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An exact method for stochastic simulation of chemical reaction networks, which accelerates the
stochastic simulation algorithm �SSA�, is proposed. The present “ER-leap” algorithm is derived
from analytic upper and lower bounds on the multireaction probabilities sampled by SSA, together
with rejection sampling and an adaptive multiplicity for reactions. The algorithm is tested on a
number of well-quantified reaction networks and is found experimentally to be very accurate on test
problems including a chaotic reaction network. At the same time ER-leap offers a substantial
speedup over SSA with a simulation time proportional to the 2 /3 power of the number of reaction
events in a Galton–Watson process. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3078490�

I. INTRODUCTION

The stochastic simulation algorithm1 �SSA� is a widely
used method for simulating the stochastic dynamics of
chemical reaction networks. SSA executes every reaction
event and provides an accurate view of the system dynamics,
albeit at a significant computational cost over the corre-
sponding mass-action differential equations that approximate
the mean numbers of each molecular species. A number of
algorithms have been proposed for the acceleration of the
SSA at the expense of its accuracy. The �-leaping algorithm2

and its recent variants3–5 simulate leaps over several reaction
events during a preselected time increment. Further develop-
ments include multiscale SSAs such as “nested stochastic
simulation,”6 the multiscale methods,7,8 and the “slow-scale
stochastic simulation” algorithm.9 Another acceleration
method10 uses rejection sampling to achieve constant time
scaling with the number of reaction channels; this differs
from the present work which uses rejection sampling to im-
prove scaling with respect to the number of reaction events.

A related work is the R-leaping algorithm11 which pro-
poses the simulation of preselected numbers of reaction fir-
ings that occur over time intervals sampled from an Erlang
distribution. An essential aspect of these approximate meth-
ods is the requirement that the changes to the reaction rate or
“propensity” functions are small during each step.

We present a SSA which, similar to R-leap, accelerates
SSA by executing multiple reactions per algorithmic step,
but which samples the reactant trajectories from the same
probability distribution as the SSA. This “exact R-leap” or
“ER-leap” algorithm is a modification of the R-leap algo-
rithm which is both exact and capable of substantial speedup
over SSA. The simplest versions of both �-leap and R-leap
have difficulties with the potential of producing negative
numbers of reactants, which can be fixed by modifications
such as binomial tau-leap3 and modified tau-leap.4 Since ER-

leap is exact, it intrinsically avoids this potential pitfall; sto-
chastic moves to negative reactant states have zero probabil-
ity and will be rejected. We demonstrate by computational
experiments that ER-leap can execute in time sublinear in the
number of reaction events to be simulated, while remaining
exact. The algorithm is based on the rejection sampling con-
cept, using efficiently computable bounds on the SSA prob-
ability distribution.

The paper is organized as follows. In Sec. II we derive
upper and lower bounds on the SSA reaction probabilities
after multiple reactions, expressed using matrix notation for
Markov processes, and use rejection sampling to derive the
ER-leap algorithm. The algorithm itself is stated, analyzed
for cost, and illustrated in Sec. II E. In Sec. III we report on
a series of numerical experiments designed to evaluate the
accuracy and speedup of the ER-leap algorithm. In Sec. IV
we discuss the results and conclude with an assessment of
the method in the context of related works and an outline of
directions for future work.

II. THEORY

This section is organized as follows. Sections II A–II C
introduce the required notations, reaction probabilities, and
bounds on these probabilities, respectively. The ER-leap al-
gorithm’s key update equations are derived from these prob-
ability bounds in the calculations of Sec. II D. The resulting
algorithm is assembled from the key update equations, ana-
lyzed for cost, and illustrated in the case of a simple reaction
network in Sec. II E.

We consider a set of reactions, indexed by r, among
chemical species Ca, indexed by a,

�ma
rCa� → �ma�

rCa�, with reaction rate �r. �1�

Here mr= �ma
r� and m�r= �ma�

r� are the input and output
stoichiometries of the reaction r. In the following we derive
an expression for the probability of states after a number of
such reaction events.
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Bioinformatics.
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A. Notations

We introduce the following notations. The definition of a
version of the indicator function 1 from Boolean values to
integers is

1�P� � �1 if predicate P is true

0 otherwise.
	

The Kronecker delta function ��a ,b� or ��a−b� is

��a − b� = �ab = 1�a = b� = �1 if a = b

0 otherwise.
	

The function V=diag�v� turns a d-dimensional vector v into
a d�d square matrix V with components Vij =�ijvi, i.e., zero
everywhere except the diagonal which contains the compo-
nents of v. Given an ordered list of noncommuting matrices
V�k� indexed by integers k, we define the ordered product
notation



k=Kmax↘Kmin

V�k� = V�Kmax� · V�Kmax−1� · ¯ · V�Kmin+1� · V�Kmin�.

In addition to the standard set-builder notation �x � P�x��
for defining the members of a set from a predicate P, we will
build ordered sets or lists in a similar way using square
brackets: �x�i� � P�x�i� , i� � i�I� imposes the image of a pre-
existing ordering on the index set I �such as the ordering of
natural numbers if I�N� onto any elements x�i� selected for
inclusion by the optional predicate P, and thus denotes a set
together with a total ordering. For example, the B-tuple
�nb �b� �1, . . .B�� denotes the components of a vector n.

B. Markov chain and multireaction probabilities

We denote states of the chemical reaction network by
I ,J ,K, time by t, and algorithm step number by k. Let na be
the number of reactant molecules of type a present in a given
state I at time t, so that I corresponds to the vector or ordered
list of non-negative integers n= �nb �b� �1, . . . ,B��. Likewise
if we are discussing several such states that are present at
different times t� and t�, we may denote them by n� and n�
or correspondingly by J and K. The time interval between
successive reactions is denoted by �.

We wish to track the time evolution of the probabilities
Pr�I , t�, for all possible system states I by employing the
governing master �or Chapman–Kolmogorov� equation,12

which we shall use here. We define Pr�I , t �J ,k� as the “just-
reacted state probability:” the probability of being in state I
at time t immediately after the kth reaction event, given that
the state is J at time zero. The Chapman–Kolmogorov
equation12 for such just-reacted state probabilities follows
from taking k to be a discrete time coordinate and can be
written13

Pr�I,t�J,K� 
 �
K
�

0

t

d� Pr�I,��K,1�Pr�K,t − ��J,k − 1� .

