
F R O N T M A T T E R

Towards Measurable Types for

Dynamical Process Modeling Languages
Eric Mjolsness

emj@uci.edu
Department of Computer Science
University of California, Irvine

July 2010
UCI ICS Technical Report #10-04

To appear in the Proceedings of the 26th Conference on
Mathematical Foundations of Programming Semantics (MFPS 2010)

B O D Y

Abstract
Process modeling languages such as “Dynamical Grammars” are highly expressive in the

processes they model using stochastic and deterministic dynamical systems, and can be given formal
semantics in terms of an operator algebra. However such process languages may be more limited in the
types of objects whose dynamics is easily expressible. For many applications in biology, the dynamics of
spatial objects in particular (including combinations of discrete and continuous spatial structures) should
be formalizable at a high level of abstraction. We suggest that this may be achieved by formalizating
such objects within a type system endowed with type constructors suitable for complex dynamical
objects. To this end we review and illustrate the operator algebraic formulation of heterogeneous process
modeling and semantics, extending it to encompass partial differential equations and intrinsic graph
grammar dynamics. We show that in the operator approach to heterogeneous dynamics, types require
integration measures. From this starting point, “measurable” object types can be enriched with general-
ized metrics under which approximation can be defined. The resulting measurable and “metricated” types
can be built up systematically by type constructors such as vectors, products, and labelled graphs. We find
conditions under which functions and quotients can be added as constructors of measurable and metri -
cated types.

1

1 Introduction

Modeling complex biological systems is a substantial challenge that requires the integration of ideas
from many subfields of science, mathematics and computing. For applications in “computational morphodynam-
ics” [4], the local dynamics of form in biology and elsewhere, the dynamics of spatial objects (including mixtures
of discrete and continous spatial structures) requires integration of models from geometry, physics, biochemistry,
dynamical systems, and stochastic processes. An arena where this integration can occur is in formally defined
modeling languages that incorporate heterogeneous dynamics: discrete, continuous, deterministic, stochastic, and
spatial paradigms for dynamical systems. As shown for example by the “Dynamical Grammars” (DG) process
modeling language, these objectives can be achieved by defining formal semantics in terms of an operator
algebra of stochastic processes. DG’s comprise a language with defined syntax and semantics [14], first imple-
mented as an embedded language by the “Plenum” package [21] for the Mathematica computer algebra system.

In pursuit of biological applications, a natural sequence of generalizations to process models have
been encountered. The simplest processes are essentially chemical reactions, in which a few input objects meet
and are converted into some other output objects. These reaction proceses are assembled into network models.
Chemical reactions can be modeled deterministically, for example using differential equations that evolve real-
valued concentrations, or they can be modeled more accurately as stochastic processes. Essentially the same
models are used in elementary population genetics, where the “molecules” are actually oganisms in one or more
genetically defined species. In both cases, the next escalation involves giving state attributes (such as position or
internal state) to the reacting objects. As modeled in DG’s, the resulting state attributes can evolve in discrete
stochastic jumps or continously via differential equations. In this way, local information processing within and
between neighboring cells can be very flexibly modeled, but the evolution of the cell-cell neighborhood relation-
ships themselves requires further topological and geometric expressiveness.

A useful plateau of biological expressiveness is reached with the encoding of graph grammars within
DGs, which enables the simulation of variable-structure discrete spatial models such as stem cell niche models
with biomechanics [21]. Further spatial abstraction and expressiveness, such as manifold and nonmanifold
continuous dynamic geometries encountered in developing biological tissues and organs, will require improved
support for labelled graphs and continuous spatial object types, perhaps by introducing powerful type construc-
tion mechanisms as proposed below. However, this is not as easy to do in an operator algebraic process modeling
language as in a programming language owing to the need for integration of operators over the values of each
type, and possibly for distance functions that can quantify the approximation of one value by another, as we will
show. So we seek type constructors for spatial modeling which are amenable to the operator algebra formulation
of dynamics.

This paper is organized as follows. In the remainder of Section 1 we exhibit a dynamical grammar for
a biological model, and define notation. In Section 2 we review the operator algebra approach to defining the
semantics of process modeling languages, as it has been applied in the particular case of Dynamical Grammars.
In Section 2.2 we review the existing DG mechanisms for generalized reactions or rules, including systems of
differential equations, acting on parameterized terms; in each case we exhibit the operator expressions for the
modeling language semantics. We also show how type polymorphism may be expressed in DGs. In Section 2.3
we consider extensions to DG semantics for graph grammars and for general (possibly stochastic) partial differen-
tial equations, the latter by means of operator functional integrals as an infinite limit. In Section 2.4 we summa-
rize dynamical process semantics and formulate the integration criterion for new type constructors, which
requires that types must be measurable. In Section 3 we consider extensible types built by means of primitive
types and type constructors. Section 3.2 describes the existing DG type constructors (vectors, products, and
labelled graph container objects encoded using product types). As a step forward in Section 3.3 we consider
intrinsic labelled graph types, followed by the more difficult cases of functions and quotients. Finally we collect
a set of well known observations that together define a sufficient condition for the formation of measurable
product types, and likewise formulate a set of properties for object types that in principle allow them to be
subjected to quotient operations. These properties include measureability, but also various quantification condi-
tions that are weaker than metrizability. These points are summarized in Section 4 .

Measureable Types V25.nb

2

This paper is organized as follows. In the remainder of Section 1 we exhibit a dynamical grammar for
a biological model, and define notation. In Section 2 we review the operator algebra approach to defining the
semantics of process modeling languages, as it has been applied in the particular case of Dynamical Grammars.
In Section 2.2 we review the existing DG mechanisms for generalized reactions or rules, including systems of
differential equations, acting on parameterized terms; in each case we exhibit the operator expressions for the
modeling language semantics. We also show how type polymorphism may be expressed in DGs. In Section 2.3
we consider extensions to DG semantics for graph grammars and for general (possibly stochastic) partial differen-
tial equations, the latter by means of operator functional integrals as an infinite limit. In Section 2.4 we summa-
rize dynamical process semantics and formulate the integration criterion for new type constructors, which
requires that types must be measurable. In Section 3 we consider extensible types built by means of primitive
types and type constructors. Section 3.2 describes the existing DG type constructors (vectors, products, and
labelled graph container objects encoded using product types). As a step forward in Section 3.3 we consider
intrinsic labelled graph types, followed by the more difficult cases of functions and quotients. Finally we collect
a set of well known observations that together define a sufficient condition for the formation of measurable
product types, and likewise formulate a set of properties for object types that in principle allow them to be
subjected to quotient operations. These properties include measureability, but also various quantification condi-
tions that are weaker than metrizability. These points are summarized in Section 4 .

1.1 Syntax

Briefly, a dynamical grammar consists of a header followed by an unordered set or multiset “8 ...<” of
generalized reactions or rules, each representing a process. Each rule has a left hand side (LHS), an arrow, a right
hand side (RHS), followed by a keyword (in this paper, keywords are in boldface), followed by additional
algebraic syntax depending on the keyword. LHS and RHS consist of multisets of parameterized terms. The
header begins with the keyword “grammar”, followed by the name of the grammar (so that grammars can invoke
one another recursively using rules with appropriate keywords), followed optionally by allowed input and output
object multisets in the form of an LHSØRHS rule.

