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Abstract
Mechanistic  models  for  transcriptional  regulation  are  derived  using  the  methods  of  equilibrium

statistical  mechanics,  to  model  equilibrating  processes  that  occur  at  a  fast  time  scale.  These  processes
regulate slower changes in the synthesis and expression of transcription factors that feed back and coopera-
tively  regulate  transcription,  forming  a  gene  regulation  network  (GRN).  We  rederive  and  extend  two
previous  quasi-equilibrium  models  of  transcriptional  regulation,  and  demonstrate  circumstances  under
which  they  can be  approximated  by feed-forward  artificial  neural  network (ANN) models.  A single-level
mechanistic model can be approximated for each transcription complex by a successfully used phenomeno-
logical  model  of  GRNs  which  is  based  on  single-layer  analog-valued  ANNs.  A  two-level  hierarchical
mechanistic  model,  with  separate  activation  states  for  modules  and  for  the  whole  transcription  complex,
can be  approximated  for  each  transcription complex  by  a  two-layer  feed-forward  ANN in  several  related
ways. The sufficient conditions demonstrated for the ANN approximations correspond biologically to large
numbers of binding sites each of which have a small effect. A further extension to the single-level and two-
level  models  allows  one-dimensional  chains  of  overlapping  and/or  energetically  interacting  binding  sites
within  a  module.  Partition  functions  for  these  models  can  be  constructed  from  stylized  diagrams  that
indicate  energetic  and  logical  interactions  between  binary-valued  state  variables.  All  parameters  in  the
mechanistic  models,  including  the  two  approximations,  can  in  principle  be  related  to  experimentally
measurable free energy differences, among other observables.

Keywords:  transcriptional  regulation,  cooperative  activation,  gene  regulation  network,  transcription  complex,
quasi-equilibrium, statistical mechanics,  feed-forward,  neural network
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1 Introduction

Transcriptional regulation is mediated by a multimolecular transcription complex, for which there is no
unique  accepted  dynamical  model.  We  explore  a  quasi-equilibrium  approach  to  constructing  models  of  the
behavior  of the complex in transcriptional  regulation,  starting from diagrams of hypothesized  activation relation-
ships  within  the  transcription  complex,  and  resulting  in  a  series  of  propositions  that  formulate  such  models.  In
Section 2 introduces the necessary equilibrium statistical mechanics in the polynomial  form in which we will use
it.  In  Section 3  reexpresses  a  quasi-equilibrium  family  of models  in which  there  is a  single  binary state  variable
corresponding  to  the  global  activation  state  of  the  complex,  and  derives  a  neural  network-like  approximation  to
that model with new, more realistic conditions of validity than in the original paper [2]. This derivation is general -
ized in the Appendix. Section 4 applies a similar treatment to a two-level hierarchical model (Hierarchical Coopera-
tive Activation)  in which the global activation state variable is supplemented by a set of sub-complex or module-
level  activation  variables.  An  equilibrium  model  and  a  set  of  approximating  feed-forward  neural  network-like
models  for  the  regulatory  activity  of  such  a  complex  is  derived,  along  with  conditions  for  their  validity.  Also  a
technique  for  adding  one-dimensional  chains  of  logical  and  energetic  dependencies  between  binding  site  occu-
pancy  states  to  either  the  single-level  or  the  two-level  equilibrium  models  (Hierarchical  Cooperative  Activation
with  Chains)  is  derived  in  Section  4.3,  and  illustrated  with  a  simple  example.  The  method  generalizes  to  more
hierarchical  levels,  if  necessary,  and  to  more  logical  constraints  on  binding  site  occupancy.  Section  5  discusses
related work and summarizes.

2 Equilibrium statistical mechanics using polynomial partition 
functions

Suppose there is a molecular complex defined by a set of binary-valued occupancy variables and binary-
valued  molecular  conformation  variables,  collectively  designated  sA œ 80, 1< ,  all  related  through  a  higher-order
Ising model. Then the partition function is

ZHm » JL = ‚
8s »sA œ80,1<ÔPHsL<

expH- b EL, where

E = ‚
A

mA  sB + ‚
A<B

JA B  sA  sB + ‚
A <B< C

JA B C  sA  sB  sC + ...

Here b = 1 ê Hk TL  where T  is the temperature and k  is Boltzmann’s constant.  PHsL  is a Boolean-valued function
or predicate that restricts the allowed combinations of sA  values to those for which P  is true. JA B  is an interaction
energy between two variables, JA B C  between three variables and so on.

Each interaction J  pertains to some subset of the variables sA . This subset can be indicated by a new set
of  Boolean  or  80, 1< -valued  parameters  sA .  For  example,  J2 3 4 corresponds  to  s = H0, 1, 1, 1, 0, 0, ...L .  We  can
define the “compression” function r  that maps s to the ordered set of indices A  for which sA = 1, in this case the
triple H2, 3, 4L , and designate the corresponding interaction strength as

JrHsL = JHAH1L< AH2L< ... < AHlLL œ !.
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If JrHsL  is zero it can be omitted from the sums in E .  We define QHsL  to be a Boolean-valued  function that is
true just in case s corresponds to a nonzero entry for JrHsL ; Q  serves to specify the bipartite graph of variables and
their higher-order energetic interactions. With this notation the partition function becomes

ZHmL = „
8s »sA œ80,1<ÔPHsL<
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Ç
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The partition function can also be rewritten as a polynomial in fugacity-like parameters zA  and wrHsL  as

follows. Defining

- b mA ª log zA
- b JrHsL = log wrHsL ,

JrHsL = D GrHsL

where  D GrHsL  is the change in Gibbs free energy (which may be zero) due specifically to setting the particular
combination  of  state  variables  sA = 1,  for  which  sA =1.   In  traditional  Ising  models,  for  example,  only  pairs  of
sites A  and B  which are spatial  neighbors have nonzero D GHA, BL  values; therefore nonneighboring pairs and all
higher combinations have zero D G ’s:  0 = D GHA, B, CL = D GHA, B, C, DL =. ..  .   With this change to parameters
z and constants w, we find the general form for the polynomial partition function

(1)ZHzL = „
8s » sA œ80,1<ÔPHsL<
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.

