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B O D Y

Abstract
Process  modeling  languages  such  as  “Dynamical  Grammars”  are  highly  expressive  in  the

processes  they  model  using  stochastic  and  deterministic  dynamical  systems,  and  can  be  given  formal
semantics  in  terms of  an operator  algebra.  However  such  process  languages  may  be more  limited  in  the
types of objects  whose dynamics is easily expressible.  For many applications in biology, the dynamics of
spatial  objects  in  particular  (including  combinations  of discrete  and continuous  spatial  structures)  should
be  formalizable  at  a  high  level  of  abstraction.   We  suggest  that  this  may  be  achieved  by  formalizating
such  objects  within  a  type  system  endowed  with  type  constructors  suitable  for  complex  dynamical
objects. To this end we review and illustrate  the operator algebraic  formulation  of heterogeneous  process
modeling  and  semantics,  extending  it  to  encompass  partial  differential  equations  and  intrinsic  graph
grammar  dynamics.  We  show  that  in  the  operator  approach  to  heterogeneous  dynamics,  types  require
integration  measures.  From  this  starting  point,  “measurable”  object  types  can  be  enriched  with  general-
ized metrics under which approximation can be defined. The resulting measurable  and “metricated” types
can be built up systematically by type constructors such as vectors, products, and labelled graphs. We find
conditions  under  which  functions  and  quotients  can  be  added  as  constructors  of  measurable  and  metri -
cated types.
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1 Introduction

Modeling  complex biological  systems is  a  substantial  challenge  that  requires the  integration of  ideas
from many subfields of science, mathematics and computing. For applications in “computational morphodynam-
ics” [4], the local dynamics of form in biology and elsewhere, the dynamics of spatial objects (including mixtures
of discrete and continous spatial structures) requires integration of models from geometry, physics, biochemistry,
dynamical  systems,  and stochastic  processes.   An arena where  this  integration can  occur is  in  formally defined
modeling languages that incorporate heterogeneous dynamics: discrete, continuous, deterministic, stochastic, and
spatial  paradigms  for  dynamical  systems.  As  shown for  example  by  the  “Dynamical  Grammars”  (DG)  process
modeling  language,  these  objectives  can  be  achieved  by  defining  formal  semantics  in  terms  of  an  operator
algebra of  stochastic  processes.  DG’s comprise a language with defined syntax and semantics [14],  first  imple-
mented as an embedded language by the “Plenum” package [21] for the Mathematica computer algebra system.

In  pursuit  of  biological  applications,  a  natural  sequence  of  generalizations  to  process  models  have
been encountered.  The simplest  processes  are essentially chemical  reactions, in which a few input objects meet
and  are  converted  into  some other  output  objects.  These  reaction  proceses  are  assembled  into network  models.
Chemical  reactions  can  be modeled deterministically,  for  example using differential  equations  that  evolve real-
valued  concentrations,  or  they  can  be  modeled  more  accurately  as  stochastic  processes.  Essentially  the  same
models are used in elementary population genetics, where the “molecules” are actually oganisms in one or more
genetically defined species. In both cases, the next escalation involves giving state attributes (such as position or
internal  state)  to  the  reacting  objects.  As  modeled  in  DG’s,  the  resulting  state  attributes  can  evolve  in  discrete
stochastic  jumps  or  continously  via  differential  equations.  In  this  way,  local  information  processing within  and
between neighboring cells can be very flexibly modeled, but the evolution of the cell-cell neighborhood relation-
ships themselves requires further topological and geometric expressiveness.

A useful plateau of biological expressiveness is reached with the encoding of graph grammars within
DGs,  which  enables the  simulation of  variable-structure  discrete  spatial  models  such as  stem cell  niche models
with  biomechanics  [21].  Further  spatial  abstraction  and  expressiveness,  such  as  manifold  and  nonmanifold
continuous  dynamic geometries  encountered in  developing biological  tissues and organs, will  require  improved
support  for labelled graphs and continuous spatial  object types,  perhaps by introducing powerful  type construc-
tion mechanisms as proposed below. However, this is not as easy to do in an operator algebraic process modeling
language  as  in  a  programming language  owing to  the  need  for  integration  of  operators  over  the values of  each
type, and possibly for distance functions that can quantify the approximation of one value by another, as we will
show. So we seek type constructors for spatial modeling which are amenable to the operator algebra formulation
of dynamics.

This paper is organized as follows. In the remainder of Section 1 we exhibit a dynamical grammar for
a  biological  model,  and  define  notation.  In  Section  2  we  review  the  operator  algebra  approach  to  defining  the
semantics of process modeling languages, as it has been applied in the particular case of Dynamical Grammars.
In  Section  2.2  we review the  existing  DG mechanisms  for  generalized  reactions  or  rules,  including  systems  of
differential  equations,  acting  on  parameterized  terms;  in  each  case  we  exhibit  the  operator  expressions  for  the
modeling language semantics. We also show how type polymorphism may be expressed in DGs. In Section 2.3
we consider extensions to DG semantics for graph grammars and for general (possibly stochastic) partial differen-
tial equations, the latter by means of operator functional integrals as an infinite limit. In Section 2.4 we summa-
rize  dynamical  process  semantics  and  formulate  the  integration  criterion  for  new  type  constructors,  which
requires  that  types must  be  measurable.   In  Section 3  we consider  extensible  types built  by means of  primitive
types  and  type  constructors.  Section  3.2   describes  the  existing  DG  type  constructors  (vectors,  products,  and
labelled  graph  container  objects  encoded  using  product  types).  As  a  step  forward  in  Section  3.3  we  consider
intrinsic labelled graph types, followed by the more difficult cases of functions and quotients. Finally we collect
a  set  of  well  known  observations  that  together  define  a  sufficient  condition  for  the  formation  of  measurable
product  types,  and  likewise  formulate  a  set  of  properties  for  object  types  that  in  principle  allow  them  to  be
subjected to quotient operations.  These properties include measureability,  but also various quantification condi-
tions that are weaker than metrizability. These points are summarized in Section 4 .
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1.1 Syntax

Briefly, a dynamical grammar consists of a header followed by an unordered set or multiset “8 ...<” of
generalized reactions or rules, each representing a process. Each rule has a left hand side (LHS), an arrow, a right
hand  side  (RHS),  followed  by  a  keyword  (in  this  paper,  keywords  are  in  boldface),  followed  by  additional
algebraic  syntax  depending  on  the  keyword.  LHS  and  RHS  consist  of  multisets  of  parameterized  terms.  The
header begins with the keyword “grammar”, followed by the name of the grammar (so that grammars can invoke
one another recursively using rules with appropriate keywords), followed optionally by allowed input and output
object multisets in the form of an LHSØRHS rule.

