
F R O N T M A T T E R

Stochastic Process Semantics for Dynamical Grammar
Syntax

Eric Mjolsness
Department of Computer Science
University of California, Irvine

emj@uci.edu

UCI ICS TR# 05-14

Version 3 November 2005
© Eric Mjolsness 2005

B O D Y

Abstract

We define a class of probabilistic models in terms of an operator algebra of stochastic processes, and a
representation for this class in terms of stochastic parameterized grammars. A syntactic specification of a
grammar is mapped to semantics given in terms of a ring of operators, so that grammatical composition
corresponds to operator addition or multiplication. The operators are generators for the time-evolution of
stochastic processes. Within this modeling framework one can express data clustering models, logic
programs, ordinary and stochastic differential equations, graph grammars, and stochastic chemical reaction
kinetics. This mathematical formulation connects these apparently distant fields to one another and to
mathematical methods from quantum field theory and operator algebra.

1 Introduction

Probabilistic models of application domains are central to pattern recognition, machine learning, and
scientific modeling in various fields. Consequently, unifying frameworks are likely to be fruitful for one or more
of these fields. There are also more technical motivations for pursuing the unification of diverse model types. In
multiscale modeling, models of the same system at different scales can have fundamentally different characteris-
tics (e.g. deterministic vs. stochastic) and yet must be placed in a single modeling framework. In machine learn-
ing, automated search over a wide variety of model types may be of great advantage. General-purpose modeling
languages can also provide software support for the creation of relevant mathematical models. In this paper we
propose Stochastic Parameterized Grammars (SPG’s) and their generalization to Dynamical Grammars (DG’s) as
such a unifying framework. To this end we define mathematically both the syntax and the semantics of this
formal modeling language.

The essential idea is that there is a “pool” of fully specified parameter-bearing terms such as
{bacteriumHxL , macrophageHyL , redbloodcellHzL} where x, y and z might be position vectors. A grammar can
include rules such as

8bacteriumHxL, macrophageHyL< Ø macrophageHyL with rH∞x - y¥L

which specify the probability per unit time, r, that the macrophage ingests and destroys the bacterium as a
function of the distance ∞x - y¥ between their centers. Sets of such rules are a natural way to specify many
processes. We will map such grammars to stochastic processes in both continuous time (Section 3.2) and discrete
time (Section 3.5), and relate the two definitions (Section 3.8). A key feature of the semantics maps is that they

1

are naturally defined in terms of an algebraic ring of time evolution operators: they map operator addition and
multiplication into independent or strongly dependent compositions of stochastic processes, respectively.

The stochastic process semantics defined here is a mathematical, algebraic object. It is independent of
any particular simulation algorithm, though we will discuss (Section 3.7) a powerful technique for generating
simulation algorithms, and we will demonstrate (Section 5.1) the interpretation of certain subclasses of SPG’s as a
logic programming language. Other applications that will be demonstrated are to data clustering (Section 4.1),
chemical reaction kinetics (Section 4.2), graph grammars (Section 5.2), string grammars (Section 5.3), systems of
ordinary differential equations (Section 5.4), and systems of stochastic differential equations (Section 5.4). Other
frameworks that describe model classes that may overlap with those described here are numerous and include:
branching or birth-and-death processes [1], marked point processes [2], MGS modeling language using topologi-
cal cell complexes [3], interacting particle systems [4], BLOG probabilistic object model [5], adaptive mesh
refinement with rewrite rules [6], stochastic pi-calculus [7], and colored Petri Nets [8]. The composition-preserv-
ing mapping Ycêd to an operator algebra of stochastic processes, however, appears to be novel.

The present paper is an expanded version of the summary presented in [9].

2 Syntax Definition

Consider the rewrite rule

(1)A1 Hx1 L, A2 Hx2 L, ..., An Hxn L Ø B1 Hy1 L, B2 Hy2 L, ..., Bm Hym L with rH8xi <, 8yj <L

where the Ak and Bl denote symbols ta chosen from an arbitrary alphabet set = 8ta » a œ < of “types”. In
addition these type symbols carry expressions for parameters xi or yj chosen from a base language P HiL defined
below. The A’s can appear in any order, as can the B’s. Different A’s and B’s appearing in the rule can denote the
same alphabet symbol ta , with equal or unequal parameter values xi or yj . r is a nonnegative function, assumed
to be denoted by an expression in a base language R defined below, and also assumed to be an element of a
vector space of real-valued functions. Informally, r is interpreted as a nonnegative probability rate: the indepen-
dent probability per unit time that any possible instantiation of the rule will “fire” if its left hand side precondition
remains continuously satisfied for a small time. This interpretation will be formalized in the semantics. As an
example,

HydrogenAtomHxL, HydrogenAtomHyL Ø HydrogenMoleculeHzL
with f H »» x - y »»L expI-I »» x - z »»2 + »» y - z »»2 M ë 2 s2 M

might describe a chemical reaction complete with atomic position vectors x, y, and z .

We now define P HiL . Each term Ai Hxi L or Bj Hyj L is of type ta and its parameters xi take values in an
associated (ordered) Cartesian product set Va of da factor spaces chosen (possibly with repetition) from a set of
base spaces = 8Db » b œ < . Each Db is a measure space with measure mb . Particular Db may for example be
isomorphic to the integers with counting measure, or the real numbers with Lebesgue measure. The ordered
choice of spaces Db in Va = ¤k=1

da Db=sHa kL constitutes the type signature 8sa k œ » 1 b k b da< of type ta . (As
an aside, polymorphic argument type signatures are supported by defining a derived type signature
8sa k b = HDb Œ DsHa kL L œ 8T, F< » 1 b k b da , b œ < . For example we can regard as a subset of .) Correspond-
ingly, parameter expressions xi are tuples of length da , such that each component xi k is either a constant in the
space Db=sHa kL , or a variable Xc H c œ L that is restricted to taking values in that same space DbHcL . The variables
that appear in a rule this way may be repeated any number of times in parameter expressions xi or yj within a
rule, providing only that all components xi k take values in the same space Db=sHa kL . A substitution q : c # DbHcL
of values for variables Xc assigns the same value to all appearances of each variable Xc within a rule. Hence each

2

parameter expression xi takes values in a fixed tuple space Va under any substitution q. This defines the language

P HiL .

We now constrain the language R . Each nonnegative function rHHxi L, Hyj LL is a probability rate: the
independent probability per unit time that any particular instantiation of the rule will fire, assuming its precondi-
tion remains continuously satisfied for a small interval of time. It is a function only of the parameter values
denoted by Hxi L and Hyj L , and not of time. Each r is denoted by an expression in a base language R that is closed
under addition and multiplication and contains a countable field of constants, dense in , such as the rationals or
the algebraic numbers. r is assumed to be a nonnegative-valued function in a Banach space HVL of real-valued
functions defined on the Cartesian product space V of all the value spaces VaHiL of the terms appearing in the rule,
taken in a standardized order such as nondecreasing order of type index a on the left hand side followed by
nondecreasing order of type index a on the right hand side of the rule. Provided R is expressive enough, it is
possible to factor rr HHxi L, Hyj LL within R as a product rr =rr

pure HHxi LLPrr HHyj L » Hxi LL of a conditional distribution on
output parameters given input parameters Prr HHyj L » Hxi LL and a total probability rate rr

pure HHxi LL as a function of
input parameters only.

With these definitions we can use a more compact notation by eliminating the A’s and B’s, which
denote types, in favor of the types themselves. (The expression ti Hxi L is called a parameterized term, which can
match to a parameter-bearing object or term instance in a “pool” of such objects.) The caveat is that a particular
type ti may appear any finite number of times, and indeed a particular parameterized term tiHxi L may appear any
finite number of times. So we use multisets 8 ... taHiL Hxi L ... <* (in which the same object taHiL Hxi L may appear as the
value of several different indices i) for both the LHS and RHS (Left Hand Side and Right Hand Side) of a rule:

(2)8taHiL Hxi L » i œ L <* Ø 8ta£ H jL Hyj L » j œ R <
*

with rr HHxi L, Hyj LL

Here the same object taHiL Hxi L may appear as the value of several different indices i under the mappings
i # HaHiL, xi L and/or i # Ha£ HiL, yi L . Finally we introduce the shorthand notation ti = taHiL and t£

j = ta£ H jL , and
revert to the standard notation 8< for multisets; then we may write

(3)8ti Hxi L< Ø 8t£
j Hyj L< with rr HHxi L, Hyj LL

In addition to the with clause of a rule following the LHSØRHS header, several other alternative
clauses can be used as follows. “under EHx, yL” is translated into “with expH-E Hx, yLL ê Z ” where Z is the
Boltzmann distribution partition function corresponding to EHyL holding x constant. “subject to f Hx, yL” is
translated into “with dH f Hx, yLL” where d is an appropriate Dirac or Kronecker delta function that enforces a
constraint f Hx, yL = 0. The semantics of “via G” will be defined in Section 3.3. The translation of “solving e” or
“solve e” will be defined in terms of with clauses in Section 5.4. As a matter of definition, Stochastic Parameter-
ized Grammars do not contain solving/solve clauses, but Dynamical Grammars may include them. A rule may
have multiple clauses of the same or different keyword; each clause contributes a multiplicative factor to the
overall firing rate r. In the absence of any clause, r defaults to one. There exists a preliminary implementation of
an interpreter for most of this syntax in the form of a Mathematica notebook, which draws samples according to
the semantics of Section 3 below [10].

