightforward.

The poseof a specimen is de�ned by the relationship between the O-frame and one of the other metric
coordinate frames. Depending on the situation, the M-frame, S-frame, or P-frame could be used as the
referenceframe. Assuming the M-frame is used, the posewould be represented as M T O or equivalently as� M R O ; M t O

	
.
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Figure 24: Various coordinate systemsrelevant to the imaging experiments: the metric microscopecoordinate
system (M-frame), the metric stack coordinate system (S-frame), and the metric object coordinate system
(O-frame). The index-basedstack coordinate system(I-frame), which usesinteger-valued indices to describe
the locations of pixels and voxels within the image stack, is not explicitly shown, but is very important and
closely related to the S-system. For someapplications, intro ducing a staging platform coordinate system
(P-frame) may also be useful.
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App endix 2: Polyhedral Represen tations

There are several forms for representing polyhedrons. A number of software functions were developed for
manipulating and converting betweenthe various forms.

� facets: In the facetsrepresentation, the bounding polygon for each planar facet is given. The vertices
of a facet must be orderedaccordingto a consistent convention to indicate the direction of the outward
surfacenormal. The facets form can be usedto represent polyhedrons with concavities.

� triangulated: In the triangulated representation, the surfaceof the polyhedron is described by a set
of triangles, which are in turn expressedthrough a set of vertices (taken over all triangles) and a set of
index triples (indicating which three vertices form each particular triangle). Each index triple de�nes
one triangle. As with the facet representation, the ordering of the indices in the triple is important as
it signals the direction of the outward surfacenormal.

� normals (or polytop e form): In the normals representation, which can only be used for convex
polyhedrons, the outward surfacenormal (unit vector) and distance from the origin along the normal
direction is given for each facet. A point [x; y; z] on the facet satis�es:
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where a consists of the unit normal and the (negative) distance from the origin. Combining the
constraints of all the facetsinto a matrix A allows the polytope to be expressedasa matrix inequality:

Ap � 0 (25)

where p is a point in homogeneousform as in Equation 24
� voxels: In the voxel representation, a 3D volume is broken up into discrete elements (small cubesor

rectangular prisms) known as voxels. Each voxel contains an integer-valued ID indicating the identit y
of the object containing that voxel. This representation is analogousto the label imageusedto represent
2D segmentation results. It can be used to represent objects with concavities and even objects with
disconnectedpieces.
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