1.1.1 Example: Olfactory epithelium stem cell niche model

A  model  similar  to  that  of  [21]  for  the  regeneration  of  odorant-sensing  neurons  in  mouse  olfactory
epithelium can be expressed as a dynamical grammar. Let the parameterized term “cell@c, x, V , fD” represent a
cell with discrete cell type label c œ 81, 2, 3 = cmax < , d -dimensional position x , volume v , and growth inhibitor
concentration f . Then the grammar could be written as follows:

grammar Epithelium  {
/* cell replication with or without differentiation : */

cell@c : !, x : "d , V : ", f : "Döcell@c + Dc1 , x + D x, V ê 2, fD,
cell@c + Dc2 , x - D x, V ê 2, fD

with r̀HVL PHDc1 : !, Dc2 : ! » c, fL ! HD x : "d ; c V1êd L
ä QHc < cmax L QHDc1 œ 80, 1<L QHDc2 œ 80, 1<L

/* cell death : */

cell@cmax , x, V , fDöØ with g

/* cell growth, dependent on cell type c  : */

cell@c, x, V , fDöcell@c, x, V + d V , fD
solving 9 d VÅÅÅÅÅÅÅÅÅd t = k QHc < cmax L + k VHVL QHc = cmax L =

/* symmetric cell-to-cell diffusion of growth inhibition signal f  : */

cell@c1 , x1 , V1 , f1 D, cell@cmax , x2 , V2 , f2 D
öcell@c1 , x1 , V1 , f1 + d f1 D, cell@cmax , x2 , V2 , f2 D
solving 9 d f1ÅÅÅÅÅÅÅÅÅÅÅd t = DI »» x1 - x2 »», HV1  V2 L1êH2 dL M Hf2 - f1 L =
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/* signal production, dependent on cell type c , and degradation : */

cell@c, x, V , fDöcell@c, x, V , f + d fD
solving 9 d fÅÅÅÅÅÅÅÅd t = k£ QHc = cmax L - l f=

}

Here r̀, D,  and V  are nonnegative monotonic bounded functions of their arguments; P  and N  are conditional
probability  distributions (in particular !H.; sL  is  the normal distribution with mean zero and standard deviation
s); c, k, k£ , g, and l  are nonnegative real-valued constants; and QHQL  is the 0/1-valued Heaviside step function
on a predicate Q . “x : t” introduces a parameter x  with type t , and comments are set off as /* ... */. The first rule
states that cell division cuts cell volume in half, leaves growth inhibitor concentration fixed, jostles the positions
slightly  while preserving  center  of  mass,  and leaves cell  type either constant  or increased by one step along an
irreversible path from “stem cell” to “transit-amplifying cell” to “neuron”. This process generates discrete events
in continuous time happening with a specified probability per unit time. There are also processes that occur over
a  continuous  duration  of  time,  given  by  the  differential  equations  shown  in  the  solving  clauses.  An  additional
solving rule (not shown) can change the position of cells in response to crowding by their neighbors.

Many  of  the  foregoing  rules  could  be  split  up  into  multiple  rules.  For  example  the  first  rule  could
equivalently be replaced by the more elementary rules:

stemcellAx : "d , V : ", f : "E Ø stemcellCx + D x,
V
ÅÅÅÅÅÅÅ
2

, fG, stemcellCx - D x,
V
ÅÅÅÅÅÅÅ
2

, fG

with r̀HVL PstemcellH0 » fL !ID x; V1êd M
stemcell@x, V , fD Ø TAcell@x + D x, V ê 2, fD, stemcell@x - D x, V ê 2, fD

with r̀HVL PstemcellH1 » fL !ID x; V1êd M
stemcell@x, V , fD Ø TAcell::cell@x + D x, V ê 2, fD, TAcell@x - D x, V ê 2, fD

with r̀HVL PstemcellH2 » fL !ID x; V1êd M
and likewise three more rules for TAcells giving rise to TAcells and/or neurons.
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1.2 Notation

Notation is as follows. f Hx, y, ... L  represents a function evaluated with ordered arguments x, y, ... .
On the other hand t@x, y, ...D  with square brackets represents an object of type t that retains all the information
in parameters x, y,  and so on. It may be thought of as a syntax tree with root node t and ordered children x, y,
....  Also 8x, y, ...<  is an unordered set, and 8x, y, ...<* with an asterisk subscript is an unordered multiset, i.e. a
function  from  the  set  8x, y, ...<  to  the  positive  natural  numbers  specifying  “how  many  times”  each  element
occurs in the set. In addition to the standard set-builder notation 8x » PHxL<  for defining the members of a set based
on a predicate P , we will build ordered sets (tuples or lists in the finite case) using square brackets: @xHiL »» i œ "D .
More generally  @xHiL » PHxHiL, iL »» i œ "D  imposes the image of a preexisting ordering of the index set " onto any
elements xHiL  selected for inclusion by the predicate P . Similarly, f H@xDL  is a shorthand for f H@xi »» i œ 81, ... n<DL
= f H@xi » 1 b i b n »» i œ !DL  which is in turn a shorthand for f Hx1 , ... xn L . QHPL ª 1  if P  is true, otherwise 0 is the
Heaviside function on predicates.  di j ª QHi = jL  is the Kronecker delta function.  !H.; sL  is the normal  distribu-
tion  with  mean  zero  and  standard  deviation  s.  In  case  of  type  ambiguity  (eg.  for  type  inference  or  dynamic
typing) we use the notation x : t  to indicate that variable x  has type t, and the notation f H@xDL : t  to indicate that f
returns  a  value of  type t.  Similarly,  t1 ::t2  indicates  that  t1  is  a  subtype of  t2 .  Metalanguage  syntax is  as  fol-
lows.  Macro  expansion  or  evaluation  is  indicated  by  the  function-like  notation:  m P ...T .  Substitution  of  an
expression s  for an unbound variable x  in a term t  is denoted t XXx # s\\ .

2 Defining Processes

We  now  describe  the  semantics  of  processes.  Most  of  the  technical  descriptions  in  this  section  up
through Section 2.2, and also Section 3.2.2,  are lightly edited excerpts from [14], which is the primary source for
the ideas presented in these sections of the paper.

2.1 Time-evolution operator semantics

The “master equation” for the continuous-time evolution of probabilities is:

(1)
d pHtL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

d t
= W ÿ pHtL

where pHtL  is the joint probability distribution over all possible states of the system at time t . The semantics of
a  model  is  given  by  the  operator  W ,  which  specifies  a  stochastic  process.  These  stochastic  processes  can  be
specialized  to  deterministic  dynamics  as  well  as  shown  below.  The  model  operator  W  can  be  composed  by
simply adding up operators Wr  that correspond to parallel, interacting subprocesses indexed by r :

(2)W = ‚
r

Wr

Simple  process  operators  Wr  can  be  built  out  of  products  of  elementary process  operators  by  which
objects  of  specified  type  and state  are created or  destroyed.  The semantics of  a  product  of  operators  is  an infi-
nitely  rapid  sequence  of  changes  taking  zero  time.  Scalar  multiplication  can  speed  up  or  slow  down  a  given
process.  Thus,  we  are  concerned  with  at  least  the  algebraic  structure  of  a  ring of  operators  that  act  linearly  on
probability  vectors.  All  of  this  is  analogous  to  the  operator  algebras  encounted  in  quantum  mechanics  and
quantum  field  theory,  except  that  only  classical  probabilities  need  be  used.  Quantum  semantics  would  be
obtained by inserting a factor of è!!!!!!!

-1  in Equation 1, obtaining the Schrödinger equation.
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-1  in Equation 1, obtaining the Schrödinger equation.
The  semantics  of  a  modeling  language  such  as  Dynamic  Grammars  is  given  by  the  procedure  by

which its process expressions can be converted into time evolution operators Wr . The resulting continuous-time
dynamics can be related to a discrete-time dynamics in which composition is somewhat more complicated.

Stochastic process operator semantics for modeling languages, including the master equation for time
evolution  and  measures  for  product  types,  was  proposed  in  [13]  and  elaborated  in  detail  in  [14].  The  master
equation was proposed independently for a “small stochastic process algebra” in [3]. Stochastic semantics for the
“kappa” rule-based modeling language [5;6] was also proposed in [7].

2.2 Current DG Semantics

We  first  review  those  aspects  of  Dynamical  Grammar  semantics  that  have  been  previously  defined
and, with the exception of polymorphism, implemented in Plenum.