�2�

A key quantity in this equation is the “kernel” Pr�I ,� �K ,1�:
the probability that if k=1 reaction event has just occurred,
and if the previous state was K, then a time � has elapsed

since the last reaction event and the new state is I. This
kernel also provides the linear weights that advance the
quantity Pr�K , t−� �J ,k−1�, which is the probability distribu-
tion over states K just after k−1 reactions to produce the
probability distribution over states I after k reactions,
Pr�I , t �J ,k�. So we can rename this kernel the conditional
distribution,

W�I,t��J,t� = Pr�I,t� − 1�J,1� ,

using notation similar to that of Ref. 13. This W is analogous
to a matrix with two indices, each of which is a pair consist-
ing of a discrete-valued systems state �such as I or J� and a
continuous-valued time �such as t� or t�.

Under the SSA algorithm W must factor into an update
from time t to t� and then from state J to state I,

W�I,t��J,t� 
 ŴI,J exp�− �t� − t�DJJ�1�t� � t� , �3�

with

D = diag�h · Ŵ� , �4�

where h is the vector whose components are all 1 and “diag”
turns a vector into the corresponding diagonal matrix. This
result is derived in more detail in Refs. 14 and 13. The state

space transition matrix Ŵ contains the summed probability
rates or “propensities” for all reactions that could move the
system from state J to state I. The exponential term governs
the distribution of waiting times between reaction events, as
in the SSA3–5 and R-leap11 algorithms. The Ith component of

the vector h ·Ŵ, which is defined as DII, is the the total prob-
ability per unit time for the system to leave state I. �In many
papers the summed reaction rate DII is denoted as a0�n�
instead.�

Continuing with the matrix analogy for W, and assum-
ing that t�0∧k�0⇒Pr�I , t �J ,k�=0,

Pr�I,t�J,k� 
 �
K
�

−�

�

d�W�I,t�K,t − ��Pr�K,t − ��J,k − 1� .

�5�

Using vector notation Pr�·�J ,k� for the �I , t� parameters, we
may write

Pr�· �J,k� � W � Pr�· �J,k − 1� , �6�

where the matrix-vector inner product � is both a sum over
states and an integral over all times t, as in Eq. �5�, and
where

W = Ŵ exp�− �tD�1��t � 0� . �7�

Equation �7� expresses the Markov chain for the change
in both chemical state and total time, after one reaction

event. The matrix Ŵ contains probability rates or propensi-
ties, the much larger matrix W contains only normalized
probability densities for the combination of a discrete state
change and a continuous time change �t.

From Eqs. �6� and �7�, after k reaction events,
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Pr�· �J,k� = Wk � Pr�· �J,0�

= �Ŵ exp�− �tD�1��t � 0��k � Pr�· �J,0� . �8�

This expression is in accord with, for example, Theorem 10.1
of Ref. 14.

The aim of the SSA algorithm is to sample from the
distribution Pr�I , t �J ,k�. Equation �6� may be taken as a con-
cise statement of a single SSA algorithm update: it is a prod-

uct of two conditional distributions, one �ŴD−1� for molecu-
lar state I given state J, and another one which samples time
t� given time t and state J according to conditional distribu-
tion D exp�−�tD�1��t�0�, evaluated at state J. These two
sampling steps are alternated and iterated k times as in Eq.
�8�.

To derive D and W, and therefore �by Eq. �7�� the de-
tailed SSA simulation process, we need only define the ma-

trix Ŵ of probability rates for a chemical reaction network.
For the reaction network of Eq. �1�, defining the net stoichi-
ometry

�ma
r = ma�

r − ma
r ,

the usual mass-action assumption for stochastic reactions
corresponds to

Ŵ�n��n� = �
r

Ŵ�r��n��n� and D̂�n��n� = �
r

D̂�r��n��n� ,

where the probability rate matrix Ŵ�r� for reaction r has ele-
ments given by a product of factors for all the input reactants
�all a for which ma

r �0� times a product of Kronecker delta
functions that enforce the net stoichiometries on the system
state,

Ŵn�,n
�r� = �r� 


�a�ma
r�0�

na!

�na − ma
r�!�� 


�a��ma
r�0�

��na� − na − �ma
r�� ,

the corresponding diagonal matrix D�r� is

D�r��n��n� = �r� 

�a�ma

r�0�

na!

�na − ma
r�!�� 


�a��ma
r�0�

��na� − na�� .

�The elements of Ŵ�r� of are essentially reaction “propensity
functions,” with a constant coefficient 	a�1 / �ma

r� ! � that can
be absorbed into the definition of �r to maintain notational
consistency with the law of mass action, as discussed in Sec.
3.4 of Ref. 15 which also uses notation similar to that used

here.� If we define W=Ŵ−D, SSA dynamics simulates
trajectories12 drawn from the solution to the master equation,
dp /dt=W · p.

C. Upper and lower bounds

In order to derive a new simulation algorithm, equivalent
to SSA, using rejection sampling,16 we now seek simplified
upper and lower bounds on the probability rate

ŴI,J
�r� exp�−�tDJJ� �from Eq. �7�� for a single reaction event.

However, we will assume that the reaction event to be
bounded occurs within a run of L events in the SSA algo-
rithm, in order to execute L reactions at once in the manner

of the R-leap algorithm.11 As we will see, this essentially
comes down to bounding each combinatorial factor
na ! / �na−ma

r�! with a constant bound, even though it may
change throughout the run of L events.

For step number l within the run we must find a simpli-
fying upper bound for the key expression

Fn
�r� � 


�a�ma
r�0� ��

na!

�na − ma
r�!

if na � ma
r

0 otherwise
��

that occurs in Ŵ and D, and also to find a simplifying lower
bound for its contribution to D, in order to lower-bound both
factors in W under Eq. �3�. The products �rFn

�r� are usually
called propensity functions denoted ar�n� for all R reaction
channels,

ar�n� � �rFn
�r�,

�9�

a0�n� � �
r=1

R

ar�n� ,

possibly with a different normalization convention as a func-
tion of ma

r if ma
r �1 as mentioned in the previous section. In

this work it is more convenient to keep separate the struc-
tural terms Fn

�r� and the reaction rates �r, rather than combin-
ing them as in Eq. �9�. Fortunately every Fn

�r� is monotonic in
each na, so we may find upper and lower bounds on Fn

�r� by
finding upper and lower bounds on each na.

A very simple, although not very tight, set of bounds is

na + l minr��ma
r� 
 na� 
 na + l maxr��ma

r� . �10�

The corresponding upper and lower bounds F̃IJ and F> IJ

on F for the �l+1� - st first reaction event �after l reaction
events have already occurred� within a run of L events is

F> n,l
�r� 
 Fn�

�r�

 F̃n,l

�r� ,

where

F> n,l
�r� � F�na+l minr��ma

r ��1
a
A�
�r�

,

�11�
F̃n,l

�r� � F�na+l maxr��ma
r ��1
a
A�

�r�
.

