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Abstract

A nontechnical introduction to selected recent models of plant development and growth is
presented.  Problems of creating predictive, quantitative models for (a) regulatory
networks and for (b) the use of space by developing tissues are outlined. These problems
can be addressed using suitable mathematical frameworks to represent the substantial
variety of relevant biological mechanisms, including gene regulation, protein
modification, cell-cell signaling by ligand/receptor pairs and by polarized auxin transport;
also cell growth and division, the changing topology of signaling relationships between
cells, and mechanical interactions between cells.  Modeling frameworks are briefly
described for gene regulation networks, including signaling; for more general
biochemical reaction networks; for mechanical interactions (using a weak spring model)
and signaling mediated by a changing topology of neighbor relations among growing and
dividing cells; and for approximating such models at the tissue level using spatially
continuous descriptions with changing shape. Finally, a “dynamical grammar”
framework allows naturally for integrative and multiscale models since it can in principle
combine any or all of the foregoing mechanisms.  With mathematical and computational
tools such as these, and with the current rapid progress in instrumentation and imagery,
the future looks bright for scientifically effective modeling of plant development.

Keywords: Developmental model, shoot apical meristem, gene regulation network, gene
regulation signaling network, dynamical grammar, polarized transport, weak spring
model, voronoi diagram, active surface, multiscale model.



1. Introduction

The goal of this paper is to provide a nontechnical introduction to some of the ways that
plant development and growth can be modeled with mathematics using a computer.  The
selection and presentation of topics is highly biased by the author’s own experience,
rather than being an attempt at an objective review. But it provides an internally coherent
view that favors some approaches over others for the near future, and may help to
introduce plant biologists to new and relevant ideas.

The structure and diversity of plant morphology inspires one to mathematical thoughts.
The regular and symmetric phyllotactic patterns of many flowers and pinecones, for
example, inspired one of the earliest applications of the newly invented general-purpose
stored-program computer to scientific simulation, in the 1951-4 unfinished work of Alan
Turning [Swinton 2003] based on differential equations for reactions and diffusion.
Since then computer science related models have been applied to phenomenological
modeling of plant visual appearance in computer graphics. One class of examples is
given by L-system grammars [Prusinkiewicz 1990]. But only recently has detailed
knowledge of the actual relevant molecules such as the growth hormone auxin and its
regulatory interactions, been brought from molecular biology into problems of predictive,
computable modeling of plant development.  Recent examples include the phyllotaxis
models of [Jönsson and others 2006; Traas and others 2006; Smith and others 2006].

2. Regulatory network models

With great improvements in biological instrumentation, the known size and complexity
of regulatory networks has increased to the point where it is often essential for
understanding to build computational models.

Many ideas from mathematics could be applied to modeling regulatory networks, but we
will start with those capable of reflecting molecular realities that underlie macroscopic
biology.  Molecules regulate one another’s existence and state in biochemical networks.
For example, spatial and temporal gene expression domains are key mechanisms for
morphogenesis. They are frequently set up by networks of transcriptional regulation,
augmented by communication between cells. In these networks, one gene can enhance or
repress another in a feedforward or feedback manner within and between cells, resulting
in a causal dynamical system that creates a spatiotemporal pattern of expression domains.
Such networks may be only partly known, so it is advantageous to consider mathematical
models of dynamical networks that can be “trained” in the sense of machine learning
algorithms – they can be fit to some data by parameter-optimization and used to predict
other data.

A very early example of a trainable, dynamical network used to model transcriptional
regulation was developed for fruit fly embryo [Reinitz and others 1995; Mjolsness and
others 1991].  It explained the observed expression patterns of the “gap genes” in
specifying position along the anterior-posterior axis in the syncytial blastoderm, which is
a stage of the embryo comprising one large cell with many nuclei that exchange



transcription factors by diffusion rather than cell-cell signaling.  The model itself
incorporated a continuous-time, real-valued Artificial Neural Network applied as a model
of Gene Regulatory Networks (an ANN-GRN).  It consists of a coupled set of ordinary
differential equations representing the dynamics of transcription factor levels, assuming
there is a partly or completely unknown matrix of numerical interaction strengths
(positive or negative for enhancement or repression respectively) between genes within
each nucleus. A substantially different framework based on Boolean networks has been
applied to model the gene regulatory network governing cell fate during Arabidopsis
flower development [Espinosa-Soto and others 2004].