For  small  systems  and  for  those  in  contact  with  a  chemical  reservoir  such  as  a  solution,  the  reexpression  of
ZHzL  as a polynomial can be very useful.

Suppose some of the logical variables  sA  describe the  binding or nonbinding of a particular  substance
Si ,  that  is otherwise  in solution,  at  particular binding  sites.  Then  the equilibrium grand partition  function ZHz, zL
can be obtained just by replacing the corresponding parameters zA with zi  wA  where zi  is a fugacity  parameter zi

for substance Si  [1] [2]:

(2)zA # zi  wA

where  sA describes  the binding  of solute Si  to binding site  b .  The resulting ZHz, zL  remains polynomial  in the
parameters  z ,  but  there  may  be  many  fewer  z ’s  than  z ’s.  In  dilute  solution  the  fugacity  zi  is  proportional  to
concentration  @Si D .  In  the  special  case  that  every  binding  site  for  Si  has  the  same  D GA ,  we  can  absorb  their
common wA  into the proportionality constant of zi  and set wA =1.

Fortunately,  new  instrumentation  holds  the  promise  that  binding  energies  D GA  of  DNA-protein
interactions can be measured more inexpensively and accurately than in the past (e.g. [3]).

The fugacity parameters zi  are assumed to be constant on the time scale of equilibration of ZHz, zL , but
may vary slowly on a much longer time scale if the system described by ZHz, zL  itself gates the synthesis process
for  molecules  of  Si .  Thus,  we  seek a  quasi-equilibrium  model  of a  transcriptional  regulatory  network  built  from
equilibrium models of transcriptional regulation.
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3 Transcriptional regulation

We  now  apply  Equation  1  and  Equation  2  to  modeling  of  transcriptional  regulation  and  relate  these
models  to  previous  work  [4]  [2]  [5]  [6]  [7]  [8].  We will  illustrate  the  case  of  a two-level  hierarchy  of  transcrip-
tional  activation,  in  which  possible  binding  sites  are  grouped  into  nonoverlapping,  separately  activateable
“modules” or stateful subcomplexes which can in turn activate the initiation of transcription, as shown in Figure 1.

Figure  1.  Schematic  illustration  of  transcriptional  regulation.  Horizontal  line:  DNA regulatory  region.
Rectangles: binding sites on DNA, some of which overlap and canot be simultaneously occupied. Ovals: activate-
able modules. Bent arrow: site of transcription intiation, influenced by activation state of modules within the ovals.

3.1 Quasi-Equilibrium

Suppose that concentrations  of transcription factors (TFs) are vi  zi ; that Ri is the maximum synthesis
rate  of  TF  i ;  that  li  is  the  autonomous  decay  rate  for  TF  i ;  that  sHiL  is  a  binary  random  variable  determining
whether  transcription  can  initiate  or  not;  and  that  XsHiL\  is  the  short-term  average  thereof  at  time  t .  A  quasi-
equilibrium model for a network of such regulatory interactions may then take a form such as the coupled differen-
tial equations

d viÅÅÅÅÅÅÅÅÅÅÅÅ
d t

= Ri Activationi  HvHtLL - li  vi

where the level of activation of the i’th transcription complex at time t  is

Activationi =
lom
no
XsHiL\ for deterministic model

XsHiL\ + hi  
è!!!!!!!!!!!!!!!!!!VarHsHiLL for Langevin HstochasticL model

where hi is a standard (normalized, zero mean) random process with a finite autocorrelation decay time. For the
simple Bernoulli distributions on sHiL  that we will encounter, VarHsHiLL = XsHiL\ H1 - XsHiL\L .  It remains, then, to find
XsHiL\  as a function of the current TF concentrations vi  or fugacities zi .

To begin, we consider the case of a single module.

3.2 Single-module structure

In the case  of a single activateable module there is a set  of binding  sites with a global activation vari-
able s œ 80, 1<  (Figure 2). This situation was described by a polynomial  partition function and related to artificial
neural  network  (ANN)  quasi-equilibrium  dynamics  in  [2].  Here  we  first  rephrase  that  description  in  terms  of
Equation 1 and Equation 2, and then provide a new,  much more general derivation of a neural network  model as
an approximation, as well as sufficient conditions for its validity.
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Figure 2 (a) Single-module model with transcription factors, binding sites, and global activation of a multimolec-
ular complex regulating transcription intiation.

Figure  2(b)  Equivalent  diagram  to 2(a)  with replication  (many  sites and  many  transcription  factors)  indicated
using index nodes (boxes) and indexing links (labelled by i).

The  binding  sites  are  indexed  by  b œ 81 : Bmax < .  The  transcription  factors  (TF’s)  available  in  solution
are indexed  by j œ 81 : N< .  Each transcription  factor  may bind to  any binding  site,  but  many Hb, jL  combinations
will be energetically unfavorable.

3.3 Statistical mechanics model

To obtain a partition function for the foregoing single-module transcriptional model, we map the binary
variable index A  of Equation 1 to a pair Hb, jL  consisting of binding site index b œ 81 : Bmax ª " B "<  and a transcrip-
tion factor j , together with a special value A = Ø  which corresponds to the single binary-valued global activation
variable sØ ª s . Thus we have indices

i, j œ 81 : N<
b œ 81 : B<

A œ 8Ø< ‹ 8Hb, iL< ‹ 8Hb, i, jL<
We  explictly  enumerate  the  state  variables  as  follows.   There  are  two  global  states  for  transcription

complex i , namely s = 0  or 1. Each binding site b  can be occupied by at most  one transcription factor  (TF) at a
time.  However,  a  pair  of  mutually  exclusively  overlapping  binding  sites  (as  in  Figure  1)  can  be  modeled  as  a
single  binding  site  with multiple  alternative  occupiers  (as  in Figure 2),  and a  mutually exclusively  synergistic  or
antisynergistic  (energetically  linked) pair of binding sites can be modeled as a single binding site with the ability
to bind a dimer of transcription factors  (so that the index A  expands to include Hb, j, kL  triples as well, as shown
above). In the latter situation each of the two transcription factors, as well as their dimer, are regarded as mutually
exclusive  potential  occupants  of  just  one  binding  site.  The  partition  function  for  site  b  that  represents  all  these
possible states,  within a multimolecular  transcription  complex  whose global activation state is s ,  is the sum over
mutually exclusive alternatives with no internal interaction energies wrHsL :

TranscripReg_TR.nb
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We  explictly  enumerate  the  state  variables  as  follows.   There  are  two  global  states  for  transcription
complex i , namely s = 0  or 1. Each binding site b  can be occupied by at most  one transcription factor  (TF) at a
time.  However,  a  pair  of  mutually  exclusively  overlapping  binding  sites  (as  in  Figure  1)  can  be  modeled  as  a
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XHi bLs = „
9s … ⁄ j sHb jL +⁄ j k sHb j kLb1=
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= 1 + ‚
j=1

J

zb j + ‚
j, k=1

J

zb j k .

