
F  R O N T M A T T E  R

“Cambium” Intermediate Process Language
Eric MjolsnessH1L and Bruce ShapiroH2L 

(1) University of California, Irvine;    emj@uci.edu
(2) Caltech Jet Propulsion Laboratory;   bshapiro@caltech.edu

December 20, 2008
UCI ICS TR# 08-13

B O D Y

Abstract
Cambium is a mathematically  well-defined  process language intended as a multiparadigm intermediate

representation  for  biological  models  that  include  developmental  or  other  structure-alterning  biological
processes.  The  name  stands  for  “Computerized  Arrows  for  Mathematical  Biology  with  Intercellular,
Understandable  Models”.  Cambium could find practical  application  in large-scale  software  environments
that  must  be  compatible  with  multiple  modeling  languages  and  simulators  for  complex  and  variable-
structure  dynamical  systems.  An  example  is  the  modeling  of  developmental  biology  at  multiple  spatial
and temporal scales within the iPlant project.

1 Introduction

We propose  a  generic  “arrow” syntax for  representing  processes,  which intrincially  has well-defined
mathematical  semantics,  and  to  which  and  from  which  other  process  languages  can  be  mapped.  The  target
languages are those capable of simulating biological development at multiple scales, including cell division and
tissue  growth,  and  which  therefore  simulate  variable-structure  dynamical  systems.  These  languages  must  also
support the fine-scale modeling of cellular processes. Arrows in this syntax are given a compositional semantics.

1



1.1 Related work

The  concept  of  an  intermediate,  shared  modeling  language  for  use  in  biological  modeling  has  been
realized in SBML and CellML. However, these model exchange languages are built on computational rather than
mathematical foundations,  and they do not currently handle the range of variable-structure systems encountered
in  developmental  biology  and  “computational  morphodynamics”.  SBML  Level  2  doesn’t  support  even  fixed-
topology spatially replicated models, except by replicating the model file. The importance of dynamical geome-
try  and  topology,  and  heterogeneous  (multiparadigm),  multiscale  dynamics,  means  that  mathematical  methods
are  becoming  increasingly  important  in  computational  biology  and  that  a  strong  mathematical  foundation  is
essential  to  developmental  modeling  and  other  spatial  biological  modeling.  The  relationship  of  SBML  and
CellML to Cambium should in the future be one of knowledge-guided intertranslation, since biological processes
can  be  mapped  into  mathematical  dynamics  in  a  many-to-many  manner.  Such  a  biology/dynamics  mapping  is
made explicit for example in the Sigmoid modeling environment [Cheng et al 2006]. To facilitate such intertrans-
lation, Cambium should in the future have arrow types (a generic facility described in Section 2) corresponding
to SBML (L2, and multiple specialized L3 extensions) and CellML constructs.

1.2 Notation

An  (unordered)  multiset  is  denoted  8i * e, ...<*  where  i  is  an  optional  integer  defaulting  to  one.
Equivalently: Multiset@i * e, ...D  . An (ordered) list, tuple, or sequence can be denoted by Xe, ...\  or @ej » j œ !D  .
Syntax  trees  denoting  function  evaluations  f Hx, ...L  or  other  name-list  associations  are  represented  as  eg.
f  @x, ...D . Syntactic substitutions are delimited by P ...T .

2 Generic Arrow Notation

We propose a generic process syntax into which others can be mapped. The common form is

Arrow@type@attributesD, LHS, MS, RHS, 8Clauses@parametersD<D
or

Arrow@t@aD, L, M , R, 8Clauses@pD<D
The arrow type t  and its  attributes  determine which semantics is  to be used. The left  hand side input L ,  the

continuously  present  part  M ,  and  the  resultant  right  hand  side  R  are  in  general  labelled  graphs  with  labelled
edges; more specifically they can be (and often are) multisets or lists (tuples) of expressions in some sublanguage
".  The allowed Clauses and parameters can depend on t@aD .

Diagrammatic presentations of such a generalized arrow include the following:

t@aD :
M

L öøøøø R
rates r

, 8Clauses@pD<

or

CambiumProcessLanguageV18.nb

2



M ; r
L öøøø R

t@aD
, 8Clauses@pD<

A further  convenient  syntactic  shorthand  is  to  group arrows  that  shared type and attributes  t@aD ,  by placing
multiple  arrows  within  brackets  preceded  by  the  type:  t@aD :{arrow1 , ...arrowk }.  This  is  short  for
Arrow@t@aD, * , Ø, * , 8Constituents@Arrow1 @Ø, , ...D, ... Arrowk @Ø, , ...DD<D  which  can  be  transformed  syntacti-
cally to Arrow1 @t@aD, , ...D , ... Arrowk @t@aD, , ...D .

As  in  Dynamic  Grammars,  the  LHS,  MS,  and  RHS  are  topological  containers  of  some  kind  (with
various  options  listed below),  whose  elementary constituents  are  parameter-bearing  objects  with  an  object  type
name  (not  to  be  confused  with   the  semantics-determining  arrow  type  name  discussed  above)  and  an  optional
sequence of parameters.

2.1 Definition of arrow types

New arrow types t can be defined by following three steps: 
(1) stating which attributes and combinations of attributes are allowed, 
(2) defining the semantics for all allowed combinations of attributes (either directly or by systematically doing

the third step), and 
(3)  curating  semantics-preserving  syntactic  transformations,  expressed  as  meta-rules  using  Cambium  if

possible, from generalzed arrows with selected attribute sets for the new type to other generalized arrow expres-
sions for prevously defined arrow types.

By these steps, the mathematical well-definedness of Cambium is maintained as new arrow types are
added.  Two  Cambium process  arrows  mean  the  same  thing if  and  only  if  their  semantics  is  the  same.  Various
other equivalence classes (such as identity up to renaming) can be defined as well. The semantics of an initial set
of arrow types and attributes is introduced in Section 4.

Definable  types  could  include:  DynGram [1],  DynGraphGram,  LSystem [2],  PSystem [Spicher  et  al.
2007],  k -calculus  [Danos  et  al.  2004],  Cellerator  [Shapiro  et  al  2003],  KMech  [Yang  et  al  2005],  Cellzilla
[Shapiro et al. 2007], BNGL [Hlavacek et al. 2006], SBML L2 [Hucka et al. 2003], CellML [Cuellar et al 2003],
MCell [Casanova et al. 2001], CPM [Chen et al 2007], PPM [Sbalzerini et al. 2006], Sigmoid [Cheng et al 2005],
Organism [Jönsson 2006], ... . Definable attributes for many of these these types include: reversible, mass-action,
bounded,  regulatory  (for  L = Ø),  fast,  continuous/discrete  (in  time),  deterministic/stochastic/quantum
(dynamics), among other attribute alternatives, many of which are summarized in Section 2.2 below.

2.2 Attributes

Selected  generalized  arrow  types  and  their  attributes  are  listed  in  Table  1.  Examples  will  appear  in
Section 2.3 .