The sparsity structure of Ŵ�r� is given by S�r�� �0,1�,

Ŝn�,n
�r� = 1�Ŵn�,n

�r�
� 0� � �0,1�

= � 

�a�ma

r�0�

1�na � ma
r��� 


�a��ma
r�0�

��na� − na − �ma
r�� ,

ŜI,J = 1��
r

SI,J
�r�� = 1�ŴI,J � 0� .

We will assume that reactions have unique outcomes �or re-
define the states I so this becomes true�,
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�
I

ŜI,J
�r� = 1. �12�

Taking l consecutive steps of this chain results in another
sparsity structure of “reachability,”

RI�Jl � �Ŝl�I,J = 1��Ŵl�I,J � 0� � �1 if �Ŵl�I,J � 0

0 otherwise.
	

We now start the reactions from state K=n= �na �a
� �1, . . . ,A��. Since

Ŵn�,n
�r� = �rFn

�r�Ŝn�,n
�r� ,

we have the bounds

RJ�Kl = 1 ⇒ W> I,J�Kl
�r� 
 ŴI,J

�r� 
 W̃I,J�Kl
�r� ,

where

W> I,J�K,l
�r� � �rF> K,l

�r� ŜI,J
�r�,

W̃I,J�K,l
�r� � �rF̃K,l

�r� ŜI,J
�r�.

These quantities bound ŴI,J
�r�, in the circumstance that l reac-

tion events have occurred since the system was in state K.
We also need to bound −D in Eq. �3�. To this end, note

from Eq. �4� that

DIJ = �IJ�
I�

�
r

ŴI�,J
�r� = �IJDII.

Then

RJ�Kl = 1

⇒ − D̃Kl

= − �
r

�
I�

W̃I�,J�Kl
�r�


 − DJJ 
 − �
r

�
I�

W> I�,J�Kl
�r� = − D> Kl,

where

D> Kl � �
r

�rF> K,l
�r� ,

�13�
D̃Kl � �

r

�rF̃K,l
�r� .

Thus, assuming RJ�Kl=1 and �t�0, upper and lower bounds
on the elements of the Markov process W given by Eq. �3�
are determined as follows:

�rF> K,l
�r� ŜI,J

�r� exp�− �tD̃Kl� 
 ŴI,J
�r� exp�− �tDJJ�


 �rF̃K,l
�r� ŜI,J

�r� exp�− �tD> Kl� . �14�

These desired bounds on reaction probability rates

ŴI,J
�r� exp�−�tDJJ� follow from the simple bounds of Eq. �10�

on na� as a function of na and l.

D. Exploitation of probability bounds

We now use the bounds of Eq. �14� to derive the key
update equations of the ER-leap algorithm. The resulting
ER-leap algorithm will be assembled from these equations
and discussed in Sec. II E, followed by computational ex-
periments in Sec. III. In this section we perform the required
calculations to derive the key update equations.

1. Rejection sampling

Rejection sampling16 allows one to exploit probability
bounds in exact sampling, as follows: given a target distri-
bution P�x� and an algorithm for sampling from a related
distribution P��x� and from the uniform distribution U�u� on
�0,1� and if

P�x� � MP��x�

for some constant M �1, then P�x� satisfies

P�x� = P��x�
P�x�

MP��x�
+ �1 − 1/M�P�x� ,

and therefore also

P�x� =� P��x��dx�� U�u�du�1�u �
P�x��

MP��x��
�

· ��x − x�� + 1�u �
P�x��

MP��x��
� · P�x�� , �15�

which constitutes a mixture distribution, that can be applied
recursively as needed to sample from P�x�. Pseudocode for
sampling P�x� according to Eq. �15� is as follows �where “//”
introduces a comment�:

while not accepted �
sample P��x� and U�u�; // P��x� only approximates P�x�
compute Accept�x�= P�x� / �MP��x�� // acceptance probability;
if u�Accept�x� then accept x;

� // now P�x� is sampled exactly

What is essential in applying this algorithm is to find a

provable strict upper bound P̃�x�=MP��x� for P�x� �where
M �1�, which is not a probability distribution but which
when normalized yields a probability distribution P��x� that
is easier to sample than P�x�. We also want acceptance to be
likely for computational efficiency; for that reason M should
be as close to 1 as possible, so that the bound on P�x� is as
tight as possible for a given computational cost.

But what if P�x� is expensive to compute? Then Accept
�x� will also be expensive to compute and rejection sampling
may be prohibitively expensive, even for a good approximat-
ing P��x�. A solution to this problem is possible if a cheap
lower bound for P�x� is available. Suppose there is a func-
tion A> �x� such that

0 
 A> �x� 
 Accept�x� � P�x�/�MP��x�� � 1. �16�

Then

Accept�x� = A> �x� · 1 + �1 − A> �x�� · Q�x� ,

where
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Q�x� � �Accept�x� − A> �x�
1 − A> �x� � ,

and Accept �x� becomes a mixture of probabilities defined
over the pair of actions �accept, reject�. Then we have the
following “accelerated rejection sampling algorithm,” in
pseudocode:

while not accepted �
sample P��x� and U�u�; // cheap but approximate
compute A> �x�; // cheap
if u�A> �x� then accept x;
else �

compute Accept�x�= P�x� /MP��x�; // expensive
compute; Q�x�= �Accept�x�−A> �x�� / �1−A> �x��

// A> �x��1⇒1−A> �x��0
sample U�u�;
if u�Q�x� then accept x;
else reject x;

�
�

Again, the bound A> �x�
Accept�x� should be as tight as
possible for a given level of computational cost, to maximize
the probability of early and therefore low-cost acceptance. A
natural measure of the tightness of this bound is �A> �x�dx

1, which should be as close to 1 as possible given cost
considerations. However, even if A> �x�=0 for some values of
x, the algorithm still samples the distribution P�x� exactly.

We now seek M, P��x�, and A> �x� for a run of L succes-
sive reaction events in the SSA algorithm.

2. Equivalent Markov process

In this section we will use algebraic manipulations to
transform the formula for SSA �Eq. �8�� into an equivalent
form �Eq. �18�� that represents an accelerated rejection sam-
pling algorithm, as outlined in Sec. II D 1 .

The first step in the algebraic derivation is to identify a
probability distribution equivalent to L steps of the original
SSA Markov process, which can itself be iterated to create a
new, equivalent Markov process. The target distribution P is
�from Eq. �8��

�Ŵ exp�− �tD��L � Pr�· �K,0� .

From Eq. �14�,

ŴI,J exp�− tkDJJ� = ��
r

�rŜI,J
�r�� FI

�r�

F̃K,l−1
�r� �F̃K,l−1

�r� �
�exp�− tk�DJJ − D> kl��exp�− tkD> Kl� .