In the Drosophila embryo example, additional features beyond the regulatory network
itself were essential. Different nuclei are connected by diffusion, and undergo DNA
replication on a standard schedule.  The replication of nuclei raises a qualitatively new
situation, in which biological objects such as nuclei change their number and
interconnection patterns at necessarily moments in time, but evolve continuously
according to differential equations in between such times. A general framework for
formalizing such situations was introduced [Mjolsness and others 1991;  Prusinkiewicz
1993; Mjolsness 06]: a “dynamical grammar” whose constitutive rules each model a
biological process that takes place either continuously or discretely in time, and which
together add up to determine the dynamics of a model system.  Of course, this capability
will be important in some form for almost any developmental model that treats cells as
distinct objects.

Later, the ANN-GRN model was augmented to allow for cell-cell signaling in place of
diffusion (the Gene Regulation and Signaling Network, GRSN [Marnellos and Mjolsness
1998]). The same kind of model was subsequently used to begin modeling dynamically
stable gene expression domains in Arabidopsis shoot apical meristem (SAM) [Mjolsness
and others 1999].  In these early models, space was represented by a spatial grid that was
either fixed (e.g. hexagonal in two dimensions) or allowed cell division only according to
a predetermined schedule.  Thus geometry and topology (the connectivity of cells) were
not true interacting players in the dynamical system model, but were exogenous to it.

All such regulatory network models can be classified according to how they translate
different biological mechanisms (such as transcriptional regulation, receptor-mediated
intercellular signaling, posttranslational protein modifications, and so on) into
mathematical models.  What is needed to begin this translation of biology into
mathematical models is an abstract representation of the types of information-bearing
molecules and other biological objects and the types of biological processes that are
permitted to operate on particular object types, together with a translation for each object
and process type.  This can be represented as a small graph with nodes and links that
encompasses and generalizes the Central Dogma (gene ◊ mRNA ◊ protein, where the first
arrow represents the process of transcription and the second arrow represents the process
of translation).  We may refer to such an object type/process type network for cells as a
Central Dogma-Like Network (CDLN), to allow for domain-specific dogmas whether
Central or not.   The objects may be thought of as nouns and the processes as verbs, with
suitable noun/verb relationships represented as links. In computer science, such a listing



of the fundamental types of objects and processes and their relationships is often called
an “ontology”.

In addition to the CDLN there is also a problem-specific regulatory network of specific
molecules, objects and regulatory interactions that agree with the types and type
constraints set forth in the CDLN.  This regulatory network represents a biological
hypothesis, whose consequences can sometimes be best drawn out by modeling.  Many
regulatory networks can be governed by the same CDLN. The primary inputs to
formulating the regulatory network are biological knowledge, data, and expertise in a
particular system.

The Cellerator [Shapiro and others 2003] and Sigmoid [Cheng and others 2005] software
environments for modeling, among many others, are organized around such a process of
translation from biological regulatory networks to mathematical dynamical models.

Major choices must be made in translating a regulatory network and its CDLN to a
dynamical model.  These choices include for each molecular species whether it is to be
represented as a real-valued (continuous) concentration or as an integer number of
molecules; whether each biological process is to be modeled as stochastic or (what is
much more efficiently simulated if less accurate) deterministic in its dynamics, and
whether time and space are each modeled as continuous, discrete, or both continuous and
discrete. In the latter case there must be some kind of connection between the two
representations (as for example in the Dynamical Grammar integration of continuous and
discrete time representations).  These choices are not arbitrary but rather can be fit into a
hierarchy of approximations, with very detailed but impractical models near the “bottom”
being systematically related to simpler, more computable, and more understandable
models near the “top” of the hierarchy.  These choices may also depend on the spatial and
temporal scales at which a biological system is to be modeled, so that future multiscale
models must be able to integrate all these different types of dynamical systems. The
primary inputs to choosing a translation of a biological system “picture” to a dynamical
system are mathematical and computational expertise.

From this point of view, what shall we make of the many perfectly good modeling papers
that do not appear to follow the foregoing outline?  That they either partially or
cryptically do follow the procedure, despite an alternative form of presentation, or that
they could have been further improved by doing so.

