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ABSTRACT
We describe how to perform developmental simulations with
Cellerator.  Biochemical reactions, specified in Cellerator with
a compact, arrow-based notation, are automatically translated
into the appropriate ordinary differential equations. These
reactions can be combined into modules, leading to a natural
graph-based hierarchical implementation. We demonstrate how
the paradigm of organisms-as-graphs can represent the basic
features of developing tissue, and propose a variable-structure
graph-based algorithm to describe simple developmental
processes.  In particular, we show how such a variable-structure
system (VSS) can be implemented using a pre-packaged fixed-
structure differential equation solver.

1. INTRODUCTION
Cellerator is a Mathematica package designed to facilitate
biological modeling via automated equation generation [10].
The implementation is based on the concept of a hierarchy of
canonical forms that describe biological processes at various
levels of detail. At each level of hierarchy two classes of
canonical forms can be identified: the input canonical form,
(ICF) that is used to supply information to the program, and
the output canonical form (OCF) that is produced by the
simulator.

To understand canonical forms, consider the usual method of
describing biological systems in terms of signal transduction
networks (STN). Nodes in an STN typically represent chemical
species (e.g., nucleic acids, proteins, etc.) while links represent
interactions between the species.  Such networks are inherently
hierarchical. Nodes may represent anything ranging from
single molecules (e.g., particular enzymes, receptors) or
ubiquitous modules (e.g., MAPK cascades, transcription
complexes, etc.) to extremely complex processes such as
mitosis (see, for example, [7]). At the highest level of
abstraction the ICF is pictorial (e.g., a cartoon drawn on the
screen using some sort of GUI), while the OCF is a complete set
of differential equations describing the network.

The Cellerator paradigm is based on the proposition that there
is a one-to-one relationship between each class of interaction
(link) in an STN and a hypothesized formal (i.e., mathematical)
description of that interaction. Cellerator represents nodes
with variables (e.g., chemical concentrations) and links with
arrows. A wide variety biologically-based interactions are

implemented as Cellerator arrows.  The Cellerator arrow S P
E

F ,
for example, is the ICF for a  catalytic reaction in which species
E facilitates the conversion of S into P.   Output canonical
forms can take either of two forms, selected at the user’s
discretion: lists of biochemical reactions, or systems of
ordinary differential equations (ODEs).  The corresponding
OCF for the catalytic reaction, for example, would be either a
system of ODEs as  determined by the law of mass action, or a

list of chemical reactions such as S E SE+ Æ , etc.  A slightly

different arrow notation  A B
E
a  indicates that the ODEs are

determined by steady state kinetics (e.g., Michaelis-Menten)
rather than mass-action equations. A similar notation  A Ba
means that A facilitates the transcription of B. While no
cartoon-based GUI interface has yet been implemented, the
Cellerator paradigm allows for the addition of a graphical
front-end that could produce the necessary input canonical
forms. The Cellerator implementation also allows explicit
output description at each level so that “power-users” can
modify the equations at any stage desired. They can thus
manually modify the ODEs or chemical equations, or add
additional constraints in the form of differential, algebraic, or
chemical equations. The output canonical forms are produced
in a variety of formats: as Mathematica differential equations,
in C, FORTRAN, SBML [5], MATHML, or HTML.  If desired, the
user can also solve the equations numerically (using
Mathematica’s NDSolve [11]).

By extending the hierarchy so that nodes represent cells rather
than chemical concentrations we can describe multi-cellular
systems such as plant shoot apical meristems (SAMs).  Links
then refer to intercellular – rather than intermolecular –
interactions. Although ultimately we will want to describe a
biologically realistic system, the essential physiology of
many developmental processes can be captured by only a
small number of cells.  Thus the complexity of these multi-
cellular networks arises from the number of interactions rather
than the number of nodes. This is because many different
mutually interacting signal transduction networks need to be
represented within each cell. There will be many instantiations
of essentially the same network (e.g., mitotic oscillators) in
each cell, or even multiple instantiations of the same network
(e.g., MAP-kinase cascades or  transcription complexes) within  

Figure 1. Initial conditions for a 215 cell shoot apical
meristem (SAM) simulation. Node shades indicate cell type.

a single cell.  The 215-cell SAM illustrated in Figure 1, for
example, has 976 near-neighbor links (out of a
possible 215 214 46 010¥ = ,  cell-cell links).  Using the min-
imal developmental system presented below, this SAM is
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described by 1690 ODEs. Birth and death processes change the
total number of cells – and hence the total number of
differential equations required to describe the system – and
thus pose an even more difficult problem. These must be dealt
with as a time-dependent variable structure system (VSS).

We postulate that the paradigm of organisms-as-graphs can
represent many of the basic features of developing tissue, and
propose a variable-structure graph-based algorithm to describe
simple developmental processes in this paper. In particular, we
show how such a VSS can be implemented using a pre-
packaged fixed-structure differential equation solver. We then
proceed to show how this has been done in Cellerator, and
finally illustrate the overall process with the design of a
minimal system for developmental simulation.

Figure 2. Cellerator Palette.