Expand out the ordered matrix product for states J reachable
from K after L steps

RJ�KL = 1 ⇒ � 

k=L−1↘0

Ŵ exp�− �kD��
IL,I0

= �
�Ik�k=1.L−1�

� 

k=L−1↘0

ŴIk+1,Ik
exp�− �kDIk,Ik

��
= �

�Ik�k=1.L−1�
�
�rk�



k=L−1↘0

���rk
ŜIk+1,Ik

�rk� � FIk

�rk�

F̃I0,L−1
�rk� �F̃I0,L−1

�rk� �

� exp�− �k�DIk,Ik
− D> I0Ĺ−1��exp�− �kD> I0L−1�

= �
�rk�k=1¯L−1�

�
�Ik�

� 

k=L−1↘0

ŜIk+1,Ik

�rk� �� 

k=L−1↘0

�rk
F̃I0,L−1

�rk� �
�� 


k=L−1↘0
� FIk

�rk�

F̃I0,L−1
�rk� �exp�− �k�DIk,Ik

− D> I0L−1���exp�− ��
k

�k�D> I0L−1�� .

Now �IŜI,J
�r�=1 allows a change in representation to

eliminate the inner state sums,

Ik = Ik�rk−1,Ik−1� = Ík�r = �r0, . . . ,rl�,I0� ,

� 

k=l−1↘0

Ŵ exp�− �kD��
Il,I0

= �
�rk�k=1¯L−1�

� 

k=l−1↘0

�rk
F̃I0,L−1

�rk� �exp�− ��
k

�k�D> I0L−1�
�� 


k=L−1↘0
��FIk�r,I0�

�rk�

F̃I0,L−1
�rk� ��exp�− �k�DIk�r,I0�,Ik�r,I0�

− D> I0L−1��� .

Define new rule probabilities,

pr�K,l = �rF̃K,l
�r� /D̃Kl �

�rF̃K,l
�r�

�r�rF̃K,l
�r�

. �17�

Then,

� 

k=l−1↘0

Ŵ exp�− �kD��
Il,I0

= �
�rk�k=1¯L−1�

� 

k=L−1↘0

prk�I0,L−1��D̃I0L−1�l

�exp�− ��
k

�k�D> I0L−1�� 

k=L−1↘0

��FIk�r,I0�
�rk�

F̃I0,L−1
�rk� �

�exp�− �k�DIk�r,I0�,Ik�r,I0� − D> I0L−1����
= �

�rk�k=1¯L−1�
e1�r�e2�r� ,

where

e1�r� � � 

k=L−1↘0

prk�I0,L−1��D̃I0L−1�l exp�− ��
k

�k�D> I0L−1� ,
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e2�r� � � 

k=L−1↘0

��FIk�r,I0�
�rk�

F̃I0,L−1
�rk� �

�exp�− �k�DIk�r,I0�,Ik�r,I0� − D> I0L−1���� .

We define an arbitrary ordering “
” on the reaction types or
channels indexed by r, so the reactions events are “sorted”
by type if and only if r0
r1
 ¯ 
rL−1. Let � denote a
permutation on L elements which we may apply to this or-
dering to get an unordered sequence of rules r= �rk �k
=0¯L−1�. For a given unordered r we further restrict the
permutations � to be those which do not interchange equal
r’s; this will avoid double counting.

Then in the foregoing expression ��rk�k=1. . .L−1�e1�r�e2�r�
we may replace the multiple sum over reactions with a sum
over permutations � that order the reactions, and an outer
sum over the possible ordered reaction sets,

�
�rk�k=1¯L−1�

e�r�

= �
�r0
¯
rL−1�

�
���� permutes unequal r’s�

e1���r��e2���r�� .

The number of r’s taking each possible value 1 . . .R is de-
noted �s1 , . . . ,sR�=s�r�; these are the number of times each
type of reaction occurs in the sequence r. The components of
s and r are therefore related as follows:

sr = �
k=0

L−1

��rk − r� ,

which satisfies

sr � N and �
r

sr = L .

Also the ordered list of r’s is determined by the vector s,

rk = min�r�k 
 �
i=1

r

si	 .

Hence we may replace the sum over ordered r with a sum
over constrained s,

�
�rk�k=1¯L−1�

e�r�

= �
�s�sr�N,�rsr=L�

�
���� permutes unequal r’s�s�

e1���r��e2���r�� ,

e1�r� however, depends on r only through s, which is permu-
tation invariant,

e1�r� � ẽ1�s�r�� = ẽ1�s���r��� = e1���r�� .

Hence

�
�rk�k=1¯L−1�

e1���r��e2���r��

= �
�s�sr�N,�rsr=L�

ẽ1�s�r�� �
���� permutes unequal r’s�s�

e2���r��

= �
�s�sr�N,�rsr=L�

ẽ1�s�r��� �
���� permutes unequal r’s�s�

e2���r���
= �

�s�sr�N,�rsr=L�
ẽ1�s�r��� L

s1 . . . sR
�

��e2���r����� permutes unequal r’s�s�,

where �¯�S denotes averaging over the given set S. On the
other hand, e2�r� is invariant under any permutation � which
only exchanges equal r’s, so

�e2���r����� permutes unequal r’s�s�

= �e2���r����� permutes integers1¯L�,

and we find

�
�rk�k=1¯L−1�

e1���r��e2���r�� = �
�s�sr�N,�rsr=L�

� L

s1 . . . sR
�ẽ1�s�r��

��e2���r����� permutes r’s�s�.

Consequently,

� 

k=l−1↘0

Ŵ exp�− �kD��
IL,I0

= �
�s�sr�N,�rsr=L�

� L

s1 . . . sR
��


r=1

R

�pr�I0,L−1�sr�
��D̃I0L−1�l exp�− ��

k

�k�D> I0L−1�
��� 


k=L−1↘0
�FIk���r�,I0�

�rk�

F̃I0,L−1
�rk� �

�exp�− �k�DIk���r�,I0�,Ik���r�,I0� − D> I0L−1����
���s�

.

This can be decomposed into more elementary probability
distributions,

� 

k=L−1↘0

Ŵ exp�− �kD��
IL,I0

=
�D̃I0L−1�L

�D> I0L−1�L �
�s�sr�N,�rsr=L�

Multinomial�s�p,L�

�Erlang��
k

�k�L,D> I0L−1�UniformSimplex��;L�

�Accept�s,L,�� , �18�

where
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Multinomial�s�p,L� = � L

s1 . . . sR
��


r=1

R

�pr�I0,L−1�sr� ,

with

pr�I0,L−1 =
�rF̃I0,L−1

�r�

�r�rF̃I0,L−1
�r�

Erlang�t;l,
� � 
le−
ttl−1/�l − 1�!,

where �t�Erlang = l/
 .