3. Developmental space

In development, regulatory networks within a cell must be augmented with intercellular
communication and the dynamics of growing, dividing cells that can change their
neighborhood relationships.  Thus, the dynamic use of space must be modeled
simultaneously with the regulatory networks.

Space in a plant tissue is divided into many cellular compartments whose shape is
roughly polyhedral in the shoot meristem but may have a great variety of other



morphologies elsewhere – though not so great as in animals.  The geometry, topology,
and dynamics of this compartmentalization profoundly influence the regulatory networks
within each cell and are in turn largely a function of mechanical forces that can be
modeled [Murray; Landau and Lifshitz].  Fortunately plant development provides a major
simplification from animal development, in that the dynamics of the cellular
compartmentalization of space doesn’t include the evolutionary heritage of motility –
cells push, shear, and pull on one another but do not actively locomote.

Initially the multicellularity of a developmental system was attractive for gene regulation
network modeling as a sort of parallel assay of the same gene network under multiple
regulatory input conditions [Kosman and Reinitz 1998], with replication and tissue
growth being just potentially confounding factors.  But it was also clear [Mjolsness and
others 1991] that a general purpose developmental modeling framework would require
two-way interaction between regulatory and mechanical networks, in which a mechanical
network influenced signaling topology in the regulatory network, which in turn regulated
cell division and cell growth inputs to the mechanical network [Shapiro and Mjolsness
2001].

As a temporary measure, one may consider passive models of space in which multiple
cells and the space between them serve as an arena for the diffusion of information-
bearing molecules from one cell or nucleus to another.  In the limit of infinitely many
very small cells, we can obtain in this way the “reaction-diffusion” partial differential
equation framework of Turing.  Cells engage also in more active signaling processes
which may be modeled in the GRSN framework.  At least in Arabidopsis, polarized
transport of signals such as auxin, using intracellular cytosol and membrane
compartments, is a much better model than diffusion for some important signaling
systems in plants including phyllotaxis in the shoot apical meristem, one of Turning’s
original intended systems for reaction-diffusion modeling. But none of these
communication models directly address the active mechanics of cell movement through
space.

What is needed is a network-like model of developmental space and in particular of the
mechanics of cellular compartments.  An example of a “mechanical network” would be a
tinkertoy arrangement of linear mechanical elements, called “struts” or “springs with
nonzero resting length”, which exert force only along their axes.  Truss bridges and
structures can be modeled to first approximation with such elements.  In our work and in
computer graphics these are known as “mass-spring models”.  However, connections
between cells may dwindle in relative overlap or break entirely upon cell division, so that
the springs should be “weak springs” that can smoothly break.  All of these relationships
can be modeled very simply by potential energy functions that depend only on the actual
length and the resting length of a spring or strut [Shapiro and Mjolsness 2001]. This
mechanical model has been used in modeling phyllotaxis [Jönsson and others 2006]
where its flexible topology plays an essential role in allowing cell growth and division to
make room for new primordia, allowing them to escape inhibition by the old ones.



(a)                                                                  (b)

(c)                                                                 (d)

Figure 1. [Mjolsness and others 2003] (a) Weak spring model with internal compression and
external tension, along with (b) cell division in a (c) hexagonal array of cells with one recent cell
division leads to (d) maintenance of a clonal outer layer.  Figures (c) and (d) courtesy Henrik
Jonsson, Lund University.

Fortunately the weak spring model allows bidirectional coupling of mechanical and
regulatory network models.  The regulatory network governs gene expression,
metabolism, the growth of cell volume, the synthesis structural molecules, and the cell
cycle including mitosis and cell division, which again affects cell volume.  Cell volume
and the amounts of any structural molecules govern the individual properties (strength
and resting length) of the idealized spring between neighbors. Cell positions
automatically minimize the total mechanical energy, through fast Aristotelian dynamics
with velocity proportional to force over viscosity.  The cell positions determine their
geometry including the interface area between any two cells.  This interface area
modulates the strength of any intercellular communication impinging on the regulatory
network of each cell from the others; if it is zero, there is no direct signaling.  Thus, the
global regulatory network influences the mechanical network and the mechanical
network influences the regulatory network.