1.1.1 Example: Olfactory epithelium stem cell niche model

A model similar to that of [21] for the regeneration of odorant-sensing neurons in mouse olfactory
epithelium can be expressed as a dynamical grammar. Let the parameterized term “cell@c, x, V , fD” represent a
cell with discrete cell type label c œ 81, 2, 3 = cmax < , d -dimensional position x , volume v , and growth inhibitor
concentration f . Then the grammar could be written as follows:

grammar Epithelium {
/* cell replication with or without differentiation : */

cell@c : !, x : "d , V : ", f : "Döcell@c + Dc1 , x + D x, V ê 2, fD,
cell@c + Dc2 , x - D x, V ê 2, fD

with r̀HVL PHDc1 : !, Dc2 : ! » c, fL ! HD x : "d ; c V1êd L
ä QHc < cmax L QHDc1 œ 80, 1<L QHDc2 œ 80, 1<L

/* cell death : */

cell@cmax , x, V , fDöØ with g

/* cell growth, dependent on cell type c : */

cell@c, x, V , fDöcell@c, x, V + d V , fD
solving 9 d VÅÅÅÅÅÅÅÅÅd t = k QHc < cmax L + k VHVL QHc = cmax L =

/* symmetric cell-to-cell diffusion of growth inhibition signal f : */

cell@c1 , x1 , V1 , f1 D, cell@cmax , x2 , V2 , f2 D
öcell@c1 , x1 , V1 , f1 + d f1 D, cell@cmax , x2 , V2 , f2 D
solving 9 d f1ÅÅÅÅÅÅÅÅÅÅÅd t = DI »» x1 - x2 »», HV1 V2 L1êH2 dL M Hf2 - f1 L =

Measureable Types V25.nb

3

/* signal production, dependent on cell type c , and degradation : */

cell@c, x, V , fDöcell@c, x, V , f + d fD
solving 9 d fÅÅÅÅÅÅÅÅd t = k£ QHc = cmax L - l f=

}

Here r̀, D, and V are nonnegative monotonic bounded functions of their arguments; P and N are conditional
probability distributions (in particular !H.; sL is the normal distribution with mean zero and standard deviation
s); c, k, k£ , g, and l are nonnegative real-valued constants; and QHQL is the 0/1-valued Heaviside step function
on a predicate Q . “x : t” introduces a parameter x with type t , and comments are set off as /* ... */. The first rule
states that cell division cuts cell volume in half, leaves growth inhibitor concentration fixed, jostles the positions
slightly while preserving center of mass, and leaves cell type either constant or increased by one step along an
irreversible path from “stem cell” to “transit-amplifying cell” to “neuron”. This process generates discrete events
in continuous time happening with a specified probability per unit time. There are also processes that occur over
a continuous duration of time, given by the differential equations shown in the solving clauses. An additional
solving rule (not shown) can change the position of cells in response to crowding by their neighbors.

Many of the foregoing rules could be split up into multiple rules. For example the first rule could
equivalently be replaced by the more elementary rules:

stemcellAx : "d , V : ", f : "E Ø stemcellCx + D x,
V
ÅÅÅÅÅÅÅ
2

, fG, stemcellCx - D x,
V
ÅÅÅÅÅÅÅ
2

, fG

with r̀HVL PstemcellH0 » fL !ID x; V1êd M
stemcell@x, V , fD Ø TAcell@x + D x, V ê 2, fD, stemcell@x - D x, V ê 2, fD

with r̀HVL PstemcellH1 » fL !ID x; V1êd M
stemcell@x, V , fD Ø TAcell::cell@x + D x, V ê 2, fD, TAcell@x - D x, V ê 2, fD

with r̀HVL PstemcellH2 » fL !ID x; V1êd M
and likewise three more rules for TAcells giving rise to TAcells and/or neurons.

Measureable Types V25.nb

4

1.2 Notation

Notation is as follows. f Hx, y, ... L represents a function evaluated with ordered arguments x, y,
On the other hand t@x, y, ...D with square brackets represents an object of type t that retains all the information
in parameters x, y, and so on. It may be thought of as a syntax tree with root node t and ordered children x, y,
.... Also 8x, y, ...< is an unordered set, and 8x, y, ...<* with an asterisk subscript is an unordered multiset, i.e. a
function from the set 8x, y, ...< to the positive natural numbers specifying “how many times” each element
occurs in the set. In addition to the standard set-builder notation 8x » PHxL< for defining the members of a set based
on a predicate P , we will build ordered sets (tuples or lists in the finite case) using square brackets: @xHiL »» i œ "D .
More generally @xHiL » PHxHiL, iL »» i œ "D imposes the image of a preexisting ordering of the index set " onto any
elements xHiL selected for inclusion by the predicate P . Similarly, f H@xDL is a shorthand for f H@xi »» i œ 81, ... n<DL
= f H@xi » 1 b i b n »» i œ !DL which is in turn a shorthand for f Hx1 , ... xn L . QHPL ª 1 if P is true, otherwise 0 is the
Heaviside function on predicates. di j ª QHi = jL is the Kronecker delta function. !H.; sL is the normal distribu-
tion with mean zero and standard deviation s. In case of type ambiguity (eg. for type inference or dynamic
typing) we use the notation x : t to indicate that variable x has type t, and the notation f H@xDL : t to indicate that f
returns a value of type t. Similarly, t1 ::t2 indicates that t1 is a subtype of t2 . Metalanguage syntax is as fol-
lows. Macro expansion or evaluation is indicated by the function-like notation: m P ...T . Substitution of an
expression s for an unbound variable x in a term t is denoted t XXx # s\\ .

2 Defining Processes

We now describe the semantics of processes. Most of the technical descriptions in this section up
through Section 2.2, and also Section 3.2.2, are lightly edited excerpts from [14], which is the primary source for
the ideas presented in these sections of the paper.

2.1 Time-evolution operator semantics

The “master equation” for the continuous-time evolution of probabilities is:

(1)
d pHtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

d t
= W ÿ pHtL

where pHtL is the joint probability distribution over all possible states of the system at time t . The semantics of
a model is given by the operator W , which specifies a stochastic process. These stochastic processes can be
specialized to deterministic dynamics as well as shown below. The model operator W can be composed by
simply adding up operators Wr that correspond to parallel, interacting subprocesses indexed by r :

(2)W = ‚
r

Wr

Simple process operators Wr can be built out of products of elementary process operators by which
objects of specified type and state are created or destroyed. The semantics of a product of operators is an infi-
nitely rapid sequence of changes taking zero time. Scalar multiplication can speed up or slow down a given
process. Thus, we are concerned with at least the algebraic structure of a ring of operators that act linearly on
probability vectors. All of this is analogous to the operator algebras encounted in quantum mechanics and
quantum field theory, except that only classical probabilities need be used. Quantum semantics would be
obtained by inserting a factor of è!!!!!!!

-1 in Equation 1, obtaining the Schrödinger equation.

Measureable Types V25.nb

5

Simple process operators Wr can be built out of products of elementary process operators by which
objects of specified type and state are created or destroyed. The semantics of a product of operators is an infi-
nitely rapid sequence of changes taking zero time. Scalar multiplication can speed up or slow down a given
process. Thus, we are concerned with at least the algebraic structure of a ring of operators that act linearly on
probability vectors. All of this is analogous to the operator algebras encounted in quantum mechanics and
quantum field theory, except that only classical probabilities need be used. Quantum semantics would be
obtained by inserting a factor of è!!!!!!!

-1 in Equation 1, obtaining the Schrödinger equation.
The semantics of a modeling language such as Dynamic Grammars is given by the procedure by

which its process expressions can be converted into time evolution operators Wr . The resulting continuous-time
dynamics can be related to a discrete-time dynamics in which composition is somewhat more complicated.

Stochastic process operator semantics for modeling languages, including the master equation for time
evolution and measures for product types, was proposed in [13] and elaborated in detail in [14]. The master
equation was proposed independently for a “small stochastic process algebra” in [3]. Stochastic semantics for the
“kappa” rule-based modeling language [5;6] was also proposed in [7].

2.2 Current DG Semantics

We first review those aspects of Dynamical Grammar semantics that have been previously defined
and, with the exception of polymorphism, implemented in Plenum.

