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B O D Y

Abstract

We define a class of probabilistic models in terms of an operator algebra of stochastic processes,  and a
representation for this class in terms of stochastic parameterized grammars.   A syntactic specification of a
grammar  is  mapped  to  semantics  given  in  terms  of  a  ring  of  operators,  so  that  grammatical  composition
corresponds to  operator addition or multiplication.   The operators are generators  for the time-evolution of
stochastic  processes.   Within  this  modeling  framework  one  can  express  data  clustering  models,  logic
programs, ordinary and stochastic differential equations, graph grammars, and stochastic chemical reaction
kinetics.  This  mathematical  formulation  connects  these  apparently  distant  fields  to  one  another  and  to
mathematical methods from quantum field theory and operator algebra.

1 Introduction

Probabilistic  models  of  application  domains  are  central  to  pattern  recognition,  machine  learning,  and
scientific modeling in various fields.  Consequently, unifying frameworks are likely to be fruitful for one or more
of these fields.  There  are also  more technical  motivations  for pursuing the unification  of diverse model  types.  In
multiscale  modeling, models  of the same system at different  scales can have fundamentally  different characteris-
tics (e.g. deterministic  vs. stochastic) and yet must be placed in a single modeling framework.  In machine learn-
ing, automated search over a wide variety of model types may be of great advantage.  General-purpose  modeling
languages  can  also  provide  software  support  for  the  creation  of  relevant  mathematical  models.  In  this  paper  we
propose Stochastic  Parameterized Grammars (SPG’s) and their generalization  to Dynamical  Grammars (DG’s) as
such  a  unifying  framework.   To  this  end  we  define  mathematically  both  the  syntax  and  the  semantics  of  this
formal modeling language.

The  essential  idea  is  that  there  is  a  “pool”  of  fully  specified  parameter-bearing  terms  such  as
{bacteriumHxL ,  macrophageHyL ,  redbloodcellHzL}  where  x, y and z  might  be  position  vectors.  A  grammar  can
include rules such as

8bacteriumHxL, macrophageHyL< Ø macrophageHyL with rH∞x - y¥L

which  specify  the  probability  per  unit  time,  r,  that  the  macrophage  ingests  and  destroys  the  bacterium  as  a
function  of  the  distance  ∞x - y¥  between  their  centers.   Sets  of  such  rules  are  a  natural  way  to  specify  many
processes.  We will map such grammars to stochastic processes in both continuous time (Section 3.2) and discrete
time (Section 3.5), and relate the two definitions  (Section 3.8).  A key feature of the semantics maps is that they

1



are  naturally  defined  in  terms  of  an  algebraic  ring  of  time  evolution  operators:  they  map  operator  addition  and
multiplication into independent or strongly dependent compositions of stochastic processes, respectively.

The stochastic process semantics defined here is a mathematical,  algebraic object.  It is independent of
any  particular  simulation  algorithm,  though  we  will  discuss  (Section  3.7)  a  powerful  technique  for  generating
simulation algorithms, and we will demonstrate (Section 5.1) the interpretation of certain subclasses of SPG’s as a
logic  programming  language.   Other  applications  that  will  be  demonstrated  are  to  data  clustering  (Section  4.1),
chemical reaction kinetics (Section 4.2), graph grammars (Section 5.2), string grammars (Section 5.3), systems of
ordinary differential  equations (Section 5.4), and systems of stochastic differential  equations (Section 5.4).  Other
frameworks  that  describe  model  classes  that  may  overlap  with  those  described  here  are  numerous  and  include:
branching or birth-and-death  processes [1], marked point processes  [2], MGS modeling language  using topologi-
cal  cell  complexes  [3],  interacting  particle  systems  [4],  BLOG  probabilistic  object  model  [5],  adaptive  mesh
refinement with rewrite rules [6],  stochastic pi-calculus [7], and colored Petri Nets [8]. The composition-preserv-
ing mapping Ycêd  to an operator algebra of stochastic processes, however, appears to be novel.

The present paper is an expanded version of the summary presented in [9].

2 Syntax Definition

Consider the rewrite rule

(1)A1 Hx1 L, A2 Hx2 L, ..., An Hxn L Ø B1 Hy1 L, B2 Hy2 L, ..., Bm Hym L with rH8xi <, 8yj <L

where the Ak  and Bl  denote symbols  ta  chosen from an arbitrary alphabet  set = 8ta » a œ <  of “types”.  In
addition these type symbols carry expressions for parameters xi  or yj  chosen from a base language P HiL  defined
below. The A’s can appear in any order, as can the B’s. Different A’s and B’s appearing in the rule can denote the
same alphabet symbol ta , with equal or unequal parameter values xi  or yj . r  is  a nonnegative function, assumed
to  be  denoted  by  an  expression  in  a  base  language  R  defined  below,  and  also  assumed  to  be  an  element  of  a
vector space  of real-valued functions. Informally, r  is interpreted as a nonnegative probability rate: the indepen-
dent probability per unit time that any possible instantiation of the rule will “fire” if its left hand side precondition
remains  continuously  satisfied  for  a  small  time.   This  interpretation  will  be  formalized  in  the  semantics.   As an
example,

HydrogenAtomHxL, HydrogenAtomHyL Ø HydrogenMoleculeHzL
with f H »» x - y »»L expI-I »» x - z »»2 + »» y - z »»2 M ë 2 s2 M

might describe a chemical reaction complete with atomic position vectors x, y,  and z .

We now define P HiL . Each term Ai Hxi L  or Bj Hyj L  is of type ta  and its parameters  xi  take values in an
associated (ordered)  Cartesian product set Va  of da  factor spaces chosen  (possibly with repetition)  from a set of
base spaces  = 8Db » b œ < .  Each  Db  is a  measure  space  with measure  mb .  Particular  Db  may for  example  be
isomorphic to the integers  with counting measure, or the real  numbers  with Lebesgue measure.  The ordered
choice of  spaces Db  in Va = ¤k=1

da Db=sHa kL  constitutes  the type signature  8sa k œ » 1 b k b da<  of type ta .  (As
an  aside,  polymorphic  argument  type  signatures  are  supported  by  defining  a  derived  type  signature
8sa k b = HDb Œ DsHa kL L œ 8T, F< » 1 b k b da , b œ < .  For example we can regard  as a subset of .)  Correspond-
ingly,  parameter  expressions  xi  are  tuples of length  da ,  such  that  each component  xi k  is  either  a constant  in the
space Db=sHa kL , or a variable Xc H c œ L  that is restricted to taking values in that same space DbHcL .  The variables
that  appear  in  a  rule  this  way  may be  repeated  any  number  of  times  in parameter  expressions  xi  or  yj  within  a
rule,  providing only that all  components xi k  take  values in the same space Db=sHa kL .  A substitution q : c # DbHcL
of values for variables Xc  assigns the same value to all appearances of each variable Xc  within a rule.  Hence each
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parameter expression xi  takes values in a fixed tuple space Va  under any substitution q. This defines the language

P HiL .

We  now  constrain  the  language  R .  Each  nonnegative  function  rHHxi L, Hyj LL  is  a  probability  rate:  the
independent  probability per  unit time that any  particular instantiation  of the rule will  fire,  assuming its precondi-
tion  remains  continuously  satisfied  for  a  small  interval  of  time.   It  is  a  function  only  of  the  parameter  values
denoted by Hxi L  and Hyj L , and not of time. Each r  is denoted by an expression in a base language R  that is closed
under addition and multiplication and contains a countable field of constants,  dense in , such as the rationals or
the algebraic numbers.  r is assumed to be a nonnegative-valued  function in a Banach space HVL  of real-valued
functions defined on the Cartesian product space V  of all the value spaces VaHiL  of the terms appearing in the rule,
taken  in  a  standardized  order  such  as  nondecreasing  order  of  type  index  a  on  the  left  hand  side  followed  by
nondecreasing order  of  type index a  on the right  hand side of the rule.   Provided R  is expressive  enough, it is
possible to factor rr HHxi L, Hyj LL  within R  as a product rr =rr

pure HHxi LLPrr HHyj L » Hxi LL  of a conditional distribution on
output  parameters  given  input  parameters  Prr HHyj L » Hxi LL  and  a  total  probability  rate  rr

pure HHxi LL  as  a  function  of
input parameters only.

