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We present a phenomenological modeling framework for development. Our purpose
is to provide a systematic method for discovering and expressing correlations in
experimental data on gene expression and other developmental processes. The
modeling framework is based on a connectionist or “neural net” dynamics for
biochemical regulators, coupled to “‘grammatical rules” which describe certain
features of the birth, growth, and death of cells, synapses and other biological
entities. We outline how spatial geometry can be included, although this part of the
model is not complete. As an example of the application of our results to a specific
biological system, we show in detail how to derive a rigorously testable model of
the network of segmentation genes operating in the blastoderm of Drosophila. To
further illustrate our methods, we sketch how they could be applied to two other
important developmental processes: cell cycle control and cell-cell induction. We
also present a simple biochemical model leading to our assumed connectionist
dynamics which shows that the dynamics used is at least compatible with known

chemical mechanisms.

1. Introduction

In the course of growth, living cells undergo a variety of transitions: they can divide
to form more cells of the same or different type; they can produce fibers which form
synapses and contacts; and they can interact in various ways with nearby cells.
During these processes, the internal state of the cells may be changing. We believe
that it is possible to answer important questions about development without modeling
all aspects of the growth process at an equal level of detail. For example, we think
it plausible that important features of genetic regulatory circuits can be understood
in a model which treats mitosis as an elementary event. Moreover, we believe that
a phenomenological model of gene regulation can be inferred from observational
data without a full understanding of the underlying biochemistry. In line with these
ideas, we introduce in this paper a modeling framework for describing some of the
principal processes which occur in development. We describe a specialization of
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this framework to model the network of gene regulation occurring in the blastoderm
of Drosophila, for which considerable gene expression data is available. Initial results
from simulations of our model are compared to data in Reinitz et al. (1991). In this
paper we also show how the framework could be applied to model cell cycle control
and cell-cell induction, and we present a simple biochemical model of the dynamics
we assume for the genetic regulatory circuit, to show their compatibility with known
chemical mechanisms.

A configuration of a developing 2mbryo is specified by the number and internal
state of fundamental objects such as cells, nuclei, fibers and synapses. We wish to
model the transition between two such configurations. The model must describe
two kinds of processes: the change in internal state of the objects, and the discrete
change in the number and kind of objects. Our model involves selecting which kind
of process operates at each time for each object, the possible processes being specified
by the production rules of a recursive grammar, and what the internal state of the
resulting objects are, as determined by a connectionist model analogous to a neural
net. Since spatial information is as important as genetics in development, we also
model the effect of cell-cell adjacency by a connectionist network, and we discuss
mechanical motion briefly.

2. A Phenomenological Modeling Framework

Suppose we have a single population of primitive objects such as cells, nuclei,
fibers, and synapses. We represent the internal state of each object i in this population
by a vector v,. The components of v, are denoted v, indexed by a. For example,
the internal state of a cell nucleus might be given by specifying the concentrations
of a certain set of transcription factors; that of a synapse by membrane voltage,
internal Ca>" concentration, and a set of ionic conductances. To illustrate our
approach, we focus in this section on the case of a cell nucleus. A more general
formulation which can describe a variety of interacting objects is given in section 5.

A nucleus undergoes two classes of state transitions. During interphase its genes
are synthetically active and regulate one another; during mitosis the nucleus dupli-
cates while keeping its genome silent. The result is a pattern of regulatory connections
between the gene products. We represent the interaction of a pair of genes a and
b by a single real number T°®. This corresponds to a ‘‘synaptic strength™ (or
“‘connection strength™) in a “‘neutral network™ (or ‘“‘connectionist’’) model. The
collection of such numbers forms a connection matrix T. Characterizing the interac-
tion between two genes by one real number captures a notion commonly used by
geneticists that one gene activates or represses another (positive or negative connec-
tion strengths, respectively), or that two genes do not interact (connection strength
of zero). In addition, it allows for differing strengths of activation or repression
between genes. This idea is an extension of the observation (Muller, 1932) that most
of the alleles at a genetic locus can be ordered according to a scalar measure of
function, and that alleles that do not fall on this one-dimensional scale (neomorphs)
are rare.
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There may be many proteins b regulating the gene for protein a and thus
influencing the dynamics of v{. To make a tractable model, we will assume that
these effects are monotonic in the concentrations v’ and are approximately additive,
with non-linearity confined to sigmoidal threshold functions g,. So we assume that
the dynamics of v{ depend on the other variables v® through a summed input u;:

ul=y T’ +h°, (1)
b

where h® determines the threshold of g,. During the time when object i does not
participate in birth or death processes, which for dividing cells is called interphase,
we use a continuous time model of its internal dynamics. A simple model is the
neural net dynamics given by [cf. (Hopfield, 1984)]

dv?
dr

Ta— = &a(Ul) = AgV7. (2)
The long-time behavior of this system has been studied, and in some cases is
controlled by simple limit sets such as fixed points [v= g(u)/A]. In specific cases
there are further arguments justifying this form of the equation. In section 4 we
discuss a slight modification of eqn (2) which follows from a highly simplified
biochemical model of regulatory interaction via binding sites associated with each
of the genes in a genetic circuit.

Equations (1) and (2) comprise our connectionist model of the internal dynamics
of interphase, one of many processes involved in development. Other continuous
time and purely internal dynamical subsystems will be modeled in like manner,
with just the connection matrix T and the thresholds h* changed.

The connection matrix elements T°° and the threshold terms h° are regarded as
adjustable parameters, to be fit to biological data on patterns of gene expression or
other observable biochemical state variables. Such parameter fitting is generally
called “training” in the field of neural network learning, and has been extensively
studied. Consequently there are many algorithms to perform the fit (Rummelhart
et al., 1986; Mjolsness et al., 1989; Pearmutter, 1989) and several theoretical criteria
to determine when a good fit to existing data is expected to “‘generalize” and agree
with further data, as yet unseen by the training algorithm (Baum & Haussler, 1989).
In particular these issues were studied in the context of the recursive growth of
synthetic neural networks, under the constraint of parsimonious network description,
in Mjolsness er al. (1989).

In many situations the state variables (v{) are observable and it is possible to
perturb the system by an experimental manipulation that inactivates the chemical
species represented by a given state variable. In the case of gene products, a state
variable is inactivated by mutating its gene; manipulations for other types of state
variables include the administration of specifically acting drugs and toxins. In these
cases it will be possible to unambiguously compare the model to data. For a network
of N interacting state variables, the circuitry will be represented by a matrix of real
numbers having N? elements. For a given cell only the N state variables may be
observed, which is not enough information from which to obtain the N’ matrix
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elements. If we consider an ensemble of experimentally perturbed systems, each of
which contains one or more inactivated state variables, the problem disappears. The
key observation is that a cell with a single inactivated state variable is represented
by a connection matrix that has one row set to zero. This alters the dynamics, and
hence the observed values of the N state variables. Consideration of the unperturbed
system in conjunction with the N perturbed systems, each of which has a single
inactivated state variable, shows that there will be N’ pieces of data for N’
unknowns. Because it is often practical to inactivate two or more state variables at
once, additional observational constraints on the model are available.