2.2.1 Chemical reactions

Consider the chemical reaction:

(3)„
a=1

Amax

ma
HrL Aa ö

kHrL ‚
b=1

Amax

nb
HrL Ab

Applications of this kind of process model are legion in biochemistry, population biology, and cellular
systems biology.

We can translate this information into a stochastic process obeying the master equation, by defining a
suitable operator W algebraically in terms of elementary annihilation and creation operators aaHiL and àbH jL
obeying the Heisenberg algebra ai à j - à j ai = di j or variants thereof. The general principle is : destroy all the
objects on the left hand side (LHS) of the rule, and instantaneously thereafter, create all the objects on the RHS.
The operator expression of this principle for chemical reactions is:

(4)O
`

r = kHrL
looom
nooo

‰
jœrhsHrL

àbH jL
|ooo}
~ooo

looom
nooo
‰

iœlhsHrL
aaHiL

|ooo}
~ooo

.

This operator is off-diagonal and represents the flow of probability into a new state. We must also represent
the compensating flow of probability out of the old state, Dr = diagI1T ÿ O

`
r M (where the matrix notation is that 1T

is the transpose of the column vector all of whose elements take the value one, and “diag” converts the resulting
row vector into a diagonal matrix), resulting in a net operator Wr = O

`
r - Dr . If there are many reactions indexed

by r in a reaction network, their operators Wr add up as in Equation 2. The result is a stochastic model of mass
action kinetics for each reaction and for the whole reaction network.

An alternative notation for the reaction in Equation 3 could be a multiset rewrite rule:

8ma
HrL µ Aa » ma

HrL > 0<* ö
kHrL 9 nb

HrL µ Ab … nb
HrL > 0=

*
, where nä x means that object x occurs n times in the multiset.

It is conventional in biochemical network models to reduce higher-order reactions to those with just
one or two inputs (unimolecular or bimolecular reactions) by splitting up reactions, so that ⁄a ma

HrL is a small
integer. Likewise ‚

b
nb
HrL is typically a small integer. Thus, the total amount of computational work that has to

be done “instantaneously” in Equation 4 is a small constant. The same principle can be applied in the more
expressive parameterized reactions below. The analogous expressions represent interaction vertices for Feynman
diagrams in quantum field theory, where they also have low total degree: ⁄a Hma

HrL + na
HrL L is usually 2, 3, or 4.

Measureable Types V25.nb

6

It is conventional in biochemical network models to reduce higher-order reactions to those with just
one or two inputs (unimolecular or bimolecular reactions) by splitting up reactions, so that ⁄a ma

HrL is a small
integer. Likewise ‚

b
nb
HrL is typically a small integer. Thus, the total amount of computational work that has to

be done “instantaneously” in Equation 4 is a small constant. The same principle can be applied in the more
expressive parameterized reactions below. The analogous expressions represent interaction vertices for Feynman
diagrams in quantum field theory, where they also have low total degree: ⁄a Hma

HrL + na
HrL L is usually 2, 3, or 4.

2.2.2 Parameterized reaction

A minimal generalization of chemical reaction notation is to allow the chemical species or “types” to
be indexed by static parameters in a reaction

(5)8taHiL @xi D » i œ "L <* ö 8ta£ H jL @yj D » j œ "R < *
with rr H@xi D, @yj DL

This syntax can be used to formulate dynamical models of stateful objects like cells, molecular complexes, or
covalently modified proteins such as those with multiple phosphorylation sites. Here 8 ... <* represents a multiset,
and with is a keyword introducing the probability per unit time rr that the specified discrete event will occur
instantaneously at a particular moment in real-valued time. Assuming that the parameter expressions x, y contain
no variables Xc , the time-evolution operator for each individual reaction is:

(6)O
`

r = rr H@xa D, @yb DL
looom
nooo

‰
bœrhsHrL

à jHbL H@yb DL
|ooo}
~ooo

looom
nooo

‰
aœlhsHrL

 aiHaL H@xa DL
|ooo}
~ooo

Note that there are now separate creation and annihilation operators for every posssible value of the parameter
list @xa D - all acting on the same very large Fock space, defined in Section 3.2.2 below.

However, a much more useful rule would be a rule schema with many possible values for some of its
parameters, obtained by making the parameter expressions be a function of some variables. If there are variables
8Xc < , we must sum or integrate over all their possible values in a suitable measure space c DbHcL :

(7)

O
`

r = ‡
DjH1L

... ‡
DjHkL

...
i
k
jjjjj‰

k

 d m jHkL HXk L
y
{
zzzzz rr H@xa H@Xk DLD, @yb H@Xk DLDL

ä
looom
nooo

‰
bœrhsHrL

 à jHbL Hyb H@Xk DLL
|ooo}
~ooo

looom
nooo

‰
aœlhsHrL

 aiHaL Hxa H@Xk DLL
|ooo}
~ooo

For example, some object types could be parameterized by position and velocity vectors; others by rotation
matrices. Different measures would be required to integrate over these different kinds of parameters.

The nonnegative real-valued reaction rate rr H@xi D, @yj DL is given by an algebraic expression in a typed
language #R , and denotes a function in a Banach space $ HVL of real-valued functions defined on the Cartesian
product space V of all the value spaces VaHiL of the terms appearing in the rule. Depending on the norm used in
the Banach space $ it may be possible to formulate rate functions that grow without bound as a function of their
arguments, and allow in principle for an infinite amount of computation to be done in a finite time. In that case,
not all models formulatable with Dynamical Grammars are effectively simulatable in finite time on Turing
machines.

Measureable Types V25.nb

7

We assume that there is a typed language #P that constrains the parameterized terms xi occurring in
the rules. The essential feature of #P is that it includes a set of function symbols with defined input and output
type signatures. These function symbols represent type-supported operations on the typed constants, variables
Xk , and typed parameter expressions xa in #P . The typed parameter expressions xa may appear in the parame-
ter lists of LHS and RHS terms taHiL @xi D , and as arguments to the rate functions rr . In this way, algebraic data
types make contact with algebraic time-evolution operators. Rate functions rr H@xi D, @yj DL ultimately relate the
domain-specific types to nonnegative real numbers that specify process rates.

Each parameterized term taHiL @xi D or ta£ H jL @yj D is of type ta and its parameters xi take values in an
associated (ordered) Cartesian product set Va of da factor spaces chosen (possibly with repetition) from a set of
base spaces % = 8Db » b œ &< . Each Db is a measure space with measure mb . Particular Db may for example be
isomorphic to the integers # with counting measure, or the real numbers " with Lebesgue measure. The
ordered choice of spaces Db in Va = ¤k=1

da Db=gHa kL constitutes the type signature 8ga k œ & » 1 b k b da < of type
ta .

2.2.3 Polymorphism

Polymorphic argument type signatures are supported by defining a derived type signature sa b from
factor space compatibilities 8sè a k b = HDb Œ DgHa kL L œ 8T, F< » 1 b k b da , b œ &< . For example we can regard #
as a subset of ". Then we can define the overall ability to cast type tb as a subtype of type ta using a 0/1-valued
matrix sa b :

da b § sa b § QH$ mapping lb HkL » fl1§k§da sè a k gHb lHk,bLL L
Some freedom is present in the choice of s, with which various different polymorphism schemes could be

implemented. Let la b HkL be the map lb HkL whose existence is assured by sa b = 1 (if it is so). Let l
è

a b : Vb Ø Va
be the associated linear projection operator, which drops parameters in b having no counterpart in a , We
parameterize the nullspace of l

è
 by z œ Vb

£ = ¤mœ81,... db <Ôm–ImHlb L Db=gHb lL , and let pVb
£ : Vb Ø Vb

£ be the projec-
tion operator complementary to l

è
. We define l : Va Vb

£ Ø Vb so that lÎ Ilè , pVb
£ M = idHVb L . We will eliminate

extraneous values of Va from consideration with Heaviside step functions QIxi H@XcDL œ ImHlèa b LM œ 80, 1< .
 Then the time-evolution operator expression Equation 7 for the rule of Equation 5 becomes

(8)

O
`

r = ‡
DbH1L

... ‡
DbHcL

...
i
k
jjjjj‰

c

 d mbHcL HXc L
y
{
zzzzz rr H@xi H@Xc DLD, @yj H@XcDLDL

ä
i
k
jjjjjj ‰

iœlhsHrL
 QIxi H@Xc DL œ ImHlè a b LM

y
{
zzzzzz
looom
nooo

‰
jœrhsHrL

àaH jL Hyj H@XcDLL
|ooo}
~ooo

ä

loooom
n
ooooÂ

iœlhsHrL

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

d

 sbHiL d ‡
Vd

£
 d z ad HlHxi H@Xc DL, zLL

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ

|oooo}
~
oooo

.