Substituting

zHb jL # zj  wHi b jL
HsL

zHb j kL # z j  zk  wHi b j kL
HsL ,

this simplifies to

(3)XHi bL
HsL = 1 + ‚

j=1

J

wHi b jL
HsL z j + ‚

j, k=1

J

wHi b j kL
HsL zj  zk .

The initial summand “1” represents the empty state of the binding site. If wHi b j kLs ª 0  then no pairwise energetic
interaction  or  dimerization  is  allowed.  In  this  model,  exclusive  pairwise  synergy of  bound TF’s  is  indistinguish-
able  from  TF  dimerization  in  its  effects  on  transcription.  However,  synergy  of  bound  dimers  would  result  in
partition function terms of order 3 or 4 in z , not present in Equation 3.

Strictly  for  notational  convenience,  we  will  map  the  two  values  of  binary  variables  s œ 80, 1<  that
appear  as  superscript  labels  HsL ,  eg.  in  wHi b jL

HsL ,  into  the  two  symbols  "+" and  "-"  for  values  1  and  0  respectively,
indicating “activation” and “inactivation”, eg. wHi b jL+  and wHi b jL- .

Conditioned on the value of s , the binding sites are all independent so their partition functions multiply,
just as in the MWC and GMWC models of allosteric enzymes [9] [10]. Without loss of generality,  the composite
partition function is then:

(4)

ZGRN i Hzi L = zi  wi ‰
b=1

B

XHi bL+ + ‰
b=1

B

XHi bL-

= zi  wi Â
b=1

B i
k
jjjjjj1 + ‚

j=1

J

wHi b jL+ zj + ‚
j, k=1

J

wHi b j kL+ zj  zk

y
{
zzzzzz + Â

b=1

B i
k
jjjjjj1 + ‚

j=1

J

wHi b jL- z j + ‚
j, k=1

J

wHi b j kL- z j  zk

y
{
zzzzzz

where 

(5)
wHi b jL = expI-D GHi b jL ë k TM,

wHi b j kL = expI-D GHi b j kL ë k TM, and
wi = expH-D Gi ê k TL .

We now compute the activation function for the single-module equilibrium model:
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Activationi = XsHiL\ =
 log ZiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
 log zi

 
ƒƒƒƒ†
ƒƒƒƒzi =1 =

wi  ¤b=1
B XHi bL+
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wi  ¤b=1

B XHi bL+ + ¤b=1
B XHi bL-

Thus we have

Proposition  1.  The  single-module  statistical  mechanical  model  for  transcriptional  regulation  of  Equa-
tion 4 above has activation function
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which  is  a  ratio  of  polynomials  in  the  fugacity  parameters,  where  the  w  parameters  are  related  to  binding
energies by Equation 5. In the absence of synergistic interactions and of dimerization of singly-active transcription
factors, wHi b j kLS = 0 and this expression simplifies to

(7)Activationi =
wi  ‰

b=1

B I1 + ⁄ j=1
J wHi b jL+ z j M
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wi  ‰
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b=1

B I1 + ⁄ j=1
J wHi b jL- z j M

.

Proposition 1 reexpresses the quasi-equilibrium model in Section 4 of [2].

3.4 Neural network-like GRN model

Continuing the foregoing calculation from Equation 6,

(8)

Activationi =
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where

HillHx, nL ª
xn

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + xn , and

gHyL ª 1 ê H1 + expH-yLL .

Observation  1.   If  repression  is  disallowed,  so  all  wHi b jL- = 0,  and  if  all  binding  sites  are  identical,  so
that wHi b jL+ = wHi jL+ and wHi b j kL+ = wHi j kL+ , then the activation function becomes
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(9)

Activationi =
wi I1 + ⁄ j=1

J Ti j v j + ⁄ j, k=1
J Ti j k vj  vk MB
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where  vj  is  the  concentration  of  the  j ’th  transcription  factor  (which  is  proportional  to  fugacity  z j  in  dilute
solution), and:

hi = wi

Ti j  v j = wHi jL+ Hwi L-1êB  z j

Ti j k  vj  vk = wHi j kL+ Hwi L-1êB zj  zk

g̀HxL = xB ë I1 + xB M = HillHx, BL
This argument was made in [2]. Equation 9 has the form of a one-layer, feed-forward neural network which is a

higher-order  or sum-product neural network if some Ti j k  0. However, it is derived under highly restrictive and
biologically unrealistic conditions: there can be no repression (except for consitutive inhibition obtained by taking
wi < 1), and all B > 1 binding sites must be functionally identical so that g̀  is a sigmoidal function.