2. METHODS
2.1 Cellerator Canonical Forms
Cellerator input canonical forms can be either manually typed
or selected from a specialized palette (Figure 2).  As will all
Mathematica palettes, “power users” can rearrange the palette.
To illustrate Cellerator notation, consider the glycolytic step
in which an activated form of the enzyme phosphofructokinase

(PFKA) catalyzes the phosphorylation of fructose 6-phosphate
(F6P), converting ATP to ADP in the process,

      F P PFKA ATP X F P PFKA ADP6 6+ + Æ + +F * (1)

where X is a sequence of intermediate compounds that are
formed during the process. In a reduced model of glycolysis
[4], PFK catalyzes the removal of a phosphate from ATP,

  

ATP PFKA Y ADP PFKA
k

k k
+ Æ +

-
F

1

1 2
(2)

where Y is the intermediate compound formed by PFKA and
ATP, and    k k1 1, -  and     k2 are rate constants.  The Cellerator
arrow for (2) is  

  ATP ADP
PFKA

F (3)

To include the rate constants we would replace (3) with

{ , , , }ATP ADP k k k
PFKA

F 1 1 2- (4)

Omitted rate constants take on default values. In addition ADP
also activates PFK, ATP is continually produced, and ADP is
continually degraded. In chemical notation,

Æ
n1

ATP (5)

ADPÆ
n2

(6)

  

2
3

3
ADP PFK PFKS

k

k
+

-
F (7)

The canonical form for conversion of A to B is A BÆ .  To
describe (5) and (6), Cellerator uses the special symbol ∆ to
indicate conversion to (annihilation) or from (creation) the
empty set.  A bi-directional arrow (F) indicates that the
reaction can proceed in both ways, as in equation (7).

r = 99ATP V ADP
PFKA

, k1, km1, k2=,
8 « z ATP, n1<,
8 ADP z «, n2<,

9PFK + ADP2 V PFKA, k3, km3== ;

interpret@rD

99ADP£@tD == -n2 ADP@tD + k2 ATPÄPFKA@tD -

k3 ADP@tD2 PFK@tD + km3 PFKA@tD, ATP£@tD ==
n1 + km1 ATPÄPFKA@tD - k1 ATP@tD PFKA@tD,
ATPÄPFKA£@tD == -k2 ATPÄPFKA@tD -
km1 ATPÄPFKA@tD + k1 ATP@tD PFKA@tD,

PFK£@tD == -k3 ADP@tD2 PFK@tD + km3 PFKA@tD,
PFKA£@tD == k2 ATPÄPFKA@tD +

km1 ATPÄPFKA@tD + k3 ADP@tD2 PFK@tD -

km3 PFKA@tD - k1 ATP@tD PFKA@tD=,

8ADP, ATP, ATPÄPFKA, PFK, PFKA<=

Figure 3. Canonical form for glycolysis reactions and
corresponding ODEs generated by Cellerator.
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The reactions, once expressed in canonical form, can then be
translated to differential equations according to the law of
mass action using the interpret function.  The complete set
of canonical forms for the simplified glycolytic model, along
with the corresponding set of automatically generated
differential equations, is illustrated in Figure 3. When the
same chemical species X occurs in multiple reactions, one term
(or set of terms) is generated in the differential equation for
¢X t( )  for each reaction.  The final interpreted differential

equation then gives the sum of all these reaction terms (see, for
example, the differential equation for ADP in figure 3). Some
other Cellerator canonical forms are discussed in the following
paragraphs.

2.1.1 Uncatalyzed mass action reactions
The general Cellerator uncatalyzed mass action reaction is

A B Cn+ Æ (8)
where B is optional and n is an optional positive integer
indicating that one molecule of A combines with n molecules
of B to form one molecule of C. Either A or C may be the empty

set (∆).  The term   B n can also be written as nB .  Two-way
reactions are written with the “double arrow” as

 A B Cn+ F (9)
The general syntax for generating ODEs from reactions is

interpret[r] (10)
where r is a list of reactions of the form

      

r reaction rates

reaction rates

= {{ , },

{ , }, }K
(11)

Several examples of the translation are illustrated in table 1.

Table 1.  Cellerator arrows for uncatalyzed reactions.

Reaction Syntax ODE Interpretation

  {S P,k}Æ ¢ = - ¢ = -S P kS

{A B C,k+ Æ } ¢ = ¢ = - ¢ = -A B C kAB

  {A B C,kn+ Æ } ¢ = ¢ = - ¢ = -A B C kABn

  {A B,kf,krF } ¢ = - ¢ = - +A B k A k Bf r

    {A B C,kf,kr+ F } ¢ = ¢ = - ¢ = - +A B C k AB k Cf r

  { A,k∆Æ } ¢ =A k

{B ,kÆ∆ } ¢ = -B kB

2.1.2 Catalytic reactions
By a catalytic reaction we mean any reaction in which one
molecule E (for “enzyme”) catalyzes the conversion S (for
“source”) into P (for “product”).  In the most generalized form,
an intermediate species (called SE) is formed,

  

S E SE P E
d

a k
+ Æ +F  (12)

where a, d, and k are rate constants.  The conversion of ATP
into ADP by PFKA in equation (4) is an example of such a
reaction.  The canonical form for a catalytic reaction is  

    {S P,a,d,k
E
F } (13)

which is translated into the canonical forms

  {{S E SE,a},{SE S E,d},{SE P E,k}}+ Æ Æ + Æ + (14)
and interpreted as already described.  If a second enzyme F
catalyzes the reverse reaction

  

P F PF S F
d

a k
+ Æ +F

1

1 1
(15)

we can either add a second reaction

    {P S,a1,d1,k1}
F
F (16)

or we can use the different notation

    

{S P a,d,k,a1,d1,k1}
F

E
F , (17)

to indicate all six reactions described by equations (13) and
(16).  If no intermediate compound is formed, we can write

{ , }S P k
E
Æ (18)

A summary of catalytic reactions is given in table 2.

Table 2. Cellerator arrows for catalyzed reactions.