Note that sa b = 1 is reflexive and can be chosen to be antisymmetric, hence defining a partial ordering “b”
on types. We say tb is a subtype of ta . The type ordering is related to substitutability: If tb b ta then expres-
sions of type tb can be substituted for variables of type ta in language #P without type violation, at least in
covariant contexts such as the foregoing rule semantics. In this semantics, subtyping is used only on the LHS and
not the RHS of a rule. Subtyping polymorphism is not supported in the Plenum implementation of Dynamical
Grammars; instead, subtyping of “cell types” was hand-coded using graph grammar rules (see Section 2.2.4
below) along with extra parameter-bearing objects representing the subtype memberships.

Measureable Types V25.nb

8

Note that sa b = 1 is reflexive and can be chosen to be antisymmetric, hence defining a partial ordering “b”
on types. We say tb is a subtype of ta . The type ordering is related to substitutability: If tb b ta then expres-
sions of type tb can be substituted for variables of type ta in language #P without type violation, at least in
covariant contexts such as the foregoing rule semantics. In this semantics, subtyping is used only on the LHS and
not the RHS of a rule. Subtyping polymorphism is not supported in the Plenum implementation of Dynamical
Grammars; instead, subtyping of “cell types” was hand-coded using graph grammar rules (see Section 2.2.4
below) along with extra parameter-bearing objects representing the subtype memberships.

This version of Equation 8 is corrected from that of [14], which included s but omitted consideration
of the map l

è
.

2.2.4 Graph grammar rules

In [14], labelled graphs were encoded using parameterized terms by devoting the first parameter of
each term to an integer-valued Object Identifier (OID), and using some of the other paremeters to hold the OIDs
of other graph-linked objects. In this way graph-grammar rules could be systematically translated into parameter-
ized-grammar rules.

Already the OID translation of graph grammar rules may be used to implement conventional Abstract
Data Types (ADTs) such as lists in terms of pointer data structures such as doubly linked lists. Using the Heisen-
berg algebra of creation and annihilation operators, it is possible to alebraically verify the ADT relation between
inserting and removing an item in such a list: insertion followed by deletion should yield the identity operation.

2.2.5 Differential equations (ODE, SDE)

The system of Langevin equations

(9)d xiÅÅÅÅÅÅÅÅÅÅÅÅÅ
d t

= vi H@xk DL + hi HtL
are stochastic if the continous stochastic process hi HtL  0 given by Stochastic Differential Equations (SDEs);

otherwise they specialize to a system of ordinary differential equations (ODEs). It may be recast as a time-
evolution operator by using differential operators:

(10)O
`

drift = -· d 8x< · d 8y< àH@yDL aH@xDL
i

k

jjjjjjjj„
i

“ yi vi H@yDL ‰
k

dHyk - xk L
y

{

zzzzzzzz

(11)O
`

diffusion = · d 8x< · d 8y< àH@yDL aH@xDL
i

k

jjjjjjjjj„
i j

“ yi “ yj Di j H@yDL ‰
k

dHyk - xk L
y

{

zzzzzzzzz

Consequently, process reactions or rules that syntactically incorporate ordinary differential or stochastic
equations may be given semantics. The ODE version of this possiblity has been implemented in Plenum [21] and
results in a very flexible kind of hybrid system for biological models.

In the current Plenum implementation of DGs only very specific partial differential equations (PDEs)
are supported: diffusion equations with constant, isotropic D .

Measureable Types V25.nb

9

2.2.6 Algorithms for simulation and learning

Probably the most surprising aspect of the operator formulation of dynamics is that finite, computation-
ally tractable algorithms can be found for sampling from the resulting probability distributions and indeed can be
derived systematically. For stochastic discrete event processes, the Dyson series or “time-ordered product
expansion” can be used to systematically derive simulation algorithms. In particular if one considers off-diagonal
elements as a perturbation, this method can be used to rederive Gillespie’s Stochastic Simulation Algorithm [22,
14] and its generalization to parameterized terms. Other operator splittings yield other algorithms including
hybrid ODE/discrete-event solvers [21]. In addition, parameter inference algorithms can be derived for this
power series approach [20,22]. Thus even when all operators used are infinite objects, finite and effective
algorithms can be derived from them.

2.3 Proposed DG-like Semantics

2.3.1 Graph grammar rules

In [14], labelled graphs were encoded using parameterized terms using unique integer-valued Object
Identifiers (OIDs). However, there was no “intrinsic” graph type constructor or graph grammar dynamics in the
language. We now suggest such a dynamics.

 Suppose that with consistent node indexing i1 , i2 , ... we wish to rewire the small graph g as the new
small graph g£ , where a, b range over the same sets of nodes. Represent these graphs by 0/1-valued adjacency
matrices, and suppose the node labels are @la » aD and @l£

a » aD before and after rewriting. Then the rewriting
operator deletes all the old edges and nodes labels, if they exist in exactly the pattern required by g and l, and
replaces them with the corresponding new edges and node labels:

(12)O
`

r =
1

ÅÅÅÅÅÅÅÅ
k !

 „
8i1 ,... ik <

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

c,dœrhsHrL
Hàic id Lg

£
c d

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

cœrhsHrL
àic l£

c

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

a,bœlhsHrL
Haia ib Lga b

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

aœlhsHrL
aia la

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
This semantics automatically generalizes to multigraphs as well, by allowing ga b œ ! . The summation implies

a search for matching graph structures which is considerably reduced if the input graph g has relatively unique
node labels l .

In this way, graph rewrite rules may be made intrinsic to a graph type or type constructor rather than
just being encoded by OIDs. Graph type constructors can be used to build other container types including lists,
trees, and so on. One danger with an expression such as Equation 12 is that the product of operators may grow to
more than just a handful of operators, so that the amount of computational work that must be done
“instantaneously” at each event is bounded by a larger constant. The number of operators multiplied together
grows with the size of the graph fragments being rewritten.

Measureable Types V25.nb

10

2.3.2 Partial differential equations (PDE’s) and stochastic PDE’s

We may translate partial differential equations and stochastic partial differential equations of general
form into the operator algebra, by relating PDE’s and SPDE’s to large systems of ODE’s and SDE’s, and taking
the limit symbolically. Nontrivial analysis may be needed to confirm whether the indicated limits really exist or
not in any given case [9, 10].