Continuing the calculation from Equation 8,

(10)Activationi = g
Ä
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log XHi bL+ - ‚
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Observation 2.  Much more generally, if the average occupancies of all of the (heterogeneous, activating
and/or repressing) binding sites are low, but there are many binding sites, then we may expand each logarithm in
Equation  10  (whose  radius  of  convergence  is  1  and  whose argument  is  independent  of B)  but  not  the  sigmoidal
function g  (whose argument grows as OHBL ):

log XHi bL
HsL @ ‚

j=1

J

wHi b jL
HsL zj + ‚
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wHi b j kL
HsL z j  zk ` 1 .
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b=1

B

wHi b jL = ‚
b=1

B

expI-D GHi b jL ë k TM,

THi j kL = ‚
b=1

B

wHi b j kL = ‚
b=1

B

expI-D GHi b j kL ë k TM, and

hi = log wi = -D Gi ê k T

This  is  again  an  Artificial  Neural  Network  (ANN)  model  of  gene  regulation  networks  as  proposed  in  [2],
Section 2, where it was introduced as a “phenomenological modeling framework” for transcriptional regulation. It
was  first  applied to create a predictive  experimental  model  of transcriptional  regulation  in a particular  biological
system in [11]. By the foregoing argument we now arrive at Proposition 2.
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Proposition 2.  The activation function of Equation 6 may be approximated by the feed-forward  neural
network equation

(11)Activationi = XsHiL\ @ g
i
k
jjjjjj‚

j=1

J

Ti j v j + ‚
j, k=1

J

Ti j k  v j  vk + hi

y
{
zzzzzz,

where

(12)

gHxL = 1 ê H1 + expH-xLL,

THi jL = ‚
b=1

B

wHi b jL+ - ‚
b=1

B

wHi b jL- = ‚
b=1

B

expI-D GHi b jL+ ë k TM - ‚
b=1

B

expI-D GHi b jL- ë k TM,

THi j kL = ‚
b=1

B

wHi b j kL+ - ‚
b=1

B

wHi b j kL- = ‚
b=1

B

expI-D GHi b j kL+ ë k TM - ‚
b=1

B

expI-D GHi b j kL- ë k TM, and

hi = log wi = -D Gi ê k T

by expanding the logarithm in Equation 10, which is valid under under the following conditions:
(a) the probability of occupancy for each binding site is e, with e`1, and
(b) there are large number of binding sites, B p 1, and B e = OH1L .

Under Proposition 2, all connection matrix entries T  and h  in Equation 11 have micro-level interpreta-
tions in terms of binding energies in Equation 12. In the absence of pairwise exclusive synergies and dimerization,
Ti j k = 0.  The  reduced  model  of  Proposition  2  may  be  called  “cooperative”  because  of  conditions  (a)  and  (b):
changes in state require joint input from a number of binding sites.  If the required number of sites is sufficiently
large  the  model  may  even  be  called  “collective”  since  in  that  case  a  global  state  variable  (the  argument  to  g)
summarizes the effect of many local ones.

This  reduced  model  assumes there  is only  very restricted  (pairwise)  binding  site overlap.   But even if
general overlap is allowed, since occupancy probabilities are low, such overlaps will rarely actually occur and the
first-order  approximation  is  still  valid.   Only  higher-order  correction  terms  in  e  are  affected  by  the  overlaps.
Higher order terms in the expansion of the logarithm may of course be kept, at the cost of increasing the order of z
in the argument to g .

Under restricted conditions it is also possible to derive a neural network form for the activation function
if  some sites have  a  dominant occupant  which  is present  with probability  1 - e  (as  outlined in the Appendix).  A
further  generalization  of  Proposition  2  would  be  to  allow  a  few  sites  with  nonextreme  probabilities  (so  the  full
statistical  mechanical  model  of  Proposition  1  is  needed  for  those  sites)  against  a background  of many  sites  with
extreme (~0 or 1) probabilities.

The modeling framework of Equation 11 (with Ti j k = 0) has been fit to data and used to make testable
predictions regarding Drosophila anterior-posterior axis in [11], [12], and [13]. In the absence of the grounding of
its T  and h  parameters in measurable D G  values provided by Equation 12,  and in the absence of the achievable
sufficient  conditions  for  its  validity  provided  by  Proposition  2,  this  framework  was  a  phenomenological  rather
than  a  mechanistic  one,  whose  parameters  could  not  be  measured  directly.  As  a  phenomenological  model  it
satisfies  the criteria suggested  in [2]:  (1)  it saturates  both above (at a maximal initiation  rate) and below (at zero
initiation rate) due to the sigmoidal function g ; (2) each regulatory interaction is characterized by one real number
(the  relevant  Ti j  or  Ti j k );  and  (3)  the  effects  of  these  numbers  are  approximately  additive  within  the  limits
imposed by criterion (1). These criteria are not satisfied,  for example, by linear or Boolean models, but they may
be  satisfied  by  piecewise  linear  approximations  of  g .  They  may  be  reasonable  properties  for  a  course-scale,
phenomenological  model  that  simplifies  and  approximates  some  finer-scale  mechanistic  model  of transcriptional
regulation. 
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satisfies  the criteria suggested  in [2]:  (1)  it saturates  both above (at a maximal initiation  rate) and below (at zero
initiation rate) due to the sigmoidal function g ; (2) each regulatory interaction is characterized by one real number
(the  relevant  Ti j  or  Ti j k );  and  (3)  the  effects  of  these  numbers  are  approximately  additive  within  the  limits
imposed by criterion (1). These criteria are not satisfied,  for example, by linear or Boolean models, but they may
be  satisfied  by  piecewise  linear  approximations  of  g .  They  may  be  reasonable  properties  for  a  course-scale,
phenomenological  model  that  simplifies  and  approximates  some  finer-scale  mechanistic  model  of transcriptional
regulation. 

With Proposition 2, however, the framework specified by Equation 11 can act not only as a phenomeno-
logical  model  but  also  as  a  mechanistic  model,  with  primary  mechanisms  being  transcription  factor
binding/unbinding  in  quasi-equilibrium,  competitive  inhibition  by  overlapped  binding  sites,  and  regulation  of
transcription  initiation  by  average activation of  a single  molecular  complex  or module.  Models  expressed  in this
framework  can  be  evaluated  experimentally  and  quantitatively  for  particular  systems  alongside  other,  more
elaborate mechanistic  models such as those discussed  below. If the approximation validity conditions of Proposi-
tion 2 are not satisfied, a quasi-equilibrium model of the same mechanisms is still described by Proposition 1.

4 HCA for transcriptional regulation

The  single-module  model  can  be  extended  straightforwardly  to  multiple,  separately  activateable
modules  or subcomplexes,  each of which has a binary activation state varible sm œ 80, 1<  which can interact with
the  global  activation  variable  s œ 80, 1<  for  transcription  complex  i .  Each  module  contains  a  set  of  binding  sites
whose overlaps or synergistic interactions are limited to exclusive pairs, as for the previous single-module model.
Now the numbering scheme for A  is:

A œ 8Ø< ‹ 8m< ‹ 8Hm, b, iL< ‹ 8Hm, b, i, jL<
The result will be a version of the Hierarchical Cooperative Activation model [1] for transcriptional regulation.