Reaction Syntax ODE interpretation

  {S P,a,d,k
E
F }

¢ = - ◊ ◊ + ◊
¢ = ◊

¢ = - ◊ ◊ + + ◊ = - ¢

S a E S d S

P k SE

E a E S d k SE SE

( )

( ) ( ) ( )

{S P a,d,k,

a1,d1,k1}
F

E
F ,

     

¢ = ◊ - ◊ ◊ + ◊
¢ = - ◊ ◊ + ◊ + ◊

¢ = - ◊ ◊ + + ◊ = - ¢
¢ = - ◊ ◊ + + ◊ = - ¢

S k PF a E S d SE

P a F P d PF k SE

E a E S d k SE SE

F a F P d k PF PF

1

1 1

1 1 1

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

{S P,k}
E

Æ ¢ = - ◊ ◊ = - ¢S k E S P

  {S P}
E
a ¢ = +

+
= - ¢S

k vE S

K S
P

n

n n
( )

2.1.3 Transcriptional regulation
Several forms of transcriptional regulation are provided with
the left-bar arrow.  Although this operator is also used for
catalytic Hill functions, such operator overloading presents no
confusion because the overscript is never used in the
transcriptional form. The input canonical forms for
transcription is

    {A B, f[options]}a (19)

where f indicates the format of the regulatory function, and
options is a list of rules that define system parameters
(constants).  Regulatory functions currently available are:
hill (Hill functions); GRN (for Genetic Regulatory Network)
neural-network dynamics; and NHCA (for Non-Hierarchical
Cooperative Activation [8]) a form of pseudo-Monod-Wyman-
Changeux dynamics [10].  

2.1.3.1 Hill functions
A reaction of the form

    

{A B,hill[vmax v,nhill n,

khalf K,basalRate {r ,r }}0 1

a Æ Æ
Æ Æ

(20)

is interpreted as the differential equation
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¢ = +
+
+

B r
r vA

K A

n

n n0
1 (21)

The concentration of species A is not affected by the reaction.
If a set of  p reactions of the form

    
{{A B,hill[ ]}, ,{A B,hill[ ]}}1 pa L K a L (22)

where the hill options have been suppressed for clarity, the
differential equation becomes

¢ = +
+

+ +
=

=

Â
Â

B r
r v A

K r v A

i i
n

i
p

n
i i

n
i
p0

1 1

1 1

( )

( )
(23)

The set of parameters vi  are the connection strengths for the
corresponding neural network.

2.1.3.2 Genetic Regulatory Networks
A reaction of the form

{A B,GRN[RGRN R,TGRN T,

nGRN n,hGRN h}

a Æ Æ
Æ Æ

(24)

is interpreted as the differential equation

¢ =
+ - +

B
R

e TAn h1
(25)

Here T is the connection strength and h is the activation
threshold. The concentration of species A is not affected by the
reaction. If  we have a set of  p reactions of the form

{{A B,GRN[ ]}, ,{A B,GRN[ ]}}1 pa L K a L (26)

the differential equation becomes

¢ = + - +( )È
ÎÍ

˘
˚̇=

-
ÂB R T A hi i

ni
ii

p1 1

1
exp (27)

where the Ti  and the hi  are the connection strengths and
thresholds for activation of B by Ai .

2.1.3.3 Non-hierarchical Cooperative Activation
This type of regulation provides a non-hierarchical reduction
of the HCA (hierarchical cooperative activation, [8]) algorithm
that has been previously proposed.  A reaction of the form

    

{A B,NHCA[TPLUS T ,TMINUS T ,

nNHCA n,kNHCA k,

mNHCA M]}

a Æ Æ
Æ Æ
Æ

+ -

(28)

is interpreted1 as the differential equation

¢ = +
+ + +

+

- +B
T A

k T A T A

n m

n m n m
( )

( ) ( )

1

1 1
(29)

                                                                        
1 The plus (+) and minus (-) superscripts are actually not

allowed at the present time by Cellerator; the user would
have to specify variable names such as TP or TM (or values)
instead. Superscripts are used here to clarify the notation.
Elsewhere in this paper the same caution should be applied
to the (*) superscript and the various subscripts used on
variables. The subscripts would actually be indicated with a
square bracket notation, e.g. A3[t] would be written as
A[3][t].

where the T T+ -,  are the connection strengths for activation
and inhibition. Alternatively, the option   TNHCA TÆ
supercedes the TPLUS and TMINUS options,

¢ = +
- - + +

B
T T A

k T T A T T A

n m

n m n m
( ( ) )

( ( ) ) ( ( ) )

1

1 1

Q
Q Q

(30)

where Q( )x  is the Heaviside step function (see equation (73),
below). With a set of  p reactions of the form

    
{{A B,NHCA[ ]}, ,{A B,NHCA[ ]}}1 pa L K a L (31)

the differential equations (29) and (30) become

¢ =
+

+ + +

+
=

-
=

+
=

’
’ ’

B
T A

k T A T A

i i
ni m

i
p

i i
ni m

i
p

i i
ni m

i
p

( )

( ) ( )

1

1 1

1

1 1

(32)

and

¢ =
+

- - + +
=

= =

’
’ ’

B
T T A

k T T A T T A

i i i
ni m

i
p

i i i
ni m

i
p

i i i
ni m

i
p

( ( ) )

( ( ) ) ( ( ) )

1

1 1

1

1 1

Q

Q Q
(33)

respectively.  If competitive binding is allowed the syntax

{ A ,A , ,A B,

     NCHA[TPLUS {T ,T , }, ]

1 2 p

1 2

· Ò

Æ + +

K a

K K}
(34)

is used, where the NHCA options are specified as lists but are
otherwise identical to (28).  The corresponding differential
equations are

¢ =
+

+

+
=

-
=

+
=

Â
Â Â

B
T A

k T A T A

i i
ni m

i
p

i i
ni m

i
p

i i
ni m

i
p

1 1

1 1

( )

( ) ( )
(35)

and

¢ =
+

- - +
=

= =

Â
Â Â

B
T T A

k T T A T T A

i i i
ni m

i
p

i i i
ni m

i
p

i i i
ni m

i
p

1 1

1 1

( ( ) )

( ( ) ( ) ) ( ( ) )

Q

Q Q
(36)

respectively.  