With  these  definitions  we  can  use  a  more  compact  notation  by  eliminating  the  A’s  and  B’s,  which
denote  types,  in favor  of  the  types  themselves.  (The expression  ti Hxi L  is  called a  parameterized  term,  which can
match to a parameter-bearing  object or term instance in a “pool” of such objects.)  The caveat is that a particular
type ti  may appear any finite number of times, and indeed a particular parameterized term tiHxi L  may appear any
finite number of times.  So we use multisets 8 ... taHiL Hxi L ... <*  (in which the same object taHiL Hxi L  may appear as the
value of several different indices i ) for both the LHS and RHS (Left Hand Side and Right Hand Side) of a rule:

(2)8taHiL Hxi L » i œ L <* Ø 8ta£ H jL Hyj L » j œ R <
*

with rr HHxi L, Hyj LL

Here  the  same  object  taHiL Hxi L  may  appear  as  the  value  of  several  different  indices  i  under  the  mappings
i # HaHiL, xi L  and/or  i # Ha£ HiL, yi L .   Finally  we  introduce  the  shorthand  notation  ti = taHiL  and  t£

j = ta£ H jL ,  and
revert to the standard notation 8<  for multisets; then we may write

(3)8ti Hxi L< Ø 8t£
j Hyj L< with rr HHxi L, Hyj LL

In  addition  to  the  with  clause  of  a  rule  following  the  LHSØRHS  header,  several  other  alternative
clauses  can  be  used  as  follows.   “under  EHx, yL”  is  translated  into  “with  expH-E Hx, yLL ê Z ”  where  Z  is  the
Boltzmann  distribution  partition  function  corresponding  to  EHyL  holding  x  constant.   “subject  to  f Hx, yL”  is
translated  into  “with  dH f Hx, yLL”   where  d  is  an  appropriate  Dirac  or  Kronecker  delta  function  that  enforces  a
constraint f Hx, yL = 0. The semantics of  “via G” will be defined in Section 3.3. The translation of “solving  e” or
“solve e” will be defined in terms of with clauses in Section 5.4.  As a matter of definition, Stochastic Parameter-
ized  Grammars  do  not  contain  solving/solve  clauses,  but  Dynamical  Grammars  may  include  them.  A  rule  may
have  multiple  clauses  of  the  same  or  different  keyword;  each  clause  contributes  a  multiplicative  factor  to  the
overall firing rate r.  In the absence of any clause, r defaults to one. There exists a preliminary implementation of
an interpreter  for most  of this syntax in the form of a Mathematica  notebook,  which  draws samples  according to
the semantics of Section 3 below [10].

A Stochastic  Parameterized  Grammar  (SPG)  G  consists  of  (minimally)  a  collection  of  such rules  with
common type set ,   base space set , type signature  specification s , and  probability rate  language R .   After
defining  the  semantics  of  such  grammars,  it  will  be  possible  to  define  semantically  equivalent  classes  of  SPG’s
that are untyped or that have richer argument languages P HiL .
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3 Semantic Maps

We provide a semantics function Yc HGL  in the form of an algebraic construction that results in a stochas-
tic  process,  if  it  exists,  or  a  special  “undefined”  element  if  the  stochastic  process  doesn’t  exist.   The  stochastic
process  is  defined  by  a  very  high-dimensional  differential  equation  (the Master  Equation)  for  the  evolution  of  a
probability  distribution  in  continuous  time.   On  the  other  hand  we will  also  provide  a  semantics  function  Yd HGL
that results in a discrete-time stochastic process for the same grammar, in the form of an operator that evolves the
probability distribution forward by one discrete rule-firing event.  In each case the stochastic process specifies the
time evolution of a probability distribution over the contents of a “pool” of grounded parameterized  terms ta Hxa L
that  can  each  be  present  in  the  pool  with  any  allowed  multiplicity  from zero  to  na

max .  We  will  relate  these  two
alternative  “meanings” of an SPG,  Yc HGL  in continuous time and Yd HGL  in discrete time.

Both semantic  maps are  given  in terms  of  operator  algebra:  starting  with  the grammar  we  construct  a
linear mapping from a probability distribution over states at one time to a function proportional to the probability
distribution over states at a later time.  The mapping is constructed by algebraic operations from more elementary
linear mappings.  To do so we need to define the states.

A state  of the  “pool of  term instances”  is  defined as an integer-valued  function n :  the “copy  number”
na Hxa L œ 80, 1, 2, ...<  of  parameterized  terms  ta Hxa L  that  are  grounded  (have  no  variable  symbols  Xc ),  for  any
combination Ha, xa L œ = ˇ

aœ
a ≈ Va  of type index a œ  and parameter  value  xa œ Va .   We denote this state

by the “indexed set” notation for such functions,  8na HxL< . Each type ta  may be assigned a maximum value na
HmaxL

for  all  na Hxa L ,  commonly  ¶  (no  constraint  on  copy  numbers)  or  1  (so  na Hxa L œ 80, 1<  which  means  each  term-
value combination is simply present  or absent).   The state of the full  system at  time t  is defined  as a probability
distribution  on  all  possible  values  of  this  (already  large)  pool  state:  PrH8na Hxa L » Ha, xa L œ <; tL ª PrH8na Hxa L<; tL .
The  probability  distribution  that  puts  all  probability  density  on  a  particular  pool  state  8na Hxa L<  is  denoted
» 8na Hxa L<\ .

For  continuous-time  we define  the semantics  Yc HGL  of  our  grammar  as the  solution,  if it  exists,  of the
following differential equation:

(4)

dÅÅÅÅÅÅÅd t  PrH8na HxL<; tL = ⁄8ma HxL< H8n< 8m< PrH8ma HxL<; tL, i.e. in matrix notation

dÅÅÅÅÅÅÅd t  PrH tL = H ÿ PrH tL

which has the formal solution

(5)PrH tL = expH t HL ÿ PrH 0L .

For  discrete-time  semantics  Yd HGL  there  is an linear  map H
`

 which  evolves  unnormalized probabilities
forward by one rule-firing time step.  The probabilities must of course be normalized, so that after s  discrete time
steps the probability is:

(6)PrH sL = cn H
` s

ÿ PrH 0L = I H
` s

ÿ PrH 0LM ë I 1 ÿ H
` s

ÿ PrH 0LM

which,  taken  over  all  s r 0  and  PrH8na HxL<; 0L ,  defines  Yd HGL .   In  both  cases  the  long-time  evolution  of  the
system may converge  to  a limiting  distribution  Yc

* HGL ÿ PrH 0L = limtØ¶ PrH8na HxL<; tL  which  is  a  key  feature of  the
semantics,  but  we do not define the semantics  Ycêd HGL  as being only  this limit even if  it exists.   Thus  semantics-
preserving transformations  of grammars are  fixedpoint-preserving  transformations  of grammars but the converse
may not be true.

Fortunately,  even  though  the  mathematical  objects  just  defined  are  large,  they  are  completely  deter-
mined  by  the generators  H  and  H

`
 which  in  turn are  simply  composed  from elementary  operators  acting  on  the
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space of such probability distributions.  Indeed they are elements, or limits of elements, of the operator polynomial
ring  @8Ba <D  defined  over  a  set  of  basis  operators  8Ba <  in  terms  of  operator  addition,  scalar  multiplication,  and
noncommutative  operator  multiplication.  These  basis  operators  8Ba <  provide  elementary  manipulations  of  the
copy numbers na HxL .  The operator algebra is meaningful: operator addition corresponds to composition of parallel
processes,  nonnegative scalar multiplication corresponds to speeding up or slowing down a process (as is done in
the product of scalar rate functions from different clauses in a single rule), and operator multiplication corresponds
to the obligatory co-occurrence of the constituent events that define a process, in immediate succession.  Commuta-
tion relations between operators describe the exact extent to which the order of event occurrence matters.