2.2.1 Chemical reactions

Consider the chemical reaction:

(3)„
a=1

Amax

ma
HrL Aa ö

kHrL ‚
b=1

Amax

nb
HrL Ab

Applications  of  this  kind  of  process  model  are  legion  in  biochemistry,  population  biology,  and  cellular
systems biology.

We can translate this information into a stochastic process obeying the master equation, by defining a
suitable  operator  W  algebraically  in  terms  of  elementary  annihilation  and  creation  operators  aaHiL  and  àbH jL
obeying the Heisenberg algebra ai  à j - à j  ai = di j  or  variants thereof.  The general  principle  is :  destroy all  the
objects on the left hand side (LHS) of the rule, and instantaneously thereafter, create all the objects on the RHS.
The operator expression of this principle for chemical reactions is:

(4)O
`

r = kHrL
looom
nooo

‰
jœrhsHrL

àbH jL
|ooo}
~ooo

 
looom
nooo
‰

iœlhsHrL
aaHiL

|ooo}
~ooo

.

This operator is off-diagonal and represents the flow of probability into a new state. We must also represent
the compensating flow of probability out of the old state, Dr = diagI1T ÿ O

`
r M  (where the matrix notation is that 1T

is the transpose of the column vector all of whose elements take the value one, and “diag” converts the resulting
row vector into a diagonal matrix), resulting in a net operator Wr = O

`
r - Dr . If there are many reactions indexed

by r  in a reaction network, their operators Wr  add up as in Equation 2. The result is a stochastic model of mass
action kinetics for each reaction and for the whole reaction network.

An  alternative  notation  for  the  reaction  in  Equation  3  could  be  a  multiset  rewrite  rule:

8ma
HrL µ Aa » ma

HrL > 0<* ö
kHrL 9 nb

HrL µ Ab … nb
HrL > 0=

*
, where nä x  means that object x  occurs n  times in the multiset.

It  is  conventional  in  biochemical  network  models  to  reduce  higher-order  reactions  to  those with  just
one  or  two  inputs  (unimolecular  or  bimolecular  reactions)  by  splitting  up  reactions,  so  that  ⁄a ma

HrL  is  a  small
integer. Likewise ‚

b
nb
HrL  is typically a small integer. Thus, the total amount of computational work that has to

be  done  “instantaneously”  in  Equation  4  is  a  small  constant.  The  same  principle  can  be  applied  in  the  more
expressive parameterized reactions below. The analogous expressions represent interaction vertices for Feynman
diagrams in quantum field theory, where they also have low total degree: ⁄a Hma

HrL + na
HrL L   is usually 2, 3, or 4.
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expressive parameterized reactions below. The analogous expressions represent interaction vertices for Feynman
diagrams in quantum field theory, where they also have low total degree: ⁄a Hma

HrL + na
HrL L   is usually 2, 3, or 4.

2.2.2 Parameterized reaction

A minimal generalization of chemical reaction notation is to allow the chemical species or “types” to
be indexed by static parameters in a reaction

(5)8taHiL @xi D » i œ "L <* ö 8ta£ H jL @yj D » j œ "R < *
with  rr H@xi D, @yj DL

This syntax can be used to formulate dynamical models of stateful objects like cells, molecular complexes, or
covalently modified proteins such as those with multiple phosphorylation sites. Here 8 ... <* represents a multiset,
and  with  is  a  keyword  introducing  the  probability  per  unit  time  rr  that  the  specified  discrete  event  will  occur
instantaneously at a particular moment in real-valued time. Assuming that the parameter expressions x, y  contain
no variables Xc , the time-evolution operator for each individual reaction is:

(6)O
`

r = rr  H@xa D, @yb DL
looom
nooo

‰
bœrhsHrL

à jHbL  H@yb DL
|ooo}
~ooo

 
looom
nooo

‰
aœlhsHrL

 aiHaL  H@xa DL
|ooo}
~ooo

Note that there are now separate creation and annihilation operators for every posssible value of the parameter
list @xa D  - all acting on the same very large Fock space, defined in Section 3.2.2 below.

However, a much more useful rule would be a rule schema with many possible values for some of its
parameters, obtained by making the parameter expressions be a function of some variables. If there are variables
8Xc < , we must sum or integrate over all their possible values in a suitable measure space c DbHcL :

(7)

O
`

r = ‡
DjH1L

... ‡
DjHkL

... 
i
k
jjjjj‰

k

 d m jHkL HXk L
y
{
zzzzz rr  H@xa  H@Xk DLD, @yb  H@Xk DLDL

ä
looom
nooo

‰
bœrhsHrL

 à jHbL  Hyb  H@Xk DLL
|ooo}
~ooo

 
looom
nooo

‰
aœlhsHrL

 aiHaL  Hxa  H@Xk DLL
|ooo}
~ooo

For  example,  some  object  types  could  be  parameterized  by  position  and  velocity  vectors;  others  by rotation
matrices. Different measures would be required to integrate over these different kinds of parameters.

The nonnegative real-valued reaction rate rr H@xi D, @yj DL  is given by an algebraic expression in a typed
language #R ,  and denotes a function in a Banach space $ HVL  of real-valued functions defined on the Cartesian
product space V  of all the value spaces VaHiL  of the terms appearing in the rule. Depending on the norm used in
the Banach space $  it may be possible to formulate rate functions that grow without bound as a function of their
arguments, and allow in principle for an infinite amount of computation to be done in a finite time. In that case,
not  all  models  formulatable  with  Dynamical  Grammars  are  effectively  simulatable  in  finite  time  on  Turing
machines.
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We assume that there is a typed language #P  that constrains the parameterized terms xi  occurring in
the rules. The essential feature of #P  is that it includes a set of function symbols with defined input and output
type  signatures.  These  function  symbols  represent  type-supported  operations  on  the  typed  constants,  variables
Xk , and typed parameter expressions xa  in #P .  The typed parameter expressions xa  may appear in the parame-
ter  lists  of  LHS and RHS terms taHiL @xi D ,  and as  arguments  to the rate functions rr .  In  this  way, algebraic  data
types  make  contact  with  algebraic  time-evolution  operators.  Rate  functions  rr H@xi D, @yj DL  ultimately  relate  the
domain-specific types to nonnegative real numbers that specify process rates.

Each  parameterized  term  taHiL @xi D  or  ta£ H jL @yj D  is  of  type  ta  and  its  parameters  xi  take  values  in  an
associated (ordered) Cartesian product set Va  of da  factor spaces chosen (possibly with repetition) from a set of
base spaces % = 8Db » b œ &< . Each Db  is a measure space with measure mb . Particular Db  may for example be
isomorphic  to  the  integers  #  with  counting  measure,  or  the  real   numbers  "  with  Lebesgue  measure.   The
ordered choice of spaces Db  in Va = ¤k=1

da Db=gHa kL  constitutes the type signature 8ga k œ & » 1 b k b da <  of type
ta . 