Here we rephrase and extend the statistical mechanical expression of this model, and derive novel two-layer neural
network approximations to it in a manner parallel to the foregoing single-module neural network approximation.

4.1 Hierarchical Cooperative Activation (HCA)

The HCA model is illustrated in Figure 3.

Figure  3.  The  transcriptional  regulation  model  of  Figure  1,  redrawn  to  show  the  binary  state  variables  (open
circles),  their “soft” energetic  interactions (thin solid lines), and their “hard” logical interactions.  Logical interac-
tions  are  indicated  by  thick  solid  lines  connecting  to  predicate-bearing  hexagons.  In  this  case  the  predicate  P  is
“mutex” (mutual exclusion) or, what is equivalent for two Boolean arguments,  “nand”. An additional labeled line
connects  the  global  activation  state  s ,  through  ensemble-  or  time-averaging,  to  a  real-valued  average  activation
(shaded circle) which is proportional to the rate of transcription initiation. This diagram is similar to those used in
machine learning  applications.  Biological  objects  (DNA and binding  sites)  are shown with  dotted lines.  Trees  of
energetic interactions for Ising models (spin systems, as in Equation 1) were introduced into statistical mechanics
by Dyson [14] [15].

TranscripReg_TR.nb

10



Figure  3.  The  transcriptional  regulation  model  of  Figure  1,  redrawn  to  show  the  binary  state  variables  (open
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connects  the  global  activation  state  s ,  through  ensemble-  or  time-averaging,  to  a  real-valued  average  activation
(shaded circle) which is proportional to the rate of transcription initiation. This diagram is similar to those used in
machine learning  applications.  Biological  objects  (DNA and binding  sites)  are shown with  dotted lines.  Trees  of
energetic interactions for Ising models (spin systems, as in Equation 1) were introduced into statistical mechanics
by Dyson [14] [15].

In this two-level hierarchical model, the partition function of Equation 2 can be built up by iterating the
construction  of  the  previous  section,  beginning  with  the  single-site  partition  functions  X  and  allowing  for  both
global  activation  state  s  and  module-level  activation  states  sm  where  m  indexes  a  set  of  separately  activateable
modules within the multimolecular transcription complex, as illustrated in Figures 1 and 3. Thus

(13)Zi Hzi L = zi  wi Â
m=1

M Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
wHmL+ ‰

b=1

BHmL
XHm bL+ + ‰

b=1

BHmL
XHm bL-

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
+ Â

m=1

M Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
wHmL- ‰

b=1

BHmL
XHm bL+ + ‰

b=1

BHmL
XHm bL-

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
where

XHm bL
Hsm L = 1 + ‚

j=1

J

wHm b jL
Hsm L z j + ‚

j, k=1

J

wHm b j kL
Hsm L z j  zk .

Then we may calculate that the average activation is again a ratio of polynomials

Activationi =
 log ZiÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
 log zi

 
ƒƒƒƒ†
ƒƒƒƒzi =1

=
wi ¤m=1

M AwHmL+ ¤b=1
BHmL XHm bL+ + ¤b=1

BHmL XHm bL- E
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Thus

(14)

Activationi = Hill

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
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ÅÅÅÅÅÅÅÅÅÅÅÅÅXHm bL- + 1F
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n
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i
k
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ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
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- 1y{
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Ä
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ÅÅÅÅÅÅÅÅÅÅÅÅÅ
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, 1

É
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~
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É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
.

Thus we have

Proposition 3.  For a fully statistical HCA model,
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Activationi = Xs\ =
i

k

jjjjjjjjwi Â
m=1
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Ç
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Ç
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Equivalently

Activationi = Hill
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
wi ‰

m=1

M

81 + Ji m  Ui m <, 1
É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
,

where

Ui m = Hill

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
wHmL- Â

b=1

BHmL
XHi m bL+

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
XHi m bL-

, 1

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
,

Ji m =
i
k
jjj wHi mL+

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
wHi mL-

- 1y{
zzz , and

XHi m bL
Hsm L = 1 + ‚

j=1

J

wHi m b jL
Hsm L z j + ‚

j, k=1

J

wHi m b j kL
Hsm L zj  zk .

Note  that  there  are now  two Hill  functions  composed  with one  another  (one  is nested  as an argument
inside  the  other),  corresponding  to  the  assumed  two  levels  of  activation  in  the  transcription  complex.  Each  Hill
function  also  has  as  an  argument  a  product,  over  modules  or  binding  sites.  Essentially  the  same  model  was
proposed  in  [5]  (with  one  redundant  parameter  compared  to  the  present  formulation)  under  a  slightly  weaker
interpretation:  zj  zk  terms  denoted bound dimers  but  not pairwise  synergistic  interactions.  As in [5],  a calculable
observable  is the average  occupancy of each binding  site.  This can be expressed as a  function of the elementary
occupancies (omitting dimerization for simplicity)

fHi m b jL
sm =

 log XHi m bL
Hsm L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
 log zm b j

 
ƒƒƒƒƒƒƒƒƒƒƒzm b j ØwHi m b jL

sm z j =
wHi m b jL

Hsm L zj
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + ‚

l=1

J
wHi m b lL

Hsm L zl

as follows:

fHi m b jL =
 log Zi Hzi LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
 log zm b j

 
ƒƒƒƒƒƒƒƒƒzm b j ØwHi m b jLs zj

= „
s

 
 log Zi Hzi LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
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HsL  „
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 log XHi mL
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ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
 log XHi m bL

Hsm L  
 log XHi m bL

Hsm L
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 log zm b j
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whence

(15)fHi m b jL = Xsm \ fHi m b jL+ + H1 - Xsm \L fHi m b jL- .

However, the w’s themselves are also in principle observable as exponentials of measurable DG’s.