We note that the Erlang distribution is the Gamma dis-
tribution specialized to integer-valued shape parameter l.

Also

UniformSimplex��;L� = 1�� tL−1

�L − 1�!� ,

and the acceptance probability

Accept�s,l,�� � �P�����s�,

where

P� =� 

k=L−1↘0

�FIk���r�,I0�
�rk�

F̃I0,L−1
�rk� ��

�exp�− �
k

�k�DIk���r�,I0�,Ik���r�,I0� − D> I0L−1�� . �19�

From the definition of P� in Eq. �19� and the fact that F̃ and
D> are bounds, it follows that Accept�s , l ,��
1. Also, if
RJ�KL−1=0 �so that state J is not reachable from state K after
L−1 steps of SSA� then P�=0, so that Eq. �18� still agrees
with Eq. �8� despite the restriction to RJ�KL−1=1 stated in the
foregoing calculation.

Thus, Eq. �18� provides an equivalent probability distri-
bution and Markov process to Eq. �8�.

3. Efficient rejection sampling algorithm

We now seek M and P� and A> �x� among the factors of
Eq. �18�. We can upper-bound and lower-bound P� of Eq.
�19�,

P> �s,�
k

�k,L� 
 P� 
 1, �20�

where

P> �s,�
k

�k,L� � �

r=1

R �F> I0,L−1
�r�

F̃I0,L−1
�r� �sr�exp�− ��

k

�k�
��D̃I0L−1 − D> I0L−1�� . �21�

Note that P> does not depend on �. This allows us to use
rejection sampling16 to transform samples of the bounding
distribution,

g�s,�� = Multinomial�s�p,L�

Erlang��
k

�k�L,D> I0L−1�
UniformSimplex��;l,�

k=0

L−1

�k�
into samples of the target distribution,

f�s,�� = f�s,��
�D̃I0l�L

�D> I0l�L Accept�s,L,��

since the ratio f�s ,�� /g�s ,�� is bounded above by M

= �D̃I0L−1 /D> I0L−1�L�1. g�s ,�� plays the role of P��x� in the
rejection sampling algorithm of Sec. II D 1, f�s ,�� plays the
role of P�x�, and M has just been defined. This bound is
independent of all randomly chosen variables s , t ,� ,� and
just restores the probability otherwise lost in rejection sam-
pling due to the Accept�s ,L ,�� factor being 
1. It remains
to define A> �x� for the “efficient rejection sampling” algo-
rithm.

In order to apply the efficient rejection sampling algo-
rithm of Sec. II D 1, we need to find a lower bound A> �x� for
Accept�s , l ,��= �P�����s�. Fortunately P�s ,�k ,�k ,L� is a
lower bound for P�, so we can just average over � compat-
ible with s. Then P� may be expressed as a mixture distri-
bution,

P� = P> · 1 + �1 − P> � · Q�,

where

Q� = �P� − P>

1 − P>
� 
 1, �22�

and thus

�P�����s� = P> · 1 + �1 − P> � · �Q�����s�.

However, instead of numerically averaging over � to com-
pute �Q�����s� in each iteration, we will instead draw a single
sample of � and use that sample’s value of Q�. This step is
also exact since we can just define Accept�� ,L ,��
=Accept�s ,L ,�� ·Pr�� �s�, where Pr�� �s� is uniform, and ap-
ply accelerated rejection sampling to f�s ,��Pr�� �s� using the
corresponding bounds f�s ,��Pr�� �s� for P� for A> �x�.

Algorithmically this expression can be sampled from as
follows. First compute P> . Then with probability P> , accept the
“current” candidate move determined by all the other distri-
butions. In the relatively unlikely event �probability 1− P> �
that the move is not immediately accepted this way, we then
draw a random � given s and compute its Q�. Then, accept
the current move with probabilty Q�, and with probability
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1−Q� reject the current move, draw a new one, and iterate.
For computational efficiency the initial acceptance rate P>
should be high. Pseudocode for the resulting algorithm will
be presented in Sec. II E.

E. Exact R-leap algorithm

We now assemble the ER-leap algorithm from the key
update equations derived in previous sections: Equations
�11�, �13�, �17�, �18�, �21�, �19�, and �22�.

1. Algorithm summary

We adapt the efficient rejection sampling algorithm of
Sec. II D 1, with the random variables s, �, and �, and the
expressions for P, P�, M, and A> of Sec. II D 3, into
pseudocode for the core of the resulting exact R-leap algo-
rithm:

set counters n, �kP> k, �kP> k
2 to zero

starting at state I0, initial time t0, and user-specified
initial leap L
while t
T �

if L equals 1 then perform one SSA step,
set P> =1 �for dynamic L update counter�;

else repeat �
compute or update the bounds on F’s, D’s for I0,

by Equation �11� and �13�;
compute p: pr�I0,l−1=�rF̃I0,l−1

�r� / D̃I0l;
sample s from Multinomial �s �p , l�

�using sorted sequential Binomials,
for efficiency, as in R-leap�;

sample �k�k from Erlang ��k�k �L ,D> I0l�;
compute P> �s ,�k�k ,L� by Equation �21�;
//cheap
with probability P> �

accept step;
�otherwise�

// expensive
sample � from permutations consistent with s
compute P�� �P> ,1� by Equation �19�;

compute Q�= � P�− P>

1− P> �;
with probability Q� accept step otherwise reject
step;

�
� until step accepted;
update I0;
increment n, �kP> k=�kP> k+ P> , �kP> k

2=�kP> k
2+ P> 2;

if n�b then update L according to Equation �25�.
if L changed or Uniform� �0,1�

is below 1 /L2

then set counters n, �kP> k, �kP> k
2 to zero;

� until done

The implementation used in this paper is written in C�� and
contains around 600 lines of code for the core components.

2. Acceptance ratio analysis

A preliminary analysis looks very permissive of large L,

�> a � minr �ma
r , m̃a � maxr ma

r ,

�23�
�̃a � maxr �ma

r , m̃ � maxr �
a

ma
r .

Then for large na, such that

na � �L − 1���> a� + m̃a,

we further insist that

L�L − 1� 

mina na

m̃ maxa��̃a − �> a + m̃a�
log�1/�� ,

where �� �0,1� is the minimal early-acceptance rate �should
be close to 1 for efficiency�. If �=1−�, this becomes roughly

L 
� � mina na

m̃ maxa��̃a − �> a + m̃a�
.