A Stochastic Parameterized Grammar (SPG) G consists of (minimally) a collection of such rules with
common type set , base space set , type signature specification s , and probability rate language R . After
defining the semantics of such grammars, it will be possible to define semantically equivalent classes of SPG’s
that are untyped or that have richer argument languages P HiL .

3

3 Semantic Maps

We provide a semantics function Yc HGL in the form of an algebraic construction that results in a stochas-
tic process, if it exists, or a special “undefined” element if the stochastic process doesn’t exist. The stochastic
process is defined by a very high-dimensional differential equation (the Master Equation) for the evolution of a
probability distribution in continuous time. On the other hand we will also provide a semantics function Yd HGL
that results in a discrete-time stochastic process for the same grammar, in the form of an operator that evolves the
probability distribution forward by one discrete rule-firing event. In each case the stochastic process specifies the
time evolution of a probability distribution over the contents of a “pool” of grounded parameterized terms ta Hxa L
that can each be present in the pool with any allowed multiplicity from zero to na

max . We will relate these two
alternative “meanings” of an SPG, Yc HGL in continuous time and Yd HGL in discrete time.

Both semantic maps are given in terms of operator algebra: starting with the grammar we construct a
linear mapping from a probability distribution over states at one time to a function proportional to the probability
distribution over states at a later time. The mapping is constructed by algebraic operations from more elementary
linear mappings. To do so we need to define the states.

A state of the “pool of term instances” is defined as an integer-valued function n : the “copy number”
na Hxa L œ 80, 1, 2, ...< of parameterized terms ta Hxa L that are grounded (have no variable symbols Xc), for any
combination Ha, xa L œ = ˇ

aœ
a ≈ Va of type index a œ and parameter value xa œ Va . We denote this state

by the “indexed set” notation for such functions, 8na HxL< . Each type ta may be assigned a maximum value na
HmaxL

for all na Hxa L , commonly ¶ (no constraint on copy numbers) or 1 (so na Hxa L œ 80, 1< which means each term-
value combination is simply present or absent). The state of the full system at time t is defined as a probability
distribution on all possible values of this (already large) pool state: PrH8na Hxa L » Ha, xa L œ <; tL ª PrH8na Hxa L<; tL .
The probability distribution that puts all probability density on a particular pool state 8na Hxa L< is denoted
» 8na Hxa L<\ .

For continuous-time we define the semantics Yc HGL of our grammar as the solution, if it exists, of the
following differential equation:

(4)

dÅÅÅÅÅÅÅd t PrH8na HxL<; tL = ⁄8ma HxL< H8n< 8m< PrH8ma HxL<; tL, i.e. in matrix notation

dÅÅÅÅÅÅÅd t PrH tL = H ÿ PrH tL

which has the formal solution

(5)PrH tL = expH t HL ÿ PrH 0L .

For discrete-time semantics Yd HGL there is an linear map H
`

 which evolves unnormalized probabilities
forward by one rule-firing time step. The probabilities must of course be normalized, so that after s discrete time
steps the probability is:

(6)PrH sL = cn H
` s

ÿ PrH 0L = I H
` s

ÿ PrH 0LM ë I 1 ÿ H
` s

ÿ PrH 0LM

which, taken over all s r 0 and PrH8na HxL<; 0L , defines Yd HGL . In both cases the long-time evolution of the
system may converge to a limiting distribution Yc

* HGL ÿ PrH 0L = limtØ¶ PrH8na HxL<; tL which is a key feature of the
semantics, but we do not define the semantics Ycêd HGL as being only this limit even if it exists. Thus semantics-
preserving transformations of grammars are fixedpoint-preserving transformations of grammars but the converse
may not be true.

Fortunately, even though the mathematical objects just defined are large, they are completely deter-
mined by the generators H and H

`
 which in turn are simply composed from elementary operators acting on the

4

space of such probability distributions. Indeed they are elements, or limits of elements, of the operator polynomial
ring @8Ba <D defined over a set of basis operators 8Ba < in terms of operator addition, scalar multiplication, and
noncommutative operator multiplication. These basis operators 8Ba < provide elementary manipulations of the
copy numbers na HxL . The operator algebra is meaningful: operator addition corresponds to composition of parallel
processes, nonnegative scalar multiplication corresponds to speeding up or slowing down a process (as is done in
the product of scalar rate functions from different clauses in a single rule), and operator multiplication corresponds
to the obligatory co-occurrence of the constituent events that define a process, in immediate succession. Commuta-
tion relations between operators describe the exact extent to which the order of event occurrence matters.

3.1 Operator algebra

The simplest basis operators 8Ba < are elementary creation operators 8àa HxL » a œ Ô x œ Va < and
annihilation operators 8aa HxL » a œ Ô x œ Va < that increase or decrease each copy number na HxL in a particular
way (reviewed in [11]):

(7)
àa HxL » 8nb HyL<\ = » 8nb HyL + dK Ha, bL dHx, yL<\

aa HxL » 8nb HyL<\ = na HxL » 8nb HyL - dK Ha, bL dHx, yL<\

where

dK Hx, yL = QHx = yL = ; 1 if x = y
0 otherwise

and where d is the Dirac delta (generalized) function appropriate to the (product) measure m on the relevant
value space V . These two operator types then generate Na HxL = àa HxL aa HxL

Na HxL » 8nb HyL<\ = àa HxL aa HxL » 8nb HyL<\ = na HxL » 8nb HyL<\ ,

and they satisfy

@aa HxL, àb HyLD ª " commutator " ªHaa HxL àb HyL - àb HyL aa HxL L = 0 if a ∫ b or x ∫ y .

We can write these operators à, a as finite or infinite dimensional matrices depending on the maximum copy
number na

HmaxL for type ta . If na
HmaxL =1 (for a fermionic term), and we omit the type and value subscripts which are

all assumed equal and discrete below, then

à = K 0 0
1 0

O , a = K 0 1
0 0

O

8a, à< ª " anticommutator " ª a à + à a = K 1 0
0 1

O = I ; à a = N ª K 0 0
0 1

O

Likewise if na
HmaxL =¶ (for a bosonic term),

à =

i

k

jjjjjjjjjjjjjjjjjj

0 0 0 0 ∫

1 0 0 0
0 1 0 0
0 0 1 0

ª ∏ ∏

y

{

zzzzzzzzzzzzzzzzzz

= dn,m+1 and a =

i

k

jjjjjjjjjjjjjjjjjj

0 1 0 0 ∫

0 0 2 0
0 0 0 3
0 0 0 0 ∏

ª ∏

y

{

zzzzzzzzzzzzzzzzzz

= m dn+1,m ,

and

5

@a, àD ª Ha à - à a L = I =

i

k

jjjjjjjjjjjjjjjjjj

1 0 0 0 ∫

0 1 0 0
0 0 1 0
0 0 0 1

ª ∏

y

{

zzzzzzzzzzzzzzzzzz

; à a = Na ª

i

k

jjjjjjjjjjjjjjjjjj

0 0 0 0 ∫

0 1 0 0
0 0 2 0
0 0 0 3

ª ∏

y

{

zzzzzzzzzzzzzzzzzz

.

By truncating these matrices to finite size nHmaxL < ¶ we may compute that for some polynomial QHN » nHmaxL L
of degree nHmaxL -1 in N with rational coefficients,

@a, àD = I + N QIN … nHmaxL M .