2.1.4 Mass conservation
Because Cellerator automatically generates all of the terms in
all of the necessary differential equations no additional
constraints are needed to force mass conservation. However,
this will sometimes lead to the generation of redundant
reactions, which the user may want to suppress. For example,
suppose that A can exist in either of two forms, A and A*, where
the total mass of A A AT+ =*  is a constant, but that only the
activated form A* can be converted into B.  Biochemically we
could submit the reactions  

A A
k
Æ *

1
,  A B

k
*Æ

2
,      A A AT+ =* (37)

to Cellerator as:

  interpret[{{A AS,k1},{AS B,k2}}]Æ Æ (38)

The interpret function would return the following differential
equations:

    

{ [ ]  [ ],

[ ]  [ ]   [ ],

[ ]  [ ]}

¢ == -
¢ == -

¢ ==

A t k1 A t

AS t k1 A t k2 AS t

B t k2 AS t

(39)
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If we are not interested in the specific concentration of AS, for
example if it is not used elsewhere in the reaction schema, then
we can use the “complement” notation

  interpret[{{Comp[A,AT] B,k2}}]Æ (40)

which produces the single differential equation

      ¢ == -B t k2 AT A t[ ]  ( [ ]) (41)

The complement notation can be used in any Cellerator
reaction; the default total concentration is 1.

2.2 Domains and Fields
To provide an object-oriented representation of organisms-as-
graphs we have developed the concepts of domain and field.  A
domain, in analogy with the standard use of the term in
mathematics, is an object-oriented representation of the
mathematical domains that are relevant to solving a particular
scientific problem. A field is a representation of a function that
maps domains to the real numbers.  We instantiate a domain
by applying the expand function to it.  

For example, we can define the integer domains I n( ) , I m n( , ) ,
and I m n p( , , ) to represent the sets   { , , , }1 2 K n ,   { , , , }m m n+1 K ,
and   { , , , , }m m p m p m qp+ + +2 K , where q is the largest integer
such that m qp n+ £ , respectively. Then the expand function,

which we will denote by EEEE  in this paper, maps the object
representation of the domain to an implementation of that
domain, e.g.,

    EE[ ( )] { , , , }I n n= 1 2 K

              EE[ ( , )] { , , , , }I m n m m m n= + +1 2 K (42)

    EE[ ( , , )] { , , , , }I m n p m m p m p m qp= + + +2 K

Thus the expand function applies the implementation; in
actual practice we would generally never have to deal with the
expanded function itself. To see what a field is, suppose g i s
any function that operates on the integers. Then the field
operator, which we will denote by FFFF in this paper,

            FF RR:D DÆ ¥  (43)

associated with any function    f x D( ): Æ RR (here         RR denotes the
real numbers) generates a set of ordered pairs

    FF ( , ) {( , ( )) | }f D d f d d Di i i= Œ (44)

We will use the shorthand f D( ) for the set

    f D f d f f D d D f d d Di i i i i i( ) { | ( , ) ( , ),  } { ( ) | }= Œ Œ = ŒFF (45)

which we will call the range of the field corresponding to f.

To illustrate the concept of fields, suppose that D I= ( , , )5 19 3

and that f x x( ) = 2 .  Then

        EE[ ] { , , , , }D = 5 8 11 14 17 (46)

and

            FF [ , ] {( , ),( , ),( , ),( , ),( , )}f D = 5 25 8 64 11 111 14 196 17 289 (47)

f D[ ] { , , , , }= 25 64 111 196 289 (48)

Using fields one can also define composite functions that map
domains to the real numbers. For example, let   A Ã R  and

  f :R RÆ  be a function. Then we define the sum function

  S( , ): [ ]f A S R RÆ  (where S U[ ]  is the subset operator that
gives the set of all subsets of the set U)

S( , ) ( )f A f xx A= ŒÂ (49)

The sum function applies f to every element of A and then
sums the result; equation (49) might be read as “the sum of f(x)
over the set A.”  If D is a domain and we let     A D= EE[ ] we can
define the sum operator – which gives the sum of the function
f(x) over a domain D – as

            
f x f D f x yD x D y f D( ) ( , [ ]) ( )( ) ( )Â Â Â∫ = =Œ ŒS EE EE (50)

For example, letting g be the identity function ( g x x( ) = ),  

g x kI k( )( )10 1
10 55Â Â= == (52)

We next define a field of domains as a function that maps
domain elements to domains.  Generalizing equation (43), let A
be a set of domains

  A D D= { , , }1 2 K (53)

and let F D A: Æ  be a function that maps domain elements to
domains. Then we define the field of domains             FF :D D AÆ ¥
associated with F as the set of ordered pairs

    FF ( , ) {( , ( )) | }F D d F D d Di i= Œ (54)

and write

F D f d d Di i( ) { ( ) | }= Œ (55)

for the range of the field of domains corresponding to F.  