However, it is a considerable oversimplification to represent all the mechanical forces
between two plant cells by a single spring energy function connecting their centers.
Relevant subcellular structure that is omitted this way includes the mechanics of the
nucleus made of stiff DNA, its random motion through the cytosol, the branching fibrous
cytoskeletal network, and the sheets consisting of strong parallel cellulose fibers within
the walls (and all perpendicular to the single idealized spring).  The biological picture is
of a complex, heterogeneous medium made of a great many nonlinear springs at a
molecular rather than cellular scale, with additional fluid and gel properties.



A more detailed approach to mechanical modeling then is to use continuum
approximations to elastic, viscoelastic, or plastic media as outlined in [Murray], with
homogeneous properties in each of a set of compartments such as nucleus, cytosol, and
particular cell membranes and walls.  These models can be derived as a limit of infinitely
many very small springs as in a spring network model. The essential quantities to model
are stress and strain tensors, representing forces per unit area and relative displacements
per unit length respectively. [Teran and others 2003] works out one example for
anisotropic tissue media that roughly conserve volume for skeletal muscle.  With
advances in imagery to constrain the geometries and material properties (such as stress-
strain laws), such fine-scale modeling will become progressively more practical.

A standard route to mechanical modeling is to use the Finite-Element Method (FEM) to
discretize continuous (PDE) elastic material models in 1D, 2D, and/or 3D.  Each finite
element is a polygon or polyhedron representing a region of space occupied by biological
material, and connected to its neighbors.  Within each element the relevant functions are
interpolated using low-degree polynomials of the spatial variables satisfying continuity
conditions at the boundaries. Where stresses and strains vary over a fine spatial scale,
more finite elements are used to represent those changes. The goal is usually to
approximate the behavior a continuum elastic model using many finite elements with
homogeneous mechanical properties, nevertheless using as few finite elements as is
compatible with accurate simulation of the continuous model. In three dimensions, doing
this adaptively as a simulation proceeds is a mathematical challenge. On the other hand,
real cells and tissues are so heterogeneous spatially that one may question the goal of
approximating a continuum model, and one may reinterpret finite elements or small
collections thereof as something closer to heterogeneous biological structures such as the
nearly polyhedral cells and cell walls of the SAM.

4. Future models

Weak spring mechanical network models are very coarse, having only a few mechanical
degrees of freedom per cell.  Conventional FEM models are very fine, approximating a
continuum, but can as a result incorporate more detailed and accurate physics.  In
between these two extremes lie other possibilities for modeling mechanical networks.
One is based on the observation of similarity between the irregular polyhedral tilings in
SAM membrane slices and in Voronoi diagrams [Voronoi 1908, Dirichlet 1850].  There
is a Voronoi “energy function” in which a defined set of centers (such as cell nuclei) are
used to calculate the distance to each point in the plane; each point associates with that
center that minimizes its distance.  The integral over the plane of the squared distance to
its associated center is minimized by the Voronoi diagram.  In this way one can make the
vertices of a polyhedral tiling depend exclusively on its polyhedral centers.  If one adds
other mechanical energy functions that depend on the polyhedral tiling, they too become
functions of the polyhedral centers.  Very likely a minor generalization of Voronoi
diagrams, which allows for a cell size parameter, is required to account for individual cell
growth. (Such a generalization may arise from taking a slice through a Voronoi diagram
of one higher dimension, or from a weighting on the distance measure, or both.)  The
result may be a mechanical model with the same degrees of freedom as the weak spring



model, but able to represent a much greater variety of mechanical properties within each
cell and cell wall.

(a)      (b)

Figure 2. (a) Shoot meristem with plasma membrane and nucleus markers, with 2D Voronoi
diagram superimposed; (b) 3D Voronoi diagram constructed from similar imagery.  Courtesy
Bruce Shapiro and Marcus Heisler, JPL/Caltech.

4.1 Active, smart surfaces and lively manifold embeddings

In image analysis, “snakes” are active contour models defined by an energy function that
is minimized when an open or closed mathematical curve bends so as to follow a
smoothed version of some important image feature such as a noisy boundary between
cells. “Active surfaces” may be defined similarly to find boundary or other surfaces in 3D
data.  In biology there are many essentially 2D tissues or layered structures built of 2D
tissues.  Their shape is actively controlled, but the information processing going on to
control the shape is as we have seen much more elaborate, described by a large but
structured regulatory network.