3.1 Operator algebra

The  simplest  basis  operators  8Ba <  are  elementary  creation  operators  8àa HxL » a œ Ô x œ Va <  and
annihilation  operators  8aa HxL » a œ Ô x œ Va <  that  increase  or  decrease  each  copy  number  na HxL  in  a  particular
way (reviewed in [11]):

(7)
àa HxL » 8nb HyL<\ = » 8nb HyL + dK Ha, bL dHx, yL<\

aa HxL » 8nb HyL<\ = na HxL » 8nb HyL - dK Ha, bL dHx, yL<\

where

dK Hx, yL = QHx = yL = ; 1 if x = y
0 otherwise

and  where  d  is  the  Dirac  delta  (generalized)  function  appropriate  to  the  (product)  measure  m  on  the  relevant
value space V . These two operator types then generate Na HxL = àa HxL aa HxL

Na HxL » 8nb HyL<\ = àa HxL aa HxL » 8nb HyL<\ = na HxL » 8nb HyL<\ ,

and they satisfy

@aa HxL, àb HyLD ª " commutator " ªHaa HxL  àb HyL - àb HyL aa HxL L = 0 if a ∫ b or x ∫ y .

We  can write these  operators  à, a  as finite  or  infinite  dimensional  matrices depending  on the maximum copy
number na

HmaxL  for type ta .  If na
HmaxL =1 (for a fermionic term), and we omit the type and value subscripts which are

all assumed equal and discrete below, then

à = K 0 0
1 0

O , a = K 0 1
0 0

O

8a, à< ª " anticommutator " ª a à + à a = K 1 0
0 1

O = I ; à a = N ª K 0 0
0 1

O

Likewise if na
HmaxL =¶ (for a bosonic term),

à =

i

k

jjjjjjjjjjjjjjjjjj

0 0 0 0 ∫

1 0 0 0
0 1 0 0
0 0 1 0

ª ∏ ∏

y

{

zzzzzzzzzzzzzzzzzz

= dn,m+1 and a =

i

k

jjjjjjjjjjjjjjjjjj

0 1 0 0 ∫

0 0 2 0
0 0 0 3
0 0 0 0 ∏

ª ∏

y

{

zzzzzzzzzzzzzzzzzz

= m dn+1,m ,

and
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@a, àD ª Ha  à - à a L = I =

i

k

jjjjjjjjjjjjjjjjjj

1 0 0 0 ∫

0 1 0 0
0 0 1 0
0 0 0 1

ª ∏

y

{

zzzzzzzzzzzzzzzzzz

; à a = Na ª

i

k

jjjjjjjjjjjjjjjjjj

0 0 0 0 ∫

0 1 0 0
0 0 2 0
0 0 0 3

ª ∏

y

{

zzzzzzzzzzzzzzzzzz

.

By truncating these matrices to finite size nHmaxL < ¶  we may compute that for some polynomial QHN » nHmaxL L
of degree nHmaxL -1  in N  with rational coefficients,

@a, àD = I + N QIN … nHmaxL M .

Eg. if nHmaxL =1 then Q = -2; if nHmaxL =¶ then Q = 0. If the parameters  x  are continuous e.g. real-valued,  then
the general commutator relation becomes

(8)@aHxL, àHyLD = dHx - yLAI + N QIN … nHmaxL ME

where  d  is again the Dirac  delta  (generalized)  function appropriate  to the (product)  measure  m on the relevant
value space V .

3.2 Continuous-time semantics

For  a  grammar  rule  number  “r”  of  the  form  of  (Equation  3)  we  define  the  operator  that  first
(instantaneously) destroys all parameterized terms on the LHS and then (immediately and instantaneously) creates
all  parameterized  terms  on the RHS.  This happens  independently  of time or other  terms in the pool.   Assuming
that the parameter expressions x, y  contain no variables Xc , the effect of this event is:

(9)O
`

r = rr  HHxi L, Hyj LL
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

iœrhsHrL
àaHiL  Hxi L

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

jœlhsHrL
 abH jL  Hyj L

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

If there are variables 8Xc < , we must sum or integrate over all their possible values in ≈c DbHcL :

(10)

O
`

r =

‡
DbH1L

... ‡
DbHcL

... 
i

k
jjjjj‰

c

 d mbHcL HXc L
y

{
zzzzz rr  HHxi  H8Xc <LL, Hyj  H8Xc <LLL

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

iœrhsHrL
àaHiL  Hxi H8Xc <LL

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

jœlhsHrL
 abH jL  Hyj  H8Xc <LL

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Thus, syntactic variable-binding has the semantics of multiple integration.

A  “monotonic”  rule  has  all  its  LHS  terms  appear  also  on  the  RHS,  so  that  nothing  is  destroyed,  in
which case

(11)O
`

r = rr  HHxi L, Hyj LL
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

iœrhsHrLîlhsHrL
àaHiL  Hxi L

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

jœlhsHrL
 NbH jL  Hyj L

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Unfortunately  O
`

r  doesn’t  conserve  probability  because  probability  inflow to  new states  (described  by
O
`

r ) must be balanced by outflow from current state (diagonal matrix elements).  The following operator conserves
probability:

Or = O
`

r - diagI1T ÿ O
`

r M

For the entire grammar the time evolution operator is simply a sum of the generators for each rule:

(12)H = ‚
r

Or = ‚
r

O
`

r - ‚
r

 diagI1T ÿ O
è

r M = H
`

- D
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This  superposition  implements  the  basic  principle  that  every  possible  rule  firing  is  an  exponential
process,  all  happening  in parallel  until  a firing occurs.   Note that  (Equation 9) (Equation 10) and H

`
= ⁄r O

`
r  are

encompassed  by  the  polynomial  ring  @8Ba <D  where  the  basis  operators  include  all  creation  and  annihilation
operators.   Ring addition  (as  in Equation  12 or Equation  10) corresponds  to independently  firing processes;  ring
operator  multiplication (as in Equation 9) corresponds to obligatory event co-occurrence.

 

3.3 Recursion among grammars

If  the  limiting  distribution  Yc
* HGL  exists  for  all  initial  states  PrH0L ,  it  defines  a  new  operator

B*HGL = limtØ¶ exp t HHGL .  It is possible to project this operator onto a subspace for which na HxL = 0  for all but a
few term types ta  , using subspace projection operators PH8taHiL » i œ £ <L :

(13)Or = HPH8ta£ H jL » j œ R <LL B* HGL HPH8taHiL » i œ L <LL

This operator can be used to define the semantics of a rule of the form

(14)8taHiL Hxi L » i œ L < Ø 8ta£ H jL Hyj L » j œ R < via G

in  a different grammar G£  or even within the same grammar G ,  recursively.   This is how one continuous-time
grammar can “call” another one. A single rule could have both with and via clauses, in which case the two firing
rates  are  multiplied.   For  nonconverging  SPG’s,  one  can  project  to  the  probability  distribution  on  states  after  a
definite elapsed time t  using the operator BHG » tL = exp t HHGL  in place of  B*HGL  in Equation 13.  In this case the
syntax of Equation 14 can be " ... via GHtL".

3.4 Execution algorithms

The meaning  of the operator  exponential  is given by the Taylor series  expansion  for the exponential,  or more
generally by the Trotter product formula as follows:

exp@tHH0 + H1 LD = limnØ¶ BI +
t

ÅÅÅÅÅ
n

 HH0 + H1 LF
n

= limnØ¶ BJI +
t

ÅÅÅÅÅ
n

 H0N JI +
t

ÅÅÅÅÅ
n

 H1NF
n

= limnØ¶ Ae HtênL H0  e HtênL H1 En
.