Consider the following (possibly stochastic) PDE :

(13)
FHxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
 t

= F@FD HxL = FKFHxL, FHxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x

, ... ,
n FHxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xn O + hHtL.

where x may be a scalar or a vector, and likewise for F. We make the following mapping to (Equation 9 and
Equation 10):

Table 1. Ordinary vs. Partial differential objects

Ordinary differential object Partial differential object

 d ê d t  ê t
 i œ ! x œ "

 xi FHxL
 yi F£ HxL
  ê xi Hpartial derivativeL d ê d FHxL Hfunctional derivativeL
D (homog. scalar diffusion coef.) D Hhomog. scalar diffusion coef.L
 dHy - xL = ¤i dHyi - xi L DHF£ - FL = ¤x dHF£ HxL - FHxLL
Ÿ d x gHxL
(ordinary integral)

Ÿ %F G@FD
(functional integral)

 at HxL = at H@xi DL at HFL = at Hx # FHxLL
With this table of translations, the drift and diffusion operators for PDE’s and SPDE’s become

(14)Odrift = -‡ ‡ %F %F£ àHF£L at HFL K‡ d x
d

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d F£ HxL F@F£ D HxL DHF£ - FL O

and

(15)Odiffusion = D ‡ ‡ %F %F£ àHF£ L at HFL ik
jjj‡ d x

d2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d F£ HxL 2 DHF£ - FLy{

zzz .

where

DHF£ - FL = limsØ0 ¤x !HF£HxL - FHxL; sL
ª limsØ0 exp Ÿ d x logH!HF£HxL - FHxL; sLL

This gives another potential application of the time-ordered product expansion which can be used to create
simulation algorithms.

With suitable PDE’s it becomes possible to represent dynamically changing manifolds, either by
differential equations for the metric as in General Relativity, or for an explicit embedding into a higher dimen-
sional space, or for an implicit embedding given by a function f HxL = 0 (a level set method).

Measureable Types V25.nb

11

2.4 Discussion of dynamics

Table 2 summarizes the increasing DG capabilities called for by various keywords that can appear in
the generalized reaction or rule syntax. Recursive process models are available through the “via” and
“substituting” keywords and their semantics, which are analogous to subroutine calls and macro substitutions
respectively. An essential point in the semantics is that repeatedly, greater expressivity is achieved by taking
limits that yield object types and processes of higher (finite or infinite) cardinality. Examples include infinite
limits of the maximum number of molecules of each type, the number of values each parameter can have, the
precision of a numerical parameter, and the cardinality of allowed index sets for collections of parameters.

Table 2. DG keywords and the notation they introduce

Importance Keyword has expression ... semantics

Essential
 with prob. rate discrete transitions
 solving differential eq differential operator
Expressive limits of essentials
 subject to constraint delta function factor
 via sub-grammar call W £ =expHT WL
 solving functional diff eq functional diff oper
Convenient
 substituting macro gram. call semantics/expansion
 under Boltzman energy related to with
 [...; ...] sequential events expHt W2 L expHt W1 L

Equation 7 and Equation 10 above involve sums or integrals over the values taken by a variable of
some particular type. Equation 12 can be regarded as a sum over variables whose types are nodes and links in a
graph data type. Technically, the values of the integrands are operators in the Fock space defined in Section 3.2.2
below, which means that even integrals over infinite domains integrate up to operators whose nonzero real-
valued elements are each the summed reaction rates rr of all fully redundant copies of some rule. This quantity
can be restricted to be finite, usually just a process rate times a small integer. Such integrals are typically encoun-
tered in the Lagrangian functionals of quantum field theory, where the integration parameters are taken to include
particle momenta.

What is essential for each semantic operator above is the capability to integrate over the various
required domains of integration, i.e. over the values taken by the typed variables. The reason is that variable-
binding in the process syntax corresponds to integration in the operator semantics. Integration in turn requires a
measure with which to integrate, defined on a measure space. Thus, the operator algebra approach to dynamics
requires measurable data types.

Measureable Types V25.nb

12

3 Defining Object Types

3.1 Language

Type-specific subsets of the language #P of Section 2.2.2 may have variables, function symbols,
relation symbols, and quantifiers as usual, or they may be more constrained for a particular type. Logic may be
classical or intuitionistic. Real-valued function expressions are needed to specify process rates. Relations are
functions taking values in a truth-value space W, which for classical logic is the Boolean algebra on 8T, F< .
Constraints on processes can be specified by predicates. The typed language #P shares some similarities with for
example the typed “local language” # in [2]. However, a type expression component of the language #P is not
yet formalized since we don’t yet know what function and power type constructors may be measurable.

We will allow axioms expressed in #P to be associated with types and type constructors. For example,
the axioms for object types arising in “universal algebra” (such as groups and rings but not fields) would be
equational laws, universally quantified.

3.2 Existing types

3.2.1 Primitive types

The primitive types for modeling include numbers: minimally, the integers # and the real numbers "
(or finitely computable approximations thereof). In each case it is important that there is a standard algebraic
structure (a ring or field supporting arithmetic operations), a standard topology, a standard measure, and a
standard distance metric. Specifically the integers have the discrete topology, the uniform measure, and can be
integrated over by summation; the real numbers have the topology generated by open intervals, the associated
Borel measure, and Lebesgue integration; and both have distances defined by dHx, yL = » x - y » that generalize to
Euclidean distance in vector spaces over the respective primitive types. For many applications including quantum
mechanical ones, the complex field $ should also be taken as a primitive type. Integration is essential for the
operator representation of dynamics, and distance measures enable controlled approximations.

Thus the expressions in the language #P involving a primitive type t include variables of type t
(denoted x, y, ..., or x : t etc.), functions such as +, -, * , ê , and distance distHx, yL , the equality relation =,
as well as the integration linear functional Ÿ . Given integration it is possible to define distributions or general-
ized functions including the delta “function” satisfying Ÿ dHx, yL f HxL d x = f HyL . This is the Kronecker delta
function for integers and the Dirac delta function for reals.

3.2.2 Vector and product types

Type constructors generate new types from old ones. Standard type constructors in mathematically
defined programming languages may include type sums, products, powers, and function types, and we will also
include quotient types. Here we describe the type constructors already present in Stochastic Parameterized
Grammars and therefore in Dynamical Grammars: vector and product types.

Vector spaces "d or #d of fixed finite integral dimension d > 0 over " or # have addition, subtrac-
tion, equality, scalar multiplication, distance and integration defined as usual. Distance is defined by the additiv-
ity of squared Euclidean distances; integration is defined by multiple integration. In addition, linear transforma-
tions on vector spaces may be defined by their action on a vector basis. This fact distinguishes a vector space
from a general product type, though it is a specialization or subtype thereof. Other nonprimitive types that
support +, -, = , "*, Ÿ , and distH., .L can also serve as the substrate for d -dimensional vectors.

Measureable Types V25.nb

13

Vector spaces "d or #d of fixed finite integral dimension d > 0 over " or # have addition, subtrac-
tion, equality, scalar multiplication, distance and integration defined as usual. Distance is defined by the additiv-
ity of squared Euclidean distances; integration is defined by multiple integration. In addition, linear transforma-
tions on vector spaces may be defined by their action on a vector basis. This fact distinguishes a vector space
from a general product type, though it is a specialization or subtype thereof. Other nonprimitive types that
support +, -, = , "*, Ÿ , and distH., .L can also serve as the substrate for d -dimensional vectors.

In defining Dynamical Grammars and SPGs (Stochastic Parameterized Grammars: DG’s without
differential equations or differential operators), the notation for instances of product type t was t@x1 , ..., xn D
where the parameters xi could be values or instances of different types according to a type signature. The type
signature for t is of course the same for all instances. In particular the parameters could be instances of the
foregoing primitive types and/or vector types over primitive types. In the case n = 1, we have an alternative
notation of an object x of type t . Generically t@x1 , ..., xn D are called parameterized objects.

For product types ¤i œ"Œ! ti , a Fock space was constructed in [14] within which one can represent the
probability distribution over numbers of objects of each type, taking into account the indistinguishibility of
objects of the same type and same parameter values, as follows. Each value space Va is a measure space, with a
s-algebra of “events” on which probability is to be defined. A probability distribution on a measure space X is
just a (nonnegative) measure P on the s-algebra for which PHXL = 1. We may construct a probabilistic version of
a many-particle “symmetric Fock space” following [15]. Given a nonnegative integer na we may define the set
of states that have a total of na “copies” of grounded parameterized term ta Hxa L :

'a Hna L =
i
k
jjjj

m=1

na

Va
y
{
zzzzì(Hna L .