We next consider birth processes such as cell division (mitosis). For some purposes,
we regard such processes as elementary events, which can be modeled with a discrete
time neural net update equation with its own connection matrix. Since the different
daughter cells of one parent cell are not necessarily equivalent, we use one such
connection matrix T, (with components Ti") for each of the progeny. We use
multiple index notation: if i is the index of the parent cell, then (i, k) is the index
of its kth daughter cell. [And ((i, k), /) would index the second generation descended
from i.] We then suppose that

vf,-_k,=v?+Raga(E T‘.i”v?+h“). (3)
b

This is a phenomenological model in which a birth process is modeled by an update
of a discrete time neural network. A simplified, linear version of this model was
proposed in section 4.1 of Mjolsness er al. (1990). An important special case is
obtained if T, is diagonal, and if g is linear and h is zero for all a. Then we can
specialize egn (3) to describe an important biological situation: unequal partitioning
of gene products among the progeny of a parent cell, with no further production,
gene regulation, or other genetic computation during mitosis:

vri‘.k!: Uzr?a (4)

where Uj; =0.

For a system which includes both interphase and cell division, eqns (2) and (3)
must be combined so that (2) operates continuously except at certain discrete times
when (3) is invoked. The same is true of any combination of continuous and discrete
time processes. After such an event, continuous dynamics (2) resumes for the newly
generated objects. This is shown in Fig. 1, a schematic illustration of the evolution
of a system that undergoes interphase and cell division (in addition to a discrete
type change transition, discussed in section 5).

Other processes which may be modeled in this way include axon sprouting and
growth (with an internal state vector for each axon segment), synapse formation,
and cell-cell induction. These processes each have a rule by which one or two
objects may be updated or replaced by several others. Processes that involve the
elimination of an object, or the interaction of two objects, will be modeled in section
5.1. Every developmental process that we model has a rule stating which types of
object are present at the beginning and the end of the process, and an internal
dynamics model like eqns (2) or (3). The set of such rules form a grammar I' in
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F1G. 1. Aschematicillustration of the history of the state variables v® under a combination of continuous
and discrete time grammatical rules. Time increases to the right; three generations of objects are shown.
Continuous time dynamics is denoted by the stippled horizontal axes; discrete time dynamics by the
stippled ovals. The solid black curves are graphs of the functions v7(1). The extreme right oval denotes
a type change; the other two are mitoses. The level of a state variable may change under the action of
a discrete time rule. Note, for example, that v'(1) is always above baseline before a mitosis and below
it afterwards. The daughter objects’ indices are i, and i, depending on generation number; in section
2 these are denoted k and [ respectively.

the manner of the Lindenmayer Systems (Lindenmayer, 1968). By a grammar, we
mean a set of rules by which a single object of a given type may be replaced by
one or more objects of the same or different types. The simplest grammars leading
to synapse formation, for example, would include type transitions among cells,
fibers, and synapses, each containing heritable state vectors. In general, the gram-
matical rule adopted by an object i at a given time ¢ will be a function of its state
vector v,(1), but note that we do not exclude the possibility that in some circumstances
the rule choice will be driven by an outside forcing term.

When augmented with geometric dynamics based on motion of cells and fibers
through a medium, we arrive at a class of models with three interacting sectors:
internal dynamics, grammar, and geometry. The result is a schematic framework for
modeling development.

In section 5, we present two classes of grammatical rules. One class contains
continuous internal dynamics; the other does not. A given state transition may or
may not be represented by a rule with internal dynamics; the choice depends on
the specific biological system at hand and the nature and quality of experimental
data available. For example, a change of cell type could be modeled by a discrete
time grammatical rule, or it could emerge from a network of genes settling to a
stable-state of expression. In the next section we use the second type of formulation
in a case where there is rich data on gene expression; but in section 6 we use a
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discrete time grammatical rule to model a cell type transition during induction in
a system where there is presently little gene expression data.

3. Application to the Drosophila Blastoderm

As a concrete example of the preceding formalism, we describe its application
to an exceptionally simple biological system, the blastoderm of Drosophila
melanogaster. Immediately following fertilization, the zygotic nuclei undergo a rapid
series of mitoses without the formation of cells. After eight almost synchronous
divisions, these nuclei migrate to the cortex of the egg, whereupon transcription of
the zygotic genes begins. This stage is called the syncytial blastoderm, because no
cells are present. After another five divisions, cell membranes are layed down and
gastrulation begins (Foe & Alberts, 1983). The timing of these cell divisions is under
the control of maternal gene products. The protein products of pattern formation
genes essential for laying down the basic body plan of the animal are expressed at
this time in patterns that rapidly evolve from coarse to fine scale spatial resolution
[reviewed in Akam (1987) and Ingham (1988)].

The Drosophila egg is approximately an ellipsoid, but asymmetries in its shape
clearly define two axes, each with a polarity. These axes provide co-ordinates for
the blastoderm as well. One axis runs in an anterior-posterior direction, and the
other in a dorsal-ventral direction. The pattern formation genes fall into two classes.
To a reasonable degree of approximation, the level of expression of a member of
the first class of genes is solely a function of location on the anterior-posterior axis;
these genes are members of the anterior-posterior class. The expression level of a
member of the second class of genes depends only on position along the dorsal-
ventral axis; these genes belong to the dorsal-ventral class.

The separation of these two classes of genes by expression pattern carries over
to their dynamical interactions. A member of one of these classes of genes does not
regulate the expression of a member of the other class during the blastoderm stage,
except perhaps in the region of the anterior or posterior pole. For the rest of this
section we focus on the zygotic anterior-posterior pattern formation genes, often
referred to as segmentation genes. The segmentation genes are dynamically coupled
in a network of genetic regulation. A line of evidence leading to this conclusion is
the observation that disabling one segmentation gene by mutation leading to this
conclusion is the observation that disabling one segmentation gene by mutation
causes changes in the pattern of expression of many of the other segmentation genes
(Carroll & Scott, 1986; Jackle er al., 1986, Rushlow et al., 1987; Frasch & Levine,
1987; Carroll er al, 1988; Pankratz er al, 1989, Reinitz & Levine, 1990). The
characterization of this regulatory network is one of the objectives of our modeling
effort. A precise formulation of the regulatory network is required to interpret altered
patterns of gene expression in terms of regulatory action. We call attention to related
studies of this problem (Meinhardt, 1986, Lacalli er al., 1988; Goodwin & Kauffman,
1990); our work differs in its emphasis on the regulatory circuitry. An approach
closer in spirit to ours is given in recent work of Edgar er al. (1989).
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We next describe how egns (1), (2) and (3) are applied to nuclei in the blastoderm.
Since we are only considering segmentation genes, we can approximate the blas-
toderm by a line of equally spaced nuclei along the anterior-posterior axis, indexed
by i in such a way that nucleus i+1 is immediately posterior to nucleus i. Each
nucleus i contains an internal state vector v{ whose elements are N protein con-
centration indexed by a. In this problem we use four grammatical rules. The first
rule describes mitosis. The second rule governs the change in internal state during
interphase; that is, the dynamics of gene regulation. Two additional rules govern
spatial interactions; there is one such rule for each of the nucleus is two nearest
neighbors. We allow the last three rules, which all prescribe continuous internal
dynamics, to operate simultaneously. The operation of these three rules and the
mitosis rule are mutually exclusive. Which grammatical rule to use at a given time
is set maternally, rather than being determined by the state vector v,.