CambiumProcessLanguageV18.nb

3



Table 1. Types and Attributes

Type generic attributes
(default values in bold) more specific attributes clauses

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        

DynGram [1]
deterministic/stochastic/ 
quantum,
discrete/continuous  
Events 

continuous/discrete 
Global Time,
multiset/graph topology,
unbounded/bounded,

With/Solving
SubjectTo(condition)

DynGraphGram
or DGG " multiset/list/tree/graph 

topology "

Procambium

  discrete/continuous  
Events,
deterministic/stochastic,
reversible, fast,  com-
pound,
massaction/bounded/ 
ratelaw,
ODE/DAE/SDE/PDE/SP
DE/ ...

multiset/list/tree/graph 
topology
fireonce, Let, Define,
sequence

"

LSystem [2]   multiset/list/graph 
topology precondition

PSystem   multiset/list/tree topology    

Cellerator [3]
deterministic/stochastic,
reversible, 
massaction/ratelaw

regulatory, enzymatic, 
compound, cascade, 
MM/Hill/GRN/GMCW

 (ratelaw) 

KMech " BiBi/PingPong/RSS/...     
Cellzilla "  internal, external     

future "  dynamic/ steadystate/ 
equilibrium     

Organism             
k-calculus       
Other models ...  ...  ...  

When  the  allowed  topological  containers  and/or  term  parameters  in  an  arrow  type  are  sufficiently  flexible,
then it  becomes possible  to represent  meta-rules: arrows representing syntactic transformations of other arrows.
These are useful for example in step 3 of the semantic definition process outlined in Section 2.1 above.

CambiumProcessLanguageV18.nb

4



2.3 Examples

2.3.1 Receptor/Ligand interaction

Consider the reaction that pairs receptor R  at cell i  and ligand L  from neighboring cell j  into receptor-ligand
complex R ù L  at cell i . A human-readable notation for this reaction might be

Ri + Lj F HR ù LLi
and its  Cellzilla presentation looks similar  to this.  The i - j  neighborhood relation is  not explicit but we can

call it “nbr j i ". Recall from Section 1.2 the “8 ..<* ” notation for multisets. Then the reaction can be represented in
Cambium as follows:

Arrow@Cellzilla@det, massaction, reversible, externalD,
8R@iD, L@ jD <* , Ø, 8HR ù LL@iD<* , 8With@k f , kr D, Using@nbr, i, j, CellD<D

which should be equivalent to:

Arrow@DynGram@det, massaction, reversibleD,
8R@iD, L@ jD<* , 8nbr@ j , iD<* , 8HR ù LL@iD<* , 8With@k f , kr D, Using@Cell, i, jD<D

which in turn could be automatically translated to

ArrowCDynGram@ratelaw, ODED, 8Cell@XR1 , L1 , HR ù LL1\, iD, Cell@XR2 , L2 , HR ù LL2\, jD<* ,

8nbr@ j , iD<* , 8Cell@XR1 + d R1 , L1 , HR ù LL1 + d HR ù LL1\, iD, Cell@XR2 , L2 + d L2 , HR ù LL2\, jD<* ,

;SolvingC d R1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d t

= -kf  R1  L2 + kr HR ù LL1 ,

d L2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d t

= -kf  R1  L2 + kr HR ù LL1 ,
d HR ù LL1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

d t
= k f  R1  L2 - kr HR ù LL1G?G

or more directly, omitting the Cell compartment object as in Section 3.2 below,

ArrowCDynGram@ratelaw, ODED, 8Real@R, iD, Real@HR ù LL, iD, Real@L, jD<* ,

8nbr@ j , iD<* , 8Real@R + d R, iD, Real@HR ù LL + d HR ù LL, iD, Real@L + d L, jD<* ,

;SolvingC d R
ÅÅÅÅÅÅÅÅÅÅÅÅ
d t

= -k f  R L + kr HR ù LL, d L
ÅÅÅÅÅÅÅÅÅÅÅ
d t

= -k f  R L + kr HR ù LL, d HR ù LL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

d t
= k f  R L - kr HR ù LLG?G

These translations differ in representing enclosing compartments explicitly or only implicitly.
On the other hand the stochastic dynamics representation

Arrow@DynGram@stoch, massaction, reversibleD, 8R@iD, L@ jD<* , 8nbr@ j , iD<* , 8HR ù LL@iD<* , 8With@k f , kr D<D
is also valid. This process may best be understood in terms of DGG notation:

CambiumProcessLanguageV18.nb

5



DGG@stoch, massaction, reversibleD :

i

k

jjjjjjjjjjj

i ö
nbr

j

Æ m Æ m

R L

y

{

zzzzzzzzzzz
öøøøøøøøøø

i ö
nbr

j
i

k

jjjjjjjjjjj

i ö
nbr

j

Æ m

R ù L

y

{

zzzzzzzzzzz
, With@k f , kr D

i.e.

i

k

jjjjjjjjjjj

i ö
nbr

j

Æ m Æ m

R L

y

{

zzzzzzzzzzz
 

k f , kr

 Øøøøøøøøøøøøøøøøøøøøøøøøøøøøøø
DGG@stoch, massactionD

 

i

k

jjjjjjjjjjj

i ö
nbr

j

Æ m

R ù L

y

{

zzzzzzzzzzz

or

DGG@stoch, massaction, reversibleD :

i

k

jjjjjjjjjjjjjj

i ö
nbr

j

ç
mêØ

å
Øêm

Æ m êØ
R êØ Ø êR ù L L êØ

y

{

zzzzzzzzzzzzzz
,

With@kf , kr D
Here the label A êB  means A  is in the LHS, B  is in the RHS; Other labels are in the MHS, unless they are link

labels  and  one  of  their  anchoring  nodes  is  missing  from  the  input  set  (LHS  ‹  MHS)  or  from  the  output  set.
Alternatively, as for example in the ratelaw, ODE version above,

DGG@stoch ê det, massaction, reversibleD :

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjj

i j

Æ index Æ index

Cell ö
nbr

Cell

ã
containsêØ

é
Øêcontains


æ contains êØ

R êØ Ø êR ù L L êØ

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzz

, With@kf , kr D

2.3.2 Transport across a membrane

DGG@stoch, massaction, reversibleD :

i

k

jjjjjjjjjjjj

i ö
+

b ô
-

j

Æ m êØ Æ m Æ Ø ê m
A êØ T Ø êA

y

{

zzzzzzzzzzzz
, With@k, kD

The  boundary  relationship    is  signed,  so  we  know  i  j .  The  sign  is  arbitrary,  so  symmetry  requires  the
forward and reverse rates to be equal.

CambiumProcessLanguageV18.nb

6



2.3.3 Auxin signal transduction

The first use case for the iPlant Computational Morphodynamics preproject is as follows [courtesy of Alistair
Middleton, Nottingham CPIB].