Here (HnL is the symmetric group on n items. The quotient is taken with respect to equivalence classes of
Cartesian-product members that differ only by a permutation of na items. A new s-algebra is induced on the
space 'a Hna L by the Cartesian product operation and the symmetrization operation. Next, any finite nonnegative
number na of terms are allowed in a disjoint union of measure spaces 'a Hna L , and the construction is repeated in
a cross product over for all term types a :

'a = 
na =0

¶

'a Hna L and ' =
a
'a

Now ! is a measure space (since it has an induced s-algebra) and thus defines a probabilistic Fock space $
as the set of probability distributions defined on ! .

Products types with parameters of the same product type, or otherwise recursively defined product
types, are accomodated in DG’s indirectly by way of graph grammars, with graph links represented by equality
of unique integer-valued object identifiers (OIDs) defined at various positions in the parameter list as described
in Section 2.2.4. This encoding was needed due to the lack of function or power types that could more naturally
represent relationships.

3.2.3 Labelled graph types

A de facto type constructor is given by the OID encoding of labelled graphs described in Section 2.2.4
. Here we exhibit a syntax extension for such labelled graphs.

The OID label or address symbols OidlHiL denote OID-typed variables taking unique values in a
discrete domain such as the nonnegative integers. The graph is related to two subgraphs of neighborhood indices
NHi, sL and N£H j, sL specific to the input and output sides of a rule. Unique OIDs are maintained, so that lHiL
and l£H jL are injective maps on nonnegative integers i œ " and j œ) . A rule in a graph grammar then takes the
form

Measureable Types V25.nb

14

The OID label or address symbols OidlHiL denote OID-typed variables taking unique values in a
discrete domain such as the nonnegative integers. The graph is related to two subgraphs of neighborhood indices
NHi, sL and N£H j, sL specific to the input and output sides of a rule. Unique OIDs are maintained, so that lHiL
and l£H jL are injective maps on nonnegative integers i œ " and j œ) . A rule in a graph grammar then takes the
form

(16)

9OidlHiL := ti AxaHiL ;AOidNHi,sL … s œ 1..saHiLmaxEE … i œ "=
ö 8OidlHiL » i œ "1 Œ "< ‹ 9Ll£ H jL := t j Axa£ H jL£ ;ALN £ H j,sL … s œ 1..sa£ H jLmax EE … j œ) =

with rr IAxa£ H jL£ E, @xaHiL DM
as explained in [14]. Nodes in the LHS and RHS graphs are parameterized types ti @xaHiL D . Links in these two

graphs are specified by repetition of the same value for an Oid variable occurring on the left of a “:=” symbol
and on the right of one or more “:=” symbols, all on the same side (either left or right) of the rule arrow “ö”.

Such rules have been used in models of the regulated growth and cellular differentiation of the filamen-
tous cyanobacterium Anabaena catenula, the root of the plant Arabidopsis thaliana, and the mouse olfactory
epithelium [21]. Translation of such rules to the syntax and semantics of Equation 5 is shown in [14]. It uses both
product types such as ti @OidlHiL , xaHiL , @OidNHi,sL » s œ 1..si

cur DD and vector types such as @OidNHi,sL » s œ 1..si
curD .

However, such a translation is not type-safe as the resulting parameterized terms could possibly conflict with
others of the same type name and signature, not involved in representing graphs.

Rules of this form allow graphs whose nodes are parameterized terms ti @xaHiL D of one or more types
ti œ * to undergo local rewriting operations, conditioned on their graph connections to other such terms. Thus,
we have a de facto “graph type constructor” that takes in a set of types * and produces a new container type.
Using polymorphism it may be possible, as in many programming languages, to replace the set of types * with a
single base type tbase for the nodes in the graph. And of course given graphs one can implement many other
container types, such as trees and arbitrary-length lists, though not in a type-safe manner. So it would be prefera-
ble to have graph types supported rather than just encoded in the modeling language, as we discuss in the next
section.

3.3 Proposed type constructors

Function types t1 Ø t2 are needed for dynamics of geometry among other application areas, and
quotient types t ê ~ are needed for mathematical abstraction. There are a number of obstacles to creating function
and quotient types with the properties needed for the operator algebra formulation of dynamics. In this section we
review a few well-known concpts that collectively may indicate a way forward for function and quotient types.

We will begin, however, with labelled graph types.

3.3.1 Labelled graph types

Given a set of types * , for example a base type tbase and all of its subtypes, we would like to create a
graph (or tree or list) type whose nodes are labelled by objects whose types are in * . The semantics of Section
2.2.4 shows the kind of transformations required; what is still needed is suitable syntax for specifying labelled
graphs on the LHS and RHS “directly” and in a permutation-invariant way, rather than through a redundant
encoding. Similar to an abstract data type, such labeled graphs would not be “built” out of sets or pointers but
rather manipulated algebraically. Beginning with the primitive “a ö

l
b” for a pair of nodes labelled by a and b

connected by a link labelled by l, we can use a “Merge” operation (a macro taking any number of arguments)
which equates nodes that share labels to build up small graphs directly, so that for example

Measureable Types V25.nb

15

(17)MergeRa ö
l

b, b ö
m

g, g ö
n

aV =

a ö
l

b

å
n



ææææm

g

.

Here the labels a, b, l, m, ... represent constants or variables, taking typed values for which equality can be
tested (for example they may represent integers). MergeP...T is a macro, which is evaluated before the DG model
is simulated, mapped to its semantics, or analysed. Other basic graph-producing macros may be defined as well.
Labels can be further controlled with a relabelling macro operation “G XXnodelabelmap; linklabelmap\\” where
G is a labelled graph and the label maps specify substitutions acting on label expressions in #P . For example,
nodelabelmap for integer-valued labels might take the form i # f PiT . Such maps can be used to erase label
distinctions among nodes and edges, potentially increasing the automorphism group of a labelled graph. For very
small graphs, 2D layouts such as the RHS of Equation 17 can be written directly. With such a language we obtain
symbolic expressions representing labelled graphs, in such a way that the expressions can occur in the LHS or
RHS of a rewrite rule. In the absence of link labels the semantics of such a rule can be given by Equation 12. In
the presence of link labels, a similar operator expression can be given or else the node- and link-labelled graphs
can first be translated into purely node-labelled bipartite graphs.

As an example of such a graph rewrite rule, one might have a pair of cells sharing a common “face”
which is to be divided into two different subfaces:

H 1 Ø 3  2 L XX@cellHc1 L, cellHc2 L, faceHf0 LD; \\

ö

i

k

jjjjjjjjjjjjjjjjjj

4
â à

1 2
ä á

5

y

{

zzzzzzzzzzzzzzzzzz
 XX@cell Hc1 L, cell Hc2 L, Ø, face Hf1 L, face Hf2 LD; \\

A Dynamical Grammar that also uses the graph rewriting capabilities called for here and in Section
2.2.4 may be termed a “Dynamical Graph Grammar”. Examples of related frameworks in which one of the graph
link types is used to formalize containment relations between biological structures include P-systems [18] and
stochastic bigraphs [11]. In addition Finite Element Method (FEM) geometries and other discretized manifold or
nonmanifold geometries (eg. cell complexes) can be represented with suitable labelled graphs. However, to
represent continuous limits of such geometries also requires function types, discussed in the next section. For
reflective or meta-modeling, labeled graphs can be used to represent commutative diagram specifications of
axioms, and also graphical models of probability distributions. Simple meta-rules were demonstrated in [21].
Like any discrete space, discretely labelled graphs can be given a counting measure.