It may be useful to consider the following idealized abstraction of such tissues and
layered tissue structures: each tissue is a 2D continuous surface in space (having no cell
boundaries), with independent regulatory networks at each point in the continuum.
However there are multiple forms of communication between nearby points within the
surface based on diffusion (as in reaction-diffusion models in an ordinary flat 2D space),
receptor-ligand mediated intercellular signaling (as in the GRSN model), polarized
transport (which apparently dominates over intercellular diffusion as the communication
mechanism for phyllotaxis in Arabidopsis shoot meristem), and other coupling
mechanisms which can all be modeled in an idealized way using spatial derivatives.  The
result is a network represented as a set of coupled Partial Differential Equations (PDE’s)
within each surface.



Next, the foregoing PDE’s are to be augmented by others that represent the continuum
limit of a mechanical network, so that the entire surface can bend, fold, tear, or reconnect
under the influence of its regulatory network.  Neighboring surfaces in a layered structure
can also communicate signals and stresses between layers, but signal communication may
be less effective that within a surface in which case the model is 2D and layered rather
than 3D.  Such models would be mechanically “active”, computationally “smart”, and
mathematically defined “manifolds” or “manifold embeddings” within ordinary 3D
space.  Their advantages would be to provide approximate descriptions of developmental
processes that involve nontrivial manipulation of shape and form such as is well
advanced in differential geometry; however, one would have to be careful to reinsert
some form of cellular structure in the verification of computational application of such
models to real systems.

One advantage of such continuum models is that they allow for analytic models of
growth.  For example, the regulation and patterns of growth are different in stem cell
niches within adult organisms, than within rapidly inflating tissues in juvenile organs
(such as leaves) or the embryo.  In one dimension one can create simple, completely
solvable models of these alternative patterns of growth [Unpublished Manuscript].

4.2 Multiscale models through Dynamical Grammars

As suggested above, future multiscale models must be able to integrate all the major
different types of dynamical systems models, including discrete and continuous time,
discrete and continuous space, deterministic and stochastic dynamics, and so on, if only
because the very same physical or biological system can be described with all of these
alternative forms of modeling, at different scales. Future multiscale models must allow
experimentation and integration of separate processes of these very different types. These
goals are achieved by the modeling framework of Dynamical Grammars [Mjolsness
2006].

In dynamical grammars, each rule represents a process with input and output objects,
much like a chemical reaction network in which the molecules bear information such as
location and conformation that affect their reaction rates.  Rules can represent processes
that happen discretely in time such as cell division and/or changes in attachment of a cell
to neighboring cells, or continuously in time as described by differential equations.
Every rule and collection of rules is mapped to a particular mathematical object (an
operator in a high dimensional space) that represents the time evolution of a system due
to that process alone.  The sum of all these time evolution operators, over all rules and all
possible parameter values, gives the dynamics of the whole system.  Fortunately, from
this framework it is possible to deduce efficient discrete-time dynamics corresponding to
simulation algorithms for use on a computer.

As an example, the phyllotaxis model of [Jönsson and others 2006] can be thought of as a
set of reaction rules at the molecular level, augmented with a set of cell division and
attachment rules at the cellular level, resulting in an emergent dynamics of floral



primordia at the tissue level.  At each scale objects are born, move through space
exchanging information, and are transformed into other objects or die.

5. Conclusion

There is a systematic approach to building useful models of complex biological systems
that arise in developmental plant biology.  It involves (1) building a representation of the
biological regulatory and mechanical networks and processes known or hypothesized for
a growing tissue; (2) translating these networks into are mathematical models in the form
of dynamical systems; (3) using relevant data (the more the better) to constrain the
models and derive their most robust predictions; and (4) iterating the process.  A key step
is the translation of biological networks and processes to dynamical system models.  Such
dynamical frameworks as ANN-GRN and GRSN models of regulatory networks, weak
spring and finite element models of mechanical networks, dynamical grammars for
integration of models of diverse process including those that change the structure of the
system, and future smart/active manifold models, can provide the necessary targets of the
biology to mathematics translation in one or more ways.

With these various mathematical and computational tools for advanced modeling of
developmental systems, and with new technologies for obtaining data with which to
constrain such models, the future of scientifically effective modeling within botany and
developmental biology looks very bright.
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