AM-SME (Sigmoid) source code:

reactionRates = List@Rule@r1, 1.0000000000D,
Rule@r2, 0.1000000000D, Rule@r3, 0.1000000000D, Rule@r4, 1.0000000000D,
Rule@r5, 0.5000000000D, Rule@r6, 1.0000000000D, Rule@r7, 1.0000000000D,
Rule@r8, 0.0100000000D, Rule@r9, 1.0000000000D, Rule@r10, 1.0000000000D,
Rule@r11, 1.0000000000D, Rule@r12, 1.0000000000D, Rule@r13, 1.0000000000DD;

initialConditions = List@Rule@AuxIAAProtein, 0.0100000000D, Rule@AuxIAAmRNA, 0D,
Rule@AuxinSCFTIR1, 0.0100000000D, Rule@AuxinSCFTIR1AuxIAA, 0D,
Rule@Auxin, 0.1000000000D, Rule@SCFTIR1, 0.3000000000D, Rule@AuxIAAmod, 0DD;

cmodel = Union@List@List@ShortRightArrow@AuxIAAmRNA, «D, r1DD,
List@List@ShortRightArrow@AuxIAAmod, «D, r2DD,
List@List@ShortRightArrow@AuxIAAProtein, «D, r3DD,
List@List@ShortRightArrow@AuxIAAmRNA, List@AuxIAAmRNA, AuxIAAProteinDD, r4DD,
List@List@ShortRightArrow@AuxinSCFTIR1AuxIAA, List@AuxinSCFTIR1, AuxIAAmodDD,

r5DD, List@List@RightArrowLeftArrow@
List@AuxIAAProtein, AuxinSCFTIR1D, AuxinSCFTIR1AuxIAAD, r6, r7DD,

List@List@RightArrowLeftArrow@List@Auxin, SCFTIR1D, AuxinSCFTIR1D, r8, r9DD,
List@List@RightArrowLeftArrow@Auxin, «D, r10, r11DD,
List@List@RightArrowLeftArrow@SCFTIR1, «D, r12, r13DDD;

Sigmoid Model Explorer screen shot of this model, at the start of the iPlant Computational Morphodynamics
preproject:

CambiumProcessLanguageV18.nb

7



Figure 1. Screen shot of auxin signal transduction “toy” model running in Sigmoid, www.sigmoid.org .

Cambium representation  thereof  (produced by the first  running code for Cambium, lightly edited for consis-
tency with this document):

8arrow@8Procambium@LetD, 8<, 81.`<, 8r1<<D,
arrow@8Procambium@LetD, 8<, 80.1`<, 8r2<<D,
...,
arrow@8Procambium@LetD, 8<, 80.01`<, 8AuxIAAProtein<<D,
arrow@8Procambium@LetD, 8<, 80<, 8AuxIAAmRNA<<D,
...,
arrow@8Procambium@ratelaw, ODED,

multiset@8AuxIAAmod, 1<D, Ø, Ø, solving@8AuxIAAmod£ ã -AuxIAAmod r2<D<D,
arrow@8Procambium@ratelaw, ODED, multiset@8AuxIAAmRNA, 1<D,

Ø, Ø, solving@8AuxIAAmRNA£ ã -AuxIAAmRNA r1<D<D,
...,
arrow@8Procambium@ratelaw, ODED, multiset@8Auxin, 1<, 8SCFTIR1, 1<D,

Ø, multiset@8AuxinSCFTIR1, 1<D, solving@8Auxin£ ã -Auxin r8 SCFTIR1,
AuxinSCFTIR1£ ã Auxin r8 SCFTIR1, SCFTIR1£ ã -Auxin r8 SCFTIR1<D<D,

arrow@8Procambium@ratelaw, ODED, multiset@8AuxinSCFTIR1, 1<D, Ø,
multiset@8Auxin, 1<, 8SCFTIR1, 1<D, solving@8Auxin£ ã AuxinSCFTIR1 r9,

AuxinSCFTIR1£ ã -AuxinSCFTIR1 r9, SCFTIR1£ ã AuxinSCFTIR1 r9<D<D
<

CambiumProcessLanguageV18.nb

8



2.3.4 Clavata/Wuschel model

The  second  use  case  for  the  iPlant  Computational  Morphodynamics  preproject  is  the  following  model  [4].
Using the Cellzilla augmentation of Cellerator notation,

internal@iD := 8
88X@iD< # CLV3@iD, GRN@Abs@Tip@iD@tDD rCLV3, 8TX,CLV3<, 1, 0, sigmaD<,
88WUS@iD, L1Signal@iD, BottomSignal@iD< # CLV1@iD,
GRN@rCLV1, 8TWUS,CLV1, TL1,CLV1, TBottom,CLV1<, 1, 0, sigmaD<,

88Y@iD, L1Signal@iD, BottomSignal@iD< # WUS@iD,
GRN@rWUS, 8TY,WUS, TL1,WUS, TBottom,WUS<, 1, 0, sigmaD<, 8WUS@iD Ø WUS@iD + X@iD, kX,f<,

8CLV3@iD Ø «, kCLV3<,
8WUS@iD Ø «, kW<,
8X@iD Ø «, kX,r<,
8CLV1@iD Ø «, kCLV1<,
8CLV1@iD + CLV3@iD V CLV13@iD, k1, k2<, 8CLV13@iD Ø CLV13@iD + Y@iD, kf,Y<,
8Y@iD Ø «, kr,Y<,
8L1@iD Ø L1@iD + L1Signal@iD, kL11<,
8L1Signal@iD Ø «, kL12<,
8BottomMarker@iD Ø BottomMarker@iD + BottomSignal@iD, kB1<,
8BottomSignal@iD Ø «, kB2<,
8Tip@iD Ø Tip@iD, 0<<

external@i, jD := 88CLV3@iD Ø CLV3@jD, DCLV3<, 8L1Signal@iD Ø L1Signal@jD, DL1<,
8BottomSignal@iD Ø BottomSignal@jD, DBottom<, 8X@iD Ø X@jD, DX<<

CambiumProcessLanguageV18.nb

9



Figure 2. Stable state resulting from the Cellzilla CLV/WUS model, with Voronoi diagram topology.