3. Asymptotic cost of update

The asymptotic computational cost of simulating with
ER-leap can be analyzed. The amount of computation re-
quired to calculate and sample P> is dominated by the time
required to calculate the reaction probability rates or propen-
sities. The asymptotic cost of this will be O�R�, where R is
the number of reaction types or channels. In the event that an
“early” sample is rejected, the more thorough sampling and
calculation of P�, that becomes necessary, will be dominated
by the recalculation of the reaction probability rates for each
of the L reaction events. Therefore, computing P� will have
asymptotic cost O�LR�. Thus, during simulation the expected
computation per attempted leap will be the inevitable cost of
calculating P> plus the cost of calculating P�, which occurs
with probability �1− �P> ��. So the computational cost for one
leap attempt can be estimated as

O�R + �1 − �P> ��LR� . �24�

To calculate the expected CPU cost per reaction event,
we assume that all P� samples are rejected. This yields a
lower bound on the expected number of accepted reaction
events per leap, which will be �P> �L. Additionally, the cost for
one SSA step will be O�R� and the number of reactions
events per step will be 1. Thus the per-event costs for ER-
leap and SSA will be

ERleap cost =
ERleap leap cost

reaction events



R + �1 − �P> ��LR

�P> �L
,

SSA cost =
SSA step cost

reaction events
=

R

1
.

The cost ratio between SSA and ER-leap is therefore

cost ratio =
ERleap cost

SSA cost



1 + �1 − �P> ��L
�P> �L

.
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When this cost ratio is less than 1, ER-leap will be as-
ymptotically faster than SSA. This is the case whenever
�P> �� �1+L� /2L which in turn is �1 /2. Finally, taking the
inverse of the cost ratio gives us the lower bound on the
speedup of ER-leap over SSA, which is

speedup �
�P> �L

1 + �1 − �P> ��L
.

The required data structures and space requirements for
ER-leap do not go significantly beyond what is conventional
for SSA simulation: Each reaction needs a list of input/output
species, so an array is used to remember the state of the
system as well as a temporary state copy when calculating
P�, and arrays are used to store �, �, and the maximal and

minimal �̃a and �> a values.

4. Dynamic choice of L

ER-leap efficiency depends on finding an L which opti-
mally balances the benefits of having a large L versus the
potential inefficiencies that would result from sample rejec-
tions. Our heuristic is described here.

Recall from Eq. �24� that the cost of calculating early-
acceptance samples will be O�R� and the expected cost of
calculating the late acceptance samples is O��1− �P> ��LR� for
each leap attempt. Balancing these costs yields L=1 / �1
− �P> �� or �P> �= �L−1� /L. So, during simulation the goal is to
chose an L satisfying �P> �
�L−1� /L. This is done by sam-
pling P> to obtain an estimate of the “true” value of �P> � �for
which we take at least b=5 samples�. Then L is increased or
decreased by at most 1, to minimize the error in the condi-
tion �P> ��
�L−1� /L, where the � parameter is introduced to
tune differences in CPU running time between the P> and P�

calculations. Experiments �not presented� show good perfor-
mance when �=2 /3 and this is used in all subsequent ex-
periments.

Confidence intervals for our estimate of �, the mean of
P> , come from the central limit theorem,

� = �̄ � z��2

n
= �̄ � Error,

where statistics for calculating the sample mean and sample
variance ��̄ ,�2� are gathered from P> during simulation, z is
a “confidence factor” �we used z=1.7 in experiments�, and n
is the number of samples. Given the goal �P> � for a given L,
namely h�L�= ��L−1� /L�1/�, the rule for updating L to a new
L� is

L�

= �L + 1, if h�L� � �̄ − Error and h�L + 1� � �̄ + Error

L − 1, if �̄ − Error � h�L − 1� and �̄ + Error � h�L�
L , otherwise,

�
�25�

which changes L whenever the interval ��̄−Error, �̄+Error�
does not contain h�L�, and changing L by one would either
�a� put h�L�� within this interval or �b� put h�L�� in between

h�L� and this interval, thereby bringing it closer to the de-
sired interval.

Finally, to avoid getting “stuck” on a particular L, the
counters are occasionally reset with probability 1 /L2.

5. An illustrative example

As a specific example of the use of the ER-leap algo-
rithm, consider the two-reaction dimerization process

�2S1�
�2

�1

S2� with forward and reverse reactions r=1 and r=2.

Recall from Eq. �9� that the instantaneous rates of firing, also
called propensities, for each reaction are given by

a1�n� = �1n1�n1 − 1�, a2�n� = �2n2.

�Some authors divide a1�n� by 2 to “avoid double counting,”
but our convention is to absorb this factor of 2 into �1 and
thereby remain notationally consistent with the law of mass
action.� ER-leap requires upper and lower bounds on the
propensities for each reaction at any of L reaction event
“steps.” The bounds are not required to be tight, but here it is
easy to find the tightest bounds using Eq. �11�,

ã1�n� = �1�n1 + 2�L − 1����n1 + 2�L − 1� − 1�� ,

a>1�n� = �1�n1 − 2�L − 1����n1 − 2�L − 1� − 1�� ,

ã2�n� = �2�n2 + �L − 1�� ,

a>2�n� = �2�n2 − �L − 1�� .

The upper bound ã1 comes from the extreme situation in
which all L reactions are of type r=2. Two S1 are produced
every time r=2 fires. So we calculate the upper bounding
propensities with an upper bound for S1: ñ1=n1+2�L−1�.
Recall that �L−1� is used instead of L because about the
bounds apply just before the Lth step occurs. The other
bounds are calculated in the same way.

Given bounds on a1 and a2, we can sample the reactions
and time step. First, the number of times r=1 and r=2 are
fired �s1 ,s2� is sampled from a multinomial distribution
�here equivalent to a binomial� with parameters
��ã1�n� / ã0�x� , ã2�n� / ã0�n�� ,L�, where ã0�n�= ã1�n�+ ã2�n�.
Next, the total time step � is sampled from the Erlang
�Gamma with an integer second argument� distribution with
parameters �a>0�n� ,L�.

To compute the probability of early acceptance, Eq. �21�
is used. This simplifies to

Probearly�s,�� = �F> I0,L−1
�1�

F̃I0,L−1
�1� �s1�F> I0,L−1

�2�

F̃I0,L−1
�2� �s2

exp�− ��1 + �2�

��D̃I0L−1 − D> I0L−1��

= �a>1�n�
ã1�n�

�s1�a>2�n�
ã2�n�

�s2

exp�− ��ã0�n� − a>0�n��� .