Fields of domains are particularly useful because they can be
defined dynamically.  In a developmental simulation, for
example, domains may be used to represent sets of cells.  We
will then often need to answer the following question: given
any cell in an organism, what other cells interact with it? We
can define a domain T   (for “Tissue”)  to represent a collection
of cells, possibly an entire organism, and let
A S T T T= =[ ] { , ,...}1 2  be the set of domains generated by

considering all possible combinations of cells in T. Then the
elements t TŒ  represent cells of T.   Each t  has associated with
it a set of other cells     Nbr t t T t t Ai i[ ] { | ,  }∫ Œ Œare neighbors .  
The mapping    N t T Nbr t A: [ ]Œ Æ Œ  gives us a neighborhood
function that tells us which cells are neighbors of other cells.
The corresponding field of domains             NN :T T AÆ ¥  formally
defines this as the set of ordered pairs         NN [ ] {( , ( )) | }t t N t t T= Œ ,
or more concisely, the range of     NN  is expressed as
N T N t t T( ) { ( ) | }= Œ .  It is possible to implement the

neighborhood field of domains via a potential function
operator V t ti j( , )  that is nonzero only when there is some

interaction between the two cells (we will give an example of
one such potential function in the next section).  We want

            NN [ ]t  to give us the ordered pair   ( , [ ])t N t ,   where

N t t T V t tj j[ ] { | ( , ) }= Œ π 0 (56)

We can now proceed to define dynamic operators.  Let

        g Ti:{ [ ]}EE RRÆ  be a function. Then by generalizing our sum
function (see equation 49), we can calculate a sum over
neighbors operator           gNNÂ  as
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g t g t g nn N tN t [ ] ( , [ [ ]]) ( )[ ][ ]Â Â= = ŒS EE NN (57)

to give the sum over all neighbors of t of the function g. To
illustrate the sum over neighbors, suppose that y ( , )t u  is the
electrostatic potential between cells t and u. The total
electrostatic yT t( )  potential at t is

y yT u N t
t t u( ) ( , )

[ ]
=

ŒÂ (58)

where N picks out those neighbors u of t that are not
electrically shielded from t.   

Within Cellerator we implement domains with uninstantiated
Mathematica functions; the expand function is perform using
up-values, e.g., the integer domain I m n( , )  is defined as

expand[intDomain[m_,n_]] ^:= Range[m,n] (59)

with similar definitions for the other domains. The notations
of pure function, Apply, and Map very nicely fit into the
concept of fields and operators on domains. However, this
formal presentation gives us a mechanism whereby  domains
and fields could be implemented with any computer language,
freeing us from the specifics of Mathematica.

2.3 The Organism-as-Graph Approach
In this approach a growing organism (or more likely, selected
tissue within a growing organism) is represented by a graph
data structure. In our usage, a graph is composed of three
things: a list of nodes, a list of links, and a lineage tree.  Each
node represents a particular cell; each link represents the
interaction between two cells; and the lineage tree records the
family tree of cell birth. The overall object hierarchy i s
illustrated in Figure 4. The shoot apical meristem illustrated in
Figure 1 gives an example of the spatial orientation of the
physical graph represented by this data structure.

molecules
odes
ic
time

model
position
odes
ic
time

embedding

spring

variables
odes
ic
time

embedding
models

node
nodes
links
lineage

graph

nodes
data
type
spring

link

Figure 4.  Structure of graph domains.

For example, a graph domain within Cellerator would be
represented as

g = graphDomain[nodes {n1,n2, },

links {l1,l2, },lineage T]

Æ
Æ Æ

K

K
(60)

Each node contains precisely one embedding and one or more
models,

  

n1= nodeDomain[embedding e1,

models {m1,m2}]

Æ
Æ

(61)

The embedding describes the location of the cell in Cartesian
coordinates, and an optional set of differential equations (and
corresponding initial conditions) that describe the time
evolution of those coordinates. In the simplest
implementation only a single point is needed to describe a
nodes embedding; however, there is no reason that additional
information, such as the shape of a cell and its geometric
relationship to other cells, could not be included.

      

e1 embeddingDomain[

position {x1,y1,z1},

odes {x1 f1[x1 y1 z1], },

ic {x10,y10, },time t0]

=
Æ

Æ ¢ ==
Æ Æ

, , K

K

 (62)

The time indicates when the initial conditions are applied.

Each node can contain one or more models.  Each model
domain contains a system of differential equations and
associated parameters that describe some aspect of that cell’s
signal transduction network.  In theory, one could put all of
the differential equations for a cell in a single model. In
practice, however, it would be more convenient to have
different models for distinct parts of the network.  The
differential equations in one model can refer to variables in
another model (in fact, they can refer to variables in another
node, as well).  For example, to describe cell division it might
be convenient to group the equations into separate models
representing the G1 checkpoint, the G2 checkpoint, DNA
replication, Mitosis, etc. For example, if we want the glycolytic
system r illustrated in figure 2, all we need specify is

  

{eqns,vars} interpret{r};

m modelDomain[

molecules vars,

odes eqns];

=
=

Æ
Æ

(63)

Options that are not specified take on default values; for
example, unspecified initial conditions and the initial time are
set to zero. If we had a number of nodes   n nk1, ,K , each of which
requires a glycolytic system, we would just add indices to the
variables, i.e., ADP becomes ADP[i], i=1,..,k. This process i s
easily automated.

The minimum information contained in a link is a reference to
two nodes, such as. l1 linkDomain nodes i j= Æ[ { , }]  In
Cellerator each node is numbered as it is added to the graph, so
the nodes are represented by those integers. Pointers could
also be used.  Additional information about the link can also
be placed in the data field.  Each link may also contain an
associated “spring” field that represents the dynamics of cell
growth.  These springs are used to define a potential function
(Figure 5) that is used to optimize the position of the nodes
after each growth step.  The potential function for a node ni  is

      
V k dij ij i j ijj= - -Â1

2
2(| | )x x (64)

where the sum is taken over all nodes n j  that are linked to ni ,

x i are the vector positions of the nodes, the kij  are interaction
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strengths (zero for non-interacting nodes), and the dij  give the

desired distance between the nodes.  The potential gets “turned
off” when the interaction distance becomes too large in some
sense; to prevent a discontinuity in the potential after cell
division we modify (64) as:

 V k c dij ij ij i j ijj= - - -Â1
2

2[(| | ) ]x x m (65)

where

c
d d

d dij
ij

ij
=

£

>
Ï
Ì
Ô

ÓÔ

1

0

,  

,  
(66)

dij

| |x xi j-

- m

d

V x xi j( , )

Figure 5. “Spring” potential (see equation 65).