This can be transcribed into Cambium as something like
8

arrow@Procambium@GRND, Ø,
MultiSet@8X@iD@tD, 1<D, MultiSet@8CLV3@iD@tD, 1<D, ØD,

arrow@Procambium@GRND, Ø, MultiSet@8BottomSignal@iD@tD, 1<,
8L1Signal@iD@tD, 1<, 8WUS@iD@tD, 1<D, MultiSet@8CLV1@iD@tD, 1<D, ØD,

...,
arrow@Procambium@MassActionD,
MultiSet@8WUS@iD@tD, 1<D, Ø,
MultiSet@8WUS@iD@tD, 1<, 8X@iD@tD, 1<D, ØD,
...,
arrow@Procambium@MassActionD, MultiSet@8X@iD@tD, 1<D,
8ConnectionMatrix@i, jD<,
MultiSet@8X@jD@tD, 1<D, with@ConnectionMatrix@i, jDDD

<

CambiumProcessLanguageV18.nb

10



Thence to a model whose mathematical meaning is built out of ODE’s:
looom
n
ooo

arrow

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
Procambium@ratelaw, ODED,

Ø, MultiSet@8X@iD@tD, 1<D, MultiSet@8CLV3@iD@tD, 1<D,

solving

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

ODETerm

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
CLV3@iD@tD, 1

ÅÅÅÅ
2
Abs@Tip@iD@tDD rCLV3

i

k
jjjjjjj1 +

TX,CLV3 X@iD@tDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"############################################1 + TX,CLV3
2 X@iD@tD2

y

{
zzzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
,

arrowBProcambium@ratelaw, ODED,
MultiSet@8BottomSignal@iD@tD, 1<,

8L1Signal@iD@tD, 1<, 8WUS@iD@tD, 1<D,
8<, MultiSet@8CLV1@iD@tD, 1<D, solvingBODETermBCLV1@iD@tD,

1
ÅÅÅÅ
2
rCLV1

I1 + HTBottom,CLV1 BottomSignal@iD@tD + TL1,CLV1 L1Signal@iD@tD + TWUS,CLV1 WUS@iD@
tDL ë I,I1 + HTBottom,CLV1 BottomSignal@iD@tD + TL1,CLV1 L1Signal@iD@tD +

TWUS,CLV1 WUS@iD@tDL2MMMFFF,
...,
arrow@Procambium@ratelaw, ODED,

MultiSet@8WUS@iD@tD, 1<D, Ø,
MultiSet@8WUS@iD@tD, 1<, 8X@iD@tD, 1<D,
solving@ODETerm@WUS@iD@tD, 0D, ODETerm@X@iD@tD, kX,f WUS@iD@tDDDD,

...,
arrow@Procambium@ratelaw, ODED,
MultiSet@8X@iD@tD, 1<D, 8ConnectionMatrix@i, jD<,

MultiSet@8X@jD@tD, 1<D,
8solving@ODETerm@X@iD@tD, -ConnectionMatrix@i, jD * DX X@iD@tDD,
ODETerm@X@jD@tD, ConnectionMatrix@i, jD * DX X@iD@tDDD<D

|ooooo}
~
ooooo

CambiumProcessLanguageV18.nb

11



2.3.5 L-system example: Anabaena model

Here is a differential L-system model for 1D growth of Anabaena catenula [5]:

axiom:  Fh Hsmax , cmax L Fv Hsmax , cmax L Fh Hsmax , cmax L
FHsl , cl L < Fv Hs, cL > FHsr , cr L :

if s < smax  & c > cmin
solve d c ê d t = D Hcl + cr - 2 cL - m c

d s ê d t = r s
if s = smax  & c > cmin

produce Fv Hk smax , cL Fv HH1 - kL smax , cL
if  c = cmin

produce Fh Hs, cL
Fh Hs, cL :

solve d s ê d t = r sHsmax - sL
d c ê d t = r c Hcmax - cL

This model was translated into DG’s in [1]. 
The Anabaena model could be encoded first in Cambium, directly and without significant translation,

as something like
{

Arrow@LSystem@axiomD, Ø, Ø, XFh Hsmax , cmax L, Fv Hsmax , cmax L, Fh Hsmax , cmax L\, ØD ,

Arrow@LSystem@continuous_eventD,
XFHsl , cl L, Fv Hs, cL, FHsr , cr L\, Ø, XFHsl , cl L, Fv Hs, cL, FHsr , cr L\,

8Precondition@s < smax Ô c > cmin D,
Solve@d c ê d t = D Hcl + cr - 2 cL - m c, d s ê d t = r sD <D ,

Arrow@LSystem@discrete_eventD, XFHsl , cl L, Fv Hs, cL, FHsr , cr L\, Ø,
XFHsl , cl L, Fv Hk smax , cL, Fv HH1 - kL smax , cL, FHsr , cr L\,

8Precondition@s = smax Ô c > cmin D <D ,

Arrow@LSystem@discrete_eventD, XFHsl , cl L, Fv Hs, cL, FHsr , cr L\, Ø,
XFHsl , cl L, Fh Hs, cL, FHsr , cr L\,
8Precondition@c = cmin D <D ,

Arrow@LSystem@continuous_eventD, XFh Hs, cL\, Ø, XFh Hs, cL\,
8Solve@d s ê d t = r sHsmax - sL, d c ê d t = r c Hcmax - cLD <D

}
It  could  then  be  translated  into  Procambium  type  arrows  or  some  other  attributed  arrow  type.  A  possible

translation from this intermediate form to a Procambium intermediate form might be:
{

CambiumProcessLanguageV18.nb

12



Arrow@Procambium@fire_once, fastD, Ø, Ø, XFH" h ", smax , cmax L, FH" v ", smax , cmax L, FH" h ", smax , cmax L\, ØD ,

Arrow@Procambium@ratelaw, ODED, XFHs, s1 , c1 L, FH" v ", s, cL, FHs, s2 , c2 L\, Ø,
XFHs, s1 , c1 L, FH" v ", s, cL, FHs, s2 , c2 L\,

8SubjectTo@s < smax Ô c > cmin D,
Solving@d c ê d t = D Hc1 + c2 - 2 cL - m c, d s ê d t = r sD <D ,

Arrow@Procambium@det, fastD, XFHs, s1 , cl L, FH" v ", s, cL, FHs, s2 , c2 L\, Ø,
XFHs, s1 , c1 L, FH" v ", k smax , cL, FH" v ", H1 - kL smax , cL, FHs, s2 , c2 L\ ,

8SubjectTo@s = smax Ô c > cmin D <D ,

Arrow@Procambium@det, fastD, XFHs, s1 , c1 L, FH" v ", s, cL, FHs, s2 , c2 L\, Ø,
XFHs, s1 , c1 L, FH" h ", s, cL, FHs, s2 , c2 L\, 8SubjectTo@c = cmin D <D ,

Arrow@Procambium@ratelaw, ODED, XFH" h ", s, cL\, Ø, XFH" h ", s, cL\,
8Solving@d s ê d t = r sHsmax - sL, d c ê d t = r c Hcmax - cLD <D

}
Alternatively  the  Anabaena  model  could  be  translated  from  some  other  arrow  type  into  the  second

form above, thence to the first one, and then executed directly by invoking the appropriate L+C simulator [2].