This formula can be used to derive “forward Euler” types of simulation algorithms. It is an analog of “operator
splitting”  in  numerical  integration.  More  advanced  methods  such  as  the  Gillespie  simulation  algorithm  (suitably
generalized  to  handle  parameterized  types  using  the  factorization  rr HHxi L, Hyj LL=rr

pure HHxi LLPrr HHyj L » Hxi LL  )  can  be
derived from the time-ordered product expansion of exp@tHH0 + H1 LD  (Section 3.7 below).

3.5 Discrete-time SPG semantics

The operator H
`

 describes the flow of probability per unit time, over an infinitesimal time interval, into
new states resulting from a single rule-firing of any type.   If we condition the probability distribution on a single
rule having fired, setting aside the probability weight for all other possibilities, the normalized distribution is

c1 H
`

ÿ p0 = I H
`

ÿ p0 M ë I 1 ÿ H
`

ÿ p0 M

For a second rule firing it is therefore
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cè2 H
`

ÿ AI H
`

ÿ p0 M ë I 1 ÿ H
`

ÿ p0 ME =
H
`

ÿ AI H
`

ÿ p0 M ë I 1 ÿ H
`

ÿ p0 ME
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
I 1 ÿ H

`
ÿ AI H

`
ÿ p0 M ë I 1 ÿ H

`
ÿ p0 MEM

=
IH` ÿ I H

`
ÿ p0 MM I 1 ÿ H

`
ÿ p0 M

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
I 1 ÿ H

`
ÿ p0 M I 1 ÿ H

`
ÿ I H

`
ÿ p0 MM

= J H
` 2

ÿ p0 N í J 1 ÿ H
` 2

ÿ p0 N = c2 H
` 2

ÿ p0

Iterating, the state of the discrete-time grammar after n  rule firing steps is the normalized version of H
` n

ÿ p0 :

(15)cn H
` n

ÿ p0 = I H
` n

ÿ p0 M ë I 1 ÿ H
` n

ÿ p0 M

where  H
`

= ⁄r O
`

r  as  before.  This  expression  depends  on  a  normalization  constant  cn = 1 ë I1 ÿ H
` n

ÿ p0 M .   The
normalizing division is analogous to the normalizing subtraction in the exponent of the continuous-time semantics.
For unbounded operators  of infinite dimension this normalization can be state-dependent and hence dependent on
n ,  so  cn ∫ cn .   This  is  a  critical  distinction  between  stochastic  grammar  and  Markov  chain  models,  for  which
cn = cn .

An execution algorithm is directly expressed by (Equation 15).

3.6 Relation to fixed points

The Ergodic Theorem gives conditions under which a stochastic processes will converge to a limiting distribu-
tion.   It  is  tempting  in  that  case  to take  the  semantics  to be the  limiting  distribution  rather  than the  much  larger
object that is the family of approaches to equilibrium depending on the initial distribution.  However, it would be
less general than to keep the full semantics and apply an application-dependent projection operation afterwards.

3.7 Time-ordered product expansion

An  indispensable  tool  for  studying  such  stochastic  processes  in  physics  is  the  time-ordered  product
expansion [12-13].  We use the following form:

(16)

exp Ht HL ÿ p0 = exp Ht HH0 + H1 LL ÿ p0

= „
n=0

¶ Ä

Ç

ÅÅÅÅÅÅÅÅÅ‡0

t

d t1  ‡
t1

t

d t2  ∫ ‡
tn-1

t

d tn  expHHt - tn L H0 L H1 expHHtn - tn-1 L H0 L∫H1  expHt1 H0 L
É

Ö

ÑÑÑÑÑÑÑÑÑ
ÿ p0

where  H0  is  a  solvable  or  easily  computable  part  of  H ,  so  the  exponentials  expHt H0 L  can  be  computed  or
sampled more easily than expHt HL . See [14] for an elementary probabilistic derivation of this form.  This expres-
sion can be used to generate Feynman diagram expansions, in which n  denotes the number of interaction vertices
in a graph representing a multi-object history [11]. If we apply (Equation 16) with 

H1 = H
`

and H0 = -D

we derive the well-known Gillespie algorithm for simulating chemical  reaction networks [15], which can now
be applied to SPG’s.  However many other decompositions of H  are possible, one of which is used in Section 5.4
below. Because the operators H  can be decomposed in many ways, there are many valid simulation algorithms for
each  stochastic  process.  The particular  formulation  of  the  time-ordered  product  expansion  used  in (Equation  16)
has the advantage of being recursively self-applicable. 

Thus, (Equation 16) entails a systematic approach to the creation of novel simulation algorithms.
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3.8 Relation between semantic maps

Proposition. Given the stochastic parameterized grammar (SPG) rule syntax of Equation 22,

(a)  There  is  a  semantic  function  Yc  mapping  from  any  continuous-time,  context  sensitive,  stochastic
parameterized  grammar  G  via  a  time  evolution  operator  HIH` HGLM  to  a  joint  probability  density  function  on  the
parameter values and birth/death times of grammar terms, conditioned on the total elapsed time, t .

(b)  There  is  a  semantic  function  Yd  mapping  any  discrete-time,  sequential-firing,  context  sensitive,
stochastic parameterized  grammar G via a time evolution operator H

` HGL  to a joint probability density function on
the  parameter  values  and  birth/death  times  of  grammar  terms,  conditioned  on  the  total  discrete  time  defined  as
number of rule firings, n .

(c)  The  short-time  limit  of  the  density  Yc HGL  conditioned  on  t Ø 0  and  conditioned  on  n  is  equal  to
Yd HGL .

(d) There is a serial context-free grammar Gtree  whose asymptotic probability distribution is that of the
context-free feature tree Hq, fL , and another context-free grammar Grl-tree  whose asymptotic probability distribu-
tion is that of the resource-limited context-free feature tree HN, q, fL .

Proof: (a): Section 3.2. (b): Section 3.5.  (c) Equation 16 (details in Appendix). (d) Section 4.1 below.

Corollary.  The following diagram commutes:

Here n  = number of rule firings, t = continuous time, Dt = elapsed continuous time of execution.

3.9 Discussion: Transformations of SPG’s

Given  a  new kind  of mathematical  object  (here,   SPG's  or DG’s)  it  is generally  productive  in mathematics  to
consider  the  transformations  of  such objects  (mappings  from one object  to another or to itself)  that  preserve key
properties. Examples include transformational geometry (groups acting on lines and points) and functors acting on
categories.   In  the  case  of  SPG's,  two  possibilities  for  the  preserved  property  are  immediately  salient.   First,  an
SPG syntactic transformation  G Ø G£  could preserve the semantics YHGL = YHG£L  either fully or just in fixed point
form:  Y* HGL = Y* HG£L .  Preserving  the  full  semantics  would  be  required  of  a  simulation  algorithm.  Alternatively,
an  inference  algorithm  could  preserve  a  joint  probability  distribution  on  unobserved  and  observed  random  vari-
ables, in the form of Bayes' rule,

PrG Hout, internal » inL PrHinL = PrHin, internal, outL = PrInference Hin, internal » outL PrHoutL
where Hin, internal, outL  are collections of parameterized terms that are inputs to, internal to, and outputs from

the grammar G  respectively.
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4 Examples

4.1 Cluster trees

Here is a simple cluster-generating grammar:

grammar (discrete-time) clustergen (nodesetHxL Ø 8nodeHxi L<) {

nodesetHxL Ø nodeHxL, 8childHxL » 1 b i b n<  with qHnL, n r 0. 

childHyL Ø nodesetHxL  with fHx » yL
}

Since there is only one term on each LHS, it is “context free”. Here is its behavior:

Figure 1:   Two  feature  trees  generated  by  the  clustergen  stochastic  parameterized  grammar.
Pr = qH1L qH2L2  qH0L3  äf Hx1 » xL fHx11 » x1 L fHx12 » x1 L  ä fHx111 » x11 L fHx112 » x11 L .   (b)  Pr = qH3L qH2L qH1L qH0L4

äf Hx1 » xL fHx2 » xL fHx3 » xL  äfHx11 » x1 L fHx12 » x1 L fHx21 » x2 L .