2.2.3 Polymorphism

Polymorphic  argument  type  signatures  are  supported  by  defining  a  derived  type  signature  sa b  from
factor space compatibilities 8sè a k b = HDb Œ DgHa kL L œ 8T, F< » 1 b k b da , b œ &< .   For example we can regard #
as a subset of ".  Then we can define the overall ability to cast type tb  as a subtype of type ta  using a 0/1-valued
matrix sa b :

da b § sa b § QH$ mapping lb HkL » fl1§k§da sè a k gHb lHk,bLL L
Some  freedom  is  present  in  the  choice  of  s,  with  which  various  different  polymorphism  schemes  could  be

implemented. Let la b HkL  be the map lb HkL  whose existence is assured by sa b = 1  (if it is so). Let l
è

a b : Vb Ø Va
be  the  associated  linear  projection  operator,  which  drops  parameters  in  b  having  no  counterpart  in  a ,   We
parameterize  the  nullspace  of  l

è
 by z œ Vb

£ = ¤mœ81,... db <Ôm–ImHlb L Db=gHb lL ,  and let  pVb
£ : Vb Ø Vb

£  be  the projec-
tion operator complementary to l

è
.  We define l : Va Vb

£ Ø Vb  so that lÎ Ilè , pVb
£ M = idHVb L .  We will eliminate

extraneous values of Va  from consideration with Heaviside step functions QIxi  H@XcDL œ ImHlèa b LM œ 80, 1< .
 Then the time-evolution operator expression Equation 7 for the rule of  Equation 5 becomes

(8)

O
`
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DbH1L
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DbHcL

... 
i
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 d mbHcL HXc L
y
{
zzzzz rr  H@xi  H@Xc DLD, @yj  H@XcDLDL

ä
i
k
jjjjjj ‰

iœlhsHrL
 QIxi  H@Xc DL œ ImHlè a b LM

y
{
zzzzzz
looom
nooo

‰
jœrhsHrL

àaH jL  Hyj H@XcDLL
|ooo}
~ooo

ä

loooom
n
ooooÂ

iœlhsHrL
 

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
„

d

 sbHiL d  ‡
Vd

£
 d z ad  HlHxi  H@Xc DL, zLL

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ

|oooo}
~
oooo

.

Note that sa b = 1  is reflexive and can be chosen to be antisymmetric,  hence defining a partial ordering “b”
on types.  We say tb  is a  subtype  of  ta .  The type ordering is  related to substitutability:  If  tb b ta  then expres-
sions  of  type  tb  can  be  substituted  for  variables  of  type  ta  in  language  #P  without  type  violation,  at  least  in
covariant contexts such as the foregoing rule semantics. In this semantics, subtyping is used only on the LHS and
not  the  RHS of  a  rule.  Subtyping  polymorphism is  not  supported  in  the  Plenum implementation  of  Dynamical
Grammars;  instead,  subtyping  of  “cell  types”  was  hand-coded  using  graph  grammar  rules  (see   Section  2.2.4
below) along with extra parameter-bearing objects representing the subtype memberships.
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Note that sa b = 1  is reflexive and can be chosen to be antisymmetric,  hence defining a partial ordering “b”
on types.  We say tb  is a  subtype  of  ta .  The type ordering is  related to substitutability:  If  tb b ta  then expres-
sions  of  type  tb  can  be  substituted  for  variables  of  type  ta  in  language  #P  without  type  violation,  at  least  in
covariant contexts such as the foregoing rule semantics. In this semantics, subtyping is used only on the LHS and
not  the  RHS of  a  rule.  Subtyping  polymorphism is  not  supported  in  the  Plenum implementation  of  Dynamical
Grammars;  instead,  subtyping  of  “cell  types”  was  hand-coded  using  graph  grammar  rules  (see   Section  2.2.4
below) along with extra parameter-bearing objects representing the subtype memberships.

This version of  Equation 8 is corrected from that of [14], which included s  but omitted consideration
of the map l

è
.

2.2.4 Graph grammar rules

In  [14],  labelled  graphs  were  encoded  using  parameterized  terms  by  devoting  the  first  parameter  of
each term to an integer-valued Object Identifier (OID), and using some of the other paremeters to hold the OIDs
of other graph-linked objects. In this way graph-grammar rules could be systematically translated into parameter-
ized-grammar rules.

Already the OID translation of graph grammar rules may be used to implement conventional Abstract
Data Types (ADTs) such as lists in terms of pointer data structures such as doubly linked lists. Using the Heisen-
berg algebra of creation and annihilation operators, it is possible to alebraically verify the ADT relation between
inserting and removing an item in such a list: insertion followed by deletion should yield the identity operation.

2.2.5 Differential equations (ODE, SDE)

The system of Langevin equations

(9)d xiÅÅÅÅÅÅÅÅÅÅÅÅÅ
d t

= vi H@xk DL + hi HtL
are stochastic if the continous stochastic process hi HtL  0  given by Stochastic Differential Equations (SDEs);

otherwise  they  specialize  to  a  system  of  ordinary  differential  equations  (ODEs).  It  may  be  recast  as  a  time-
evolution operator by using differential operators:

(10)O
`

drift = -· d 8x< · d 8y< àH@yDL aH@xDL 
i

k

jjjjjjjj„
i

“ yi vi H@yDL ‰
k

dHyk - xk L
y

{

zzzzzzzz

(11)O
`

diffusion = · d 8x< · d 8y< àH@yDL aH@xDL 
i

k

jjjjjjjjj„
i j

“ yi “ yj Di j H@yDL ‰
k

dHyk - xk L
y

{

zzzzzzzzz

Consequently,  process  reactions  or  rules  that  syntactically  incorporate  ordinary  differential  or  stochastic
equations may be given semantics. The ODE version of this possiblity has been implemented in Plenum [21] and
results in a very flexible kind of hybrid system for biological models.

In the current Plenum implementation of DGs only very specific partial differential equations (PDEs)
are supported: diffusion equations with constant, isotropic D .
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2.2.6 Algorithms for simulation and learning

Probably the most surprising aspect of the operator formulation of dynamics is that finite, computation-
ally tractable algorithms can be found for sampling from the resulting probability distributions and indeed can be
derived  systematically.  For  stochastic  discrete  event  processes,  the  Dyson  series  or  “time-ordered  product
expansion” can be used to systematically derive simulation algorithms. In particular if one considers off-diagonal
elements as a perturbation, this method can be used to rederive Gillespie’s Stochastic Simulation Algorithm [22,
14]  and  its  generalization  to  parameterized  terms.  Other  operator  splittings  yield  other  algorithms  including
hybrid  ODE/discrete-event  solvers  [21].  In  addition,  parameter  inference  algorithms  can  be  derived  for  this
power  series  approach  [20,22].  Thus  even  when  all  operators  used  are  infinite  objects,  finite  and  effective
algorithms can be derived from them.

2.3 Proposed DG-like Semantics

2.3.1 Graph grammar rules

In  [14],  labelled graphs  were encoded using parameterized  terms using unique integer-valued Object
Identifiers (OIDs). However, there was no “intrinsic” graph type constructor or graph grammar dynamics in the
language. We now suggest such a dynamics.

 Suppose that with consistent node indexing i1 , i2 , ...  we wish to rewire the small graph g  as the new
small  graph g£ ,  where a, b  range over  the same sets  of nodes.  Represent these graphs by 0/1-valued adjacency
matrices,  and  suppose  the  node  labels  are   @la » aD  and  @l£

a » aD  before  and  after  rewriting.  Then  the  rewriting
operator deletes all  the old edges and nodes labels,  if they exist in exactly the pattern required by g  and l,  and
replaces them with the corresponding new edges and node labels:

(12)O
`

r =
1

ÅÅÅÅÅÅÅÅ
k !

 „
8i1 ,... ik <
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Ç

ÅÅÅÅÅÅÅÅÅÅÅ
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Hàic id Lg
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c d

É
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ÑÑÑÑÑÑÑÑÑÑÑ
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ÅÅÅÅÅÅÅÅÅÅÅ
‰
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àic l£
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É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
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Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

a,bœlhsHrL
Haia ib Lga b

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰

aœlhsHrL
aia la

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
This semantics automatically generalizes to multigraphs as well, by allowing ga b œ ! . The summation implies

a search for matching graph structures which is considerably reduced if  the input graph g  has relatively unique
node labels l .