2.3.6 Meta-rule

The rule-to-rule transformations foreseen in Section 2.1 (step 3) may themselves be expressible in Cambium.
For example:

Procambium@metaD :
Arrow@LSystem@continuous_eventD, LHS, MS, RHS, 8Precondition@PD, Solve@odesystemD<Dö

Arrow@Procambium@ratelaw, ODED, LHS, MS, RHS, 8SubjectTo@PD, Solving@odesystemD<D
or, in standardized form,

Arrow@Procambium@metaD,
Arrow@LSystem@continuous_eventD, LHS, MS, RHS, 8Precondition@PD, Solve@odesystemD<D, Ø,
Arrow@Procambium@ratelaw, ODED, LHS, MS, RHS, 8SubjectTo@PD, Solving@odesystemD<D, ØD

The “meta” attribute implies at least the “fast” attribute described below, since it is to fire before any ordinary
or slow rules.

CambiumProcessLanguageV18.nb

13



3 Cambium Syntax

We will generally use “reaction”, “generalized reaction”, and “rule” interchangably.

3.1 Sequence and fire-once constructs

Fire-once rules can only fire once within the execution of a sequence, and are denoted by the attribute
fireonce. They may also have the attribute fast. The semantics of these attributes is discussed in Section 4.3 .

General syntactic form for a sequence:

Arrow@Procambium@sequenceD, * , Ø, * , 8Constituents@
reaction1 ,

...
reactionk

D<D
Here reaction1  ...reactionk  are more Cambium arrows. 

We could in addition recognize a “pretty” shorthand form such as

X reaction1 ,
... ,

reactionk \
in which angle brackets replace braces in the usual aggregation of rules to form a grammar. Then at least in

Dynamical Grammars, nested combinations of grammars and sequences would be syntactically simplified:

grammarH ...L Xr1, 8r2, r3, Xr4, r5\, r6<, 8r7, r8<\, or inversely
grammarH ...L 8r1, Xr2, r3, 8r4, r5<, r6\, Xr7, r8\<,

would  make  sense.  Nested  sequences  and  nested  sets  each  can  be  flattened  out  without  loss  of  generality,
provided  that  sets  of  rules  are  combined  as  multisets  and  then  converted  to  sets.  A  related  alternative  is  to
recognize a category of process aggregate entities - such as models, grammars, sequences, and perhaps programs
- that are not Arrows but whose constituents may be.

Such a compound arrow could also be used to preserve the grouping of  arrows in the Anabaenda L-
system example of Section 2.3.5 .

There is a question about what to do with the LHS and RHS of the main reaction in a sequence. This is
analogous  to  the  treatment  of  LHS  and  RHS  for  entire  grammars  in  Dynamical  Grammars,  where  a  filtering
operation is introduced to minimize  interdependence.  We could take the LHS and RHS to be the entire  current
pool (hence "*") by default, for sequential and parallel aggregates (denoted X  , ...\  and { , ...} respectively), and
reserving some heavy-duty aggregate like “grammar” for use in filtering the pool to introduce modularity. Then
we would have syntactic constructs such as:

FilteredProcess@Procambium@model »» grammarD, LHS, MS, RHS, CompoundProcess@ ...D D
and

CambiumProcessLanguageV18.nb

14



CompoundProcess@Procambium@sequence »» setD, 8
reaction1 ,

...
reactionk

<D

3.2 Initial condition specification

Suppose we want to initialize the concentration of Wuschel in many cells indexed by i  to the values
stored in the array Wi @0D .  Poetically,  we wat to use the values of one sequence of variables to set the values of
another sequence of variables:

Let @Winit@iD » 1 b i b imax D# @Wus@iD » 1 b i b imax D
or more prosaically,

Arrow@Procambium@LetD, Ø, 8@Winit@iD » 1 b i b imaxD<, 8@Wus@iD , iD » 1 b i b imax D<, Ø<D
Even this requires an extension of notation. Safest would be the pedestrian

(1)8Arrow@Procambium@LetD, Ø, 8Winit@iD <, 8Wus@iD <, ØD » 1 b i b imax <
“Let” is intrinsically fast and fire-once, so we could equivalently write Procambium@Let, fast, fireonceD  in the

foregoing. We now discuss the possible interpretations of Equation 1 in terms of meaningful Dynamical Gram-
mar constructs.

A number of language questions are raised even by this example. This is because of a clash of para-
digms between conventional programming, where symbols have current values and arrays are declared and sized
ahead of their use, and DG modeling. For example under the semantics of Dynamical Grammars, the only hidden
or  implicit  value  associated  with  a  parameterized  object  is  a  nonnegative  copy  number.  Therefore  the  array
references Winit@iD  and Wus@iD only have implicit values if they are nonnegative integers, interpreted as numbers
of identical copies. This would never be true for Winit,  which by definition comprises externally supplied data,
and would not be true for Wus in a model that represents concentrations.

Such  arrays  of  value-bearing  variables  may  however  be  modeled  within  DG  as  eg.
Real@Winit@iD, " Winit ", iD  or  perhaps   Real@Winit@iD, " Winit ", i, i - 1, i + 1D  where  the  inner  Winit@iD  and the
index expressions are actual values, rather than syntax trees, and “Winit” on the other hand is a name. If the type
Real  or  NatNum  is  constrained  to  have  copy  number  zero  or  one,  then  the  pool  of  active  terms  can  be  kept
consistent in either asserting some unique value for Winit@iD , or no value. The initialization of Equation 1 above
could then be interpreted as

8Arrow@DynGram@fire_once, fastD, Ø, 8Real@w, " Winit ", iD <, 8Real@w, " Wus ", iD <, Ø<D » 1 b i b imax <
or

8Arrow@DynGram@fire_once, fastD, Ø, 8evalHWinit@iD L<, 8Real@evalHWinit@iD L, " Wus ", iD <, Ø<D » 1 b i b imax <
where eval(...)  is called during a preprocessing phase from within some larger computational evironment. Of

course,  the  real  number  returned  by  evalHWinit@iD L  is  not  depleted  from  the  pool  by  the  second  interpretation
above - if we assume it is in the pool in the first place which the first interpretation doesn’t require. Either way,
the  interpretation  of  Wus@iD  as  Real@Wus@iD, " Wus ", iD  would  also  make  sense  of  the  Cellzilla  notation  for
reactions  among real-valued  concentration  variables,  even  in  the  absence  of  any  enclosing  compartment  object
such as Cell in Section 2.3.1 that can play this role.

CambiumProcessLanguageV18.nb

15



where eval(...)  is called during a preprocessing phase from within some larger computational evironment. Of
course,  the  real  number  returned  by  evalHWinit@iD L  is  not  depleted  from  the  pool  by  the  second  interpretation
above - if we assume it is in the pool in the first place which the first interpretation doesn’t require. Either way,
the  interpretation  of  Wus@iD  as  Real@Wus@iD, " Wus ", iD  would  also  make  sense  of  the  Cellzilla  notation  for
reactions  among real-valued  concentration  variables,  even  in  the  absence  of  any  enclosing  compartment  object
such as Cell in Section 2.3.1 that can play this role.