4.2 ANN-like approximation

Calculating from Equation 14 as in the single-module case,
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defining h* = log w* . Therefore
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where we define

(16)gèHx; hL ª log@1 + HexpHhL - 1L gHxLD

Using convexity and 0 b gHxL b 1,

gè Hx; hL = log@expHhL gHxL + H1 - gHxLLD
r h gH xL + H1 - gHxLL logH1L = h gH xL .

If we minimize the approximation error

(17)!2 Hh, cL =
1
ÅÅÅÅÅ
2

 ‡
0

1

Ih l + c lHl - 1L - logIeh l + H1 - lLMM2  d l
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symbolically with respect to c  for any given h , we find

(18)cHhL =
5
ÅÅÅÅÅ
6

 I5 - 27 eh + 27 e2 h - 5 e3 h M +
3 hI1 - 3 eh - 3 e2 h + e3 h M
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH1 - eh L3 .

Figure 4 quantifies the accuracy of this approximation as a function of h .
Other  error  integrands  such  as  Hfractional error - 1L2 could  also  be  used  and  numerically  optimized,

giving different values for cHhL . Using any such metric including Equation 17 we may approximate

gè Hx; hL @ 1 + @h - 1 - cHhLLD gH xL + cHhL gH xL2
which is exact at the extreme values gHxL = 0  or =1. This formula may be seen as a small feed-forward neural

network implementing gèHx; hL  in terms of a previous layer that calculated gHxL .

0.2 0.4 0.6 0.8 1
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1

Figure 4(a).  Approximation by linear and quadratic  polynomials,  for h = 1. Horizontal axis: l = gHxL . Vertical
axis: logIeh l + H1 - lLM  and its approximants h l  and h l + c lH1 - lL , where cHhL  is given by Equation 18 . 
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Figure  4(b).  Approximation  error  for  quadratic  form,  for  h = 1.  Horizontal  axis:  l = gHxL .  Vertical  axis:
logIeh l + H1 - lLM - @h l + c lH1 - lLD ,  where  cHhL  is  given  by  Equation  18  .  Further  reductions  in  error  (ä5  for
h = 1 ) are possible using higher order polynomials in l, such as h l + c2 lHl - 1L + c3 lHl - 1 ê2L H1 - lL .
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Figure 4(c). Integrated squared error !1 HhL , !2 HhL , and !3 HhL  with optimal coefficients c , all computed symboli-
cally  and  plotted  numerically  as  a  function  of  h ,  for  polynomial  approximations  h l ,  h l + c lH1 - lL ,  and
h l + c2 lHl - 1L + c3 lHl - 1 ê2L H1 - lL  of degree 1, 2, and 3 respectively.  Errors decrease with increasing degree
for  each  value of  h .  Empirically,  it appears  that  d !k Hh, cHhLL êd h ò 0  for  h ò 0  and  k œ 81, 2, 3< ,  in  which  case
decreasing » h »  always improves the accuracy of approximation and every plotted data point establishes an approxi-
mation  validity  condition  for  all  smaller  » h » .   Numerical  artifacts  are  encountered  at  h > 0  due  to  high-order
degeneracy  at  zero,  but  analytically  !k H0L = 0  and  !k HeL ~ dk  e2 Hk+1L  for  k œ 81, 2, 3< ,  with  coefficients  dk > 0.
Larger values of h  require more terms in such a polynomial expansion for a given level of accuracy.

If B  is so large that we are well inside the radius of convergergence for the logarithm around 1, which
is 1, but outside the domain of validity for a low-order series approximation of gHB y + hi L , which is OH1 êBL , then
we can expand the logarithm but not the sigmoid function g  and recover a feed-forward neural network equation:

log XHm bL @ ‚
j=1

J

wHm b jL z j + wHm b j kL z j  zk

THm jL = ‚
b=1

BHmL
wHm b jL and THm j kL = ‚

b=1

BHmL
wHm b j kL

‚
b=1

BHmL
log XHm bL @ ‚

j=1

J

THm jL z j + ‚
j, k=1

J

THm j kL zj  zk

‚
b=1

BHmL
log XHm bL+ - ‚

b=1

BHmL
log XHm bL- @ ‚

j=1

J

ITHm jL+ - THm jL- M z j + ‚
j, k=1

J

ITHm j kL+ - THm j kL- M zj  zk

= ‚
j=1

J

THm jL  zj + ‚
j, k=1

J

THm j kL zj  zk

This gives a series of approximations summarized in Proposition 4.

Proposition 4. For the hierarchical (HCA) model of Equation 13 the activation function is

Activationi = Xs\ = g
i

k

jjjjjjjjhi + „
m=1

M

gè
i
k
jjjjj hHmL- + ‚

b=1

BHmL
Ilog XHm bL+ - logXHm bL

- M; hHmL+ - hHmL-
y
{
zzzzz
y

{

zzzzzzzz
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where  gè Hx; hL ª log@1 + HexpHhL - 1L gHxLD  and  XHm bLs  is  given  by  Equation  13.  It  has  the  following
approximation:

(19)Activationi @ g
i

k

jjjjjjjjhi + „
m=1

M

gè
i
k
jjjjjj hHmL- + ‚

j=1

J

THi m jL  z j + ‚
j, k=1

J

THi m j kL z j  zk ; hHmL+ - hHmL-
y
{
zzzzzz
y

{

zzzzzzzz

as  well  as  a  second  less  accurate  approximation  (a  two-layer  sum-product  neural  network  with  particular
weight formula)

(20)

Activationi @ g
i
k
jjjjjh

è
i + ‚

m=1

M

THi mL  vHmL + ‚
m=1

M

Tè Hi mL  vHmL2
y
{
zzzzz, where

vHmL = g
i
k
jjjjjjhHmL- + ‚

j=1

J

THi m jL  zj + ‚
j, k=1

J

THi m j kL zj  zk

y
{
zzzzzz

THi mL = hHmL+ - hHmL- - 1 - Tè Hi mL
Tè Hi mL = cIhHmL+ - hHmL- M

where cHhL  is given by Equation 18. There is a third still less accurate approximation which also takes the form
of a classic two-layer feed-forward sum-product neural network, obtained by setting Tè Hi mL = 0:

(21)Activationi @ g
i
k
jjjjjh

è
i + ‚

m=1

M

THi mL  vHmL
y
{
zzzzz, vHmL = g

i
k
jjjjjjhHmL- + ‚

j=1

J

THm jL  z j + ‚
j, k=1

J

THm j kL zj  zk

y
{
zzzzzz,

THi mL = hHmL+ - hHmL- - 1 .