Here  is  its  discrete-time  semantics  (omitting  for  simplicity  the  node  labels  x ,  and  just  keeping  the  tree
structure):

(17)
H
`

= ‚
k=0

¶

qHkL àk  a = gHàL a

H = gHàL a - N

(18)
H
` 2

= gHàL2  a2 + gHàL g£ HàL a;

H
` 3

= g HàL3  a3 + 3 Hg HàLL2  g£  HàL a2 + g HàL Hg£  HàLL2  a + Hg HàLL2  g≥  HàL a; ...

where

gHzL = ‚
n=0

¶

zn  qHnL

In  this  model,  every  power  of  H
`

,  and  the  continuous-time  evolution  exp t H ,  can  be  formally  expressed  and
computed  using  power  series  operations  (composition  and  reversion)  on  generating  functions.   With  generating
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functions  f HxL ,  operators  Ha, àL  are  represented  by  H∑x , x µL respectively.   Then  H
`
# @gHxL ∑x D ,  and

H # @HgHxL - xL ∑x D .  Defining

(19)JHx; x0 L = ‡
x0

x d u
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
gHuL - u

and KHx; x0 L = ‡
x0

x d u
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
gHuL

Then, considering JHx; x0 L  to be a function of just its first argument x ,

d
ÅÅÅÅÅÅÅÅÅÅÅ
d J

=
d x
ÅÅÅÅÅÅÅÅÅÅÅ
d J

 
d

ÅÅÅÅÅÅÅÅÅÅ
d x

=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d J êd x

 
d

ÅÅÅÅÅÅÅÅÅÅ
d x

" H

(20)et H  f HxL # et Hdêd JL  f IJ-1 HJHxLLM = f IJ-1 Ht + JHxLLM

by  Taylor’s  theorem in the  form ea ∑x  f HxL = f Hx + aL .  Thus  we need only  calculate  J-1 Ht + JHxLL  using  power
series reversion and composition.   [1] (section  III.3 eq.  (7)) provides  a different derivation.  A similar  calculation
holds for discrete-time semantics (Equation 18) using K , so that

(21)
es H

`
 f HxL # f IK-1 Hs + KHxLLM = f

i
k
jjjx + s gHxL +

s2

ÅÅÅÅÅÅÅÅ
2

 gHxL g£ HxL +
s3

ÅÅÅÅÅÅÅÅÅ
3 !

 IgHxL Hg£ HxLL2 + HgHxLL2  g≥ HxLM + ...
y
{
zzz

= f HxL + s gHxL ∑x f HxL + ... " HI + s gHàL a + ... L f HxL ,

from  which  we can  recalculate  (Equation  18).  In  either  case  the  grammar  is  tractable  because  clustergen  is  a
context-free grammar: there is only one term on the left hand side of each rule.

The  following  grammar  is  equivalent  to  clustergen,  in  its  conditional  distributions
PrH8nodeHxI L » 1 b I b N<, » NL .  It constitutes a valid grammar transformation of clustergen:

grammar (discrete-time) rseqclustergen (nodesetHx, NL Ø 8nodeHxi L<) {

nodesetHx, NL Ø nodeHxL, childrenHx, n, N - 1L » 1 b i b n<  with  rHn » NL  

childrenHx, n, NL Ø childHx, N£ L, childrenHx, n - 1, N - N£ L with RHN£ » n, NL
childrenHx, 0, NL Ø Ø

childHy, NL Ø nodesetHx, NL  with fHx » yL
}

The functions R  and r  can be computed by reversion of series using generating functions [14].

Such  models  have  considerable  utility  for  problem formulation  in  pattern  recognition,  image  analysis,
and machine learning.

4.1.1 Dirichlet and Chinese Restaurant processes

The  stick-breaking  construction  of  a  Dirichlet  process  can  be  expressed  with  this  discrete-time  grammar
(following [16]):

grammar (discrete-time) DP (startHNL Ø 8clusterHi, qk , pk L » 1 b k < ¶<) {

startHNL Ø cluster ' H0, 0, 0, 1, 0L  

cluster ' Hk, qk , bk , Xk , pk L Ø clusterHk, qk , pk L,
cluster ' Hk + 1, qk+1 , bk+1 , Xk+1 , pk+1 L

 

with bk+1 ~BetaH ÿ » 1, aL = HGH1 + aL ê GHaLL Hbk+1 La-1  

with G0 Hqk L
where pk+1 = bk+1  Xk

where Xk+1 = H1 - bk+1 L Xk

}

Then the Chinese Restaurant process for cluster generation is:

11



grammar (discrete-time) CRP (startHNL Ø 8sampleHxL » 1 b k b N<) {

startHNL Ø samplesHNL, 8clusterHk, qk , pk L » 1 b k < ¶<  via DP

samplesHNL, C = 8clusterHi, qk , pk L » 1 b k < ¶< Ø
samplesHN - 1L, C, sample ' Hqk L

with pk

subject to N > 0

sample ' Hq`L Ø sampleHxLwith p(·|q
`
)

}

The clustergen  grammars  can be specialized  and limited so as to function in a very similar manner to DP and
CRP  above,  with  a  Binomial  Beta  substituted  for  the  Beta  distribution  [14].   However,  clustergen  determines  a
more general family of distributions.  For example one can control the histogram of cluster sizes.

4.2 Biochemical reaction networks

Given the chemical reaction network syntax

(22)9ma
HrL Aa … 1 b a b Amax =ö

kHrL 9nb
HrL  Ab … 1 b a b Amax = ,

define an index mapping 

aHiL = „
c=1

Amax

c Q
i

k
jjjjj ‚

d=1

c-1

md
HrL < i b ‚

d=1

c

md
HrL y

{
zzzzz =

loooooooooom

n

oooooooooo

1 if 0 < i b m1
HrL

2 if m1
HrL < i b m1

HrL + m2
HrL

... ...

a if ⁄c=1
a-1 mc

HrL < i b ⁄c=1
a mc

HrL

... ...

and likewise for bH jL  as a function of 9nb
HrL = .  Then (Equation 22) can be translated to the following equivalent

grammar syntax for the multisets of parameterless terms

loom
n
ootaHiL

ƒƒƒƒƒƒƒƒƒƒƒƒ
0 < i b ‚

c=1

Amax

mc
HrL

|oo}
~
oo

*

Ø
loom
n
oota£ H jL

ƒƒƒƒƒƒƒƒƒƒƒƒ
0 < j b ‚

c=1

Amax

nc
HrL

|oo}
~
oo

*

with kHrL

whose semantics is the time-evolution generator

(23)O
`

r = kHrL

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

iœrhsHrL
àaHiL

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

jœlhsHrL
abH jL

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
.

This  generator  is  equivalent  to the  stochastic  process  model  of  mass-action  kinetics  for  the  chemical  reaction
network (Equation 22).

5 Reductions

A  number  of  other  frameworks  and  formalisms  can  be  reduced  to  SPGs  as  just  defined.   We  give  a
sampling here.
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5.1 Logic programs

Consider a logic program (e.g. in pure Prolog) consisting of Horn clauses of positive literals

p1 Ô ... Ô pn fl q , n r 0 .