In this way, graph rewrite rules may be made intrinsic to a graph type or type constructor rather than
just being encoded by OIDs.  Graph type constructors can be used to build other container types including lists,
trees, and so on. One danger with an expression such as Equation 12 is that the product of operators may grow to
more  than  just  a  handful  of  operators,  so  that  the  amount  of  computational  work  that  must  be  done
“instantaneously”  at  each  event  is  bounded  by  a  larger  constant.  The  number  of  operators  multiplied  together
grows with the size of the graph fragments being rewritten.
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2.3.2 Partial differential equations (PDE’s) and stochastic PDE’s

We may translate  partial  differential  equations and stochastic  partial  differential  equations of  general
form into the operator algebra, by relating PDE’s and SPDE’s to large systems of ODE’s and SDE’s, and taking
the limit symbolically.  Nontrivial analysis may be needed to confirm whether the indicated limits really exist or
not in any given case [9, 10].

Consider the following (possibly stochastic) PDE :

(13)
FHxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
 t

= F@FD HxL = FKFHxL, FHxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
x

, ... ,
n FHxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
xn O + hHtL.

where x  may be a scalar or a vector, and likewise for F. We make the following mapping to ( Equation 9 and
Equation 10):

Table 1. Ordinary vs. Partial differential objects

Ordinary differential object Partial differential object


  d ê d t   ê t
 i  œ !  x œ "

 xi  FHxL
 yi  F£ HxL
  ê xi Hpartial derivativeL  d ê d FHxL Hfunctional derivativeL
D  (homog. scalar diffusion coef.) D Hhomog. scalar diffusion coef.L
 dHy - xL = ¤i dHyi - xi L  DHF£ - FL = ¤x dHF£ HxL - FHxLL
Ÿ d x gHxL
(ordinary integral)

Ÿ %F G@FD
(functional integral)

 at  HxL = at H@xi DL at HFL = at Hx # FHxLL
With this table of translations, the drift and diffusion operators for PDE’s and SPDE’s become

(14)Odrift = -‡ ‡ %F %F£ àHF£L at HFL K‡ d x 
d

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d F£ HxL  F@F£ D HxL DHF£ - FL O

and

(15)Odiffusion = D ‡ ‡ %F %F£ àHF£ L at HFL ik
jjj‡ d x 

d2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
d F£ HxL 2  DHF£ - FLy{

zzz .

where

DHF£ - FL = limsØ0 ¤x !HF£HxL - FHxL; sL
ª limsØ0 exp Ÿ d x logH!HF£HxL - FHxL; sLL

This  gives  another  potential  application  of  the  time-ordered  product  expansion  which  can  be  used  to  create
simulation algorithms.

With  suitable  PDE’s  it  becomes  possible  to  represent  dynamically  changing  manifolds,  either  by
differential  equations for the metric as  in General  Relativity,  or for an explicit  embedding into a higher dimen-
sional space, or for an implicit embedding given by a function f HxL = 0 (a level set method).
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2.4 Discussion of dynamics

Table 2 summarizes the increasing DG capabilities called for by various keywords that can appear in
the  generalized  reaction  or  rule  syntax.  Recursive  process  models  are  available  through  the  “via”  and
“substituting”  keywords  and  their  semantics,  which  are  analogous  to  subroutine  calls  and  macro  substitutions
respectively.  An  essential  point  in  the  semantics  is  that  repeatedly,  greater  expressivity  is  achieved  by  taking
limits  that  yield  object  types  and  processes  of  higher  (finite  or  infinite)  cardinality.  Examples  include  infinite
limits  of  the  maximum number  of  molecules  of  each  type,  the  number  of  values  each  parameter  can  have,  the
precision of a numerical parameter, and the cardinality of allowed index sets for collections of parameters.

Table 2. DG keywords and the notation they introduce

Importance Keyword has expression ... semantics


Essential    
 with prob. rate discrete transitions
 solving differential eq differential operator
Expressive   limits  of essentials
 subject to constraint delta function factor
 via sub-grammar call W £ =expHT WL
 solving functional diff eq functional diff oper
Convenient    
 substituting macro gram. call semantics/expansion
 under Boltzman energy related to with
 [...; ...] sequential events expHt W2 L expHt W1 L

Equation  7  and  Equation  10  above  involve  sums  or  integrals  over  the  values  taken  by  a  variable  of
some particular type. Equation 12 can be regarded as a sum over variables whose types are nodes and links in a
graph data type. Technically, the values of the integrands are operators in the Fock space defined in Section 3.2.2
below,  which  means  that  even  integrals  over  infinite  domains  integrate  up  to  operators  whose  nonzero  real-
valued elements are each the summed reaction rates rr  of all fully redundant copies of some rule. This quantity
can be restricted to be finite, usually just a process rate times a small integer. Such integrals are typically encoun-
tered in the Lagrangian functionals of quantum field theory, where the integration parameters are taken to include
particle momenta.

What  is  essential  for  each  semantic  operator  above  is  the  capability  to  integrate  over  the  various
required  domains  of  integration,  i.e.  over  the  values  taken  by  the  typed  variables.  The  reason  is  that  variable-
binding in the process syntax corresponds to integration in the operator semantics. Integration in turn requires a
measure with which to integrate,  defined on a measure space. Thus,  the operator algebra approach to dynamics
requires measurable data types.
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3 Defining Object Types

3.1 Language

Type-specific  subsets  of  the  language  #P  of  Section  2.2.2  may  have  variables,  function  symbols,
relation symbols,  and quantifiers as usual, or they may be more constrained for a particular type. Logic may be
classical  or  intuitionistic.  Real-valued  function  expressions  are  needed  to  specify  process  rates.  Relations  are
functions  taking  values  in  a  truth-value  space  W,  which  for  classical  logic  is  the  Boolean  algebra  on  8T, F< .
Constraints on processes can be specified by predicates. The typed language #P  shares some similarities with for
example the typed “local language” #  in [2]. However, a type expression component of the language #P   is not
yet formalized since we don’t yet know what function and power type constructors may be measurable. 

We will allow axioms expressed in #P  to be associated with types and type constructors. For example,
the  axioms  for  object  types  arising  in  “universal  algebra”  (such  as  groups  and  rings  but  not  fields)  would  be
equational laws, universally quantified.

3.2 Existing types

3.2.1 Primitive types

The primitive types for modeling include numbers: minimally, the integers # and the real numbers "
(or  finitely  computable  approximations  thereof).  In  each  case  it  is  important  that  there  is  a  standard  algebraic
structure  (a  ring  or  field  supporting  arithmetic  operations),  a  standard  topology,  a  standard  measure,  and  a
standard  distance  metric.  Specifically  the  integers  have the discrete  topology,  the uniform measure,  and can be
integrated  over  by  summation;  the  real  numbers  have  the  topology  generated  by  open  intervals,  the  associated
Borel measure, and Lebesgue integration; and both have distances defined by dHx, yL = » x - y »  that generalize to
Euclidean distance in vector spaces over the respective primitive types. For many applications including quantum
mechanical  ones,  the  complex  field  $  should  also  be  taken  as  a  primitive  type.  Integration  is  essential  for  the
operator representation of dynamics, and distance measures enable controlled approximations.