Eg. if nHmaxL =1 then Q = -2; if nHmaxL =¶ then Q = 0. If the parameters x are continuous e.g. real-valued, then
the general commutator relation becomes

(8)@aHxL, àHyLD = dHx - yLAI + N QIN … nHmaxL ME

where d is again the Dirac delta (generalized) function appropriate to the (product) measure m on the relevant
value space V .

3.2 Continuous-time semantics

For a grammar rule number “r” of the form of (Equation 3) we define the operator that first
(instantaneously) destroys all parameterized terms on the LHS and then (immediately and instantaneously) creates
all parameterized terms on the RHS. This happens independently of time or other terms in the pool. Assuming
that the parameter expressions x, y contain no variables Xc , the effect of this event is:

(9)O
`

r = rr HHxi L, Hyj LL
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

iœrhsHrL
àaHiL Hxi L

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

jœlhsHrL
 abH jL Hyj L

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

If there are variables 8Xc < , we must sum or integrate over all their possible values in ≈c DbHcL :

(10)

O
`

r =

‡
DbH1L

... ‡
DbHcL

...
i

k
jjjjj‰

c

 d mbHcL HXc L
y

{
zzzzz rr HHxi H8Xc <LL, Hyj H8Xc <LLL

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

iœrhsHrL
àaHiL Hxi H8Xc <LL

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

jœlhsHrL
 abH jL Hyj H8Xc <LL

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Thus, syntactic variable-binding has the semantics of multiple integration.

A “monotonic” rule has all its LHS terms appear also on the RHS, so that nothing is destroyed, in
which case

(11)O
`

r = rr HHxi L, Hyj LL
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

iœrhsHrLîlhsHrL
àaHiL Hxi L

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

jœlhsHrL
 NbH jL Hyj L

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Unfortunately O
`

r doesn’t conserve probability because probability inflow to new states (described by
O
`

r) must be balanced by outflow from current state (diagonal matrix elements). The following operator conserves
probability:

Or = O
`

r - diagI1T ÿ O
`

r M

For the entire grammar the time evolution operator is simply a sum of the generators for each rule:

(12)H = ‚
r

Or = ‚
r

O
`

r - ‚
r

 diagI1T ÿ O
è

r M = H
`

- D

6

This superposition implements the basic principle that every possible rule firing is an exponential
process, all happening in parallel until a firing occurs. Note that (Equation 9) (Equation 10) and H

`
= ⁄r O

`
r are

encompassed by the polynomial ring @8Ba <D where the basis operators include all creation and annihilation
operators. Ring addition (as in Equation 12 or Equation 10) corresponds to independently firing processes; ring
operator multiplication (as in Equation 9) corresponds to obligatory event co-occurrence.

3.3 Recursion among grammars

If the limiting distribution Yc
* HGL exists for all initial states PrH0L , it defines a new operator

B*HGL = limtØ¶ exp t HHGL . It is possible to project this operator onto a subspace for which na HxL = 0 for all but a
few term types ta , using subspace projection operators PH8taHiL » i œ £ <L :

(13)Or = HPH8ta£ H jL » j œ R <LL B* HGL HPH8taHiL » i œ L <LL

This operator can be used to define the semantics of a rule of the form

(14)8taHiL Hxi L » i œ L < Ø 8ta£ H jL Hyj L » j œ R < via G

in a different grammar G£ or even within the same grammar G , recursively. This is how one continuous-time
grammar can “call” another one. A single rule could have both with and via clauses, in which case the two firing
rates are multiplied. For nonconverging SPG’s, one can project to the probability distribution on states after a
definite elapsed time t using the operator BHG » tL = exp t HHGL in place of B*HGL in Equation 13. In this case the
syntax of Equation 14 can be " ... via GHtL".

3.4 Execution algorithms

The meaning of the operator exponential is given by the Taylor series expansion for the exponential, or more
generally by the Trotter product formula as follows:

exp@tHH0 + H1 LD = limnØ¶ BI +
t

ÅÅÅÅÅ
n

 HH0 + H1 LF
n

= limnØ¶ BJI +
t

ÅÅÅÅÅ
n

 H0N JI +
t

ÅÅÅÅÅ
n

 H1NF
n

= limnØ¶ Ae HtênL H0 e HtênL H1 En
.

This formula can be used to derive “forward Euler” types of simulation algorithms. It is an analog of “operator
splitting” in numerical integration. More advanced methods such as the Gillespie simulation algorithm (suitably
generalized to handle parameterized types using the factorization rr HHxi L, Hyj LL=rr

pure HHxi LLPrr HHyj L » Hxi LL) can be
derived from the time-ordered product expansion of exp@tHH0 + H1 LD (Section 3.7 below).

3.5 Discrete-time SPG semantics

The operator H
`

 describes the flow of probability per unit time, over an infinitesimal time interval, into
new states resulting from a single rule-firing of any type. If we condition the probability distribution on a single
rule having fired, setting aside the probability weight for all other possibilities, the normalized distribution is

c1 H
`

ÿ p0 = I H
`

ÿ p0 M ë I 1 ÿ H
`

ÿ p0 M

For a second rule firing it is therefore

7

cè2 H
`

ÿ AI H
`

ÿ p0 M ë I 1 ÿ H
`

ÿ p0 ME =
H
`

ÿ AI H
`

ÿ p0 M ë I 1 ÿ H
`

ÿ p0 ME
ÅÅ
I 1 ÿ H

`
ÿ AI H

`
ÿ p0 M ë I 1 ÿ H

`
ÿ p0 MEM

=
IH` ÿ I H

`
ÿ p0 MM I 1 ÿ H

`
ÿ p0 M

ÅÅ
I 1 ÿ H

`
ÿ p0 M I 1 ÿ H

`
ÿ I H

`
ÿ p0 MM

= J H
` 2

ÿ p0 N í J 1 ÿ H
` 2

ÿ p0 N = c2 H
` 2

ÿ p0

Iterating, the state of the discrete-time grammar after n rule firing steps is the normalized version of H
` n

ÿ p0 :

(15)cn H
` n

ÿ p0 = I H
` n

ÿ p0 M ë I 1 ÿ H
` n

ÿ p0 M

where H
`

= ⁄r O
`

r as before. This expression depends on a normalization constant cn = 1 ë I1 ÿ H
` n

ÿ p0 M . The
normalizing division is analogous to the normalizing subtraction in the exponent of the continuous-time semantics.
For unbounded operators of infinite dimension this normalization can be state-dependent and hence dependent on
n , so cn ∫ cn . This is a critical distinction between stochastic grammar and Markov chain models, for which
cn = cn .

An execution algorithm is directly expressed by (Equation 15).

3.6 Relation to fixed points

The Ergodic Theorem gives conditions under which a stochastic processes will converge to a limiting distribu-
tion. It is tempting in that case to take the semantics to be the limiting distribution rather than the much larger
object that is the family of approaches to equilibrium depending on the initial distribution. However, it would be
less general than to keep the full semantics and apply an application-dependent projection operation afterwards.

3.7 Time-ordered product expansion

An indispensable tool for studying such stochastic processes in physics is the time-ordered product
expansion [12-13]. We use the following form:

(16)

exp Ht HL ÿ p0 = exp Ht HH0 + H1 LL ÿ p0

= „
n=0

¶ Ä

Ç

ÅÅÅÅÅÅÅÅÅ‡0

t

d t1 ‡
t1

t

d t2 ∫ ‡
tn-1

t

d tn expHHt - tn L H0 L H1 expHHtn - tn-1 L H0 L∫H1 expHt1 H0 L
É

Ö

ÑÑÑÑÑÑÑÑÑ
ÿ p0

where H0 is a solvable or easily computable part of H , so the exponentials expHt H0 L can be computed or
sampled more easily than expHt HL . See [14] for an elementary probabilistic derivation of this form. This expres-
sion can be used to generate Feynman diagram expansions, in which n denotes the number of interaction vertices
in a graph representing a multi-object history [11]. If we apply (Equation 16) with

H1 = H
`

and H0 = -D

we derive the well-known Gillespie algorithm for simulating chemical reaction networks [15], which can now
be applied to SPG’s. However many other decompositions of H are possible, one of which is used in Section 5.4
below. Because the operators H can be decomposed in many ways, there are many valid simulation algorithms for
each stochastic process. The particular formulation of the time-ordered product expansion used in (Equation 16)
has the advantage of being recursively self-applicable.

Thus, (Equation 16) entails a systematic approach to the creation of novel simulation algorithms.