We first consider mitosis. Nuclei in the blastoderm appear to undergo symmetric
mitoses, with equal partitioning of protein products in the two daughters. Moreover,
no synthesis of gene products takes place during mitosis. The grammatical rule that
represents this process makes two copies of a nucleus i, preserving the state vector
v?. It is easy to incorporate this rule choice into the dynamical calculation, since
it amounts to utilizing eqn (4) with U equal to unity.

Consider now the remaining two rules, one of which concerns spatial interaction.
We regard protein synthesis as a unitary process, and do not assign a separate
variable to the concentration of mRNA synthesized from the ath gene. Such a model
is a lumped description of both transcriptional and translational control. If these
nuclei were isolated from one another, we could describe the time evolution of the
concentrations of segmentation gene products by eqns (1) and (2), with 1/7, = R,,
the maximum rate of synthesis from gene a. The situationisin fact more complicated,
because there are no cell membranes in the syncytial blastoderm and nuclei may
exchange material. This can still be treated using eqn (2), but we must modify egqn
(1) to reflect the added spatial interaction.

First, introduce

=Y T*v’+h“ (5)

b

The corresponding concentration variable may be called w® and evolves according
to
dw!
dr
Let 7. be very small compared to any other time scales in the network, so that on
the time scale with which the v variables move, each w adapts instantly to the fixed
point value appropriate to the current v variables:

“‘f=8a(z Tabvf"*‘ha)- (7)
b
To write eqn (1) in a form that allows a diffusion-like exchange of gene products, set

ul =Y Av]+wl, (8)

U=l
1

Tw +wi =g, (u7). (6)
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where A is a matrix which describes a chemical coupling between blastoderm
nucleus i and other blastoderm nuclei j, and the wi term specifies a direct input
from w® to the corresponding v?. We take A, to be of the form

D
A"j=F[(61—11_8rj)+(65+b_5(}')], (9)

where the parameter D is to be fit to data, and §, is the Kronecker delta. Note the
presence of two terms, one for each nearest neighbor. Spatial geometry enters
explicitly through [, the distance between a neighboring pair of nuclei. Every time
a synchronous nuclear division takes place, I will decrease by a factor of two. Hence,
we may write D/IP = D(n), where n is the number of nuclear divisions that have
taken place, and D(n)=4D(n—-1). D(0)= D, the adjustable parameter of eqn (9).

When substituting eqn (5) into egn (2) we take g, = &iin for all a, where g;;, 1s @
special thresholding function equal to a line with unit slope throughout the dynamic
range of u. We expand eqn (2) in terms of this definition of u to obtain explicit
dynamical equations for interphase:

dvf X o

di = Raga( E Tahv? + ha) + D(")[(vl—l - U?) +(vf+l - U?)] - ’\av? . (10)
b=1

Note that the simultaneous application of three rules is expressed by placing a term

for each rule into the expression for u;. This is an illustration of our method for

treating multiple rules, the general formulation of which is presented in section 5.

4. The Connectionist Model from a Molecular Viewpoint

In this section we show how molecular and thermodynamic arguments applied
to biochemical reactions could lead to a “‘neural net” equation similar to eqn (2).
Figure 2 illustrates the reactions considered. A solution contains several species of

Row materials Species 0

Producer for species @

FIG. 2. An illustration of one possible microscopic realization of the biochemical model presented in
this section. The producer for species a is represented as a stable transcription complex (diagonal stripes)
bound to DNA (horizontal line). The DNA contains enhancer/silencer regions (heavy bars); these may
be occupied by other species b and c.
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protein. The concentration of species a is v® =[a). At much lower and fixed
concentration [P°] are the molecules responsible for continuing production of
species a. In fact we assume that the concentration of any producer molecule is
much smaller than the concentration of species a. Each producer molecule has an
associated set of binding sites which can influence whether it is in a productive or
non-productive state. The occupancy of binding sites is a mechanism by which one
gene can activate or repress another.

The processes illustrated in Fig. 2 occur on three distinct time scales. The slowest
time scale, here treated as infinitely long, governs the concentration of producer
molecules for each species as well as the concentrations of raw materials available
for synthesis of new proteins and the concentrations of the decay products of these
proteins. For present purposes these are all held fixed. At an intermediate time
scale, the concentration of species a is increased by the action of its producer
molecules, and depleted as a result of chemical reactions not involving other modeled
species:

dv a3 [P%in prodgcmg State]—.\;u". (1)
dt [P?]

Two processes occur at a fast time scale. The producer molecule P“ switches
between producing and non-producing states in a manner which is correlated with
the occupancy of its binding sites. Also, each of m, binding sites can independently
change its state of occupancy by exchanging proteins with the solution. Each binding
site can be unoccupied, occupied by a single molecule of species b, or occupied by
one molecule of species b together with one molecule of species c¢. These two
processes are assumed to occur fast enough that they are in thermal equilibrium at
the intermediate time scale. This thermal equilibrium is described by the grand
partition function [generalized from Hill (1985)]

Lo KX+ v, (12)
where
x,=1+Y T%p®+¥ T, (13)
b be
and
ya ___1+E f—ﬂbvb_*_z f‘ab(rbur. (14)
b be

In the above equations K, is the equilibrium constant for the transition between
producing and non-producing states of P° T is the binding constant for species
b to one of the binding sites on the producer molecule for species a when it is
productive. T4 is the corresponding binding constant when this producer molecule
is non-productive. To model double occupancy of a binding site by species b and
¢, one introduces non-zero binding constants T“%. Zero binding constants corre-
spond to prohibited configurations, and there may be many such zero elements in
a sparse matrix T. All the binding constants T, equilibrium constants K, and
concentrations v are positive or zero. If T*" > T then b “activates™ the production
of a, and if T°® < T° then b “‘represses” the production of a.