In these expressions the constants are defined by

THi m jL = THi m jL+ - THi m jL- and THi m j kL = THi m j kL+ - THi m j k L-

THi m jL = ‚
b=1

BHmL
wHm b jL = ‚

b=1

BHmL
expI-D GHm b jL ë k TM,

THi m j kL = ‚
b=1

BHmL
wHm b j kL = ‚

b=1

BHmL
expI-D GHm b j kL ë k TM, and

hHmL = log wHmL = -D GHmL ë k T
hi = log wi = -D Gi ê k T

h
è

i = log wi + M = -D Gi ê k T + M

and gHxL = 1 ê H1 + expH-xLL .The conditions of validity for the first approximation are:
(a) probability of occupancy for each binding site is e, with e`1.
(b) large number of binding sites within each module, BHmLp 1 and BHmL e = OH1L

The conditions of validity of the second and third approximations depend also on Equation 17 and Equation 18.

It may also be possible to compute higher-order corrections to the large-B  limit while retaining a major
advantage of the neural net formulation, that many possible variations in structure are reduced to a fixed space of
polynomially many parameters.
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4.3 Interaction/overlap chains

The  restrictions  of  pairwise  mutually  exclusive  overlap  and  synergy  allowed  for  simple  analytic
expressions of the polynomial  grand partition function. At some cost in simplicity, more general one-dimensional
chains of overlap and energetic interaction (synergistic or anti-synergistic) along the DNA such as those of Figure
5 can be expressed using such partition functions as well. Thus we will formulate an extension of the HCA model,
that  may  be  called  Hierarchical  Cooperative  Activation  with  Chains  (HCAC),  to  include  such  chains  of  1D
dependencies.

Figure  5.  Chains  of  overlapping  and  energetically  interacting  sites,  solvable  with Equation  22.  Symbols  as  in
Figure  1,  with  energetic  interactions  added.  Where  adjacent  sites  overlap,  only  second  nearest  neighbors  are
allowed to interact energetically since nearest neighbors are never simultaneously present. An example of a model
with a chain of energetic interactions occurs in [4].

For a single module, the partition function for a chain may be derived as a product of 3ä3 matrices by
considering pairs of overlapping sites Hb = 1, b = 2L , Hb = 3, b = 4L , and so on, each of which has three states: both
empty,  first  site  occupied,  and  second  site  occupied.  In  case  there  are  some  adjacent  nonoverlapping  sites,  we
“reduce” to the fully overlapping case: Simply add an extra intermediate site that overlaps with both adjacent sites
and then set its zb = 0 so that it is never occupied.

The novel part of this model compared to HCA is the one-dimensional interactions through site overlap
and synergy: second nearest neighbors (odd or even) interact energetically with factor w. (See Figure 5). Therefore
each successive pair of sites has three possible states. The model can be solved using 3µ3 transfer matrices on site
pairs:

(22)ZHzL = H1 1 1L ÿ

loooom
n
oooo Â

p=`Bê2-1pä1

 
i

k

jjjjjjjj
1 1 1

z2 p+1 z2 p+1 w2 p-1, 2 p+1 0
z2 p+2 z2 p+2 z2 p+2 w2 p, 2 p+2

y

{

zzzzzzzz
|oooo}
~
oooo

ÿ
i

k
jjjjjjj

1
z1

z2

y

{
zzzzzzz

with  Z, z, and w  all  implicitly  superscripted  by the  enclosing  activation state  HsL  or  Hsm L  as  the case  may be,
and  also  subscripted  appropriately  as  in  HCA.  Any  site  can  be  omitted  (removing  its  overlap  constraints  and
interaction  energies) by setting its zb  to zero and wb * = w*b = 1. Also as in HCA, the substitution Equation  2 of
must be performed after ZHzL  is calculated to get the grand partition function ZHz, zL .

As an example, the leftmost module in Figure 5 has overlapping pairs of sites 1 and 2 (numbering from
the  left);  an  interpolated  nonbiological  site  3  (not  shown)  that  overlaps  2  and  4  and  for  which  we  take  z3 = 0;
overlapping  sites  4  and  5;  and  overlapping  sites  5  and  6.  With  this  numbering,  there  are  energetic  interactions
(synergistic or antisynergistic)  between sites 2 and 4 and sites 4 and 6. The leftmost  module’s  partition function
may therefore be calculated automatically as
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ZHzL = H1 1 1L ÿ
i

k
jjjjjjj

1 1 1
z5 z5 0
z6 z6 z6 w4 6

y

{
zzzzzzz ÿ
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k
jjjjjjj

1 1 1
0 0 0

z4 z4 z4 w2 4

y
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zzzzzzz ÿ
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1
z1

z2
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= 1 + z1 + z2 + z4 + z1  z4 + z2  z4 w2 4 + z5 + z1  z5 + z2  z5
+z6 + z1  z6 + z2  z6 + z4  z6 w4 6 + z1  z4  z6 w4 6 + z2  z4  z6 w2 4  w4 6

which can be hand-simplified taking advantage of the break at b = 3, to

Z HzL = H1 + z1 + z2 L H1 + z4 + z5 + z6 + z4  z6 w4 6 L + z2  z4 Hw2 4 - 1L H1 + z6 w4 6 L .

4.4 Further generalizations of HCA

A solvable extension of HCAC is illustrated by the following diagram:

Figure 6. A solvable extension of HCAC. Symbols as in Figure 5.