8

3.8 Relation between semantic maps

Proposition. Given the stochastic parameterized grammar (SPG) rule syntax of Equation 22,

(a) There is a semantic function Yc mapping from any continuous-time, context sensitive, stochastic
parameterized grammar G via a time evolution operator HIH` HGLM to a joint probability density function on the
parameter values and birth/death times of grammar terms, conditioned on the total elapsed time, t .

(b) There is a semantic function Yd mapping any discrete-time, sequential-firing, context sensitive,
stochastic parameterized grammar G via a time evolution operator H

` HGL to a joint probability density function on
the parameter values and birth/death times of grammar terms, conditioned on the total discrete time defined as
number of rule firings, n .

(c) The short-time limit of the density Yc HGL conditioned on t Ø 0 and conditioned on n is equal to
Yd HGL .

(d) There is a serial context-free grammar Gtree whose asymptotic probability distribution is that of the
context-free feature tree Hq, fL , and another context-free grammar Grl-tree whose asymptotic probability distribu-
tion is that of the resource-limited context-free feature tree HN, q, fL .

Proof: (a): Section 3.2. (b): Section 3.5. (c) Equation 16 (details in Appendix). (d) Section 4.1 below.

Corollary. The following diagram commutes:

Here n = number of rule firings, t = continuous time, Dt = elapsed continuous time of execution.

3.9 Discussion: Transformations of SPG’s

Given a new kind of mathematical object (here, SPG's or DG’s) it is generally productive in mathematics to
consider the transformations of such objects (mappings from one object to another or to itself) that preserve key
properties. Examples include transformational geometry (groups acting on lines and points) and functors acting on
categories. In the case of SPG's, two possibilities for the preserved property are immediately salient. First, an
SPG syntactic transformation G Ø G£ could preserve the semantics YHGL = YHG£L either fully or just in fixed point
form: Y* HGL = Y* HG£L . Preserving the full semantics would be required of a simulation algorithm. Alternatively,
an inference algorithm could preserve a joint probability distribution on unobserved and observed random vari-
ables, in the form of Bayes' rule,

PrG Hout, internal » inL PrHinL = PrHin, internal, outL = PrInference Hin, internal » outL PrHoutL
where Hin, internal, outL are collections of parameterized terms that are inputs to, internal to, and outputs from

the grammar G respectively.

9

4 Examples

4.1 Cluster trees

Here is a simple cluster-generating grammar:

grammar (discrete-time) clustergen (nodesetHxL Ø 8nodeHxi L<) {

nodesetHxL Ø nodeHxL, 8childHxL » 1 b i b n< with qHnL, n r 0.

childHyL Ø nodesetHxL with fHx » yL
}

Since there is only one term on each LHS, it is “context free”. Here is its behavior:

Figure 1: Two feature trees generated by the clustergen stochastic parameterized grammar.
Pr = qH1L qH2L2 qH0L3 äf Hx1 » xL fHx11 » x1 L fHx12 » x1 L ä fHx111 » x11 L fHx112 » x11 L . (b) Pr = qH3L qH2L qH1L qH0L4

äf Hx1 » xL fHx2 » xL fHx3 » xL äfHx11 » x1 L fHx12 » x1 L fHx21 » x2 L .

Here is its discrete-time semantics (omitting for simplicity the node labels x , and just keeping the tree
structure):

(17)
H
`

= ‚
k=0

¶

qHkL àk a = gHàL a

H = gHàL a - N

(18)
H
` 2

= gHàL2 a2 + gHàL g£ HàL a;

H
` 3

= g HàL3 a3 + 3 Hg HàLL2 g£ HàL a2 + g HàL Hg£ HàLL2 a + Hg HàLL2 g≥ HàL a; ...

where

gHzL = ‚
n=0

¶

zn qHnL

In this model, every power of H
`

, and the continuous-time evolution exp t H , can be formally expressed and
computed using power series operations (composition and reversion) on generating functions. With generating

10

functions f HxL , operators Ha, àL are represented by H∑x , x µL respectively. Then H
`
@gHxL ∑x D , and

H # @HgHxL - xL ∑x D . Defining

(19)JHx; x0 L = ‡
x0

x d u
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
gHuL - u

and KHx; x0 L = ‡
x0

x d u
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
gHuL

Then, considering JHx; x0 L to be a function of just its first argument x ,

d
ÅÅÅÅÅÅÅÅÅÅÅ
d J

=
d x
ÅÅÅÅÅÅÅÅÅÅÅ
d J

d

ÅÅÅÅÅÅÅÅÅÅ
d x

=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d J êd x

d

ÅÅÅÅÅÅÅÅÅÅ
d x

" H

(20)et H f HxL # et Hdêd JL f IJ-1 HJHxLLM = f IJ-1 Ht + JHxLLM

by Taylor’s theorem in the form ea ∑x f HxL = f Hx + aL . Thus we need only calculate J-1 Ht + JHxLL using power
series reversion and composition. [1] (section III.3 eq. (7)) provides a different derivation. A similar calculation
holds for discrete-time semantics (Equation 18) using K , so that

(21)
es H

`
 f HxL # f IK-1 Hs + KHxLLM = f

i
k
jjjx + s gHxL +

s2

ÅÅÅÅÅÅÅÅ
2

 gHxL g£ HxL +
s3

ÅÅÅÅÅÅÅÅÅ
3 !

 IgHxL Hg£ HxLL2 + HgHxLL2 g≥ HxLM + ...
y
{
zzz

= f HxL + s gHxL ∑x f HxL + ... " HI + s gHàL a + ... L f HxL ,

from which we can recalculate (Equation 18). In either case the grammar is tractable because clustergen is a
context-free grammar: there is only one term on the left hand side of each rule.

The following grammar is equivalent to clustergen, in its conditional distributions
PrH8nodeHxI L » 1 b I b N<, » NL . It constitutes a valid grammar transformation of clustergen:

grammar (discrete-time) rseqclustergen (nodesetHx, NL Ø 8nodeHxi L<) {

nodesetHx, NL Ø nodeHxL, childrenHx, n, N - 1L » 1 b i b n< with rHn » NL

childrenHx, n, NL Ø childHx, N£ L, childrenHx, n - 1, N - N£ L with RHN£ » n, NL
childrenHx, 0, NL Ø Ø

childHy, NL Ø nodesetHx, NL with fHx » yL
}

The functions R and r can be computed by reversion of series using generating functions [14].

Such models have considerable utility for problem formulation in pattern recognition, image analysis,
and machine learning.

4.1.1 Dirichlet and Chinese Restaurant processes

The stick-breaking construction of a Dirichlet process can be expressed with this discrete-time grammar
(following [16]):

grammar (discrete-time) DP (startHNL Ø 8clusterHi, qk , pk L » 1 b k < ¶<) {

startHNL Ø cluster ' H0, 0, 0, 1, 0L

cluster ' Hk, qk , bk , Xk , pk L Ø clusterHk, qk , pk L,
cluster ' Hk + 1, qk+1 , bk+1 , Xk+1 , pk+1 L

with bk+1 ~BetaH ÿ » 1, aL = HGH1 + aL ê GHaLL Hbk+1 La-1

with G0 Hqk L
where pk+1 = bk+1 Xk

where Xk+1 = H1 - bk+1 L Xk

}

Then the Chinese Restaurant process for cluster generation is:

11

grammar (discrete-time) CRP (startHNL Ø 8sampleHxL » 1 b k b N<) {

startHNL Ø samplesHNL, 8clusterHk, qk , pk L » 1 b k < ¶< via DP

samplesHNL, C = 8clusterHi, qk , pk L » 1 b k < ¶< Ø
samplesHN - 1L, C, sample ' Hqk L

with pk

subject to N > 0

sample ' Hq`L Ø sampleHxLwith p(·|q
`
)

}

The clustergen grammars can be specialized and limited so as to function in a very similar manner to DP and
CRP above, with a Binomial Beta substituted for the Beta distribution [14]. However, clustergen determines a
more general family of distributions. For example one can control the histogram of cluster sizes.