438 E. MJOLSNESS ET AL.

We are now able to compute the fraction §, of as producer molecules which are
in the producing state:

8(v)_[P"inproducingslatc]_ Kox7e  Ka(xa/ya)™
‘ [P°] Koxie+yde 1+ Ka(xa/ya)™

(15)

This equation applies at the same intermediate time scale as eqn (11) and defines

a dynamical system. As we shall see, it can be interpreted as a ““neural network™

model. To place it in a biochemical perspective, we point out that the related equation
Kc™

8(c) = —— 1
(O =17k (16)

is well-known as the ““Hill equation™ in the special case that c is a single concentration
variable. The Hill equation is often used to model co-operative binding systems, an
application in which it has a limited domain of validity (Hill, 1985). Our eqn (15)
is not such an application since the binding sites on a producer molecule are
independent and c is a ratio of low-order polynomials rather than a single variable.
Both the Hill equation and eqn (15) must be modified if one generalizes from an
equilibrium to a steady-state model, which we will not do here.

In the absence of all repression (i.e. if 7% =0 and 7°" =0) the connection to
neural net models is especially clear. No repression implies y, =1, and therefore

5, = gu(x,) = —RaXe” (17)
= X =
a gr.} a 1+Kax::~
Equation (11) is simplified to
de” L
Ta Ty =ga(l+z T v +% T""‘vbv‘) — A7, (18)
b be

(where 7,=1/R, and A, = A,/ R?) which is a minor variation on a standard equation
of motion for an analog neural network, generalized from Hopfield (1984) by adding
T°" terms. With u® =g '(A,t,), this equation has the form

du” _ _
Ta +u’=1+Y T "+3 T 0" . (19)
dlr b bc

The two sets of neural net equations have the same fixed points and differ only by
whether the input, u, or the output, v, decays exponentially to its fixed point value.
Unlike most neural network models, the network of eqn (18) has no negative
connections; such connections require that the form of the differential equation be
modified as follows [from eqns (11), (13), (14) and (15)]:

1+Z Tabvb+E Tah('b_buf
b be

= &a — A 0% (20)
1+Z fahvh_*_zfablvbvr
b be
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Equation (20) is our connectionist model. Note that a positive 7 in this equation
has a similar effect on the argument of g, as would a negative connection strength
T4 in eqn (18). For small values of £, T*v” and T, T**v"v® the two alternatives
are indistinguishable.

We have assumed that the different producer molecules act independently during
equilibration at the fast time scale. Their only interaction at that time scale is a
competition for binding site occupancy from a common solution. This interaction
is negligible because binding to each species of producer molecule has negligible
effect on the solution. That is because there are many fewer binding sites than
potential binding site occupants ([ P]« [b]) so that even when all binding sites are
filled, there is no change in gene product concentrations [b].

In order to make the picture we have presented a little more concrete, as illustrated
in Fig. 2, we might identify the producer molecules P° with transcription complexes
attached to the promoter of the gene coding for gene product a. The binding sites
would correspond to enhancers and/or silencers associated with the gene for a.
Control of protein synthesis at the level of the translation of mRNA to protein is
not included in this picture. The protein species a are participants in a network or
circuit of gene regulation, consisting of activation, repression, production, and decay
processes.

5. Recursion Equations

The formalism presented in section 2 can be developed further so as to describe
more complex situations than we have previously considered (e.g. section 3). In
this section we outline the extended formalism, treating internal dynamics, grammar,
and geometry in turn, without however, attempting complete biological generality.

5.1. INTERNAL DYNAMICS

Equations (2) and (3) must be modified so that they apply to each object which
has actually been created during development, and so that they apply to state
changes arising from cell-cell induction, axon sprouting, or any other processes in
the grammar I'. We indicate how the processes associated with many of the rules
in a developmental grammar could be jointly modeled, at a phenomenological level,
with continuous- and discrete-time neural nets.

The symbols appearing in the modified equation are indexed as follows. An object
existing in the nth generation of a population is indexed by i. The abstract “‘object
index” i is generally interpreted as an ordered sequence of indices i,, ..., i,, which
uniquely identifies each object in terms of its lineage. Thus object is parent is
associated with the sequence of indices ij,...,i,—,. In the case of mitosis, each
index i, can take on only two values, corresponding to each of the two daughter
cells. If these values are represented by 0 and 1, each object has a unique numerical
identifier, the binary representation of which describes that object’s lineage. For
example, suppose that i = 17 for some cell. The binary representation of 17 is 10001,
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indicating that this cell is a member of the fifth generation. Now suppose that this
cell undergoes mitosis. Then the object for the two daughter cells will be i =34
(binary 100010) and i =35 (binary 100011). Even simpler interpretations of i, such
as the position co-ordinate of the object, may be useful in special situations. There
is also a rule index r, specifying which rule of the grammar is under consideration,
and an object type index a which encodes the alternative object types: cell, synapse,
fiber compartment, etc. The state vector v, is indexed by a as well as i: v, - A
state vector history is shown in Fig. 1.

In the modified equations we introduce two new dynamical variables A and C.
The first of these is an array A; ; (1) of 0/1 values. A, .(1)=1 if and only if
an object of type a and lineage i,,..., I, exists at time t. C/(1) is also a variable
taking 0/1 values, which is 1 if and only if object i uses grammar rule r to change
its state at time 1. The elements of the connection matrices T.,T.,T., and T, are
parameters to be fit to biological data, and each grammatical rule r has its own
matrix of such parameters. Naturally one must ensure that the grammar used to
model a biological data set of size d has fewer than d free parameters; therefore
sparseness in the T matrices and in the grammar is favored.

We also introduce a set of sparse 0/1 arrays I' to describe changes in object type
under the action of grammatical rules. In general, a biological object such as a cell
or synapse may undergo a variety of transformations. It may be born from a parent
or it may die. Between birth and death its internal state will change as a result both
of internal dynamics and by interactions with other objects of the same or different
type. The grammatical rules described by the set of I's permit all of these events to
be represented mathematically. Birth and death processes are represented by discrete
time rules only; changes in internal state and interactions with other objects may
be represented by either continuous or discrete time grammar rules. These
possibilities taken together amount to six classes of rules. These classes of rules are
illustrated in Fig. 3; we now discuss them in detail.

The input and output types of the continuous time rules are described by the
arrays [ -, and [4..; those of the discrete time rules by the arrays I'z, I'g.ai .,
I'z.,and I'g, ... Each array contains constant 0/1 values describing the input and
output types of the rth rule of the grammar; the input and output types are separated
by a semicolon in I's set of subscripts. For example, Itf,..,, is zero unless rule r
describes an interphase-like process with one input and one output object, both of
the same type. For that value of r, {7 .=1and all the other I'"s are zero. Similarly,
the death of an object is specified by the rule I', which has no output type. Birth
may involve the creation of several objects of different types; it is specified by
I's..i,., - Here the extra index i,., following the semicolon is the lineage index for
the newly created objects. Events between birth and death may involve either
continuous or discrete time rules; these rules may act on one or two objects.
Continuous time one-object rules (like interphase) do not alter an object’s type «a
or name i; they are specified by f“;;a. Discrete time one-object rules, in which an
object of type B is transformed to a new object of type a, are specified by [gao. It
often occurs in the combined expression I'j.,8, . o Which is a special case of I'g.ai .,
that enforces the requirement that only one object, indexed by i,., =0, results from
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Discrete time rules:

a /,:0
(a)Birth Vg o, .=l
a f,=b
( b) Death L —>——@ rs=!
{ ¢) One object: & > *—> a Ts,r!
Vo4 >»—P—> a
(d) Two objects 0 o0
> > i > e
Continuous time rules
(e) One object: a - > a Ty at!
a > a
(f ) Two objects: T T T rc;ﬁ;a =
E : H H H :_.__ ﬁ