Without  this  interpretation,  if  we  are  somehow  writing  arrows  automatically  within  an  environment
that defines the Winit array, then

8Arrow@DynGram@fire_once, fastD, Ø, Ø, Wus@evalHWinit@iD L, iD, Ø<D » 1 b i b imax<
would at least evaluate to the the right thing if the real-valued concentration “Wus[i]” is regarded as a hidden

first argument in the Wus syntax tree Wus@w, iD  .
 Initialization  of  integer  copy  numbers  is  syntactically  different  from  initialization  of  real-valued

concentrations  or  any  other  parameters.  In  that  case  Wus@iD  needs  no  special  interpretation  other  than  as  the
nonnegative copy number nWus , and Equation 1 can be interpreted as being equivalent to:

8Arrow@DynGram@fire_once, fastD, Ø, 8evalHWinit@iD L<, 8evalHWinit@iD L * Wus@iD <* , Ø<D » 1 b i b imax<
In  general  the  pre-execution  invokation  of  eval(  )  can  be  made  implicit  by  use  of  suitable  notation.

Examples include ordinary parentheses for function evaluation f H ...L  as distinct from abstract syntax trees f @ ...D ,
and the use of double brackets P...T to denote preexecution substitution of labels as in f @x, y, z, yD Pa, b, aT  which
evaluates to f @a, b, a, bD  .

Another  application  of  discrete  rule  sequences  is  in  creating  prior  probability  distributions  on  struc-
tured  images  for  use  as  generative  models  in  statistical  image  analysis.  Such  “visual  grammars”  [NIPS  1989]
have been the subject of much recent progress .in their practical application [NIPS workshop 2007].

3.3 Textual forms

The  following  examples  have  been  autoproduced  in  both  textual  and  Mathematica  compatible  formats,
starting  from  Cellerator  style  notation.  From Mathematica  expressions  one  can  produce  mathml/xml  formatted
syntax  trees,  as  foreseen  in  the  current  iPlant  Computational  Morphology  preproject  plan  [M.  Vaughn,  private
communication].

3.3.1 Auxin signal transduction

The initial conditions are as discussed above.
arrow[Let,Ø,{1.},{r1}], arrow[Let,Ø,{0.1},{r2}], arrow[Let,Ø,{0.1},{r3}], arrow[Let,{},{1.},{r4}],
arrow[Let,Ø,{0.5},{r5}], arrow[Let,Ø,{1.},{r6}], arrow[Let,Ø,{1.},{r7}], arrow[Let,{},{0.01},{r8}],
arrow[Let,Ø,{1.},{r9}], arrow[Let,Ø,{1.},{r10}], arrow[Let,Ø,{1.},{r11}], arrow[Let,{},{1.},{r12}],
arrow[Let,Ø,{1.},{r13}],
arrow[Let,Ø,{0.01},{AuxIAAProtein}], arrow[Let, Ø, {0},
         {AuxIAAmRNA}], arrow[Let,Ø,{0.01},{AuxinSCFTIR1}],
arrow[Let,Ø,{0},{AuxinSCFTIR1AuxIAA}], arrow[Let,Ø,{0.1},{Auxin}], 

CambiumProcessLanguageV18.nb

16



arrow[Let,Ø,{0.3},{SCFTIR1}],
arrow[Let,Ø,{0},{AuxIAAmod}],
arrow[
  Procambium[ratelaw,ODE],
  multiset[{AuxIAAmod, 1}],
  multiset[],
  multiset[],
  solving[{
    AuxIAAmod'=-(AuxIAAmod*r2)}]
],
arrow[
  Procambium[ratelaw,ODE],
  multiset[{AuxIAAmRNA, 1}],
  multiset[],
  multiset[],
  solving[{
    AuxIAAmRNA'=-(AuxIAAmRNA*r1)}]
],
arrow[
  Procambium[ratelaw,ODE],
  multiset[{AuxIAAmRNA, 1}],
  multiset[],
  multiset[{AuxIAAmRNA, 1}, {AuxIAAProtein, 1}],
  solving[{
    AuxIAAmRNA'=0,
    AuxIAAProtein'=AuxIAAmRNA*r4}]
],
...

3.3.2 MathML/XML format

Automatic conversion of the forgoing formats to MathML (and hence to XML) is also available, since
the alpha version software is written in Mathematica.

CambiumProcessLanguageV18.nb

17



3.4 Mechanical models

Cambium can represent  dynamics on labelled graphs and therefore discretized cell  complexes whose
compartments  are  labelled  by  algebraic  or  discretized  representations  of  functions  such  as  distances,  level  sets
that define compartment boundaries, diffusable substance concentrations, and stress and strain fields. With such
representations,  finite  element  methods  and  other  approaches  to  mechanical  modeling  can  in  principle  be
supported.

3.5 Programming constructs

In  addition  to  finite  sequences,  loops  of  sequentially  executed  rules  are  possible.  The  semantics  for
loops  are  outlined  in  Section  4.4,  although  no  special  syntax  is  proposed  here.  Subroutine  and  macro  calls  are
already present in Dynamic Grammars, using the via and substituting  keyword clauses. By these means we can
introduce any degree of programming required for Cambium to serve its functions in intermodel translation and
simulation.

A  major  difference  between  Cambium  and  conventional  programming  languages  is  the  default
aggregation of reaction rules within unordered sets, whose compositional semantics is obtained just by summing
the  individual  rules’  time-evolution  operators.  This  semantics  corresponds  naturally  to  the  continuous-time,
asynchronous, locally independent, causal, and highly parallel world of physics and biology.

The definition of general and parallel programming languages by means of transformations on multi-
sets is studied in detail in [McEvoy, 1997].

4 Cambium Semantics

Most  Cambium  semantics  can  be  specified  by  syntactic  reduction  to  Dynamical  Grammars  and/or
Dynamical  Graph  Grammars,  which  have  well-defined  semantics  in  terms  of  time-evolution  operators  and  the
Master Equation or the Chapman-Kolmogorov equation.

Novel  semantics  are  required  for  new  attributes  and  constructs  including  fire-once  rules,  Let  and
Define  rules,  and  Sequence  compound arrows.  Let  and Define  rules  are  needed  for  initialization;  they are  fast,
fire-once rules. Fire-once rules fire exactly once per occurence in the execution of a Sequence. A Sequence may
or may not be fire-once. We must define all of these behaviors in terms of time-evolution operators.

4.1 Conventional reaction processes

The semantics of  Dynamic Grammars and Dynamic Graph Grammars both assume a hidden integer-
valued  variable  for  each  parameterized  object:  the  current  number  of  identical  copies  of  that  object,  with  the
given parameter values. If continuous variables are required they must be treated as parameters, which can take
values in any measure space so that integration over parameter values can be defined.