Measureable Types V25.nb

16

3.3.2 Function types

Product, function, and power types can all substantially raise the cardinality of the (finite or infinite)
objects they represent or approximate, and can therefore be computationally problematic. Integrating a functional
over a domain consisting of real-valued functions introduces new complications not present in finite-dimensional
multiple integration, since Lebesgue measure is not available in infinte-dimensional vector spaces. Instead one
may use the Wiener measure which is defined in terms of a diffusion stochastic process, or more generally the
“abstract Wiener space” measure on any separable Banach space [8, 17], if a suitable norm has been defined.
There are several plausible topologies for function spaces, including strong (derived from the norm) and weak.
Linear operators, required for meta-modeling and a natural next step in the type progression, have even more
topologies that generalize the topology of finite matrices: norm, weak, strong, ultraweak, ultrastrong, and so on.
So ideas of topology, measure, and integration each split up into several different generalizations in infinite
dimensional settings.

Thus each function type requires in principle a verification that a measure suitable for integration can
be defined. If the domain of the function is # or #d then the uniform measure and the discrete topology can be
used. If the domain is " or "d then we can use the Wiener measure which is natural when spatial locality is
reflected in processes that permit local diffusion. More generally if a suitable norm, separable Banach space, and
embedded separable Hilbert space can be defined, then we can use the abstract Wiener measure. In this way,
definitions of norm and inner product (or distance) can serve as essential stepping stones towards defining
measure, in the case of types in infinite dimensional function spaces.

Since a separable topological space is one that contains a countable dense subset, and since the
product of at most + separable spaces is separable (where + = »" » is the cardinality of the continuum) [16], the
function types admitted above cannot be iterated indefinitely without further constraint to restore separability.

3.3.3 Quotient types

Quotient types, formed by taking equivalence classes modulo an equivalence relation, have the
potential to lower cardinality, mitigating the problems introduced by function types. They are essential to defin-
ing abstractions. But quotients may introduce computational problems when equivalence is hard to determine.
Thus, the relation of equality (=) between instances of a type may be augmented by a separate, coarser internal
equivalence relation (º) to keep the equality of abstract types computationally tractable by representing sepa-
rately the accumulated equivalences that can’t easily be computed. A motivating example of a quotient space is
the space of differential manifolds, which is usually defined in terms of atlases of coordinate charts (with
transition functions), modulo a “compatibility” equivalence relation between atlases.

Coarser and finer equivalence relations may be defined using distance metrics and related concepts. A
real-valued distance metric obeys the axioms of (A1) non-negativity dHx, yL r 0, (A2) identity
dHx, yL = 0 ñ x = y , (A3) symmetry dHx, yL = dHy, xL , and (A4) the triangle inequality
dHx, zL § dHx, yL + dHy, zL . Implicitly there is also (A5) finiteness dHx, yL < +¶ . These axioms can be relaxed in
various useful ways. Dropping (A3) results in a “quasimetric”, which can be symmetrized to give a metric by
either + or maximum operations. Relaxing (A2) to x = y fl dHx, xL = 0 gives a “pseudometric”. Dropping (A5)
results in an “extended” metric. Several of these omissions may be combined.

The extended pseudoquasimetric (or extended quasipseudometric) was advocated in [12] for its
categorical properies under the quotient operation. One key point is that the Hausdorff metric is a symmetrized
version of a pseudometric between sets in a metric or pseudometric space; such sets can be taken to be the
equivalence classes under an equivalence relation, ~. In this way, the pseudometric property can be preserved
when one takes the quotient by an equivalence relation. The same argument applies in the more general case of a
quasi-pseudometric. Unfortunately pure metrics, satisfying axiom (A2) along with the others, are not generally
preserved under quotients. Also metric spaces are first-countable (have a countable local base topology), in
contrast to unrestricted function spaces such as " Ø " . Consequently, we won’t insist on a tight relationship
between distance metrics and topology.

Measureable Types V25.nb

17

The extended pseudoquasimetric (or extended quasipseudometric) was advocated in [12] for its
categorical properies under the quotient operation. One key point is that the Hausdorff metric is a symmetrized
version of a pseudometric between sets in a metric or pseudometric space; such sets can be taken to be the
equivalence classes under an equivalence relation, ~. In this way, the pseudometric property can be preserved
when one takes the quotient by an equivalence relation. The same argument applies in the more general case of a
quasi-pseudometric. Unfortunately pure metrics, satisfying axiom (A2) along with the others, are not generally
preserved under quotients. Also metric spaces are first-countable (have a countable local base topology), in
contrast to unrestricted function spaces such as " Ø " . Consequently, we won’t insist on a tight relationship
between distance metrics and topology.

To show that the triangle inequality persists for asymmetric Hausdorff distances between equivalence
classes PxT , PyT etc of variables x, y, etc. is standard: DHPxT, PzTL ª supxœPxT infzœPzT dHx, zL
b supxœPxT infyœPyT infzœPzT HdHx, yL + dHy, zLL b supxœPxT infyœPyT dHx, yL +infyœPyT infzœPzT dHy, zL
b supxœPxT infyœPyT dHx, yL +supyœPyT infzœPzT dHy, zL ª DHPxT, PyTL + DHPyT, PzTL.

3.3.4 Properties of metricated types

In addition, distance metrics and the foregoing relaxations of them can serve to define topologies and
measures, as we have seen, and can directly serve our criterion of model approximation. So we may propose the
following set of properties as essential to objects types t simulatable with dynamical grammars:

(P1) a set of functions and relations within the language #P whose type signatures include type t ,
among them equality (=) defined on objects of the type t ;

(P2) a list of immediate supertypes 8t£ < - i.e. information to determine t ’s position in the type
ordering t b t£ ;

(P3) a measure mt , and an associated extremal distribution dt Hx, yL ;
(P4) an equivalence relation, ºt ;
(P5) functions d+, t Hx, yL and d-, t Hx, yL such that:

(P5a) d+, t Hx, yL r d-, t Hx, yL ;
(P5b) d, t Hx, yL are extended pseudoquasimetrics,

i.e. they satisfy axioms (A1), (A4), and Hx =t yL fl Hd, t Hx, yL = 0L ;
(P5c) the upper function d+, t Hx, yLsatisfies Hd+, t Hx, yL = 0 L fl Hx ºt yL ;
(P5d) the lower function d-, t Hx, yLsatisfies Hx ºt yL fl Hd-, t Hx, yL = 0L ;

(P6) a set of type-specific axioms in #P .
Such a type t will be called metricated, to distinguish from the stronger claim of “metrizable” (with a Borel

measure) and the weaker claim of “measureable”.
Note that if d+ Hx, yL = d- Hx, yL for metricated type t then dHx, yL = 0 ñ x º y , which is a version of

axiom (A2) with equality replaced by º . Also, (A1) and (A4) and Hx =t yL fl Hd, t Hx, yL = 0L imply that
Hd+, t Hx, yL = 0L Ô Hd+, t Hy, xL = 0L and Hd-, t Hx, yL = 0L Ô Hd-, t Hy, xL = 0L are equivalence relations. It is easy to
supply trivial lower and upper bound candidate distance-like functions as a default, in case no serious use is to be
made of them, for example in defining the required measure.

Given a new equivalence relation ~ defined on a metricated type t , the quotient type t ê ~ is defined
as follows. Measure mtê~ : the pushforward measure, as for example when Lebesgue measure on " maps to
(Lebesgue) measure on the unit circle S1 . Equivalence relation ºtê~ : closure of H~ , ºt L , so that
Hx~ yL fl Hx ºtê~ yL and Hx ºt yL fl Hx ºtê~ yL . If ~ is coarser than ºt , then this closure ºtê~ is just ~. Upper and
lower extended pseudoquasimetrics: can be taken as the nonsymmetric version of Hausdorff distance, possibly
loosened for tractability: d, tê~ HPxT, PyTL ö supxœPxT infyœPyT d, t Hx, yL , for equivalence classes PxT and PyT under
~ , subject to axioms (P5). Equality =tê~ : must be an equivalence relation on t , satisfying
Hx =t yL fl Hx =tê~ yL fl Hx ºtê~ yL . For example, we may take Hx =tê~ yL ª HHd+, t Hx, yL = 0L Ô Hd+, t Hy, xL = 0LL
since the latter is an equivalence relation and since Hx =t yL fl Hd+, t Hx, yL = 0L fl Hx ºt yL fl Hx ºtê~ yL .