Axioms have n = 0. We can translate each such clause into a monotonic SPG rule

(24)p1 , ..., pn Ø q, p1 , ..., pn

where each  different literal pi or q  denotes  an unparameterized  type ta  with na œ 80, ... na
max < = 80, 1<  .  Since

there is no with clause, the rule firing rates default to r = 1. The corresponding time-evolution operator is

(25)H
`

= ‚
r

 O
`

r = „
r

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

iœrhsHrLîlhsHrL
àaHiL

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

jœlhsHrL
NbH jL

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

The semantics  of the logic program is its least  model or minimal interpretation.  It can be computed (Knaster-
Tarski theorem) by starting with no literals in the “pool” and repeatedly drawing all their consequences according
to the  logic program.   This is  equivalent  to  converging to a  fixed point  Y*HGL ÿ » 0\  of the  grammar  consisting  of
rules in the form of (Equation 24).

More general clauses include negative literals Ÿ r  on the LHS:

p1 Ô ... Ô pn Ô Ÿ r1 Ô ... Ô Ÿ rm fl q , n, m r 0

or  even  more  general  cardinality  constraint  atoms  0 b l b » Z » = ⁄iœA QHpi L b u b ¶  [17].   These  constraints
can  be  expressed  in  operator  algebra  by  expanding  the  basis  operator  set  8Ba <  beyond  the  basic  creation  and
annihilation  operators.   For  example  the  cardinality  of a  set  Z  of positive  literals  8pi » i œ A<  is computed  by  the
diagonal operator

NZ = log2

i
k
jjjj≈

i

HIi + QHi œ AL Ni L
y
{
zzzz

and further thresholding functions can be applied element-by-element to the nonzero diagonal terms of such an
operator:

i

k
jjjjjl b‚

iœA

QHpi L b u
y

{
zzzzz = Ql u

i
k
jjjjlog2

i
k
jjjj≈

i

HIi + QHi œ AL Ni L
y
{
zzzz
y
{
zzzz .

Neither  log2  nor  Ql u  are  exactly  within  the  operator  polynomial  ring  generated  by  creation  and  annihilation
operators alone, though sufficient approximations may be.

Finally, atoms with function symbols may be admitted using parameterized terms ta HxL .

5.2 Graph grammars

Graph  grammars  are  composed  of  local  rewrite  rules  for  graphs  (see  for  example  [18]).   We  now
express a class of graph grammars in terms of SPG’s.

The  following  syntax  introduces  Object  Identifier  (OID)  labels  Li  for  each  parameterized  term,  and
allows  labelled  terms  to  point  to  one  another  through a  graph  of  such  labels  .   The graph  is  related  to two  sub-
graphs of neighborhood indices NHi, sL  and N£ H j, sL  specific to the input and output  sides of a rule.   Like types
or variables, the label symbols appearing in a rule are chosen from an alphabet 8Ll » l œ L< .  Unlike types but like
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variables  Xc ,  the  label  symbols  LlHiL actually  denote  nonnegative  integer  values  -  unique  addresses  or  object
identifiers. 

A  graph  grammar  rule  is  of  the  form,  for  some  nonnegative-integer-valued  functions  lHiL  ,  l£ H jL ,
NHi, sL , N£ H j, sL  for which HlHiL = lH jLL fl Hi = jL ,  Hl£ HiL = l£ H jLL fl Hi = jL :

(26)

9Ll HiL := ti  Ixa HiL ; ILN  Hi,sL … s œ 1..sa HiL
max MM … i œ =

Ø 8Ll HiL » i œ 1 Œ < ‹ 9Ll£  H jL := t j  Ixa£  H jL
£ ; ILN £  H j,sL … s œ 1..sa£  H jL

max MM … j œ =
with rr  I9xa£  H jL

£ = … 8xa HiL <M

(compare to (Equation 2) ).   Note that the fanout of the graph is limited by si
cur b saHiL

max .  Let

= 1 ‹ 2 and 1 › 2 = Ø
= 1 ‹ 2 and 1 › 2 = Ø

1 = 8 j œ Ô H$ i œ 2 » lHiL = l£ H jL<
2 = 8 j œ Ô H± i œ 2 » lHiL = l£ H jL<

3 = 8i œ 2 ÔH± j œ 1 » lHiL = l£ H jL< Œ 2 L

This syntax may be translated to the following ordinary non-graph grammar rule (where NextOID is a variable,
and OIDGen and Null are types reserved for the translation):

8taHiL HLlHiL , xaHiL , HLNHi,sL » s œ 1..si
cur LL » i œ < , OIDGenHNextOIDL

Ø 8taHiL HLlHiL , xaHiL , HLNHi,sL » s œ 1..si
cur LL » i œ 1 < ‹

9ta£ H jL ILl£ H jL , xa£ H jL
£ , ILN £ H j,sL … s œ 1..s j

cur MM … j œ 1 ÔHi œ 2 LÔ HlHiL = l£ H jLL= ‹
9ta£ H jL ILl£ H jL , xa£ H jL

£ , ILN £ H j,sL … s œ 1..s j
cur MM … j œ 2= ‹ 8NullHLlHiL L » i œ 3 <

Ê8OIDGenHNextOID + » »L <

with rr I9xa£ H jL
£ = … 8xaHiL <M ‰

jœ 2

dK  HLl£  H jL , NextOID + j - 1L

which already has a defined semantics Ycêd .  Note that all set membership tests can be done at translation time
because they do not use information that is only available dynamically  during the grammar evolution. Optionally
we may also add a rule schema (one rule per type, ta ) to eliminate any dangling pointers:

ta HLlH1L , x, HLNH1,sL » s œ 1..s1
cur LL, NullHLlH2L L

Ø ta HLlH1L , x, HLNH1,sL » Hs œ 1..s1
cur LÔ HNH1, sL ∫ lH2LLLL, NullHLlH2L L

with rcleanup  ‚
sœ1..smax

dK HLNH1,sL , LlH2L L

5.3 String rewrite rule grammars

Strings  may  be  encoded  as  one-dimensional  graphs  using  either  a  singly  or  doubly  linked  list  data  structure.
String rewrite rules 

(27)HtaHiL Hxi L » i œ L L Ø Hta£ H jL Hyj L » j œ R L with rr HHxi L, Hyj LL

(note  ordering  of  arguments)  are  emulated  as  graph  rewrite  rules,  whose  semantics  are  defined  above.   This
form is capable of handling many L-system grammars [19].  If rr  is not supplied it defaults to 1.  
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5.4 Stochastic and ordinary differential equations

There  are  SPG  rule  forms  corresponding  to  stochastic  differential  equations  governing  diffusion  and
transport.  Given the SDE or equivalent  Langevin equation (which specializes to a system of ordinary differential
equations when hHtL = 0 ):

(28)d xi = vi H8xk <L d t + sH8xk <L d W or

(29)
d xiÅÅÅÅÅÅÅÅÅÅÅÅÅ
d t

= vi H8xk <L + hi HtL

under some conditions on the noise term hHtL  the dynamics can be expressed [13] as a Fokker-Planck equation
for the probability distribution PH8x<, tL :

(30)
∑PH8x<, tL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ t
= -‚

i

∑
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ xi

 vi H8x<L PH8x<, tL + „
i j

∑2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ xi  ∑ xj

 Di j H8x<L PH8x<, tL

Let  PH8y<, t » 8x<, 0L  be  the  solution  of  this  equation  given  initial  condition
PH8y<, 0L = dH8y< - 8x<L = ¤k dHyk - xk L  (with Dirac delta function appropriate  to the particular measure  m used for
each component).  Then at t = 0,

∑PH8y<, 0 » 8x<, 0L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑ t
ª rH8yi < » 8xi <L = -‚

i

∑
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ yi

 vi H8x<L dH8y< - 8x<L + „
i j

∑2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ yi  ∑ yj

 Di j H8x<L dH8y< - 8x<L

Thus the probability rate rH8yi < » 8xi<L  is given by a differential operator acting on a Dirac delta function.  It can
be decomposed into drift and diffusion:

(31)rdrift H8yi < » 8xi <L = -„
i

∑
ÅÅÅÅÅÅÅÅÅÅÅÅ
∑ yi

 vi H8x<L ‰
i

dHyi - xi L

(32)rdiffusion H8yi < » 8xi <L = „
i j

∑2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
∑ yi  ∑ yj

 Di j H8x<L ‰
i

dHyi - xi L

from which by (Equation 10) we construct the evolution generator operators OFP = Odrift + Odiffusion , where

(33)Odrift = -· d 8x< · d 8y< àH8y<L aH8x<L 
i

k

jjjjjjjj„
i

“ yi vi H8y<L ‰
k

dHyk - xk L
y

{

zzzzzzzz

(34)Odiffusion = · d 8x< · d 8y< àH8y<L aH8x<L 
i

k

jjjjjjjjj
„

i j

“ yi “ yj Di j H8y<L ‰
k

dHyk - xk L
y

{

zzzzzzzzz

The  second  order  derivative  terms  give  diffusion  dynamics  and  also  regularize  and  promote  continuity  of
probability in parameter space both along and transverse to any local drift direction.  So, these two time-evolution
operators  may  be  identified  with  the  corresponding  differential  operators  -‚

i

∑ÅÅÅÅÅÅÅÅ∑xi
 vi H8x<L  and

‚
i j

∑2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑xi  ∑xj
 Di j H8x<L in the Fokker-Planck partial differential equation (Equation 30), respectively.

As a check one can use the relations
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» z\ = àH8z<L » 0\ , Xw » = X0 » aH8w<L
@aH8x<L, àH8y<LD = dH8y< - 8x<L@1 + NH8x<L QHNH8x<L, nmax LD

Xw » z\ = dH8w< - 8z<L

to calculate operator matrix elements Xw » expHt OFP L » z\ .  For example,

Xw » Odrift » z\ = -[8w<
ƒƒƒƒƒƒƒƒƒƒƒƒ
‡ d 8x< ‡ d 8y<

i

k
jjjjj‚

i

“ yi
vi H8y<L dH8y< - 8x<L

y

{
zzzzz àH8y<L aH8x<L àH8z<L

ƒƒƒƒƒƒƒƒƒƒƒƒ
0_

= -[8w<
ƒƒƒƒƒƒƒƒƒƒƒƒ
‡ d 8x< ‡ d 8y<

i

k
jjjjj‚

i

“ yi
vi H8y<L dH8y< - 8x<L

y

{
zzzzz àH8y<L dH8z< - 8x<L@1 + NH8x<LD

ƒƒƒƒƒƒƒƒƒƒƒƒ
0_

= -‡ d 8x< ‡ d 8y<
i

k
jjjjj‚

i

“ yi vi H8y<L dH8y< - 8x<L
y

{
zzzzz dH8z< - 8x<L X8w< » 8y<\

= -‡ d 8y<
i

k
jjjjj‚

i

“ yi
vi H8y<L dH8y< - 8z<L

y

{
zzzzz dH8w< - 8y<L

= +‡ d 8y< dH8y< - 8z<L 
i

k
jjjjj‚

i

vi H8y<L “ yi
dH8w< - 8y<L

y

{
zzzzz

= ‚
i

vi H8z<L “ zi
dH8w< - 8z<L

Computing higher powers yields

Xw » expHt Odrift L » z\ = exp
i

k
jjjjjt ‚

i

vi H8z<L “ zi

y

{
zzzzz dH8w< - 8z<L

= d
i
k
jjj8w< -

i
k
jjj8zH0L = z< + ‡

0

t

 vi  HzHtLL d t
y
{
zzzy
{
zzz

which is a formal solution of the drift-only differential equation Hd xi L ê d t = vi H8xk <L  .

Diffusion/drift  rules  can  be  combined  with  chemical  reaction  rules  to  describe  reaction-diffusion
systems [11,20].  The foregoing approach can be generalized  to encompass  partial differential  equations (PDE’s)
and stochastic partial  differential equations (SPDE’s) [14].  With suitable PDE’s, one can then express models of
dynamical  manifolds  (as  in  General  Relativity)  and  dynamical  manifold  embeddings  using  explicit  or  level  set
representations.
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The  foregoing  operator  expressions  all  correspond  to  natural  extended-time  processes  given  by  the
evolution  of  continuous  differential  equations  (DE’s).   The  operator  semantics  of  the  differential  equations  is
given  in  terms  of  derivatives  of  delta  functions  in  the  manner  of  (Equation  28),  (Equation  29),  (Equation  31),
(Equation 32).  A special “solve” or “solving” keyword may be used to introduce such ODE/SDE rule clauses in
the SPG syntax.  This syntax can be eliminated in favor of a “with” clause by using derivatives of delta functions
in the rate expression rDE H8yi < » 8xi <L , provided that such generalized functions are in the Banach space HVL  as a
limit  of  functions.   These  kinds  of  dynamics  can  now  be  freely  combined  with  reaction  networks  and  other
discrete-time event processes whose dynamics is also defined by operator algebra generators.  Indeed if a grammar
includes both DE rules and non-DE rules, a conventional DE solver can be used to compute expHHtn+1 - tn L OFP L  in
the time-ordered product expansion (Equation 16) for expHt HL  as a hybrid simulation algorithm for discontinuous
(jump)  stochastic  processes  combined  with  stochastic  differential  equations.   The  analogous  combination  for
grammars  with  deterministic  dynamics  semantics  appears  in  [21]  which  exhibits  simulation  algorithms,  in  [22]
which introduces the “solve” keyword, and in [23] which specifies a dynamical grammar modeling framework for
developmental biology.

5.5 Discussion: Relevance to artificial intelligence and computational science

The  relevance  of  the  modeling  language  defined  here  to  artificial  intelligence  includes  the  following
points.  First, pattern recognition and machine learning both benefit foundationally from better, more descriptively
adequate  probabilistic  domain  models.   As  an  example,  Section  4.1  exhibits  hierarchical  clustering  data  models
expressed  very  simply  in  terms  of  SPG’s  and  relates  them  to  recent   work.   Graphical  models  are  probabilistic
domain models with a fixed structure  of variables and their relationships,  by contrast  with the inherently flexible
variable sets and dependency structures resulting from the execution of stochastic parameterized grammars.  Thus
SPG’s,  unlike  graphical  models,  are  Variable-Structure  Systems  (defined  in  [14]),  and  consequently  they  can
support  compositional  description  of  complex  situations  such  as  multiple  object  tracking  in  the  presence  of  cell
division  in biological  imagery  [24].  Second, the  reduction  of many  divergent  styles  of model  to  a common SPG
syntax and operator algebra semantics  enables new possibilities for hybrid model  forms.  For example one could
combine  logic  programming  with  probability  distribution  models,  or  discrete-event  stochastic  and  differential
equation models as discussed in Section 5.4, in possibly new ways.  

As a  third  point  of  AI  relevance,  from SPG probabilistic  domain  models  it  is  possible  to derive  algo-
rithms   for  simulation  (as  in  Section  3.7)  and  inference  either  by  hand  or  automatically.  Of  course,  inference
algorithms  are  not  as  well  worked  out  yet  for  SPG’s  as  for  graphical  models.  SPG’s  have  the  advantage  that
simulation  or  inference  algorithms could  be  expressed again  in the form of  SPG’s,  a possibility  demonstrated  in
part  by  the  encoding  of logic  programs  as  SPG’s.  Since  both  model  and  algorithm  are  expressed  as SPG’s,  it  is
possible to use SPG transformations that preserve relevant quantities (Section 3.9) as a technique for deriving such
novel algorithms or generating them automatically.  For example we have taken this approach to rederive by hand
the Gillespie  simulation algorithm for  chemical  kinetics.  This derivation  is different from the one in Section 3.7.
Because  SPG’s  encompass  graph  grammars  it  is  even  possible  in  principle  to  express  families  of  valid  SPG
transformations as meta-SPG’s. All of these points apply a fortiori to Dynamical Grammars as well.