4.2 Biochemical reaction networks

Given the chemical reaction network syntax

(22)9ma
HrL Aa … 1 b a b Amax =ö

kHrL 9nb
HrL Ab … 1 b a b Amax = ,

define an index mapping

aHiL = „
c=1

Amax

c Q
i

k
jjjjj ‚

d=1

c-1

md
HrL < i b ‚

d=1

c

md
HrL y

{
zzzzz =

loooooooooom

n

oooooooooo

1 if 0 < i b m1
HrL

2 if m1
HrL < i b m1

HrL + m2
HrL

... ...

a if ⁄c=1
a-1 mc

HrL < i b ⁄c=1
a mc

HrL

... ...

and likewise for bH jL as a function of 9nb
HrL = . Then (Equation 22) can be translated to the following equivalent

grammar syntax for the multisets of parameterless terms

loom
n
ootaHiL

ƒƒƒƒƒƒƒƒƒƒƒƒ
0 < i b ‚

c=1

Amax

mc
HrL

|oo}
~
oo

*

Ø
loom
n
oota£ H jL

ƒƒƒƒƒƒƒƒƒƒƒƒ
0 < j b ‚

c=1

Amax

nc
HrL

|oo}
~
oo

*

with kHrL

whose semantics is the time-evolution generator

(23)O
`

r = kHrL

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

iœrhsHrL
àaHiL

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

jœlhsHrL
abH jL

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
.

This generator is equivalent to the stochastic process model of mass-action kinetics for the chemical reaction
network (Equation 22).

5 Reductions

A number of other frameworks and formalisms can be reduced to SPGs as just defined. We give a
sampling here.

12

5.1 Logic programs

Consider a logic program (e.g. in pure Prolog) consisting of Horn clauses of positive literals

p1 Ô ... Ô pn fl q , n r 0 .

Axioms have n = 0. We can translate each such clause into a monotonic SPG rule

(24)p1 , ..., pn Ø q, p1 , ..., pn

where each different literal pi or q denotes an unparameterized type ta with na œ 80, ... na
max < = 80, 1< . Since

there is no with clause, the rule firing rates default to r = 1. The corresponding time-evolution operator is

(25)H
`

= ‚
r

 O
`

r = „
r

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

iœrhsHrLîlhsHrL
àaHiL

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

jœlhsHrL
NbH jL

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

The semantics of the logic program is its least model or minimal interpretation. It can be computed (Knaster-
Tarski theorem) by starting with no literals in the “pool” and repeatedly drawing all their consequences according
to the logic program. This is equivalent to converging to a fixed point Y*HGL ÿ » 0\ of the grammar consisting of
rules in the form of (Equation 24).

More general clauses include negative literals Ÿ r on the LHS:

p1 Ô ... Ô pn Ô Ÿ r1 Ô ... Ô Ÿ rm fl q , n, m r 0

or even more general cardinality constraint atoms 0 b l b » Z » = ⁄iœA QHpi L b u b ¶ [17]. These constraints
can be expressed in operator algebra by expanding the basis operator set 8Ba < beyond the basic creation and
annihilation operators. For example the cardinality of a set Z of positive literals 8pi » i œ A< is computed by the
diagonal operator

NZ = log2

i
k
jjjj≈

i

HIi + QHi œ AL Ni L
y
{
zzzz

and further thresholding functions can be applied element-by-element to the nonzero diagonal terms of such an
operator:

i

k
jjjjjl b‚

iœA

QHpi L b u
y

{
zzzzz = Ql u

i
k
jjjjlog2

i
k
jjjj≈

i

HIi + QHi œ AL Ni L
y
{
zzzz
y
{
zzzz .

Neither log2 nor Ql u are exactly within the operator polynomial ring generated by creation and annihilation
operators alone, though sufficient approximations may be.

Finally, atoms with function symbols may be admitted using parameterized terms ta HxL .

5.2 Graph grammars

Graph grammars are composed of local rewrite rules for graphs (see for example [18]). We now
express a class of graph grammars in terms of SPG’s.

The following syntax introduces Object Identifier (OID) labels Li for each parameterized term, and
allows labelled terms to point to one another through a graph of such labels . The graph is related to two sub-
graphs of neighborhood indices NHi, sL and N£ H j, sL specific to the input and output sides of a rule. Like types
or variables, the label symbols appearing in a rule are chosen from an alphabet 8Ll » l œ L< . Unlike types but like

13

variables Xc , the label symbols LlHiL actually denote nonnegative integer values - unique addresses or object
identifiers.

A graph grammar rule is of the form, for some nonnegative-integer-valued functions lHiL , l£ H jL ,
NHi, sL , N£ H j, sL for which HlHiL = lH jLL fl Hi = jL , Hl£ HiL = l£ H jLL fl Hi = jL :

(26)

9Ll HiL := ti Ixa HiL ; ILN Hi,sL … s œ 1..sa HiL
max MM … i œ =

Ø 8Ll HiL » i œ 1 Œ < ‹ 9Ll£ H jL := t j Ixa£ H jL
£ ; ILN £ H j,sL … s œ 1..sa£ H jL

max MM … j œ =
with rr I9xa£ H jL

£ = … 8xa HiL <M

(compare to (Equation 2)). Note that the fanout of the graph is limited by si
cur b saHiL

max . Let

= 1 ‹ 2 and 1 › 2 = Ø
= 1 ‹ 2 and 1 › 2 = Ø

1 = 8 j œ Ô H$ i œ 2 » lHiL = l£ H jL<
2 = 8 j œ Ô H± i œ 2 » lHiL = l£ H jL<

3 = 8i œ 2 ÔH± j œ 1 » lHiL = l£ H jL< Œ 2 L

This syntax may be translated to the following ordinary non-graph grammar rule (where NextOID is a variable,
and OIDGen and Null are types reserved for the translation):

8taHiL HLlHiL , xaHiL , HLNHi,sL » s œ 1..si
cur LL » i œ < , OIDGenHNextOIDL

Ø 8taHiL HLlHiL , xaHiL , HLNHi,sL » s œ 1..si
cur LL » i œ 1 < ‹

9ta£ H jL ILl£ H jL , xa£ H jL
£ , ILN £ H j,sL … s œ 1..s j

cur MM … j œ 1 ÔHi œ 2 LÔ HlHiL = l£ H jLL= ‹
9ta£ H jL ILl£ H jL , xa£ H jL

£ , ILN £ H j,sL … s œ 1..s j
cur MM … j œ 2= ‹ 8NullHLlHiL L » i œ 3 <

Ê8OIDGenHNextOID + » »L <

with rr I9xa£ H jL
£ = … 8xaHiL <M ‰

jœ 2

dK HLl£ H jL , NextOID + j - 1L

which already has a defined semantics Ycêd . Note that all set membership tests can be done at translation time
because they do not use information that is only available dynamically during the grammar evolution. Optionally
we may also add a rule schema (one rule per type, ta) to eliminate any dangling pointers:

ta HLlH1L , x, HLNH1,sL » s œ 1..s1
cur LL, NullHLlH2L L

Ø ta HLlH1L , x, HLNH1,sL » Hs œ 1..s1
cur LÔ HNH1, sL ∫ lH2LLLL, NullHLlH2L L

with rcleanup ‚
sœ1..smax

dK HLNH1,sL , LlH2L L

5.3 String rewrite rule grammars

Strings may be encoded as one-dimensional graphs using either a singly or doubly linked list data structure.
String rewrite rules

(27)HtaHiL Hxi L » i œ L L Ø Hta£ H jL Hyj L » j œ R L with rr HHxi L, Hyj LL

(note ordering of arguments) are emulated as graph rewrite rules, whose semantics are defined above. This
form is capable of handling many L-system grammars [19]. If rr is not supplied it defaults to 1.