The biological dynamics of growth are then described by
assigning a relationship between dij  and the model variables

in nodes ni  and n j . For example, suppose that the model

stipulates that a cell’s mass grows at a constant rate,
dM

dt
kMi

i=   ( M M ei i
kt= 0 ) (67)

and that we describe the cell as a sphere of radius Ri .  Then if
the density remains constant,

dR

dt
kRi

i= 1

3
  ( R R ei i

kt= 0
3/ ) (68)

then we might constrain the equilibrium spring distance to be
d R Rij i j= + (69)

if the cells are assumed to be touching. After each step, the
potential is then minimized (e.g., via gradient descent or
simulated annealing) to determine the new position of the cell.
For a  small number of nodes the optimization can be replaced
by adding a additional differential equations of the form

    

d
dt

Vi
ij

x
= -— (70)

This forces the solution to follow a gradient descent towards
the minimum of the spring function.  As a final note, the term
“spring” here is used because of the form of the potential
function, and does not actually describe position dynamics
(otherwise, equation 70 would be second order in time).  In
fact, equation 70 gives an exponential relaxation towards local
minimum, akin to the motion of a spring in a highly viscous
medium.

2.4 Variable Structure System
Biologically, the birth of new cells and the death of old cells
occur as a result of the concentration of some chemical species
passing a species. For example, the amount of ATP can fall so
low that metabolic processes cease (death) or the quantity of S-

phase promoting factor (SPF) may increase so high that DNA
replication is induced (birth).  In the first case, the number of
active cells in the system ceases to exist; in the second case, an
additional cell is added.  

It is easier to represent death than birth. We can assign an
indicator, or “aliveness,” variable Ik  to each cell k, where
Ik = 1 if cell k is alive, and Ik = 0  if cell k dies. Then if we
multiply the concentration of each chemical species x in cell k
by Ik , all equations for a given cell effectively disappear when
the cell dies. In principle we could do the same thing to
describe birth. However, this would require that we know in
advance the total maximum number of cells we would ever
want to simulate. We would never be allowed to exceed this
number.  Besides its inelegance such an algorithm could be a
computationally very expensive.  Thus we propose an
alternative mechanism to represent cell birth.

We assume that any change in the size of the system (i.e., the
number of variables and differential equations and/or the
values of corresponding initial conditions) is triggered by
some threshold passage.  Suppose that our system i s
composed of M+N variables, { } ,...,xi i N=1  and { } ,...,wi i M=1 ,

where each of the N variables xi  can trigger some event when i t
passes a corresponding threshold Ti , and there are M
remaining variables wi  in the total system. Then we define a
set of flag variables { , } ,...,y zi i i N=1 , where there is one pair of

flag variables for each trigger variable xi .  Then if the event i s
triggered the first time that x Ti i>  we force the corresponding
flag variables to satisfy the ODEs

dy

dt
x T yi

i i i= - =Q( ),  ( )0 0 (71)

dz

dt
y zi
i i= =Q( ),  ( )0 0 (72)

where Q( )x is the unit step function

Q( )
,  

,  
x

x

x
=

<
≥

Ï
Ì
Ó

0 0

1 0
(73)

A similar equation can be written if the event is triggered by
x Ti i< .  Then yi  increases linearly from zero whenever xi  i s
above threshold. Even if xi  falls back below threshold, yi  will
remain positive; it stays fixed at whatever value it had when
xi  falls back below threshold. The second new variable zi
increases linearly with time whenever yi  is positive. Thus zi
measures the total amount of time that has elapsed since
xi first passed its threshold.

These new variables are then used as follows. We submit our
entire system { , , } { },... ,...,x y z wi i i i N i i M= =»1 1  to a fixed-

structure solver for some time interval of length T.  Here T i s
the total duration of numerical integration, and is not the
integration step size, which is typically (several) orders of
magnitude smaller. We would chose T to have a magnitude
close to the expected time between triggering events (e.g., the
length of the cell cycle). Presumably the solver will return the
solutions to the differential equations (in the form of
interpolatable functions of some sort) over the time interval
( , )0 T .  Then we evaluate each of the variables zi  at the end of
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the solution interval (time t T= ).  If z Ti ( ) = 0  " =i N1,...,
then no even occurred.  Otherwise some event has occurred.
Since it is possible that more than one of the zi  are nonzero we
must examine them all to determine which one is the
biologically meaningful one, i.e., which event occurred first.
To determine this we calculate

z zk
i i N

i=
£ £
max (74)

Then xk is the first variable that passed threshold, and this
event occurred at time

t T zk= - (75)

So we accept the solution provided over the interval ( , )0 T zk-
but reject the rest of the solution, over the interval ( , )T z Tk- ..
We define a new set of initial conditions at T zk-  by
evaluating the numerical solutions for xi  and wi  at that time,
and setting y T zi k( )- = 0  and z T zi k( )- = 0 . We then add
whatever new variables are necessary to the system at T zk-
(along with their corresponding differential equations and
initial conditions). If some of these new variables can trigger
events we must also add whatever new yi  and zi  variables are
required to describe these new potential event triggers. Then
we have a new system with a larger number of variables. The
entire process is then repeated over the interval
( ,  )T z T zk k- -2 and is iterated as desired.