The relevance  of  the modeling  language  defined here  to computational  science  includes the following
points.  First, as argued previously, multiscale models must encompass and unify heterogeneous model types such
as  discrete/continuous  or  stochastic/deterministic  dynamical  models;  this  unification  is  provided  by  SPG’s  and
DG’s.   Second,  a  representationally  adequate  computerized  modeling  language  can  be  of  great  assistance  in
constructing  mathematical  models  in  science,  as  demonstrated  for  biological  regulatory  network  models  by
Cellerator  [25] and other cell modeling  languages.  DG’s extend this promise to more complex, spatiotemporally
dynamic,  variable-structure  system  models  such  as  occur  in  biological  development.   Third,  machine  learning
techniques could in principle be applied to find simplified approximate or reduced models of emergent phenomena
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within  complex domain models.   In that case  the forgoing AI arguments  apply to computational  science applica-
tions of machine learning as well.

Both  for  artificial  intelligence  and  computational  science,  future  work  will  be  required  to  determine
whether the prospects outlined above are both realizable and compelling.  The present work is intended to provide
a mathematical foundation for achieving that goal.

6 Conclusions and future directions

We have  established  a  syntax  and  semantics  for  a  probabilistic  modeling  language  based  on  indepen-
dent processes leading to events linked by a shared set of objects.  The semantics is based on a polynomial ring of
time-evolution  operators.   The syntax is in the form of a set of rewrite rules.  Variable-binding occurs by integra-
tion of the rule firing rate function over parameter value spaces. Stochastic Parameterized Grammars and the more
general  Dynamical  Grammars  expressed  in  this  language  can  compactly  encode  disparate  models:  generative
cluster  data  models,  biochemical  networks,  logic  programs,  graph  grammars,  string  rewrite  grammars,  and
stochastic differential equations among other others. The time-ordered product expansion connects this framework
to powerful methods from quantum field theory and operator algebra.

One future direction for Dynamical Grammar applications is in dynamic spatial modeling for biological
development ([3,14,19,23,26]).  To this end it will be interesting to explore the relationship between graph gram-
mars  for spatial  structures  and  their continuum limits including  PDE’s, both encoded as DG’s.   For multicellular
structures  it  may  be  useful  to  consider  simultaneously  continuum  limits  at  both  the  subcellular  scale  and  the
multicellular  tissue  level.   At  the  latter  scale,  developmental  systems can  act  as dynamic  information-processing
manifolds embedded dynamically in d=3 .

Also in the future, it may be useful to develop non-textual, labelled graph representations for the syntax
of  SPG’s  and  Dynamical  Grammars.  Using  graph  grammars  such  a  representation  could  allow  the  semantics
functions  Ycêd  to  be  applied  iteratively.   To  create  such  a  graph  representation,  one  could  use  diagrammatic
representations such as Markov Random Fields or Bayes Networks for the language R  which specifies the firing
rate  functions  rr HHyj L, Hxi LL  which  are  also  members  of  function  spaces  HVL ,  provided  that  such  diagrams  are
augmented with a nonnegative scalar multiplier to represent unnormalized firing rates.  In this connection Depen-
dency  Diagrams  [14]  generalize  many  other  such  representations.   For  the  actual  grammar  itself,  there  exists  a
bipartite graph 8Gr a , Ga r <  of types ta  (indexed by a ) and rules (indexed by r), in which type node a  links to rule
r  (Gr a = 1)  iff  some  term  of  type  ta  occurs  in  the  LHS  multiset  of  rule  r ,  and  rule  r  links  to  type  node  a
(Ga r = 1) iff rule r  contains some term of type ta  in its RHS multiset. This bipartite graph is similar to the set of
arcs between places (our types) and transitions (our rules) in a Petri Net, and indeed there are generalizations such
as Colored Petri Nets [8] in which CPN tokens (our grounded term instances or objects) contain values (our vector
of parameter values).  However our semantics appears to be nonstandard in detail by comparison with the existing
Petri Net literature, and the SPG syntax contains features not found in Petri Nets such as rule variables, parameter
vectors, type signatures, polymorphic type signatures, and firing rate functions.
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7 Appendix

7.1 Relation of discrete-time and continuous-time grammars

The continuous and discrete-time  grammar executions are related as follows.   After continuous time t ,
the joint probability density on the states of the original system and on the number of discrete rule firings, n , has
the generating function

SHzL = ‚
n=0

¶

sn  zn = expIt IH`  z - DMM ÿ p0

so that

sn = Coefn IexpIt IH`  z - DMM , zM ÿ p0 .

An  alternative  approach  to  the  semantics  of  the  discrete-time  grammar  is  to  take  the  short-time  limit  of  the
continuous-time grammar’s conditional distribution given that n  rule firings occurred:

limtØ0 @ sn ê 1 ÿ sn D = limtØ0 ACoefn IexpIt IH`  z - DMM , zM ÿ p0 ê1 ÿ Coefn IexpIt IH`  z - DMM , zM ÿ p0 E.

This result follows by a short calculation from the following general expression for S:
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From this expression we can take the small-time limit, picking out only the ip = 0 terms:

limtØ0 SHzL = ‚
n=0

¶

zn C 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHk + nL!

ÃHk=0L tn H
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¶ zn  tn
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n !

 H
` n
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Thus

limtØ0 @ sn ê1 ÿ sn D = H
` n

ÿ p0 ë I1 ÿ H
` n

ÿ p0 M

7.2 Time-ordered operator expansion

 We continue the calculation of SHzL  from the previous section. The general  expansion formula for S  is
given by the time-ordered product (Equation 2.14 of [11], equation 4.29 of [13]) which we can derive by elemen-
tary probabilistic means as follows.

= „
n=0

¶

zn  tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

k=0

¶

„
80bipbk<Ô ⁄p=0

n ip =k

¤p=0
n Hip L !

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
I⁄p=0

n ip + nM!
 
H-t DLin

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin L!
H
` H-t DLin-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin-1 L!
∫ H

` H-t DLi0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi0 L !

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

= „
n=0

¶

 zn  tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

80bipb¶<

¤p=0
n Hip L !

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
I⁄p=0

n H ip + 1L - 1M!
 
H-t DLin

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin L!
H
` H-t DLin-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin-1 L!
∫ H

` H-t DLi0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi0 L!

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

= „
n=0

¶

 zn  tn

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

80bipb¶<

¤p=0
n GHip + 1L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
GI⁄p=0

n H ip + 1LM
 
H-t DLin

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin L !
H
` H-t DLin-1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHin-1 L!
∫H

` H-t DLi0

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHi0 L!

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÿ p0

Now we use the Multinomial-Dirichlet normalization integral
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In summary (since p0  was never used in the above calculations),
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Alternatively, define t1 = t0 , t2 = t1 + t1 , ... tn+1 = tn + tn = t .  Then the evolution of the state vector is
given by

expIt IH` - DMM ÿ p0 =
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Since  D  is  diagonal,  the  terms  expH-t DL  are  analytically  calculable  and  easy  to  simulate  with  large
jumps  in  time.   Between  these  easy  terms  are  interposed  single  powers  of   H

`
 representing  the  occurrence  of

discrete-time grammar events that must be simulated.  

These  last  two  expression  for  expIt IH` - DMM  have  a  significant  interpretation  in  the  case  of  reaction
kinetics:  they  correspond  to  the  Gillespie  algorithm  for  stochastic  simulation.   The  exponential  distribution  of
waiting times until the next reaction is given by expH-t DL , which depends on the state of the system but doesn’t
change it, and the reaction events are modeled by the interdigitated powers of H

`
.

This perturbative approach is equivalent to the use of perturbative methods including Feynman diagram
calculations  in quantum field theory,  except for an occasional  factor of 

è!!!!!!!
-1  which would turn our probabilities
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into the complex-valued probability factors of quantum mechanics.  It can be accomplished for any decomposition
of H  into a solvable part H0  (here, -D ) plus a more difficult term H1 (here, H

`
):

(35)
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