FiG. 3. A diagrammatic representation of the six classes of rules, together with the associated I’
component which is equal to unity if that rule is chosen. In each diagram, the time axis runs in a
horizontal direction, and a space axis in the vertical direction. The arrowheads on the solid lines point
in the direction of increasing time. The dotted vertical arrows represent a spatial interaction: continuous
time rules by three such arrows, discrete time by 1. The dotted arrows point in the direction of the object
which has chosen the illustrated rule. A discrete time rule is represented by a filled circle; a continuous
time rule by a pair of arrowheads on a solid line without an intervening filled circle. The input and
output object types are indicated on the left- and right-hand sides respectively of each diagram. In (a),
more than two branches could occur; the branches have lineage indices i, ranging from 0 to b.

the rule. Note that a type change always implies a change of object index, although
for rules not describing birth this change simply requires appending a zero to the
object index of the parent. A

Similarly there are two types of two-object rules. A rule specified by =3.a Specifies
an object of type a interacting with an object or objects of type S with no type
change of a. For the interaction of two objects with a type change, we assume for
simplicity that only one new object can be created (i.e. i,., has only one value
which we may call 0). Thus, a rule describing a process where an object of type
is induced by an object or objects of type v to transform into an object of type a
is specified by I's, ... It often occurs in the combined expression I'g,..8,, . 0 which
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is a special case, limited to the alteration of one object, of an exceedingly general
I" array not required by our grammars: I'g, ., .-

A, C and T are responsible for selecting which connection matrix T and which
state vector v are used to produce the new state vector v, ,. They do this by multiplying
all but the selected T and v by zero, in a sum over all the possibilities. In an efficient
computer implementation of this model, A, C and I should be stored as sparse
arrays so that terms which are multiplied by zero are never actually computed at all.

To minimize the number of indices appearing in this section’s equations, we will
uniformly use boldface matrix (e.g. T) and italic/boldface vector (e.g. v) notation
to suppress the a and b indices that are explicit in previous sections.

Taking into account the above remarks, the required modification of eqn (2) can
be written as

dv,,
T, ——=A[8U.)—Al.], (21)
dr
where
w,=YCIl,.T.v,+XC/Y [ oYX ATh. 05+h,, (22)
r r B _,l'

and i=1,,...,i,. Thatis, the input to the dynamics for v,, includes an adjustable
threshold h,, the current state vector of object i multiplied by a suitable connection
matrix describing the interactions of different species v within object i, and similar
matrix-vector products for each neighboring object j with which i is interacting
according to relevant rules of the grammar, modified by a geometric structure factor
A, between objects i and j. An example of the specific application of the term for
interactions with neighbors can be found in egn (8), where T3™*°" is the identity
matrix. Note that if A, =0 in eqn (21) (so that object i if it exists at time t, is not
of type a) then dv,,/dt=0; in fact we will ensure that A, ,(1)=0=>v,, =0. Con-
sequently we can use the notations A, =) _ A, and v, =Y v, for the existence
and state vector of object i, regardless of its type.

Discrete time dynamics for mitosis was given in eqn (3); this equation can be
generalized to cover any discrete time grammar rule acting at time t to produce
new objects an instant later, at time 1+ A4r:

v, et FAD=A L FAD[e, () +Rg(u, maral)] (23)
where at time ¢
Ui  iyya™ E C: Z r;a-,m,‘*,T;af,,” Ui i B
r B
+Z C; E r;;-.ua:',,,,,oT,Ea Ui B (24)
r B
+z C: Z rrﬁy;aai,,ﬁﬂz f\l'jAr'l ..... i B Trﬁ‘]f . v_f.}'+ha'l
r By J
and again i=1i,,..., i, Here, the input to the dynamics for v, includes the

adjustable threshold h,, as well as three additional terms. The first term is a birth
rule involving the state vector of object is parent, which was of type B, multiplied
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by the relevant connection matrix as determined by the choice of discrete time
grammar rule r. Note that the connection matrix in this term is indexed by both B
and i,.,. This is necessary because each object born by this rule will in general
have its own connection matrix. The second term is a one-object rule by which
object i changes from type B to type a. Note that the connection matrix in this
term is indexed by B only, and not by i,.,, since only one new object is involved.
The third term is a two-object rule in which an object of type B is induced to
transform into an object of type a by interacting with one or more objects of types
v. The state vector of the inducing objects j of types y are each multiplied by the
appropriate connection matrix Tg,, which must be selected not only by the rule r
and inducing type 7y, but also by the existence variable A, ., g, which picks out
the appropriate parental object type for the connection matrix. The death rule I';
is not included in egn (24), since it exerts its effects solely through the dynamics
of A, .. These equations do not yet determine A,., C|, or A,, whose dynamics we
consider next.

5.2. GRAMMAR

The set of objects existing in the nth generation at time 1 is specified by the set
of A, . .(1) for all possible lineages. In conjunction with the grammar I" and the
choice C| ., (1) of grammar rules to be applied at time 1 to an object of generation
n, A, . (1) determines which objects exist subsequently. The dynamics of A is
given by:

A, a+An=YC o (0FLLAL L ()

+E C:'] .AF.,(I)E r;i:m,,_lAn‘ ..l,,\B{r)
B

r

+@[Z Ch .. .”(f)(i [+ I‘gm)6,,_,0/4‘1____‘,-,”,3(r’)], (25)
r B B>

where the function ©@(n) =0for n=0,0(n) = 1for n> 0. In this dynamical equation,
the first summand represents a one-object continuous time rule where no new objects
are created. The second term represents a birth rule, while the last two summands
represent a change of object type respectively by one- and two-object discrete time
rules. Continuous time two-object rules do not figure in this equation because they
have no effect on the number of interacting objects. Death rules are not explicitly
listed either, but choosing a death rule will force the right side of the equation to
vanish by virtue of the constraint egn (26), introduced below. The use of © insures
that A will only take on the values 0 or 1.

We place two constraints on A. At a given time, an object can belong to only one
generation,so A, (1) =1implies that A, . (1)=0form<n.Ifaparent biologi-
cal object (indexed by i, ..., i,_,) actually survives the creation of its progeny, we
simply relabel it as one of the progeny (conventionally with index i,=0) and
consider the old object to be non-existent, so that A, i ,=0.The constraint that
a given object be of only one type at a time is expressed by A, =Y A,,€{0,1}. In
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the Appendix we show that these properties are preserved by eqn (25). With respect
to v, note that for fixed i, v, , is non-zero for only one value of @, sothat v, =}, v,,.
Since A, , multiplies v, , in eqns (21) and (23), this fact is preserved by the dynamics
of v.