3. MIMIMAL DEVELOPMENTAL SYSTEM
The minimal developmental system can be illustrated using
Goldbeter’s minimal cascade for mitotic oscillations [3]. It
should be noted that any system of differential equations can
be used here, so long as there is at least one threshold that will
trigger cell division.  This particular system was chosen for
illustrative purposes because of its elegant simplicity. The
differential equations are

¢ = -
+

-C v
v XC

K C
k Ci

d

d
d (76)

¢ = -
+ -

-
+

M V
M

K M
V

M

K M1
1

2
2

1

1( )
(77)

¢ = -
+ -

-
+

X MV
X

K X
V

X

K Xm3
3

4
4

1

1( )
(78)

where C, M, and X represent Cyclin concentration (C) and the
fractions of active CDC2 kinase (M) and cyclin protease (X),
respectively, with the additional constraint that

 V
V C

K C
m

C
1

1=
+

(79)

All other parameters in the equations are constants.

The first differential equation (76) is straightforward; the first
and third terms are creation and annihilation of C,

    { C,vi,kd}∆F (80)

while the middle term is a hill-function annihilation of C
catalyzed by X:

    {C ,hill[vmax vd,khalf kd]}
X

a ∆ Æ Æ (81)

Equations (77) and (78) use implicit mass conversation; for
example, the first term in equations 77 is

    {Comp[M] M,hill[vmax V1,khalf K1]}a Æ Æ (82)

and so forth for the remaining reactions. The constraint (79) i s
enforced utilizing Mathematica replacement rules. The entire
set of reactions is illustrated in Figure 6.

gms = interpretA9
8« V C, vi, kd<,

9C # «
X

, hill@vmax Ø vd, khalf Ø kdD=,
8Comp@MD # M, hill@vmax Ø V1, khalf Ø K1D<,
8M # «, hill@vmax Ø V2, khalf Ø K2D<,
8Comp@XD # X, hill@vmax Ø VM3* M@tD, khalf Ø K3D<,
8X # «, hill@vmax Ø V4, khalf Ø K4D<

=E ê. 8V1 Ø VM1* C@tD ê HKc + C@tDL<;
Print@gmsD;
run@gms, timeSpan Ø 500, MaxSteps Ø 5000,
initialConditions Ø 8C@0D ã .1, X@0D ã .1<,
plotVariables Ø All,
rules Ø 8
K1 Ø 0.001, K2 Ø 0.001, K3 Ø 100, K4 Ø 100 , vi Ø 0.025,
Kc Ø 0.3, kd Ø 0.01, VM1 Ø 3, V2 Ø 1.5, VM3 Ø 1,
V4 Ø 0.5, vd Ø 0.25, Kd Ø 0.02

<,
checkConstants Ø False

D

99C£@tD == vi - kd C@tD -
vd C@tD X@tD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
kd + C@tD

,

M£@tD ==
VM1 C@tD H1 - M@tDL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
HKc + C@tDL H1 + K1 - M@tDL

-
V2 M@tD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
K2 + M@tD

,

X£@tD ==
VM3 M@tD H1 - X@tDL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1 + K3 - X@tD
-

V4 X@tD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
K4 + X@tD

=, 8C, M, X<=

100200300400500
0.05

0.15
0.2

0.25
0.3

C

100200300400500
0.1
0.2
0.3
0.4
0.5
0.6

M

100200300400500
0.08
0.09

0.11
0.12
0.13
0.14

X

88C Ø InterpolatingFunction@880., 500.<<, <>D,
M Ø InterpolatingFunction@880., 500.<<, <>D,
X Ø InterpolatingFunction@880., 500.<<, <>D<<

Figure 6. Cellerator arrows, generated ODEs, and results of
numerical integration for the mitotic oscillator (equations

(76) to (79)).  The interpret functions returns the differential
equations; the run function returns Mathematica

interpolating functions and/or code in SBML, C, FORTRAN,
MATHML, XML, or HTML.

The Cellerator run function will automatically perform a
simulation (numerically solve the ODEs using NDSolve) and
plot the resulting concentration profiles, as illustrated in
Figure 6. It is not necessary to interpret the reactions first; this
is done in Figure 6 merely for illustrative purposes. To
perform a simulation a graphDomain with appropriate initial
conditions (cell geometry, initial concentrations, ODEs) for
the system of interest is first created. The initial graph domain
for a single-celled system is illustrated in Figure 7; the initial
geometry for a multi-cellular system is illustrated in Figure
1.The second model Domain in Figure 7 implements the
variable-structure threshold described in section 2.4, with
variables splitflag and tsplit represnting y1 and z1
respectively.  The system can then be repeatedly integrated



9

using NDSolve, testing the values of the flags after each step.
Whenever a threshold is passed, a new node is added to the

g = unitGraph@odetype Ø local, threshold Ø 0.65,
returnPointer Ø FalseD;

TraditionalForm@gD

graphDomainJ

nodes Ø :nodeDomainJembedding Ø embeddingDomainHposition Ø 8xH1L, yH1L, zH1L<,
odes Ø 8xH1L£ HtL == 0, yH1L£ HtL == 0, zH1L£ HtL == 0<, ic Ø

8xH1LH0L == 0.114318, yH1LH0L == 0.864451, zH1LH0L == 0.235455<, time Ø 0L,
models Ø :modelDomainJmolecules Ø 8c1, MH1L, XH1L<,

odes Ø :c1
£ HtL == -

0.25 XH1LHtL c1@tD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

c1@tD + 0.01
- 0.01 c1@tD + 0.025,

MH1L£ HtL ==
3 c1@tD H1 - MH1LHtLL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Hc1@tD + 0.3L H1.005 - MH1LHtLL

-
1.5 MH1LHtL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
MH1LHtL + 0.005

,

XH1L£ HtL ==
MH1LHtL H1 - XH1LHtLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1.005 - XH1LHtL
-