14

5.4 Stochastic and ordinary differential equations

There are SPG rule forms corresponding to stochastic differential equations governing diffusion and
transport. Given the SDE or equivalent Langevin equation (which specializes to a system of ordinary differential
equations when hHtL = 0):

(28)d xi = vi H8xk <L d t + sH8xk <L d W or

(29)
d xiÅÅÅÅÅÅÅÅÅÅÅÅÅ
d t

= vi H8xk <L + hi HtL

under some conditions on the noise term hHtL the dynamics can be expressed [13] as a Fokker-Planck equation
for the probability distribution PH8x<, tL :

(30)
∑PH8x<, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ t
= -‚

i

∑
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ xi

 vi H8x<L PH8x<, tL + „
i j

∑2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ xi ∑ xj

 Di j H8x<L PH8x<, tL

Let PH8y<, t » 8x<, 0L be the solution of this equation given initial condition
PH8y<, 0L = dH8y< - 8x<L = ¤k dHyk - xk L (with Dirac delta function appropriate to the particular measure m used for
each component). Then at t = 0,

∑PH8y<, 0 » 8x<, 0L
ÅÅÅ

∑ t
ª rH8yi < » 8xi <L = -‚

i

∑
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ yi

 vi H8x<L dH8y< - 8x<L + „
i j

∑2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ yi ∑ yj

 Di j H8x<L dH8y< - 8x<L

Thus the probability rate rH8yi < » 8xi<L is given by a differential operator acting on a Dirac delta function. It can
be decomposed into drift and diffusion:

(31)rdrift H8yi < » 8xi <L = -„
i

∑
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ yi

 vi H8x<L ‰
i

dHyi - xi L

(32)rdiffusion H8yi < » 8xi <L = „
i j

∑2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ yi ∑ yj

 Di j H8x<L ‰
i

dHyi - xi L

from which by (Equation 10) we construct the evolution generator operators OFP = Odrift + Odiffusion , where

(33)Odrift = -· d 8x< · d 8y< àH8y<L aH8x<L
i

k

jjjjjjjj„
i

“ yi vi H8y<L ‰
k

dHyk - xk L
y

{

zzzzzzzz

(34)Odiffusion = · d 8x< · d 8y< àH8y<L aH8x<L
i

k

jjjjjjjjj
„

i j

“ yi “ yj Di j H8y<L ‰
k

dHyk - xk L
y

{

zzzzzzzzz

The second order derivative terms give diffusion dynamics and also regularize and promote continuity of
probability in parameter space both along and transverse to any local drift direction. So, these two time-evolution
operators may be identified with the corresponding differential operators -‚

i

∑ÅÅÅÅÅÅÅÅ∑xi
 vi H8x<L and

‚
i j

∑2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑xi ∑xj
 Di j H8x<L in the Fokker-Planck partial differential equation (Equation 30), respectively.

As a check one can use the relations

15

» z\ = àH8z<L » 0\ , Xw » = X0 » aH8w<L
@aH8x<L, àH8y<LD = dH8y< - 8x<L@1 + NH8x<L QHNH8x<L, nmax LD

Xw » z\ = dH8w< - 8z<L

to calculate operator matrix elements Xw » expHt OFP L » z\ . For example,

Xw » Odrift » z\ = -[8w<
ƒƒƒƒƒƒƒƒƒƒƒƒ
‡ d 8x< ‡ d 8y<

i

k
jjjjj‚

i

“ yi
vi H8y<L dH8y< - 8x<L

y

{
zzzzz àH8y<L aH8x<L àH8z<L

ƒƒƒƒƒƒƒƒƒƒƒƒ
0_

= -[8w<
ƒƒƒƒƒƒƒƒƒƒƒƒ
‡ d 8x< ‡ d 8y<

i

k
jjjjj‚

i

“ yi
vi H8y<L dH8y< - 8x<L

y

{
zzzzz àH8y<L dH8z< - 8x<L@1 + NH8x<LD

ƒƒƒƒƒƒƒƒƒƒƒƒ
0_

= -‡ d 8x< ‡ d 8y<
i

k
jjjjj‚

i

“ yi vi H8y<L dH8y< - 8x<L
y

{
zzzzz dH8z< - 8x<L X8w< » 8y<\

= -‡ d 8y<
i

k
jjjjj‚

i

“ yi
vi H8y<L dH8y< - 8z<L

y

{
zzzzz dH8w< - 8y<L

= +‡ d 8y< dH8y< - 8z<L
i

k
jjjjj‚

i

vi H8y<L “ yi
dH8w< - 8y<L

y

{
zzzzz

= ‚
i

vi H8z<L “ zi
dH8w< - 8z<L

Computing higher powers yields

Xw » expHt Odrift L » z\ = exp
i

k
jjjjjt ‚

i

vi H8z<L “ zi

y

{
zzzzz dH8w< - 8z<L

= d
i
k
jjj8w< -

i
k
jjj8zH0L = z< + ‡

0

t

 vi HzHtLL d t
y
{
zzzy
{
zzz

which is a formal solution of the drift-only differential equation Hd xi L ê d t = vi H8xk <L .

Diffusion/drift rules can be combined with chemical reaction rules to describe reaction-diffusion
systems [11,20]. The foregoing approach can be generalized to encompass partial differential equations (PDE’s)
and stochastic partial differential equations (SPDE’s) [14]. With suitable PDE’s, one can then express models of
dynamical manifolds (as in General Relativity) and dynamical manifold embeddings using explicit or level set
representations.

16

The foregoing operator expressions all correspond to natural extended-time processes given by the
evolution of continuous differential equations (DE’s). The operator semantics of the differential equations is
given in terms of derivatives of delta functions in the manner of (Equation 28), (Equation 29), (Equation 31),
(Equation 32). A special “solve” or “solving” keyword may be used to introduce such ODE/SDE rule clauses in
the SPG syntax. This syntax can be eliminated in favor of a “with” clause by using derivatives of delta functions
in the rate expression rDE H8yi < » 8xi <L , provided that such generalized functions are in the Banach space HVL as a
limit of functions. These kinds of dynamics can now be freely combined with reaction networks and other
discrete-time event processes whose dynamics is also defined by operator algebra generators. Indeed if a grammar
includes both DE rules and non-DE rules, a conventional DE solver can be used to compute expHHtn+1 - tn L OFP L in
the time-ordered product expansion (Equation 16) for expHt HL as a hybrid simulation algorithm for discontinuous
(jump) stochastic processes combined with stochastic differential equations. The analogous combination for
grammars with deterministic dynamics semantics appears in [21] which exhibits simulation algorithms, in [22]
which introduces the “solve” keyword, and in [23] which specifies a dynamical grammar modeling framework for
developmental biology.

5.5 Discussion: Relevance to artificial intelligence and computational science

The relevance of the modeling language defined here to artificial intelligence includes the following
points. First, pattern recognition and machine learning both benefit foundationally from better, more descriptively
adequate probabilistic domain models. As an example, Section 4.1 exhibits hierarchical clustering data models
expressed very simply in terms of SPG’s and relates them to recent work. Graphical models are probabilistic
domain models with a fixed structure of variables and their relationships, by contrast with the inherently flexible
variable sets and dependency structures resulting from the execution of stochastic parameterized grammars. Thus
SPG’s, unlike graphical models, are Variable-Structure Systems (defined in [14]), and consequently they can
support compositional description of complex situations such as multiple object tracking in the presence of cell
division in biological imagery [24]. Second, the reduction of many divergent styles of model to a common SPG
syntax and operator algebra semantics enables new possibilities for hybrid model forms. For example one could
combine logic programming with probability distribution models, or discrete-event stochastic and differential
equation models as discussed in Section 5.4, in possibly new ways.

As a third point of AI relevance, from SPG probabilistic domain models it is possible to derive algo-
rithms for simulation (as in Section 3.7) and inference either by hand or automatically. Of course, inference
algorithms are not as well worked out yet for SPG’s as for graphical models. SPG’s have the advantage that
simulation or inference algorithms could be expressed again in the form of SPG’s, a possibility demonstrated in
part by the encoding of logic programs as SPG’s. Since both model and algorithm are expressed as SPG’s, it is
possible to use SPG transformations that preserve relevant quantities (Section 3.9) as a technique for deriving such
novel algorithms or generating them automatically. For example we have taken this approach to rederive by hand
the Gillespie simulation algorithm for chemical kinetics. This derivation is different from the one in Section 3.7.
Because SPG’s encompass graph grammars it is even possible in principle to express families of valid SPG
transformations as meta-SPG’s. All of these points apply a fortiori to Dynamical Grammars as well.

The relevance of the modeling language defined here to computational science includes the following
points. First, as argued previously, multiscale models must encompass and unify heterogeneous model types such
as discrete/continuous or stochastic/deterministic dynamical models; this unification is provided by SPG’s and
DG’s. Second, a representationally adequate computerized modeling language can be of great assistance in
constructing mathematical models in science, as demonstrated for biological regulatory network models by
Cellerator [25] and other cell modeling languages. DG’s extend this promise to more complex, spatiotemporally
dynamic, variable-structure system models such as occur in biological development. Third, machine learning
techniques could in principle be applied to find simplified approximate or reduced models of emergent phenomena

17

within complex domain models. In that case the forgoing AI arguments apply to computational science applica-
tions of machine learning as well.

Both for artificial intelligence and computational science, future work will be required to determine
whether the prospects outlined above are both realizable and compelling. The present work is intended to provide
a mathematical foundation for achieving that goal.