At each time, each object i is subject to one or several grammar rules; this choice
is encoded by the C/ variables. We place certain constraints upon which combina-
tions of rules can be selected at a given time . For simplicity, we allow only one
birth or death rule to operate at a time. An object typically changes state according
to its own internal dynamics and through interactions with a number of neighbors.
Hence, we allow any finite number of continuous time two-object rules to operate
simultaneously, but only one continuous time one-object rule. Similarly, any finite
number of discrete time rules with one output object may operate simultaneously,
but they must all have the same output type a. This condition places a constraint
on the dynamics of C in terms of A, expressed by requiring

r r
A= L C.+E@[ ) C.]
r=birth rules o r=discrete time one- and
from 3 two-object rules from B—a
+ Y Cl+ Y C!. (26)
r=death rules r=continuous time,
from 38 one-object rules from 8

The use of the function O, introduced in egn (25), expresses the idea that any
non-zero number of discrete time rules can be chosen, as long as they all produce
the same type of object. As with eqn (25), two-object continuous time rules are not
enumerated in (26) because they do not affect the number of objects. Equation (42)
in the Appendix is a completely explicit formulation of (26) above.

The dynamics of C" can be summarized by its effect, which is that each C’ has
an associated strength S’, computed locally at object i, and the decision as to which
rule to invoke goes to the se:i of variables with the greatest summed strength. This
procedure can be expressed as the optimization of an objective function: For all
existing objects [at a given time ¢ and for all i for which A, (1) # 0], optimize

E[C]=1 CIS, (27)

subject to the constraint (26).
The entire model would be complete if we knew the rule strengths S7. Each object

i of type a has for each value of r a rule strength
Si=2 8 aAias (28)

where
er_a =0a- S:, + 8; +E .\,‘j(v,.a . s:,ﬁ . v“g +Srﬁ . Q,_ﬁ). (29)
iB
The connection between the rule strength S| for object i and that object’s state
vector v, is encoded in the strength connection s, , while 6., is that part of the rule
strength not dependent on the state variables. For example, suppose s, is a unit
vector with just one non-zero component, and 6;, and the other ss are zero. In this
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case S’ is the size of the corresponding component of v;, s0 that the concentration
of just one protein within object i determines the strength of a rule in the grammar
at that object. 8/, often occurs as a threshold; two biological situations where this
is the case are discussed in section 6. The part of the rule strength S| for object i
depending on interactions with other objects j is given by the sum over j and B in
eqn (29). In this sum there is a contribution from the interaction of the state vectors
of objects i and j controlled by the strength connection matrix s.g, as well as
a contribution directly from the state vector of object j, mediated by sg. All
the contributions to S| from other objects j are modified by a geometric structure
factor Aj.

The parameters s., 0., Sas, and s} are analogous to the connection matrices T
and the thresholds h, in that they are to be learned by fitting to biological data.
The term of eqn (29) containing s,z is motivated by a quadratic mass-action model
of a number of reactions between chemical species from objects i and j. The terms
containing the strength connections s, and s, may be thought of as reactions between
chemical species specifying the state of object i or object j respectively and other
chemical species in the respective objects which do not participate in the regulatory
circuit and whose concentrations remain constant.

5.3, GEOMETRY

The dynamical interactions of the fundamental objects that constitute a developing
organism will be influenced by the arrangement of these objects in space; likewise
the dynamics will influence the spatial organization. To treat this problem, we
consider the coupling of spatial geometry to the internal dynamics and grammatical
sectors of the model. Geometry enters the model only in eqns (24) and (29), through
the geometric structure factor A; between two objects i and j. It is necessary to
include the dynamics of A, in any application, or the model will be incomplete and
incapable of being simulated or fit to biological data. Our phenomenological model-
ing framework would be best advanced by a generic, approximate, and heavily
parameterized model of the dynamics of A, such as the model just described for
internal state changes and object birth and death according to the rules of a grammar.
As yet, we have not developed such a model.

This problem was circumvented in the blastoderm model of section 3 by using
an application-specific, non-learnable geometric factor for A, that results from the
physics of a discrete diffusion operator and a very simple geometry of cell division.
The fact that geometry influences the rest of the model through A, encourages such
a simple strategy in biological situations where the relevant geometry is already
well-understood and modeled. Otherwise, one needs the missing generic,
phenomenological, and tunable equations for A,. In this section we present a
preliminary sketch of dynamical equations for A, which is, unfortunately, too
simplified to model actual biological development.

The idea of this model is that A is directly determined as a simple function of
the relative positions and a small set of shape variables p, and p, (such as centroid,
orientation and aspect ratio) for objects i and j. These position and shape variables
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are governed by a differential equation involving mechanical forces, which are
determined by A, and by the internal state variables v, , of the relevant objects. A
discrete time grammar rule must also determine the new geometric and shape
variables in terms of the old ones.

Since Y, A, €{0, 1}, we can define the geometric structure factor between objects
iand j as A=Y .5 AiaA;sAia s (Only one summand will be non-zero). A simple
choice would be to assume that it is a function of the relative positions x; and shape
variables p, of objects i and j, such as Ay, jz = Aap(xi—x;, pi, p;). (This also allows
the A, dynamics to depend on object type.) To prevent the number of shape
parameters from growing large, we assume that extended objects such as axons are
modeled as interacting collections of elementary shapes such as cable segments. An
even simpler choice would be to assume that A, is a function of the relative positions
alone, A, 5 = Aas(x,—x;). Then the model would again be complete if we knew
the geometry of the objects as specified by their positions, x;.

Spatial information can be incorporated into the model by specifying an equation
of motion for the center of mass x, of each object. For the present we assume a
“slow-motion” or “viscous-dominated” approximate dynamics:

dx
—_— F,, 20
a7 (20)
with
F;‘ — Ff’ontaCl+ F?lher. (31)

contact
F,

We think of the two indicated contributions to the force as follows: results
from gradients of adhesion, morphogens, and in general any state-vector-dependent
force between two objects, and F{'""*" summarizes other forces not discussed here.
We also impose detailed force balance: 3, Fi™ =0. Consequently any background
or substrate objects will have to be explicitly included in the model.

A state-vector-dependent force between two objects, such as an adhesion or
morphogen gradient, is determined by a quadratic form involving the two state
vectors:

Fomet =V, a,(x),
where
a:(xl)zza!_;“\ﬂli}.ﬁl_ll(xi_xj)s (32)

J

and

ar_; = Z Uia. Qaﬁ . vj.ﬁ'
ap

Here a,(x,) is a potential energy, and its gradient is a mechanical force. Note that
A, symmetrizes a; and therefore detailed force balance is satisfied for Fo™*. The
parameters Q, are to be trained on biological data.

Once again we caution that these equations are only an illustration of the
possibility of a generic, phenomenological and learnable model for the geometric
structure factors, not an example of one. For example the much more complete
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cell-cell adhesion models reviewed in Bell (1988) would not easily be approximated
by eqn (32).