Measureable Types V25.nb

18

Given a new equivalence relation ~ defined on a metricated type t , the quotient type t ê ~ is defined
as follows. Measure mtê~ : the pushforward measure, as for example when Lebesgue measure on " maps to
(Lebesgue) measure on the unit circle S1 . Equivalence relation ºtê~ : closure of H~ , ºt L , so that
Hx~ yL fl Hx ºtê~ yL and Hx ºt yL fl Hx ºtê~ yL . If ~ is coarser than ºt , then this closure ºtê~ is just ~. Upper and
lower extended pseudoquasimetrics: can be taken as the nonsymmetric version of Hausdorff distance, possibly
loosened for tractability: d, tê~ HPxT, PyTL ö supxœPxT infyœPyT d, t Hx, yL , for equivalence classes PxT and PyT under
~ , subject to axioms (P5). Equality =tê~ : must be an equivalence relation on t , satisfying
Hx =t yL fl Hx =tê~ yL fl Hx ºtê~ yL . For example, we may take Hx =tê~ yL ª HHd+, t Hx, yL = 0L Ô Hd+, t Hy, xL = 0LL
since the latter is an equivalence relation and since Hx =t yL fl Hd+, t Hx, yL = 0L fl Hx ºt yL fl Hx ºtê~ yL .

This approach to quotient types is in the spirit of “setoids” [1], though with ideas of “generalized
metric space” (explored much further in e.g. [19]) added. The idea is that computing equivalence or “actual”
distance may be intractable, but computing some upper and lower bounds on distance can be made tractable. It
may also be that verifying proofs of equivalence in particular cases is much more tractable than deciding
equivalence.

Thus we see that an object type must support measure and integration, and object type constructors
can do this through the use of several kinds of norms and distances including extended pseudoquasimetrics. The
generic object data type may take values in some measurable, quasimetric space. Conditions sufficient for the
construction of function types and quotient types are given above.

4 Conclusions

Process modeling languages with operator algebra semantics can be augmented with type constructors
to create objects and processes at successively larger scales as well as greater levels of abstraction. Vector,
product, and graph type constructions are straightforwardly available, and recursively related processes can be
defined as well. However, function types and quotient types are more subtle. We give conditions under which
they can be defined, but we do not know how often these constructions can be iterated before the conditions are
necessarily violated.

A dynamical model may now be defined by a “workspace” containing a combination of dynamical
grammar specifications, which define processes, and nontrivial object type declarations. These grammars and
user-defined types are syntactic objects upon which a semantics is defined. They can be regarded as constant
values (not varying over time) denoted by their names, in which case there is a clear separation between syntactic
expressions and dynamical objects. But there could also be time-varying dynamical grammars and/or types,
whose discrete-time or continuous-time dynamics is given by suitable metagrammars.

Acknowledgements
Discussions with Christophe Godin, Przemek Prusinkiewicz, and Guy Yosiphon were helpful in this

work. Research was supported by NIH R01 GM086883 and P50 GM76516.
B A C K M A T T E R

5 References

[1] G. Barthe, V. Capretta, and O. Pons. Setoids in type theory. Journal of Functional Programming,
13(2):261–293, March 2003.

[2] J. S. Bell, Toposes and local set theories, Chapter 3, Oxford U. Press 1988. Dover reprint 2008.
[3] L. Cardelli. A process algebra master equation. Proc. Fourth International Conference on the Quantitative

Evaluation of Systems, QEST 2007.
[4] V. Chickarmane, A. H. K. Roeder, P. T. Tarr, A. Cunha, C. Tobin, E. M. Meyerowitz. Computational

Morphodynamics: A modeling framework to understand plant growth, Annu. Rev. Plant Biol. 61:65-67, 2010.

Measureable Types V25.nb

19

[5] V. Danos, J. Feret, W. Fontana, and J. Krivine. Scalable simulation of cellular signaling networks. In
Zhong Shao, editor, APLAS, volume 4807 of Lecture Notes in Computer Science, pages 139{157. Springer,
2007.

[6] V. Danos, C. Laneve. Formal molecular biology. Theoretical Computer Science 325(1), 69–110 (2004).
[7] J. Feret, H. Koeppl, T. Petrov. Stochastic fragments: A framework for the exact reduction of the stochastic

semantics of rule-based models. 2009. URL http://infoscience.epfl.ch/record/142570?ln=fr , last accessed 6/2010.
[8] Gross, Leonard (1967). Abstract Wiener spaces. In Proc. Fifth Berkeley Sympos. Math. Statist. and

Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1. Berkeley, Calif.:
Univ. California Press. pp. 31--42. MR0212152

[9] G. Johnson and M. Lapidus, The Feynman integral and Feynman’s operational calculus. Oxford U. Press
2000.

[10] H. Kleinert, Path integrals in quantum mechanics, statistics, polymer physics, and financial markets.
World Scientific 2009.

[11] J. Krivine, R. Milner, and A. Troina, 2008. Stochastic Bigraphs. Electron. Notes Theor. Comput. Sci.
(ENTCS) 218 (Oct. 2008), 73-96. DOI= http://dx.doi.org/10.1016/j.entcs.2008.10.006 .

[12] F. W. Lawvere. (1973, 2002), Metric spaces, generalised logic, and closed categories, In Reprints in
Theory and Applications of Categories, 1, pp. 1–37, 2002.

[13] E. Mjolsness. Stochastic process semantics for dynamical grammar syntax: an overview. In: Ninth
International Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, Florida, 4-6 January 2006
(http://anytime.cs.umass.edu/aimath06/ last accessed 6/2010); also arXiv:cs.AI/0511073v1, 20 Nov 2005.

[14] E. Mjolsness, G. Yosiphon. Stochastic process semantics for dynamical grammars. Annals of Mathemat-
ics and Artificial Intelligence 2006, 47:329-395.

[15] M. Reed and B. Simon. Methods of modern mathematical physics: Functional analysis I. New York:
Academic Press, 1972.

[16] K. A. Ross and A. H. Stone, Products of Separable Spaces, The American Mathematical Monthly, Vol.
71, No. 4 (Apr., 1964), pp. 398-403

[17] D. Stroock (2008). Abstract Wiener Space, Revisited. Communications on Stochastic Analysis, Vol. 2,
No. 1 (2008) 145-151.

[18] A. Spicher, O. Michel, M. Cieslak, J-L. Giavitto, and P. Prusinkiewicz (2008) Stochastic P systems and
the simulation of biochemical processes with dynamic compartments. BioSystems 91: 458-472.

[19] S. Vickers, Localic Completion of Generalized Metric Spaces I, Theory and Applications of Categories,
Vol. 14, No. 15, pp 328-356, 2005.

[20] Y. Wang, S. Christley, E. Mjolsness and X. Xie. Parameter inference for discretely observed stochastic
kinetic models using stochastic gradient descent, submitted manuscript.

[21] G. Yosiphon. Stochastic parameterized grammars: Formalization, inference and modeling applications.
PhD thesis, Department of Computer Science, University of California, Irvine, May 2009. URL:
http://computableplant.ics.uci.edu/~guy/downloads/DGPublications.html , last accessed June 2010.

[22] G. Yosiphon, E. Mjolsness. Towards the inference of stochastic biochemical network and parameterized
grammar models. In Learning and Inference in Computational Systems Biology. Edited by Lawrence ND,
Girolami M, Rattray M, Sanguinetti G: MIT Press; 2009.

Measureable Types V25.nb

20