The  hierarchy  can  be  made  deeper,  in  a  tree  topology  (representable  with  nested  enclosures).  A  key  point
regarding  the HCAC model  is that the  maximum height  of the  overlap stack,  and therefore  the dimension  of the
transfer  matrix  in  the  solution  for  the  partition  function,  is  bounded  by  the  length  of  its  constituent  enhancer
binding  sites  -  from  6  to  18  or  so.   Typical  overlaps  will  be  much  less.   Coupled  with  a  tree  topology  for  the
module  structure,  the  result  is  still  solvable  by  the  methods  used  above.  Multiple  competing  sites  for  transcrip-
tional initiation can be accommodated  in Equation 4 or Equation 13 by giving the top-level activation variable si

more than just two discrete, mutually exclusive states, each with its own maximal transcription rate  Ri, si , includ-
ing Ri, si = 0 for the globally “inactive’” state si = 0.

5 Discussion

5.1 Related models

Other  models  of  transcriptional  regulation  have  also  relied  on  equilibrium  statistical  mechanics  to
compute  partition  functions  and  activation  as  a  function  of  regulatory  inputs,  at  least  in  particular  cases.  The
models  presented  in this paper only  use the predicate  P  to prevent simultaneous  occupancy of overlapping  sites.
More extensive use of hard constraints P , and correspondingly less extensive use of the soft interaction parameters
w,  appear  in  the  abstract  transcriptional  logic  examples  of  [6].  Likewise  in  [8],  a  particular  GRN  in  Drosophila
responsible  for  dorso-ventral  patterning  is  studied  using  partition  functions  that  encode  extensive  hard  logical
relationships  between site occupancy and module activation and between module activation and activation of the
transcription complex. These models can also be specified by diagrams in the style of Figure 3.

In  [7]  a  transcriptional  modeling  framework  is  presented  which  has  two  levels  of  hierarchy  as  does
HCA, and adds distance-dependent repressive “quenching”  interactions at the module and  whole complex levels.
The framework is applied to the Drosophila anterior-posterior axis.  Unlike the present models it is apparently not
a quasi-equilibrium  model  because it  is  not derived  from a global  partition function;  rather  it  is essentially  feed-
forward using a series of steps with individual formulae that may be derivable from local partition functions. Site
occupancies are independent of activation state, unlike those of Equation 15. Whether neural net like feed-forward
approximations  to  quasi-equilibrium  models  as  developed  in  the  present  paper  can  or  should  approximate  the
models  of [7] may be an interesting question.
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In  [7]  a  transcriptional  modeling  framework  is  presented  which  has  two  levels  of  hierarchy  as  does
HCA, and adds distance-dependent repressive “quenching”  interactions at the module and  whole complex levels.
The framework is applied to the Drosophila anterior-posterior axis.  Unlike the present models it is apparently not
a quasi-equilibrium  model  because it  is  not derived  from a global  partition function;  rather  it  is essentially  feed-
forward using a series of steps with individual formulae that may be derivable from local partition functions. Site
occupancies are independent of activation state, unlike those of Equation 15. Whether neural net like feed-forward
approximations  to  quasi-equilibrium  models  as  developed  in  the  present  paper  can  or  should  approximate  the
models  of [7] may be an interesting question.

5.2 Quasi-equilibrium models of transcriptional regulation

We  have  translated  structural  diagrams  of  hypothesised  energetic  interactions  and  simple  Boolean
constraints  on  the  state  variables  of  multimolecular  transcription  complexes  into  partition  functions  for  equilib-
rium  statistical  mechanics  in  the  fast  component  of  a  quasi-equilibrium  approach  to  modeling  transcriptional
regulation. For single-level and two-level modular complexes with cooperative activation, we derived approximat-
ing feed-forward neural networks together with sufficient and plausible conditions for their validity. The sufficient
conditions  correspond  biologically  to  having  large  numbers  of  binding  sites  for  transcription  factors,  each  of
which have a small effect. These derivations included a single-layer neural network-like model class that has been
successfully applied to model GRNs in several developmental models but has heretofore been a phenomenological
rather  than  a  mechanistic  framework;  now  it  can  play  both  roles.  They  also  included  two-layer  neural  network
approximations  for  two-level  hierarchical  cooperative  activation  (HCA)  models  of  transcription  complexes.  We
also  showed  how  to  add  one-dimensional  chains  of  energetic  and  mutual  exclusion  constraints  among  binding
sites  within  the  one-  and  two-level  models,  thus  expanding  the  set  of  hypotheses  that  may  be  expressed  and
explored within a quasi-equilibrium framework.

There  is  no  guarantee  that  quasi-equilibrium  models  are  the  correct  way  to  model  transcription  com-
plexes, although they are very convenient theoretically as shown here. It is even possible that suitable nonequilib-
rium  statistical  mechanical  methods  will  be  developed  to  the  point  that  they  are  straightforward  to  apply  in
translating  from model-structure  diagrams  to mathematical  models,  as  are  the  equilibrium  and  quasi-equilibrium
methods explored in the present work.
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National  Institute  of General  Medical  Sciences,  USA  and by the U.S.  National Science Foundation, Frontiers in
Integrative Biological Research Award EF-0330786 .
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B A C K M A T T E R

A Appendix: Highly occupied site partition function
Suppose one of the nonempty states of the site partition function XHi bLs  dominates, say that correspond-

ing to term wIi b j
`M

s zj
` :
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j j
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To simplify the calculation assume that every site has such a dominant occupant. (To recover the mixed case in
which some sites b  are dominated by the empty states, set j

`HbL = 0 and zj
`HbL = 0 for those sites). Then
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In the special case that

wIi b j
`HbLM

+ = wIi b j
`HbLM

- = wHi bL

the logarithm  terms in the argument to g  cancel,  and  we have a feed-forward  neural  network  with “shunting”
style inhibition from each nonzero zj

`HbL :

TranscripReg_TR.nb

20



Activationi = g

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
logwi + „

j j
`HbL

wHi b jL+ zj
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + wHi b jL z j

`HbL
- „

j j
`HbL

wHi b jL- zj
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + wHi bL zj

`HbL

+ „
j, k=1

J
wHi b j kL+ z j  zk

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + wHi bL zj

`HbL
- „

j, k=1

J
wHi b j kL- zj  zk

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + wHi bL z j

`HbL

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
If in addition zj

`HbL  is constant (for example because it is not involved in the GRN dynamics), then
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and  the  recovered  neural  network  is  of  the  same  form used  in  Proposition  2,  without  shunting  inhibition  but
with an altered form for the connection matrices T .
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