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Analysis of oscillating regimes in regulatory networks models with multistability properties and with 
switch-oscillator mechanisms is an important task both from the biological and from the mathematical 
viewpoints. Unification of discrete and continuous approaches in gene network modeling should be 
useful for understanding the functioning of the regulation mechanisms of natural and artificial biological 
systems. Our investigations of the nonlinear dynamical systems as models of the gene networks are based 
on topological methods elaborated in (Golubyatnikov et al., 2006; Gaidov, Golubyatnikov, 2007). Here 
we study the phase portrait of a system of nonlinear differential equations proposed in (Chikarmane et 
al., 2007), see also (Lahav et al., 2004) as a model of oscillations in the p53-Mdm2 DNA damage repair 
network. We construct a domain Q in the phase space such that the topological index of the velocity vector 
field in Q is nontrivial in presence of the DNA damage and vanishes for small amounts of this damage. 
This demonstrates a direct relationship between the index of the corresponding velocity vector field and 
the presence of the DNA damage in this model and exhibits a topological approach to the unification of 
discrete and continuous gene network modeling. 
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Introduction

We continue our studies (Golubyatnikov et al., 
2006; Likhoshvai et al., 2008) of kinetic dynamical 
systems serving as gene network models. Here, 
our main aim is to describe multistability in the 
regulatory network of the DNA damage response 
system as modeled in (Chikarmane et al., 2007), 
and to outline important connections of stu-
dies of discrete and continuous gene network 
models. A short exposition of our considera-
tions was presented in (Golubyatikov, Mjolsness, 
2008). 

The following kinetic system (Chikarmane et 
al., 2007) represents a model of oscillations in the 
p53-Mdm2 circuit. This model contains positive 
and negative feedback loops in its regulation 
mechanism. Its phase space is the positive octant 
R4

+ in the space of the variables {x, y, z, D}. Here 
the positive feedback is related to autocatalysis 
in p53, which activates Mdm2 as well, and the 
negative one corresponds to inhibition of p53 by 
Mdm2. 
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Most of the variables here denote dimensionless 
concentrations of corresponding species: x=[p53], 
y=[Mdm2], z=[Atm-P]; z is the switch variable. 
D(t) denotes the amount of the DNA damage in 
the network, B = [Atm] + [Atm-P] appears from 
the conservation law. 

Results 

1. For each fi xed 0t consider intersection of 3-D 
plane (x, y, z, D(t0))) with the positive octant R4

+. 
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We call the points where 
 
· 3-sta-

tionary and consider a domain Q = [0, C1] × [0, C2] 
× [ε, B] ⊂ R3

+(x, y, z) with the boundary ∂Q. Here 
γ2· С1 ≥ α0 ·B + α1, γ3· С2 ≥ α2 + α3, and ε is positive. 
For small t all trajectories of (1) of the points of 
∂Q  enter Q. According to (1), Φ3(B, D) < 0 and

 is strictly negative for all t and positive x and

z. If Φ3 (0,0) > 0, then there exists unique z1 ∈ (0, 
B) such that Φ3 (z1, D) = 0 for all D. Φ2 (x, y) = 0; 
Φ1 (x, y, z1) = 0 imply that the summed indices of 
3-stationary points in Q coincides with the signed 
number of roots x of the equation 
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Direct calculations show that for small values 
of t the sum of 3-dimensional indices of all 3-
stationary points in Q equals -1. This corresponds 
to large values of the DNA damage. For large t and 
any ε ≥ 0 this index vanishes. In this case the DNA 
damage is small. 

The values of all parameters in our numerical 
experiments were taken close to ones listed in 
(Chikarmane et al., 2007). It was indicated there 
that for some intermediate value D(t) during the 

Fig. 1. Behavior of trajectories of the system (1). 

B = 5, ε = 4,4. Initial data: z0 = 0,1; D0 = 10. Left n = 5; x0 = 5; y0 = 5. Right n = 4; x0 = 4; y0 = 3.

repair process, the variable x passes through an 
Andronov–Hopf bifurcation. 

Fig. 1 above shows typical behavior of trajectories 
of the system (1). Here for small values of z0 and 
large D0 trajectories jump to the domain 4,4 < z < 5 
and remain there till D > 0,58. 

2. We have seen that the geometric properties 
of the graphs of the right hand sides of the equa-
tions (1), such as spectra of the Jacobian matrices 
evaluated at the stationary points, conditions of the 
type Φ3 (0,0) > 0, and the slopes of these graphs, 
are much more important for bifurcations and other 
dynamical characteristics of these models than is 
the concrete analytic representation of Φ1, Φ2, Φ3. 
Similar observations were made in (Golubyatnikov 
et al., 2006; Gaidov, Golubyatnikov, 2007) for other 
models of asymmetric gene networks. General 
constructions related to the Conley index, see 
(Salamon, 1990), can be used in the cases of more 
complicated gene network models.

Conclusion and Discussions

Our analysis of the p53-Mdm2 oscillatory 
dynamics is connected with decomposition of high-
dimensional models to lower-dimensional ones. 
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This procedure can be considered as a discretization 
of a continuous model. Similar decompositions 
can be used in mathematical modeling of more 
complicated regulatory networks. The direct 
relation of the topological index of the repair 
system (1) with the presence of the DNA damage 
demonstrates a new approach to gene networks 
studies. This approach is based on the comparison 
of properties of continuous models and discrete 
models of the same gene network. Such a dualism 
can yield new possibilities in the study of problems 
in system biology. 
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