CambiumProcessLanguageV18.nb

18



For  each  combination  of  object  type  and  parameter  values,  with  maximal  copy  number  nmax = ¶ ,
define the creation and annihilation matrices that increase or decrease copy number n  as follows:

à =

i

k

jjjjjjjjjjjjjjjjjj

0 0 0 0 
1 0 0 0
0 1 0 0
0 0 1 0
ª  

y

{

zzzzzzzzzzzzzzzzzz
= dn,m+1 and a =

i

k

jjjjjjjjjjjjjjjjjj

0 1 0 0 
0 0 2 0
0 0 0 3
0 0 0 0 
ª 

y

{

zzzzzzzzzzzzzzzzzz
= m dn+1,m ,

Using  this  notation,  the  time-evolution  operators  for  a  generalized reaction  should  destroy  all  parameterized
objects on the LHS and then, with no delay, create all parameterized objects on the RHS [1]:

(2)W
`

r = rr  H@xa D, @yb DL
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

bœrhsHrL
à jHbL  Hyb L

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

aœlhsHrL
 aiHaL  Hxa L

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
Equivalently  any unchanged objects  in both LHS and RHS can be grouped together  in the “MS”.  The time-

evolution operator makes it explicit that such objects are only counted, not altered, by a reaction event:

(3)W
`

r = rr  H@xaD, @yb D, @zcDL
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

cœrhsHrL
à jHcL  Hzc L

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

bœmhsHrL
NjHbL  Hyb L

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

aœlhsHrL
 aiHaL  Hxa L

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
Here N = à a  is the number operator, which is diagonal and therefore doesn’t change any particle numbers; it

just provides information about how many particles of a given type are present.
Given the operators W

`
r  for individual generalized reactions, the full time-evolution operator is 

W = ‚
r

Wr , where

Wr = W
`

r - Dr and Dr = diagI1 ÿ W
`

r M
and the Master  Equation for evolution of state  probabilities  is d p ê d t = W ÿ p  .  From this  equation one can

derive the Chapman-Kolmogorov equation and the Gillespie Stochastic Simulation algorithm, among others.  Its
formal solution is simply pHtL = expHt WL ÿ pHtL .

The semantics of Equation 2 and Equation 3 can be extended to graph grammars either by reduction of
graph grammars to stochastic parameterized grammars [1], or directly in terms of labelled graphs in the LHS and
RHS [DGG, in preparation].

Likewise,  the  semantics  of  models  specified  partly  or  entirely  by  differential  equations  can  be
expressed in the same kind of operator algebra by using differential operators.

4.2 Fast rules

Rules with attribute “fast” act as if their time-evolution operators Wr  were all multiplied by a constant
L , and then a limit L Ø ¶  were taken on the solutions pHtL  to the Master Equation. Rules with attribute “fast[a]”
likewise  are  multiplied  by La before  this  limit  is  taken.  So it  is  possible  to  have  fast  fast  fast  rules  (i.e.  fast[3]
rules), but also fast[ 1ê3] and fast[-3] rules. In general

CambiumProcessLanguageV18.nb

19



WHLL = ‚
r

LaHrL  Wr

The default speedup exponent for each rule is of course aHrL = 0. Since a  is part of an attribute of rule r , and
not an object parameter, it is a constant whose value can only be changed by a metarule.

4.3 Fire-once rules

Execution of a reaction or rule may be controlled by adding a required input token such as “start” to
the LHS, but not the RHS. If this token has a maximum copy number of one, then the reaction can only fire once.
The token itself  is just  an unparameterized object not  used elsewhere except to set  up the initial  unfired condi-
tion. Reactions not already in this form, but declared to be fire-once, could be transformed into this form.

The semantics  of  this  situation  can  be  modeled  by a  “fire-once  matrix”  in  the  two-dimensional  state
space given by the presence or absence of the special token:

F
`

= K 0 0
1 0 O, DF = diagI1 ÿ F

` M = K 1 0
0 0 O

F = F
`

- DF = K -1 0
1 0 O .

We  will  take  the  tensor  product  of  2x2  matrices  like  these,  representing  the  evolution  of  the  present/absent
state of the start token, with the potentially much larger time-evolution matrices of the previous section, represent-
ing the evolution of the rest of the system under the influence of a particular rule. The tensor product means that
the two changes happen in different spaces, without influencing each other, but simultaneously.

Given  a  time-evolution  operator  W = W
`

- D  from  the  conventional  (not  fire-once)  semantics  of  an
arrow, which for simplicity we assume has no terminal states, we construct the combined dynamics Wè :

Wè̀
= F

`
W

`
fl Wè

= F
`
W

`
- DF D .

We now find the future evolution of the entire system, expIt Wè M , from the Taylor series:

expIt Wè M = I + tIF` W
`

- DF DM +
t2
ÅÅÅÅÅÅÅ
2

 IF` W
`

- DF DM2 +
t3

ÅÅÅÅÅÅÅÅÅ
3 !

 IF` W
`

- DF DM3 + ... .

Using the algebra

F
` 2

= 0, F
`

 DF = F
`
, and DF  F

`
= 0 ,

we calculate

expIt Wè M = I + tIF` W
`

- DF DM +
t2
ÅÅÅÅÅÅÅ
2

 I-F
`
W

`
 D + DF D2 M +

t3
ÅÅÅÅÅÅÅÅÅ
3 !

 IF` W
`

 D2 - DF D3 M + ...

whence

expIt Wè M = I + F
`
W

` HI - expH-t DLL ëD - DF  HI - expH-t DLL.
In the long-time (fast subprocess) limit, this is just

CambiumProcessLanguageV18.nb

20



limtØ¶ expIt Wè M = F
`
 IW` êDM + HI - DF L I

The second term may be eliminated  by starting in  the “0” (start)  state.  The factor of  F
`

 in the first  term just
says the rule eventually fires. The subtantive part of the resulting limit is just 

# = W
` êD

as expected. For the treatment of the case in which W  may have terminal states, see the discrete-time seman-
tics of [1].

Clearly  this  token-consumption  transformation  could  be  generalized  to  fire-n-time  reactions  by
changing the maximum copy number of the input token to n. 

4.4 Sequences, loops, and NFSA control

The token mechanism can be generalized to finite Sequences by adding a special output token for each
rule, which is the required input token for the next one. A similar calculation starting from

F
`

=

i

k

jjjjjjjjjjjjjjjjjjjjjjj

0 0 0  0 0
1 0 0 0 0
0 1 0 0 0
ª   0 0
0 0 0 1 0 0
0 0 0 0 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzz

= àcounter , F
` k

= 0

shows that for a Sequence of k  fast rules,

# = HWk
` êDk M ... HW2

` êD2 M HW1
` êD1 M ,

again as expected.
Looping may be obtained by having the final output token in a sequence be the same as the first input

token,  rather  than  having  k + 1  different  tokens.  A  loop  can  be  exited,  or  a  sequence  can  branch,  by  having
several rules share an input token. The choice of branch taken can be regulated by parameter-dependent relative
reaction rates, which depend on non-token parameterized objects. Convergence in execution paths is obtained by
sharing output tokens. By these means, control by any Finite State Automaton (FSA) (no branching) or Nondeter-
ministic  Finite  State  Automaton  (NFSA)  can  be  imposed  on  a  collection  of  rules.  Sequences  and  loops  are
inherently  non-parallel  computationally,  but  parallelism may be obtained by adding  an integer parameter  p  (an
arbitrary process number) to all of the tokens; p  must match agree between input and output tokens for each rule
in the FSA, as for  example rules of the form: tokenHp, kL, LHS Ø tokenHp, k + 1L, RHS. Then sequences with
different  values  of  p  will  interleave  arbitrarily  in  time,  but  for  each  value  of  p ,  processes  will  remain
sequentialized.