0.5 XH1LHtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
XH1LHtL + 0.005

>,

ic Ø 8c1@0D == 0.282391, MH1LH0L == 0, XH1LH0L == 0<, time Ø 0N,
modelDomainHmolecules Ø 8splvH1L, tsplH1L<, odes Ø

8splvH1L£ HtL == qHMH1LHtL - 0.65L, tsplH1L£ HtL == qHsplvH1LHtL - 1. µ 10-8L<,
ic Ø 8splvH1LH0L == 0, tsplH1LH0L == 0<, time Ø 0L,

modelDomainHmolecules Ø 8massH1L<, odes Ø 8massH1L£ HtL == mu massH1LHtL<,
ic Ø 8massH1LH0L == 1<, time Ø 0L>,

nodeData Ø 8birth Ø 0<, nodeType Ø CellN>,

links Ø 8<, lineage Ø treeH1LN

Figure 7.  Cellerator graph structure for a unicellular
organism with a minimal developmental system.  The indices

on the variables indicate cell number.

Figure 8. Illustration of organism-as-graph with 20 cells.

graph.  The concentrations of C, M, and X are randomly split
between parent and child cell after each cell division so that
the total number of molecules remains fixed before and after
cell division.   Figure 8 shows a snapshot of the graph when
the organism has grown to twenty cells. (At the point
illustrated in Figure 8 the system had 354 links and 180
ODEs.)  Each time a cell divides, a new cell number (equal to
N+1 where N is the number of cells in the graph just before cell

division) is assigned to the child cell while the parent retains
its old cell number (the first cell is number 1).  the
corresponding node on the lineage tree is replace by a binary
subtree tree[parent,child]. The final lineage tree is illustrated
in figure 9. A different simulation would produce a differently
shaped organism because of the nature of the random number
assignments.

1 2 3 4 5 6

7 8

9 1011

12131415

1617

1819

20

Figure 9.  Lineage (family tree) of the simulation of Figure 8.

4. DISCUSSION
We have presented a graph-based methodological paradigm for
computational simulations in developmental biology. Multi-
cellular systems (organisms) are represented as graphs whose
nodes and links represent cells and intercellular interactions,
respectively.  This approach has a natural hierarchical
generalization that makes it very amenable to multi-scale
analyses: when more detail is needed, the data stored in a
graph node can be expanded into a graph representing the
intracellular signal transduction network (STN) of that cell.
Nodes on the STN are themselves progressively more detailed
signal transduction sub-networks, and so forth, down to a
single molecular species, if so desired. Because it would be
pointless to try to deterministically simulate every chemical
species in every cell at every time such a multi-scale approach
becomes essential.

The concept of a canonical form is central to the Cellerator
paradigm.  Although we have introduced a new terminology to
describe this process, the postulate that such forms exist
underlies any object-oriented methodology. At each level of
information processing, there are both input and output
canonical forms. The output forms can them be fed back into
the system as input forms for the next stage of processing.
How these are implemented are platform and language
dependent.  It is the canonical forms themselves that are
essential to the paradigm, not their implementation. One can
thus visualize a succession of canonical forms (Table 3).  The
various levels indicated in Table 3 are for illustrated purposes
only; the actual names and succession of levels is not a core
element of the paradigm.  Central to this visualization is user-
interaction at any level: the ability to modify not only the
initial cartoon figure but also the Cellerator arrows, the
biochemical equations, the DAEs (differential/algebraic
equations), etc.   We have described canonical forms for the
notebook interface and the translator in detail, and have
illustrated how they may be packaged into graphs for
developmental simulations.

We have also shown how the simulation kernel can implement
a variable structure system using a pre-packaged fixed



10

structure solver. At the present time, the Cellerator computer
program has a Mathematica notebook interface; we plan to add
a graphical user interface in the future.  There is also no reason
why the core translator could not be used with other front ends
as well.  

Table 3.  Canonical forms for different levels of the
Cellerator paradigm. STN: Signal Transduction Network;

DAE: Differential-Algebraic Equation; ODE: Ordinary
Differential Equation.

Level Input Form Output Form

Web
Interface

Web Database
Record

Graph-Representation
of STN

User
Interface

Cartoon Figure Graph representation
of STN

Notebook
Interface

Cellerator Arrow Chemical Equations

Translator Chemical Equations DAEs, ODEs

Solver DAEs, ODEs Numerical Solutions

Simulation
Kernel

Numerical Solutions
plus Graph

Modified Graph

In the past it has been necessary to manually translate
chemical networks into differential equations and then solve
them numerically.  Bhalla [1] has noted the need to
systematically study interacting pathways with a standardized
scheme, and has described several networks with mass-action
kinetics using the Genesis [2] simulator. A few other authors
have also proposed or implemented various forms of arrow-
based notations for biochemical simulations. Kohn [7] has
proposed an arrow-based system for illustrating complex
signal transduction networks. A network-to-graph
representation translation of such a design should be
straightforward to implement.  Ichikawa [6] has developed
palette-based graphical user interfaces for describing small
biochemical systems and translating them into differential
equations that can be subsequently solved with other utilities.
In addition there is a growing collection of tools under
development or that have already been released that can (or
will be able to) simulate signal transduction or metabolic
networks in a variety of specialized domains (e.g., BioSpice,
DBSolve, E-Cell, Genesis, Gepasi, M-Cell, Neuron, Stochsim,
V-Cell, XSIM; see [5] for references). A standardized, freely
accessible web-based database (such as KEGG) including all
necessary simulation parameters and associated information
that can be directly read into a user’s chosen biology
simulation workbench is still missing from the picture.
Common use of a standardized data transfer protocol such as
the systems biology markup language (SBML) proposed by
Hucka et al [6] would be a fundamental step towards allowing
these specialized tools to freely interface with one another.
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