6 Conclusions and future directions

We have established a syntax and semantics for a probabilistic modeling language based on indepen-
dent processes leading to events linked by a shared set of objects. The semantics is based on a polynomial ring of
time-evolution operators. The syntax is in the form of a set of rewrite rules. Variable-binding occurs by integra-
tion of the rule firing rate function over parameter value spaces. Stochastic Parameterized Grammars and the more
general Dynamical Grammars expressed in this language can compactly encode disparate models: generative
cluster data models, biochemical networks, logic programs, graph grammars, string rewrite grammars, and
stochastic differential equations among other others. The time-ordered product expansion connects this framework
to powerful methods from quantum field theory and operator algebra.

One future direction for Dynamical Grammar applications is in dynamic spatial modeling for biological
development ([3,14,19,23,26]). To this end it will be interesting to explore the relationship between graph gram-
mars for spatial structures and their continuum limits including PDE’s, both encoded as DG’s. For multicellular
structures it may be useful to consider simultaneously continuum limits at both the subcellular scale and the
multicellular tissue level. At the latter scale, developmental systems can act as dynamic information-processing
manifolds embedded dynamically in d=3 .

Also in the future, it may be useful to develop non-textual, labelled graph representations for the syntax
of SPG’s and Dynamical Grammars. Using graph grammars such a representation could allow the semantics
functions Ycêd to be applied iteratively. To create such a graph representation, one could use diagrammatic
representations such as Markov Random Fields or Bayes Networks for the language R which specifies the firing
rate functions rr HHyj L, Hxi LL which are also members of function spaces HVL , provided that such diagrams are
augmented with a nonnegative scalar multiplier to represent unnormalized firing rates. In this connection Depen-
dency Diagrams [14] generalize many other such representations. For the actual grammar itself, there exists a
bipartite graph 8Gr a , Ga r < of types ta (indexed by a) and rules (indexed by r), in which type node a links to rule
r (Gr a = 1) iff some term of type ta occurs in the LHS multiset of rule r , and rule r links to type node a
(Ga r = 1) iff rule r contains some term of type ta in its RHS multiset. This bipartite graph is similar to the set of
arcs between places (our types) and transitions (our rules) in a Petri Net, and indeed there are generalizations such
as Colored Petri Nets [8] in which CPN tokens (our grounded term instances or objects) contain values (our vector
of parameter values). However our semantics appears to be nonstandard in detail by comparison with the existing
Petri Net literature, and the SPG syntax contains features not found in Petri Nets such as rule variables, parameter
vectors, type signatures, polymorphic type signatures, and firing rate functions.

Acknowledgements. Useful discussions with Guy Yosiphon, Pierre Baldi, Ashish Bhan, Michael Duff, Sergei
Nikolaev, Bruce Shapiro, Padhraic Smyth, Michael Turmon, and Max Welling are gratefully acknowledged. The
work was supported in part by a Biomedical Information Science and Technology Initiative (BISTI) grant
(number R33 GM069013) from the National Institute of General Medical Sciences, by the National Science
Foundation’s Frontiers in Biological Research (FIBR) program, award number EF-0330786, and by the Center
for Cell Mimetic Space Exploration (CMISE), a NASA University Research, Engineering and Technology
Institute (URETI), under award number #NCC 2-1364.

18

References

[1] Athreyea, K. B. , & Ney, P. E. (1972). Branching Processes. Springer-Verlag; Dover.
[2] Snyder,, D. L., & Miller, M. I. (1991). Random Point Processes in Time and Space. New York: Wiley.

[3] Giavitto, J. , & Michel, O. (2001). MGS: a Programming Language for the Transformations of Topological
Collections. CNRS Université d'Evry Val d'Essonne, Evry. 61-2001,
http://mgs.lami.univevry.fr/PUBLICATIONS/publication.html#Documentation .

[4] Liggett, T. M. (1985). Interacting Particle Systems. New York: Springer-Verlag.

[5] Milch, B. , Marthi, B. , Russell, S. , & Sontag, D. (2005). BLOG: Probabilistic Models with Unknown
Objects. Proceedings of the International Joint Conference on Artificial Intelligence.

[6] Smith, C. , Prusinkiewicz, P. , & Samavati, F. (2003). Local specification of surface subdivision algorithms.
In J. Pfaltz, M. Nagl & B. Bohlen (Ed.), Applications of Graph Transformations with Industrial Relevance
(AGTIVE 2003): Lecture Notes in Computer Science 3062 (pp. 313–327). Springer-Verlag.
http://www.algorithmicbotany.org/papers/localspec.agtive2003.pdf .

[7] Phillips, A. , & Cardelli, L. , A Correct Abstract Machine for the Stochastic Pi-Calculus. BioConcur 2004.
Retrieved from http://www.luca.demon.co.uk/Bibliography.htm#GeneNetworks .

[8] Jensen, K. (1997). Coloured Petri Nets I, II, III. Springer-Verlag.

[9] Mjolsness, E. (2006). Stochastic Process Semantics for Dynamical Grammar Syntax: An Overview. Ninth
International Symposium on Artificial Intelligence and Mathematics, Online proceedings, to appear. Also
arXiv preprint cs.AI/0511073, 20 Nov 2005, or http://computableplant.ics.uci.edu/papers/#frameworks .

[10] Stochastic Parameterized Grammar interpreter software, Guy Yosiphon and Eric Mjolsness, UCI School of
Information and Computer Science, 2005.

[11] Mattis, D. C. , & Glasser, M. L. (1998). The uses of quantum field theory in diffusion-limited reactions.
Reviews of Modern Physics, 70, 979–1001.

[12] Dyson, F. (1949). Phys. Rev., 75, 486.

[13] Risken, H. (1984). The Fokker-Planck Equation. Berlin: Springer.

[14] Mjolsness, E. (2005). Variable-Structure Systems from Graphs and Grammars. UC Irvine School of
Information and Computer Sciences, Irvine. UCI ICS TR# 05-09,
http://computableplant.ics.uci.edu/papers/ vbl-Struct_GG_TR.pdf .

[15] Gillespie, D. J. (1976). Comput. Physics, 403–434.
[16] Gharamaini, Z. , Non-parametric Bayesian Methods. Uncertainty in Artificial Intelligence (UAI) Tutorial

notes. Retrieved from http://www.gatsby.ucl.ac.uk/~zoubin/talks/uai05tutorial-b.pdf .

[17] Cenzer, D., Marek, V. W., & Remmel, J. B. (2004). Using logic programs to reason about infinite sets.
Eighth International Symposium on Artificial Intelligence and Mathematics, Online Proceedings,
http://rutcor.rutgers.edu/~amai/aimath04/accepted.html

[18] Cuny, J. , Ehrig, H. , Engels, G. , & Rozenberg, G. (1994). Graph Grammars and their Applications to
Computer Science. Springer.

[19] Prusinkiewicz, P. , & Lindenmeyer, A. (1990). The Algorithmic Beauty of Plants. New York: Springer-
Verlag.

[20] Turing, A. M. (1952). The chemical basis of morphogenesis. Phil. Trans.Roy. Soc. Lond., B237, 37–72.

[21] Federl, P. , & Prusinkiewicz, P. (2004). Solving differential equations in developmental models of multicellu-
lar structures expressed using L-systems. In M. Bubak, G. van Albada , P. Sloot & J. Dongarra (Ed.),
Proceedings of Computational Science. ICCS 2004, II. Lecture Notes in Computer Science 3037 (pp. 65–
72). Berlin: Springer.

19

[22] Prusinkiewicz, P. , Hammel, M. S. , & Mjolsness, E. (1993). Animation of Plant Development. SIGGRAPH
'93 Conference Proceedings.

[23] Mjolsness, E. , Sharp, D. H. , & Reinitz, J. (1991). A Connectionist Model of Development. Journal of
Theoretical Biology, 152(4), 429–454.

[24] Gor, V. , Bacarian, T. , Elowitz, M. , & Mjolsness, E. (2005). Tracking Cell Signals in Fluorescent Images.
Computer Vision Methods for Bioinformatics (CVMB) workshop, at Computer Vision and Pattern Recogni-
tion (CVPR), http://computableplant.ics.uci.edu/CVPR-2005.pdf

[25] Shapiro, B. E. , et al. (2003). Cellerator: extending a computer algebra system to include biochemical
arrows for signal transduction simulations . Bioinformatics , 19, 677–678.