CambiumProcessLanguageV18.nb

21



5 Acknowledgements

We have benefitted from discussions with Premyslaw Prusinkiewicz. This work was prepared in part
for the “iPlant” preproject  in Computational  Morphodynamics.  Work supported in part by the National Science
Foundation’s  Frontiers  in  Biological  Research  (FIBR)  program,  award  number  EF-03307686,  supporting  the
“Computable Plant” project, and by the Beckman Network Modeling Center (BNMC) at the California Institute
of Technology.

B A C K M A T T E R

References
[1] Mjolsness, E. , & Yosiphon, G.  (2007, January). Stochastic Process Semantics for Dynamical Grammars. 

Annals of Mathematics and Artificial Intelligence, 47(3-4).
[2] Shapiro, B. E. , et al. (2003). Cellerator: extending a computer algebra system to include biochemical 

arrows for signal transduction simulations . Bioinformatics , 19, 677–678. 
[3] Jönsson, H. , et al. (2005). Modeling the Organization of the WUSCHEL Expression Domain in the Shoot 

Apical Meristem. In  Procedings of Intelligent Systems in Molecular Biology .
[4] Federl, P. , & Prusinkiewicz, P.  (2004). Solving Differential Equations in Developmental Models of Multicel-

lular Structures Expressed Using L－systems. Proceedings of Computational Science.
[5] Prusinkiewicz, P. , Karwowski, R. , & Lane, B.  (2007). The L+C plant modelling language.. In J. Vos  

(Ed.), Functional-Structural Plant Modelling in Crop Production .

References for modeling languages and software:
Hlavacek WS, et al. (2006) Rules for modeling signal-transduction systems. Science’s STKE 2006, re6.

Antoine Spicher, Olivier Michel, Mikolaj Cieslak, Jean-Louis Giavitto, Przemyslaw Prusinkiewicz. Stochastic
P systems and the simulation of biochemical processes with dynamic compartments. Biosystems 2007. See also
http://ppage.psystems.eu/ .

Danos and Laneve, Formal molecular biology. Theoretical Computer Science 325(1), 69-110, 2004.

Hugh McEvoy, “Coordinating multiset transformers”. PhD thesis, University of Amsterdam, 1997.

Nan  Chen,  James  A.  Glazier,  Jesús  A.  Izaguirre,  and  Mark  S.  Alber,  “A  parallel  implementation  of  the
Cellular  Potts  Model  for  simulation  of  cell-based  morphogenesis”,  Comput  Phys  Commun.  2007  June;
176(11-12): 670–681. doi: 10.1016/j.cpc.2007.03.007.

CambiumProcessLanguageV18.nb

22



I.  F.  Sbalzarini,  J.  H.  Walther,  M.  Bergdorf,  S.  E.  Hieber,  E.  M.  Kotsalis,  and  P.  Koumoutsakos.  PPM  –  a
highly efficient parallel particle-mesh library. J. Comput. Phys., 215(2):566–588, 2006.

L Systems: http://www.algorithmicbotany.org 

MGS: http://mgs.ibisc.univ-evry.fr/

H. Jönsson, “Organism” simulator: private communication 2005.

OpenAlea: http://openalea.gforge.inria.fr/dokuwiki/doku.php 

“Cellerator:  extending  a  computer  algebra  system  to  include  biochemical  arrows  for  signal  transduction
simulations.”  Bruce E.  Shapiro, Andre Levchenko, Elliot  M.  Meyerowitz,  Barbara   J.  Wold and Eric D. Mjol-
sness. Bioinformatics, 19(5):677-678, 2003.

“The systems biology markup language (SBML): a  medium for representation and exchange of  biochemical
network  models”,  M.  Hucka,  A.  Finney,  H.  M.  Sauro,  H.  Bolouri,  J.  C.  Doyle,  H.  Kitano  ,  A.  P. Arkin  ,  B.  J.
Bornstein, D. Bray, A. Cornish-Bowden, A. A. Cuellar, S. Dronov, E. D. Gilles, M. Ginkel, V. Gor, I. I. Gorya-
nin,  W.  J.  Hedley,  T.  C.  Hodgman,  J.-H.  Hofmey,  P.  J.  Hunter,  N.  S.  Juty,  J.  L.  Kasberger,  A.  Kremling,  U.
Kummer, N. Le Nov`ere,  L. M. Loew, D. Lucio ,  P. Mendes, E. Minch, E. D. Mjolsness, Y. Nakayama, M. R.
Nelson, P. F. Nielsen, T. Sakurada, J. C. Schaff, B. E. Shapiro, T. S. Shimizu, H. D. Spence, J. Stelling,  Bioinfor-
matics Vol 19, no 4, pp 524-531, 2003.

Yang,  C-R.,  Shapiro,  B.E.,  Mjolsness,  E.D.,  and  Hatfield,  G.W..  Bioinformatics,  “An  enzyme  mechanism
language for the mathematical modeling of metabolic pathways.”, vol. 21 no. 6, pages 774–780, March 2005.

“Platforms for Modeling in Systems Biology: Recent Developments in MathSBML and Cellerator”, Bruce E.
Shapiro,  James  Lu,  Michael  Hucka,  Eric  D.  Mjolsness,  Poster  and  Proceedings  extended  abstract,  ICSB 2007:
The Eighth International Conference on Systems Biology, Long Beach California, Oct 2-4 2007.

Cuellar, A.A., Lloyd,  C.M., Nielsen, P.F., Bullivant, D.P.,  Nickerson, D.P. and Hunter, P.J.  An Overview of
CellML 1.1, a Biological Model Description Language. SIMULATION: Transactions of The Society for Model-
ing and Simulation International. 2003 Dec;79(12):740-747. See also http://www.cellml.org.

Jianlin Cheng, Lucas Scharenbroich, Pierre Baldi, Eric Mjolsness, “Sigmoid: Towards an Intelligent, Scalable,
Software Infrastructure for Pathway Bioinformatics and Systems Biology”, IEEE Intelligent Systems, May/June
2005. See also http://www.sigmoid.org.

Casanova, H., et al., Distributing MCell simulations on the Grid. Intl. J. High Perf. Comp. Appl., 2001. 15: p.
243-257.

CambiumProcessLanguageV18.nb

23