6. Notes on the Use of the Formalism

In this section we discuss a few mechanisms which are known to be important
in biological development. We show how these interactions can be expressed in the
modeling framework outlined in section 5.

Recent advances in the understanding of cell cycle control in Drosophila (O’Farrell
et al., 1989) indicate that the decision to enter the mitotic cycle is governed by the
level of the product of the string gene, such that whenever the concentration of
string product is above a critical threshold, the cell enters mitosis. The level of string
product is itself under the control of pattern formation genes (O’Farrell et al., 1989).
This situation can be modeled as follows. Consider a single nucleus (i.e. fix i and
a). In eqn (29), set the strength connections s for mitosis to be

o 1 iff a=strin
armmitoss - { e (33)
0 otherwise.

For interphase,

gar=interphase = 0 for all a. (34)

Then egn (29) becomes
ST = Ul (35)
ST = BN, (36)

where @'M€Phas¢ ¢ the threshold above which string initiates the mitotic process,

nucleus

and 8™ = (. We maximize eqn (27), which now reduces to

nucleus

E[mitosis and interphase]= Y C/S]. (37)
r=1

Since we already assumed the existence of nucleus i, constraint (25) is satisfied.
Because C™°** is a birth rule, constraint (26) dictates that only one of the two Cs
in eqn (37) can be equal to 1. Hence, maximizing E reduces to picking out which
quantity is larger: 0™ or g™itosis 1 other words nucleus i will divide when the
level of string product is greater than the threshold for initiating mitosis. This
provides a way of extending the model of the Drosophila blastoderm presented in
section 3 to later times when mitosis is under the autonomous control of the zygotic
genome.

As a second example, we consider cell-cell induction. Induction is a process
where one cell changes type as a result of receiving a signal from a neighboring
cell. Recent work has begun to unravel this process in terms of specific signaling
factors. For example, Smith (1987) has described a factor secreted by a Xenopus
cell line that induces animal pole cells from a Xenopus embryo to form mesoderm.
This factor, apparently a small protein, may well be the agent by which cells of the
vegetal pole induce mesoderm in normal development. Here our intention is not to
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attempt to describe all of the dynamic players involved in the induction process,
but rather to sketch out how the signaling step of induction might be described by
the formalism presented in section 5. For brevity we drop the object index i in the
following; since we do not need to keep track of distinct objects of the same type
there is no loss of essential information.

We have a target cell of type “‘animal pole”, or a =ap, which is to be induced
to become a cell of type mesoderm, or @ = me. There is also an inducing cell of
type XTC (the tissue culture line used by Smith). We assume Smith’s factor to be
equivalent to the native factor, and denote the XTC cell type by a = vp, for vegetal
pole. One element of v,, is the concentration of the inducing factor v\}’**"; an
element of v,, = vy, """ is the concentration of a putative receptor for the inducing
agent. Smith directly observed one element of v,., namely the level of myosin
expression (a marker for mesoderm) vy,:°.

We wish to model induction via a two-object discrete time rule. In the present
sketch, we consider only two choices, “induction™ and *“stasis”’. The former is a
discrete time rule and the latter a continuous time rule. The induction of a type
change in one cell by its neighbor can be expressed directly by including a cell-cell
induction rule in the grammer I'. The type change encoded in this rule is specified
by setting ['p,., = [\s°" = 1. We assume the rule strength for stasis to be fixed,

so that eqn (29) becomes, for this rule,
Sstar-ls — thssis' (38)

The decision for induction presumably depends on both the inducer and its receptor,
as well as a measure of how tightly the two couple. Comparison with egn (29)
indicates that

Sinduction

\SinductiunUinducervreccptor, (39)

where all indices on s other than the rule index have been suppressed. The arguments
given with regard to optimizing E[C] in eqn (37) carry over to this rule choice
almost unchanged. Since we are considering a discrete time and a continuous time
rule, only one can be selected, and the rule choice amounts to making a decision
about a threshold. Hence, it follows that induction will occur whenever the product
A gndueuiony inducer, receptor ig oreater than the threshold 6"

The dynamics of the induction rule are specified in eqn (24) by the connection
matrix T\5an"°". This connection is a direct input from the inducing cell’s state
vector to the dynamics of the target cell’s state vector. The only non-zero element
of this matrix clearly implied by the work of Smith (1987) is that between vi’},"“c”
and vT2°'": the latter shows an increasing sigmoidal response to increasing doses
of inducer. Such a coupling can be modeled using the thresholding function g, but
detailed comparisons of our model with the dynamics of this system must await

further data.

7. Discussion

In this paper we have presented a framework describing the dynamics of develop-
ment. Advances in biochemical technology have made it possible to measure many
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of the state variables that determine development. As the methods for obtaining
information about these biological regulatory substances improve, it will become
increasingly important to understand how these substances, acting in concert, control
growth and development.

We think it possible that the modeling framework presented here will allow these
questions to be addressed in a phenomenological but precise and systematic manner.
Modern biology is very much a science of contingencies. Many experiments involve
a perturbation of the concentration of some biochemical regulator, followed by a
study of the consequences of that perturbation in terms of the consequent changes
in concentrations of other regulators, effects on growth, or effects on morphology.
The framework presented here is designed to discover and express correlation in
data, even when knowledge of underlying mechanisms is incomplete.

We have presented a number of examples of how this formalism can be used to
model important developmental systems and events. These include gene regulation
in the Drosophila blastoderm, mitotic control following gastrulation in the same
animal, mesoderm induction in Xenopus, and programmed cell death. The formalism
is intended to be used to generate specific models, the parameters of which are
found by means of a non-linear least squares fit to time series data. The details of
the procedure will be presented elsewhere, but preliminary numerical results on the
Drosophila blastoderm (Reinitz et al., 1991) indicate that our approach is feasible
and has predictive value.

The modeling framework contains three sectors. Two of these, concerned with
internal dynamics and grammar, may well be generic. This question can only be
settled by comparison to data in as many systems as possible. The third sector, that
of geometry, is at yet incomplete, although usable for systems whose geometry is
relatively simple. A full treatment of the geometrical problem is an important topic
for future work.

The dynamical equations we employ, while phenomenological, can be derived
from simple but explicit biochemical mechanisms. The understanding of specific
biochemical reaction mechanisms, particularly in eucaryotes, has lagged behind the
technology for assaying the levels of the reacting species. For this reason we think
that that discussion of biochemical mechanism given in section 4 is as faithful to
the underlying mechanisms as the data will permit in the near future.