[26] Fracchia, F. D. (1996). Integrating lineage and interaction for the visualization of cellular structures. In
J. Cuny, H. Ehrig, G. Engels & G. Rozenberg (Ed.), Graph grammars and their application to computer
science; Fifth International Workshop, Lecture Notes in Computer Science 1073, (pp. 521–535). Berlin:
Springer-Verlag,.

7 Appendix

7.1 Relation of discrete-time and continuous-time grammars

The continuous and discrete-time grammar executions are related as follows. After continuous time t ,
the joint probability density on the states of the original system and on the number of discrete rule firings, n , has
the generating function

SHzL = ‚
n=0

¶

sn zn = expIt IH` z - DMM ÿ p0

so that

sn = Coefn IexpIt IH` z - DMM , zM ÿ p0 .

An alternative approach to the semantics of the discrete-time grammar is to take the short-time limit of the
continuous-time grammar’s conditional distribution given that n rule firings occurred:

limtØ0 @ sn ê 1 ÿ sn D = limtØ0 ACoefn IexpIt IH` z - DMM , zM ÿ p0 ê1 ÿ Coefn IexpIt IH` z - DMM , zM ÿ p0 E.

This result follows by a short calculation from the following general expression for S:

20

SHzL = ‚
n=0

¶

sn zn = expIt IH` z - DMM ÿ p0

= ‚
n=0

¶ zn

ÅÅÅÅÅÅÅÅÅ
n!

A∑z
n expIt IH` z - DMM E

z=0
ÿ p0

= „
n=0

¶
zn

ÅÅÅÅÅÅÅÅÅ
n !

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑z

n „
k=0

¶
It IH` z - DMMk

ÅÅÅ
k !

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑz=0

ÿ p0

= „
n=0

¶
zn

ÅÅÅÅÅÅÅÅÅ
n !

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

k=n

¶
1

ÅÅÅÅÅÅÅÅ
k !

 ‚
80bipbk-n<Ô ⁄p=0

n ip =k-n

n ! H-t DLin t H
` H-t DL

in-1
∫ t H

` H-t DLi0

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

= „
n=0

¶

zn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

k=0

¶
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHk + nL!
 ‚
80bipbk<Ô ⁄p=0

n ip =k

tn H-t DLin H
` H-t DL

in-1
∫H

` H-t DLi0

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

From this expression we can take the small-time limit, picking out only the ip = 0 terms:

limtØ0 SHzL = ‚
n=0

¶

zn C 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHk + nL!

ÃHk=0L tn H
` n G ÿ p0 = ‚

n=0

¶ zn tn

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
n !

 H
` n

ÿ p0

Thus

limtØ0 @ sn ê1 ÿ sn D = H
` n

ÿ p0 ë I1 ÿ H
` n

ÿ p0 M

7.2 Time-ordered operator expansion

 We continue the calculation of SHzL from the previous section. The general expansion formula for S is
given by the time-ordered product (Equation 2.14 of [11], equation 4.29 of [13]) which we can derive by elemen-
tary probabilistic means as follows.

= „
n=0

¶

zn tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

k=0

¶

„
80bipbk<Ô ⁄p=0

n ip =k

¤p=0
n Hip L !

ÅÅ
I⁄p=0

n ip + nM!

H-t DLin

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin L!
H
` H-t DLin-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin-1 L!
∫ H

` H-t DLi0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi0 L !

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

= „
n=0

¶

 zn tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

80bipb¶<

¤p=0
n Hip L !

ÅÅ
I⁄p=0

n H ip + 1L - 1M!

H-t DLin

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin L!
H
` H-t DLin-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin-1 L!
∫ H

` H-t DLi0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi0 L!

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

= „
n=0

¶

 zn tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

80bipb¶<

¤p=0
n GHip + 1L

ÅÅ
GI⁄p=0

n H ip + 1LM

H-t DLin

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin L !
H
` H-t DLin-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin-1 L!
∫H

` H-t DLi0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi0 L!

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

Now we use the Multinomial-Dirichlet normalization integral

¤p=0
n GHip + 1L

ÅÅ
GI⁄p=0

n H ip + 1LM
= ‡

0

1

d q0 ∫ ‡
0

1

d qn d
i

k
jjjjj‚

i=1

n

qp - 1
y

{
zzzzz ‰

p=0

n

Hqp Lip .

Accordingly,

21

S HzL =

„
n=0

¶

 zn tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

80bipb¶<

‡
0

1

d q0 ∫ ‡
0

1

d qn d
i

k
jjjjj‚

i=1

n

qp - 1
y

{
zzzzz
i

k

jjjjjj‰
p=0

n

Hqp Lip

y

{

zzzzzz
H-t DLin

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin L!
H
` H-t DLin-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin-1 L!
∫ H

` H-t DLi0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi0 L !

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

= „
n=0

¶

 zn tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

80bipb¶<

‡
0

1

d q0 ∫ ‡
0

1

d qn d
i

k
jjjjj‚

i=1

n

qp - 1
y

{
zzzzz

H-qn t DLin

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin L !
H
` H-qn-1 t DLin-1

ÅÅÅHin-1 L!
∫ H

` H-q0 t DLi0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi0 L!

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

= „
n=0

¶

 zn tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
·

0

1

d q0 ∫ ·
0

1

d qn d
i

k
jjjjj‚

i=1

n

qp - 1
y

{
zzzzz

„
80bi0b¶<

H-qn t DLi0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin L!
H
`

„
80bi1b¶<

H-qn-1 t DLi1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin-1 L !
∫H

`
 „
80binb¶<

H-q0 t DLin

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi0 L!

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

= „
n=0

¶

 zn tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‡

0

1

d q0 ∫ ‡
0

1

d qn d
i

k
jjjjj‚

i=1

n

qp - 1
y

{
zzzzz expH-qn t DL H

`
expH-qn-1 t DL ∫ H

`
 expH-q0 t DL

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
ÿ p0

= „
n=0

¶

zn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‡

0

t

d t0 ∫ ‡
0

t

d tn d
i

k
jjjjj‚

i=1

n

tp - t
y

{
zzzzz expH-tn DL H

`
expH-tn-1 DL∫H

`
 expH-t0 DL

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
ÿ p0

In summary (since p0 was never used in the above calculations),

expIt IH` - DMM

= „
n=0

¶ Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‡

0

t

d t0 ∫ ‡
0

t

d tn d
i

k
jjjjj‚

i=1

n

tp - t
y

{
zzzzz expH-tn DL H

`
expH-tn-1 DL∫ H

`
 expH-t0 DL

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
.

Alternatively, define t1 = t0 , t2 = t1 + t1 , ... tn+1 = tn + tn = t . Then the evolution of the state vector is
given by

expIt IH` - DMM ÿ p0 =

„
n=0

¶ Ä

Ç

ÅÅÅÅÅÅÅÅÅ‡0

t

d t1 ‡
t1

t

d t2 ∫ ‡
tn-1

t

d tn expH-Ht - tn L DL H
`

expH-Htn - tn-1 L DL∫ H
`

 expH-t1 DL
É

Ö

ÑÑÑÑÑÑÑÑÑ
ÿ p0

Since D is diagonal, the terms expH-t DL are analytically calculable and easy to simulate with large
jumps in time. Between these easy terms are interposed single powers of H

`
 representing the occurrence of

discrete-time grammar events that must be simulated.

These last two expression for expIt IH` - DMM have a significant interpretation in the case of reaction
kinetics: they correspond to the Gillespie algorithm for stochastic simulation. The exponential distribution of
waiting times until the next reaction is given by expH-t DL , which depends on the state of the system but doesn’t
change it, and the reaction events are modeled by the interdigitated powers of H

`
.

This perturbative approach is equivalent to the use of perturbative methods including Feynman diagram
calculations in quantum field theory, except for an occasional factor of

è!!!!!!!
-1 which would turn our probabilities

22

into the complex-valued probability factors of quantum mechanics. It can be accomplished for any decomposition
of H into a solvable part H0 (here, -D) plus a more difficult term H1 (here, H

`
):

(35)

expHt HH0 + H1 LL ÿ p0 =

„
n=0

¶ Ä

Ç

ÅÅÅÅÅÅÅÅÅ‡0

t

d t1 ‡
t1

t

d t2 ∫ ‡
tn-1

t

d tn expHHt - tn L H0 L H1 expHHtn - tn-1 L H0 L∫H1 expHt1 H0 L
É

Ö

ÑÑÑÑÑÑÑÑÑ
ÿ p0

23