Thus  the  expressions  in  the  language  #P  involving  a  primitive  type  t  include  variables  of  type  t
(denoted x, y, ..., or x : t  etc. ), functions such as +, -, * , ê ,  and distance distHx, yL , the equality relation =,
as well as the integration linear functional Ÿ  .  Given integration it is possible to define distributions or general-
ized  functions  including  the  delta  “function”  satisfying  Ÿ dHx, yL f HxL d x = f HyL .  This  is  the  Kronecker  delta
function for integers and the Dirac delta function for reals.

3.2.2 Vector and product types

Type  constructors  generate  new  types  from  old  ones.  Standard  type  constructors  in  mathematically
defined programming languages may include type sums, products, powers, and function types, and we will also
include  quotient  types.  Here  we  describe  the  type  constructors  already  present  in  Stochastic  Parameterized
Grammars and therefore in Dynamical Grammars: vector and product types.

Vector spaces "d  or #d  of fixed finite integral dimension d > 0  over " or # have addition, subtrac-
tion, equality, scalar multiplication, distance and integration defined as usual. Distance is defined by the additiv-
ity of squared Euclidean distances; integration is defined by multiple integration. In addition, linear transforma-
tions  on  vector  spaces  may be  defined  by  their  action on  a  vector  basis.  This  fact  distinguishes  a  vector  space
from  a  general  product  type,  though  it  is  a  specialization  or  subtype  thereof.  Other  nonprimitive  types  that
support +, -, = , "*, Ÿ ,  and distH., .L  can also serve as the substrate for d -dimensional vectors.
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Vector spaces "d  or #d  of fixed finite integral dimension d > 0  over " or # have addition, subtrac-
tion, equality, scalar multiplication, distance and integration defined as usual. Distance is defined by the additiv-
ity of squared Euclidean distances; integration is defined by multiple integration. In addition, linear transforma-
tions  on  vector  spaces  may be  defined  by  their  action on  a  vector  basis.  This  fact  distinguishes  a  vector  space
from  a  general  product  type,  though  it  is  a  specialization  or  subtype  thereof.  Other  nonprimitive  types  that
support +, -, = , "*, Ÿ ,  and distH., .L  can also serve as the substrate for d -dimensional vectors.

In  defining  Dynamical  Grammars  and  SPGs  (Stochastic  Parameterized  Grammars:  DG’s  without
differential  equations  or  differential  operators),  the  notation  for  instances  of  product  type  t  was  t@x1 , ..., xn D
where the parameters xi  could be values or  instances of  different types according to a type signature.  The type
signature  for  t  is  of  course  the  same  for  all  instances.  In  particular  the  parameters  could  be  instances  of  the
foregoing  primitive  types  and/or  vector  types  over  primitive  types.  In  the  case  n = 1,  we  have  an  alternative
notation of an object x  of type t . Generically t@x1 , ..., xn D  are called parameterized objects.

For product types ¤i œ"Œ! ti , a Fock space was constructed in [14] within which one can represent the
probability  distribution  over  numbers  of  objects  of  each  type,  taking  into  account  the  indistinguishibility  of
objects of the same type and same parameter values, as follows. Each value space Va  is a measure space, with a
s-algebra of “events” on which probability is to be defined. A probability distribution on a measure space X  is
just a (nonnegative) measure P  on the s-algebra for which PHXL = 1. We may construct a probabilistic version of
a many-particle “symmetric Fock space” following [15]. Given a nonnegative integer na  we may define the set
of states that have a total of na  “copies” of grounded parameterized term ta Hxa L :

'a Hna L =
i
k
jjjj

m=1

na

Va
y
{
zzzzì(Hna L .

Here  (HnL  is  the  symmetric  group  on  n  items.  The  quotient  is  taken  with  respect  to  equivalence  classes  of
Cartesian-product  members  that  differ  only  by  a  permutation  of  na  items.  A  new  s-algebra  is  induced  on  the
space 'a Hna L  by the Cartesian product operation and the symmetrization operation. Next, any finite nonnegative
number na  of terms are allowed in a disjoint union of measure spaces 'a Hna L , and the construction is repeated in
a cross product over for all term types a :

'a = 
na =0

¶

'a Hna L and ' =
a
'a

Now !  is a measure space (since it has an induced s-algebra) and thus defines a probabilistic Fock space $
as the set of probability distributions defined on ! .

Products  types  with  parameters  of  the  same  product  type,  or  otherwise  recursively  defined  product
types, are accomodated in DG’s indirectly by way of graph grammars, with graph links represented by equality
of unique integer-valued object identifiers (OIDs) defined at various positions in the parameter list as described
in Section 2.2.4. This encoding was needed due to the lack of function or power types that could more naturally
represent relationships.

3.2.3 Labelled graph types

A de facto type constructor is given by the OID encoding of labelled graphs described in Section 2.2.4
. Here we exhibit a syntax extension for such labelled graphs.

The  OID  label  or  address  symbols  OidlHiL  denote  OID-typed  variables  taking  unique  values  in  a
discrete domain such as the nonnegative integers.  The graph is related to two subgraphs of neighborhood indices
NHi, sL  and N£H j, sL  specific  to the input and output  sides  of a  rule.  Unique OIDs are maintained,  so that lHiL
and l£H jL  are injective maps on nonnegative integers i œ "  and j œ ) . A rule in a graph grammar then takes the
form
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The  OID  label  or  address  symbols  OidlHiL  denote  OID-typed  variables  taking  unique  values  in  a
discrete domain such as the nonnegative integers.  The graph is related to two subgraphs of neighborhood indices
NHi, sL  and N£H j, sL  specific  to the input and output  sides  of a  rule.  Unique OIDs are maintained,  so that lHiL
and l£H jL  are injective maps on nonnegative integers i œ "  and j œ ) . A rule in a graph grammar then takes the
form

(16)

9OidlHiL := ti AxaHiL ;AOidNHi,sL … s œ 1..saHiLmaxEE … i œ "=
ö 8OidlHiL » i œ "1 Œ "< ‹ 9Ll£ H jL := t j Axa£ H jL£ ;ALN £ H j,sL … s œ 1..sa£ H jLmax EE … j œ ) =

with  rr IAxa£ H jL£ E, @xaHiL DM
as explained in [14]. Nodes in the LHS and RHS graphs are parameterized types ti @xaHiL D .  Links in these two

graphs are specified by repetition of the same value for an Oid variable occurring on the left of a “:=”  symbol
and on the right of one or more “:=” symbols, all on the same side (either left or right) of the rule arrow “ö”.

Such rules have been used in models of the regulated growth and cellular differentiation of the filamen-
tous  cyanobacterium  Anabaena  catenula,  the  root  of  the  plant  Arabidopsis  thaliana,  and  the  mouse  olfactory
epithelium [21]. Translation of such rules to the syntax and semantics of Equation 5 is shown in [14]. It uses both
product  types  such  as  ti @OidlHiL , xaHiL , @OidNHi,sL » s œ 1..si

cur DD  and  vector  types  such  as  @OidNHi,sL » s œ 1..si
curD .

However,  such  a  translation  is  not  type-safe  as  the  resulting  parameterized  terms  could  possibly  conflict  with
others of the same type name and signature, not involved in representing graphs.

Rules  of  this  form allow graphs  whose  nodes  are  parameterized  terms ti @xaHiL D  of  one  or  more  types
ti œ *  to undergo local rewriting operations, conditioned on their graph connections to other such terms. Thus,
we have a de facto  “graph type constructor”  that  takes  in a  set  of types *  and produces  a  new container type.
Using polymorphism it may be possible, as in many programming languages, to replace the set of types *  with a
single  base  type  tbase  for  the  nodes  in  the  graph.  And  of  course  given  graphs  one  can  implement  many  other
container types, such as trees and arbitrary-length lists, though not in a type-safe manner. So it would be prefera-
ble to have graph types supported rather than just encoded in the modeling language, as  we discuss in the next
section.