We accept the sample �s ,�� early, and with little computa-
tional cost, with Probearly. If there is no early acceptance, the
probability of late acceptance must be calculated. To calcu-
late this first we must sample an ordering of reactions, �.
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This ordering is just a random shuffling of the L reactions.
So our sample may look like �= �r=1,r=1,r=2, . . . ,r=1�.
Next, we need to sample the length of individual time steps
for each reaction, ��1 ,�2 , . . . ,�L�. This can be done by inde-
pendently sampling L unit exponential random variables and
“normalizing” them so their sum is �. It is now possible to
calculate the true probability of acceptance from Eq. �19�,

Probaccept��,��i�� = � 1

F̃I0,L−1
�1� �s1� 1

F̃I0,L−1
�2� �s2



i=1

L

F> Ii,L−1
��i�

�exp�− �i�DIi L−1 − D> I0L−1��

= � 1

ã1�n�
�s1� 1

ã2�n�
�s2



i=1

L

a�i
�ni�

�exp�− �i�a0�ni� − a>0�n��� .

Here ã�n� and a>0�n� are held constant during the calculation,
but the true propensities a�i

�ni� are recalculated after each
reaction �i occurs. State I0 corresponds to state vector n, and
Ii corresponds to ni, where i� �1¯L� indexes the step num-
ber. With probability �Probaccept−Probearly� / �1−Probearly� we
accept the sample and update n. Otherwise the sample is
rejected.

In general, calculating the propensity bounds with Eqs.
�11� and �13� can be made efficient by noting that the maxi-
mum and minimum amounts by which a species may change
in one reaction event remain constant throughout the simu-

lation. These �̃a and �> a values �defined in Eq. �23�� are
calculated prior to simulation, and the bounding ña is calcu-

lated as ña=na+ �L−1��̃a, from Eq. �10�. Then the propen-
sity upper and lower bounds are calculated as conventional
propensities except that the bounding ña and n>a are used for
each reactant instead of na.

III. NUMERICAL SIMULATIONS

The foregoing stochastic algorithms are implemented in
the C�� programming language and run on a MacBook run-
ning OS X v10.5 with an Intel dual-core 1.83 GHz processor
and 2.0 Gbytes of RAM. Experiments are performed with
emphasis on exploring accuracy and speedup. We compare
the present algorithm with the software developed for the
�-leap and R-leap algorithms as reported in the R-leap
paper.11

A. Accuracy

Here we verify ER-leap equivalence to SSA via numeri-
cal experiments. As an example of the tests performed in the
CaliBayes test suite,17 we consider the Galton–Watson sto-
chastic process where analytic solutions for the mean and
standard deviation are known. Mass-action stochastic kinet-
ics are assumed. The solutions are compared to trajectories
of many runs of SSA, ER-leap, �-leap, and R-leap.

Algorithm accuracy was validated using a statistical test
as performed in CaliByaes. The ith sample at time t will be
denoted Xt

�i� and is drawn from the random variable Xt. The
analytic mean and standard deviation at time t are �t and �t.

Additionally, X̄t is the sample mean and S̄t is the sample
standard deviation assuming E�Xt�=�t. Using the central
limit theorem, we eventually arrive to

Zt = �n
Xt − �t

�t
, Yt =�n

2
�St

2

�t
2 − 1� .

Under the null hypothesis that the simulator is correct,
the Zt and Yt values should have a standard normal distribu-
tion. So most Zt values are expected to lie in the range
�−3,3�. We further relax this constraint for Yt to lie in the
range �−5,5� because the standard deviation is less likely to
be normally distributed.

We performed this analysis on SSA and ER-leap. As Fig.
1 indicates, Zt and Yt are within the expected range for both
simulation algorithms. This supports the notion that SSA and
ER-leap draw from the same distribution.

To demonstrate the sensitivity of this test we also com-
pute Zt and Yt for the approximate algorithms. Interestingly,
all algorithms do not show strong errors in Yt. However, the
absolute values of Zt for R-leap and �-leap are mostly greater
than 3 �Fig. 2�. This test indicates that SSA and ER-leap are
equivalent with high certainty and it was sensitive enough to
discover the error resulting from the assumptions made by
R-leap and �-leap.

B. CALIBAYES validation

Similar analysis as above is performed on several mod-
els in the CaliBayes test suite version DSMTS 21.17 Three
models with solvable mean and standard deviation are tested:
the birth-death process, dimerization process, and
immigration-death process. Of these a total of nine variations
in initial conditions and parameters are simulated �the others
not being tested due to limited ER-leap SBML support�. The
tested models are 1-01, 1-03, 1-04, 1-05, 2-01, 2-02, 2-04,
3-01, and 3-02.

Each test case has 50 time points where Zt and Yt values

FIG. 1. ER-leap ��� with L=4 and SSA ��� compared with the analytical
�—� mean and standard deviation. Y-axis in units of molecules. The Zt and
Yt values will be normally distributed, assuming SSA equivalence. There-
fore values in the range �−3,3� are considered reasonable. Galton–Watson
stochastic process �X→2X, X→�� with rate parameters �1.0, 1.1�, respec-
tively, and X�0�=100. Simulation time is 50 s. Results from 20 000 runs.
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are calculated. A test is considered passing if �Zt�
3.0 for all
50 Zt values with one exception per run. Likewise, since the
standard deviation normal assumption is not as strong, we
require �Yt�
5.0 for all but one of the Yt scores per test. This
pass/fail criteria was also suggested in the CALIBAYES docu-
mentation.

Furthermore, since the tests are made at discrete time
points, a large leap may create a small but nonzero bias if we
test at a state preceding the desired time t. To alleviate this
problem we “leap” to a time before t and then perform small
SSA �L=1� steps until t is reached. The SSA steps begin

when the time is within Lv / �D> + D̃� of t, with v=7. In prac-
tice these small steps do not significantly affect running time.

Using the criteria above, we found all tested variations
from the CALIBAYES suite to pass, using ER-leap with L=3
or automatically selected L, and 20 000 simulations per
model.

C. Williamowski–Rössler model

The Williamowski–Rössler model,18 which contains sev-
eral bimolecular reactions, is explored to demonstrate the
usefulness of the ER-leap algorithm. Results indicate that the
approximate methods do not model well the true stochastic
behavior for particular instances of the system. Consider the
following set of reactions:

X↔
k2

k1

2X, Y↔
k6

k5

�, Z↔
k10

k9

2Z ,

X + Y↔
k4

k3

2Y, X + Z↔
k8

k7

� .

We can numerically solve for the corresponding set of deter-
ministic mass action differential equations,

ẋ = k1x − k3xy − k2x2 + k4y2 − k7xz + k8,

ẏ = k3xy − k5y − k4y2 + k6,

ż = − k7xz + k9z − k10z
2 + k8,

and plot the solution of X versus Y as in Fig. 3.
As time progresses the mean trajectory spirals in toward

an attraction point near �6.0�104, 5.1�105�. However, once
the inner region is reached, the trajectory falls toward an-
other attraction point around �6.0�104, 4.5�105�. The sto-
chastic algorithms are run and we can observe the density
plots over time for the exact and approximate algorithms in
Fig. 4.