We thank M. Levine and S. Letovsky for encouragement and stimulating conversations,
and E. Sklar, P. Hackett, D. Hackett and C. Garrett for essential logistical support.
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APPENDIX

Properties of the Grammatical Rules

In this appendix, we prove that certain properties of A are preserved in time
under the action of the grammatical rules. To do this we need to state explicitly
certain properties of the grammar that were described in words in section 5. In that
section, and in Fig. 3, we describe six classes of grammatical rules. Every rule
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belongs to only one class, and each rule has unique input and output types, with
the exception that the birth class of rule may have several output types. So for all
r it is true that

1=E +Zrﬁ+Z®(TTrﬁm)+er‘ya+2r +Traﬁa- (40)

af8 afy ap

a 1,

In the case of the birth rule, each of the outputs has a unique output type, so that
for all r, B, and i,

YTha =<1 (41)

o

Equation (26), written out in full, becomes

e =L G, [Z T,?a.mn-l]JfZ@[ECT,.. @(raﬁirsw)]

a4

+Z C:....,J',irg;+zC:,,..,.i,,zf‘:};a‘ (42)

Equation (25) gives the dynamics of A, .. We will also need an explicit dynamical
equation for A, =Y A, ,. Itis

A, L (t+An=YCl . (DSTL. A

I
L aee

+E C:l‘...‘r’,,(r)v r{rj_m',,HAr;,...,l,‘.ﬂ(r}
r af

+E@[E CL;“)(E r;ia+: rﬁvu)at,_lﬂAlle,,B(r)] (43)
B By

r r

With these equations we can prove that the grammatical rules preserve important
properties of A. The proof holds for discrete time dynamics with 1, = pAr, with p
an integer.

Theorem 1: For every ordered sequence i,,..., i,, and for all a, the following three
statements are true at all times r=pAr:(a) A, .(1)e{0,1}.(b)IfA, ., (1)=1,
then A, ., (1)=0forall m<n.(c) A, ., (1)e{0,1}.

Propositions (a)-(c) of Theorem 1 are true by definition at + =0; we show that
if the propositions are true at time f, they are true at 1+ Ar. Thus the proof is by
induction on the discrete variable 1 (or p).

The proof of proposition (a) reduces to that of (¢), since we show that if (c) is
true at 1+ Ar, then (a) is also true at 1+ Ar. To see this, note that by definition of

(1),

--------

12A, ,(1+AN=Y A, ., (1+A1). (44)

At time 1 =0, all the As are 0 or 1, and egn (25) has only non-negative terms, so
A, . can never be negative. If a sum over non-negative integral terms is less than
or equal to 1, no term can be greater than 1. Hence, A, ,(r+At)€ {0, 1}.
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Next consider proposition (b). There are two possible cases. First, suppose that
A, . (1)=1. By hypothesis, A, , (1)=0 for any m<n. Then by eqn (43) with
n+l1=m, A, ., (t+Ar)=0forall m<n

Now suppose that A, (1)=0, and also assume that A, , (r+Ar)=1. Then
by (43), we find A, , (1)=1, so by induction A, i (t)=0for m<n-—1. Then
by (43) we now find that A, , (r+41)=0 for all m<n-—1. We need now only
consider the case of m=n—1.

Assume the contrary, that A, ., (t+A1)=1. We showed above that
A, ()= 0; This, in conjunction with (43), implies that
Y. C.o . (DT, LA, . (1)=1 for some a, and hence there is a continuous

time (here applied to a set of discrete time steps) single-object rule r such that
Ci . (1)=1By(42),C; ., (1)=0 for all discrete time rules r. Consider (43)
with n —1 substituted for n. We are considering the case where A, , ,(1)=0 for
all a, so the first term of (43) vanishes. But we just showed that for all discrete time
r, C. . (1)=0, and so the second and third terms of (43) vanish also. Hence
(43) reducesto A, .(t+A1)=0 forall a, and so A, ., (t+Ar)=0, contra-
dicting the assumption.

Lastly, we prove (c). At time t, 1= A, ()=, A, ., g(1) by the inductive
hypothesis. A, g(1) is simply the left side of eqn (42), and every term of (42)
is non-negative. We sum the right-hand side of (42) over B and note that any subset
of its summands must be less than or equal to the entire sum. Hence
1=Y C/, (00 ¥ Thu. |t @[Z C?.,_._.,,(r)O[ BoTL ka]]. (45)

Y

r.B L a.i, . aB r

The two Os in the second term are redundant, so we may write

- -

W10 Y Tha,, +Z®[E CT,,._._;,.(I)[% Es.u+3_‘l"£ay;a]] (46)
[+] r Y

1= €.

r.B L a4 =

In the first term, we may replace the sum over i,., by any of its elements and
preserve the inequality, since all terms are non-negative. Hence, for any i,.,,

1=} €], ......(1)9[2 1"?3-.0,,,4.} +2 0[2 CF......;,,(I)[E Fgatl I‘;h.,a]:l. (47)
r.B o a r B By

The argument of O in the left-hand term is now the left-hand side of eqn (41). This
itself is never greater than unity, we may drop the ©. We now have, for all i,.,,

123 Cl () Z TG, 1 G[E CL,..,..—,‘(r)[Z Igatl F;;,,;QH- (48)
r a r B By

ap

We can multiply any term of the right-hand side of the above equation by any
variable that takes on only the values of 0 or 1 and still maintain the inequality.
Hence, we find that

......

+E @[E C:.l,,(r)[z rrﬂ;ﬂ + E rrﬂy;a}]6:,,+10A1|,....i,,,ﬁ(r)-

r B By
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Note that this is in fact the last two terms of eqn (43). Look now at the first term
of (43). Consider the sum over a as an inner product between I' and A. All of the
components of A, C and I' are non-negative, so that

E. 5aa‘f‘;.aA1......l,.”.a‘(r)5 Z f;;aA|'l,....f,,+,,u'(r) (50)

a,a’

whence

Z C|1 ..... l,‘*l(’)Ei:‘:];aAil_....i,,.‘.l.ﬂ(:)ﬁ(Z C:l ,,,,, i,lef‘ra;n)[zlAi,,,,,,i"‘,,a‘(r)]'
(51)

On the right-hand side of this inequality, each of the two factors can be no larger
than unity. The left-hand factor appears as one of the terms in (42), as one of several
non-negative integral summands whose sum is at most 1. The right-hand factor
cannot be greater than one by the inductive hypothesis.

We have now shown that in egn (43), the first term on the right-hand side can
be equal to at most 1, and that the second and third terms have a total value of at
most 1. We now show that if the first term is 1, the second and third terms must
vanish. Suppose that

S0 o LR A, i slt)=1. (52)
Then for some « and r, IA“;..C, =1, Ci . .i..lt)=1, and A,,.___‘,-m‘a(r) = 1. By induction
A . .i.(1)=1,s0by induction using (b), A, (1)=0,and so A, , p(1)=0 for
all B. But every term of (43) except the first contains the factor A; ; (1), and

hence all these terms are 0. This proves (c).

We do not prove here that the dynamics of A has a limit as Ar-0. To do so
requires placing resetting conditions on the rule strength dynamics in such a way
that only a finite number of discrete time rules may be selected in succession. A
complete analysis of this problem is beyond the scope of this paper.