3.3 Proposed type constructors

Function  types  t1 Ø t2  are  needed  for  dynamics  of  geometry  among  other  application  areas,  and
quotient types t ê ~  are needed for mathematical abstraction. There are a number of obstacles to creating function
and quotient types with the properties needed for the operator algebra formulation of dynamics. In this section we
review a few well-known concpts that collectively may indicate a way forward for function and quotient types.

We will begin, however, with labelled graph types.

3.3.1 Labelled graph types

Given a set of types * , for example a base type tbase  and all of its subtypes, we would like to create a
graph (or tree or list) type whose nodes are labelled by objects whose types are in * .  The semantics of Section
2.2.4  shows  the kind  of  transformations  required;  what  is  still  needed  is  suitable  syntax for  specifying  labelled
graphs  on  the  LHS  and  RHS  “directly”  and  in  a  permutation-invariant  way,  rather  than  through  a  redundant
encoding.  Similar  to  an abstract  data type,  such labeled graphs would  not  be  “built”  out  of  sets  or  pointers  but
rather manipulated algebraically. Beginning with the primitive “a ö

l
b” for a pair of nodes labelled by a and b

connected by a  link labelled by l,  we can use  a “Merge” operation (a macro taking any number of arguments)
which equates nodes that share labels to build up small graphs directly, so that for example
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(17)MergeRa ö
l

b, b ö
m

g, g ö
n

aV =

a ö
l

b

å
n



ææææm

g

.

Here the labels a, b, l, m, ...  represent constants or variables, taking typed values for which equality can be
tested (for example they may represent integers). MergeP...T is a macro, which is evaluated before the DG model
is simulated, mapped to its semantics, or analysed. Other basic graph-producing macros may be defined as well.
Labels  can be  further  controlled with  a  relabelling  macro operation “G XXnodelabelmap; linklabelmap\\” where
G  is  a  labelled graph and the label  maps specify  substitutions  acting on label expressions  in #P .  For example,
nodelabelmap  for  integer-valued  labels  might  take  the  form  i # f PiT .  Such  maps  can  be  used  to  erase  label
distinctions among nodes and edges, potentially increasing the automorphism group of a labelled graph. For very
small graphs, 2D layouts such as the RHS of Equation 17 can be written directly. With such a language we obtain
symbolic  expressions representing  labelled graphs,  in  such a  way that  the  expressions  can occur  in the LHS or
RHS of a rewrite rule. In the absence of link labels the semantics of such a rule can be given by Equation 12. In
the presence of link labels, a similar operator expression can be given or else the node- and link-labelled graphs
can first be translated into purely node-labelled bipartite graphs.

As an example of such a graph rewrite rule, one might have a pair of cells sharing a common “face”
which is to be divided into two different subfaces:

H 1 Ø 3  2 L XX@cellHc1 L, cellHc2 L, faceHf0 LD; \\
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â à
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 XX@cell Hc1 L, cell Hc2 L, Ø, face Hf1 L, face Hf2 LD; \\

A Dynamical  Grammar  that  also  uses  the  graph  rewriting  capabilities  called  for  here  and  in  Section
2.2.4 may be termed a “Dynamical Graph Grammar”. Examples of related frameworks in which one of the graph
link  types  is  used  to  formalize  containment  relations  between  biological  structures  include  P-systems  [18]  and
stochastic bigraphs [11]. In addition Finite Element Method (FEM) geometries and other discretized manifold or
nonmanifold  geometries  (eg.  cell  complexes)  can  be  represented  with  suitable  labelled  graphs.  However,  to
represent  continuous  limits  of  such  geometries  also  requires  function  types,  discussed  in  the  next  section.  For
reflective  or  meta-modeling,  labeled  graphs  can  be  used  to  represent  commutative  diagram  specifications  of
axioms,  and  also  graphical  models  of  probability  distributions.  Simple  meta-rules  were  demonstrated  in  [21].
Like any discrete space, discretely labelled graphs can be given a counting measure.

Measureable Types V25.nb

16



3.3.2 Function types

Product,  function, and power types can all substantially raise  the cardinality of the (finite or infinite)
objects they represent or approximate, and can therefore be computationally problematic. Integrating a functional
over a domain consisting of real-valued functions introduces new complications not present in finite-dimensional
multiple  integration,  since  Lebesgue  measure  is  not  available  in  infinte-dimensional  vector  spaces.  Instead  one
may use the Wiener measure which is defined in terms of a  diffusion stochastic  process,  or  more generally the
“abstract  Wiener  space”  measure  on  any  separable  Banach  space  [8,  17],  if  a  suitable  norm has  been  defined.
There  are  several  plausible  topologies  for  function spaces,  including strong (derived from the norm) and weak.
Linear  operators,  required  for  meta-modeling  and  a  natural  next  step  in  the  type  progression,  have  even  more
topologies that generalize the topology of finite matrices: norm, weak, strong, ultraweak, ultrastrong, and so on.
So  ideas  of  topology,  measure,  and  integration  each  split  up  into  several  different  generalizations  in  infinite
dimensional settings. 

Thus each function type requires in principle a verification that a measure suitable for integration can
be defined. If the domain of the function is # or #d  then the uniform measure and the discrete topology can be
used.  If  the  domain  is  "  or  "d  then  we  can  use  the  Wiener  measure  which  is  natural  when  spatial  locality  is
reflected in processes that permit local diffusion. More generally if a suitable norm, separable Banach space, and
embedded  separable  Hilbert  space  can  be  defined,  then  we  can  use  the  abstract  Wiener  measure.  In  this  way,
definitions  of  norm  and  inner  product  (or  distance)  can  serve  as  essential  stepping  stones  towards  defining
measure, in the case of types in infinite dimensional function spaces.

Since  a  separable  topological  space  is  one  that  contains  a  countable  dense  subset,  and  since  the
product of at most +  separable spaces is separable (where + = »" »  is the cardinality of the continuum) [16], the
function types admitted above cannot be iterated indefinitely without further constraint to restore separability.

3.3.3 Quotient types

Quotient  types,  formed  by  taking  equivalence  classes  modulo  an  equivalence  relation,  have  the
potential to lower  cardinality, mitigating the problems introduced by function types. They are essential to defin-
ing  abstractions.  But  quotients  may  introduce  computational  problems  when  equivalence  is  hard  to  determine.
Thus, the relation of equality (=) between instances of a type may be augmented by a separate,  coarser internal
equivalence  relation  (º )  to  keep  the  equality  of  abstract  types  computationally  tractable  by  representing  sepa-
rately the accumulated equivalences that can’t easily be computed. A motivating example of a quotient space is
the  space  of  differential  manifolds,  which  is  usually  defined  in  terms  of   atlases  of  coordinate  charts  (with
transition functions), modulo a “compatibility” equivalence relation between atlases.

Coarser and finer equivalence relations may be defined using distance metrics and related concepts. A
real-valued  distance  metric  obeys  the  axioms  of  (A1)  non-negativity  dHx, yL r 0,  (A2)  identity
dHx, yL = 0 ñ x = y ,  (A3)  symmetry  dHx, yL = dHy, xL ,  and  (A4)  the  triangle  inequality
dHx, zL § dHx, yL + dHy, zL . Implicitly there is also (A5) finiteness dHx, yL < +¶ .  These axioms can be relaxed in
various  useful  ways.  Dropping  (A3)  results  in  a  “quasimetric”,  which  can  be  symmetrized  to  give  a  metric  by
either  + or  maximum operations.  Relaxing (A2)  to  x = y fl dHx, xL = 0  gives a  “pseudometric”.  Dropping (A5)
results in an “extended” metric. Several of these omissions may be combined. 

The  extended  pseudoquasimetric  (or  extended  quasipseudometric)  was  advocated  in  [12]  for  its
categorical properies  under the quotient operation.  One key point  is that the Hausdorff metric is a symmetrized
version  of  a  pseudometric  between  sets  in  a  metric  or  pseudometric  space;  such  sets  can  be  taken  to  be  the
equivalence  classes  under  an  equivalence  relation,  ~.  In  this  way,  the  pseudometric  property  can  be  preserved
when one takes the quotient by an equivalence relation. The same argument applies in the more general case of a
quasi-pseudometric.  Unfortunately  pure  metrics,  satisfying  axiom (A2)  along with  the  others,  are  not  generally
preserved  under  quotients.  Also  metric  spaces  are  first-countable  (have  a  countable  local  base  topology),  in
contrast  to  unrestricted  function  spaces  such  as  " Ø " .  Consequently,  we  won’t  insist  on  a  tight  relationship
between distance metrics and topology.
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To show that the triangle inequality persists for asymmetric Hausdorff distances between equivalence
classes  PxT ,  PyT  etc  of  variables  x, y,  etc.  is  standard:  DHPxT, PzTL ª supxœPxT infzœPzT dHx, zL
b supxœPxT  infyœPyT infzœPzT HdHx, yL + dHy, zLL  b supxœPxT  infyœPyT dHx, yL  +infyœPyT infzœPzT dHy, zL
b supxœPxT  infyœPyT dHx, yL  +supyœPyT infzœPzT dHy, zL  ª DHPxT, PyTL + DHPyT, PzTL.

3.3.4 Properties of metricated types

In addition, distance metrics and the foregoing relaxations of them can serve to define topologies and
measures, as we have seen, and can directly serve our criterion of model approximation.  So we may propose the
following set of properties as essential to objects types t simulatable with dynamical grammars:

(P1)  a  set  of  functions  and  relations  within  the  language  #P  whose  type  signatures  include  type  t ,
among them equality (=) defined on objects of the type t ;

(P2)  a  list  of  immediate  supertypes  8t£ <    -  i.e.  information  to  determine  t ’s  position  in  the  type
ordering t b t£ ;

(P3) a measure mt , and an associated extremal distribution dt Hx, yL ;
(P4) an equivalence relation, ºt ;
(P5) functions d+, t Hx, yL  and d-, t Hx, yL  such that:

(P5a)  d+, t Hx, yL r d-, t Hx, yL  ;
(P5b) d, t Hx, yL  are extended pseudoquasimetrics,

i.e. they satisfy axioms (A1), (A4), and Hx =t yL fl Hd, t Hx, yL = 0L  ;
(P5c) the upper function d+, t Hx, yLsatisfies Hd+, t Hx, yL = 0 L fl Hx ºt yL ;
(P5d) the  lower function  d-, t Hx, yLsatisfies Hx ºt yL fl Hd-, t Hx, yL = 0L ;

(P6) a set of type-specific axioms in #P .
Such a type t will be called metricated,  to distinguish from the stronger claim of “metrizable” (with a Borel

measure) and the weaker claim of “measureable”.
Note  that  if  d+ Hx, yL = d- Hx, yL  for  metricated type t  then dHx, yL = 0 ñ x º y ,  which  is  a version  of

axiom   (A2)  with  equality  replaced  by  º .  Also,  (A1)  and  (A4)  and   Hx =t yL fl Hd, t Hx, yL = 0L  imply  that
Hd+, t Hx, yL = 0L Ô Hd+, t Hy, xL = 0L  and  Hd-, t Hx, yL = 0L Ô Hd-, t Hy, xL = 0L  are  equivalence  relations.  It  is  easy  to
supply trivial lower and upper bound candidate distance-like functions as a default, in case no serious use is to be
made of them, for example in defining the required measure.

Given a new equivalence relation ~ defined on a metricated type t  , the quotient type t ê ~  is defined
as  follows.  Measure  mtê~ :  the  pushforward  measure,  as  for  example  when  Lebesgue  measure  on  "  maps  to
(Lebesgue)  measure  on  the  unit  circle  S1 .  Equivalence  relation  ºtê~ :  closure  of  H~ , ºt L ,  so  that
Hx~ yL fl Hx ºtê~ yL  and Hx ºt yL fl Hx ºtê~ yL . If ~ is coarser than ºt , then this closure ºtê~  is just ~. Upper and
lower  extended  pseudoquasimetrics:  can  be  taken  as  the  nonsymmetric  version  of  Hausdorff  distance,  possibly
loosened for tractability: d, tê~ HPxT, PyTL ö supxœPxT infyœPyT d, t Hx, yL , for equivalence classes PxT  and PyT  under
~  ,  subject  to  axioms  (P5).  Equality  =tê~ :   must  be  an  equivalence  relation  on  t ,  satisfying
Hx =t yL fl Hx =tê~ yL fl Hx ºtê~ yL .   For  example,  we  may  take  Hx =tê~ yL ª HHd+, t Hx, yL = 0L Ô Hd+, t Hy, xL = 0LL
since the latter is an equivalence relation and since  Hx =t yL fl Hd+, t Hx, yL = 0L fl Hx ºt yL fl Hx ºtê~ yL .
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since the latter is an equivalence relation and since  Hx =t yL fl Hd+, t Hx, yL = 0L fl Hx ºt yL fl Hx ºtê~ yL .

This  approach  to  quotient  types  is  in  the  spirit  of  “setoids”  [1],  though  with  ideas  of  “generalized
metric  space”  (explored  much  further  in  e.g.  [19])  added.  The  idea  is  that  computing  equivalence  or  “actual”
distance may be intractable, but computing some upper and lower bounds on distance can be made tractable. It
may  also  be  that  verifying  proofs  of  equivalence  in  particular  cases  is  much  more  tractable  than  deciding
equivalence.

Thus  we  see  that  an  object  type  must  support  measure  and  integration,  and  object  type  constructors
can do this through the use of several kinds of norms and distances including extended pseudoquasimetrics. The
generic  object  data  type  may  take  values  in  some  measurable,  quasimetric  space.  Conditions  sufficient  for  the
construction of function types and quotient types are given above.

4 Conclusions

Process modeling languages with operator algebra semantics can be augmented with type constructors
to  create  objects  and  processes  at  successively  larger  scales  as  well  as  greater  levels  of  abstraction.  Vector,
product,  and  graph  type  constructions  are  straightforwardly  available,  and  recursively  related  processes  can  be
defined  as  well.  However,  function  types  and  quotient  types  are  more  subtle.  We give  conditions  under  which
they can be defined, but we do not know how often these constructions can be iterated before the conditions are
necessarily violated.

A  dynamical  model  may  now  be  defined  by  a  “workspace”  containing  a  combination  of  dynamical
grammar  specifications,  which  define  processes,  and  nontrivial  object  type  declarations.  These  grammars  and
user-defined  types  are  syntactic  objects  upon  which  a  semantics  is  defined.  They  can  be  regarded  as  constant
values (not varying over time) denoted by their names, in which case there is a clear separation between syntactic
expressions  and  dynamical  objects.  But  there  could  also  be  time-varying  dynamical  grammars  and/or  types,
whose discrete-time or continuous-time dynamics is given by suitable metagrammars.
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