As Figs. 4 and 5 demonstrate, there is a substantial dif-
ference between the probability densities from the exact and

FIG. 2. Distribution of Zt for the four algorithms under consideration. ER-
leap and SSA demonstrate a standard normal distribution, whereas the ap-
proximate methods show Zt values far outside the expected range. Reactions
�X→2X, X→�� with rate parameters �0.11, 0.1� and X�0�=1.0�105. For
ER-leap L=30. For R-leap �=0.1 and �=0.01. For �-leap �=0.01. Each Zt

calculated from 1000 time points for 1 s intervals up to time t=50. The
number of runs for each method varies in order to get smooth distributions
and ranges from 1.0�105 to 2.0�105.

FIG. 3. Mass-action deterministic solution of X vs Y from time t=0 to t
=0.2 for Williamowski–Rössler model. k1=900, k2=8.3�10−4, k3

=0.001 66, k4=3.32�10−7, k5=100, k6=18.06, k7=0.001 66, k8=18.06, k9

=198, k10=0.001 66. X�0�=39570. Y�0�=511 470. Z�0�=0.

FIG. 4. Comparing log probability densities for various simulation methods
over time t=0 to t=0.2. Same parameters as Fig. 3. SSA and ER-leap appear
identical. Total of 1500 samples for each simulator. For ER-leap L was
chosen automatically and averaged L=23. For �-leap and R-leap �=0.01.
For R-leap �=0.1. Measurement taken every 10−4 s.
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approximate simulation methods. However, ER-leap is able
to produce an answer similar to that of SSA and is about 4.5
times faster on this example.

We modify the foregoing Williamowski–Rössler model
to have rate parameters in the chaotic regime as described in
Ref. 18. The idea is that small simulation errors may grow
into large errors as time progresses. The SSA mean of X
versus Y over 1150 runs is shown in Fig. 6. Notice the erratic
behavior, which deterministic analysis may have difficulty
capturing.18

When we examine log densities accumulated over time
we observe that ER-leap and SSA have densities that appear
very similar, whereas the approximate methods display
greater departures from SSA �Figure 7�.

In the corresponding mass-action ordinary differential
equations in the chaotic regime, small simulation errors grow

exponentially. Furthermore, mass action analysis has some-
times proven insufficient to model the system even for a
large number of molecules.18 To elucidate model dynamics
stochastic simulation methods need to be applied. To our
knowledge ER-leap is the fastest such algorithm to do this
exactly.

D. Scaling of computational cost with reaction events

The acceleration of SSA by ER-leap depends on the
number of molecules n �along with other factors not explored
here�. We run the Galton–Watson model with initial mol-
ecule number n ranging from 10 to 9�107 �Fig. 8�. As ex-
pected the SSA CPU running time scales linearly with n. The
ER-leap CPU time appears to scale as O�n�� where �
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FIG. 5. �Color� Another look at the differences in trajectories. Distribution
of 50 runs for the four algorithms. Same network as Fig. 4. X�0�=30 000.
Y�0�=300 000. �so we start further out in the spiral�. Simulate from time t
=0 to t=0.13, before the “escape” shown in Fig. 4. A constant amount of
time passes between time samples. Each cluster of points represents a group
of trajectories that started at the same initial condition and has run for the
same amount of time, varying only stochastically, i.e., by the choice of the
seed for a random number generator.

FIG. 6. Mean number of molecules on chaotic system over 1150 SSA runs
from time t=0 to t=30. k1=30, k2=8.3�10−4, k3=0.001 66, k4=3.32
�10−7, k5=10, k6=0.602, k7=0.001 66, k8=0.602, k9=16.58, k10=0.001 66.
X�0�=7800. Y�0�=11 500. Z�0�=0.

FIG. 7. Comparing X vs Y log probability density for various simulation
methods over time t=0 to t=30. Same parameters as in Fig. 6. Total of 1150
samples runs for each simulator. ER-leap L was chosen automatically and
averaged around 11.5. For �-leap and R-leap �=0.01. For R-leap �=0.1.
Measurement taken every 0.1 s.

FIG. 8. Log-log scaling of CPU running times for various SSAs. The left
panel plot results obtained for the Galton–Watson model with birth rate of
0.101 and death rate of 0.10. Each test is simulated for 30 s. The slope of the
ER-leap line is 0.65, and SSA is 0.99, about 1.0 as expected. Ratio is 0.66.
L is chosen automatically for ER-leap. R-leap has accuracy parameters �
=0.1 and �=0.01. �-leap has parameter �=0.01. The right panel plots results
obtained for the dimerization process �2X→S, S→2X� with rate parameters
�0.001 /v ,0.01�, respectively, initial values S�0�=n, singleton molecule
X�0�=n /2, and volume v=n /100. Slope of ER-leap line is 0.58 and slope of
SSA line is 0.86 with a ratio of 0.68. Error bars represent one standard
deviation.

144110-12 Mjolsness et al. J. Chem. Phys. 130, 144110 �2009�

Downloaded 13 Apr 2009 to 169.234.1.154. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



�2 /3 �Fig. 8�. R-leap and �-leap scale much better to large
number of molecules, but are not exact algorithms. Notice
that the slope of the approximating methods is nearly 0. This
is due to the fact that the leap sizes are determined from
bounds on relative propensity changes. Because this system
only involves first order reactions, this leap control results in
sizes that are proportional to n. Substantial room remains for
the improvement of exact algorithms.

Additionally, we can explore the trade-off between the
potential gain of large L and loss of efficiency from rejecting
samples from too-ambitious L values. There is an optimal L
that is model and time specific. We explore this relationship
by varying L for a particular simulation and observing the
CPU cost, as plotted in Fig. 9.

This trade-off can also be explored with a log-contour
plot of CPU time and L �Fig. 10�. Notice that as simulation
time increases, the optimal L changes. This fact is due to a
change in the value of Eq. �21� as reactant numbers change.
The lack of multiple local minima in Fig. 10 suggests that
dynamic optimization of L is not a hard problem.

E. Scaling of computational cost with reaction
channels

The acceleration of ER-leap over SSA is explored as a
function of the number of reaction channels. The

Williamowski–Rössler model is replicated over a
d-dimensional grid. In each compartment of the grid there is
a copy of the Williamowski–Rössler reaction network, in-
cluding all of its chemical species and their intracompart-
mental reactions. In addition, molecules diffuse �stochasti-
cally� between adjacent grid compartments. This is
accomplished by replicating all WR reactions over the set of
compartments, and adding new reactions of the form

�Xc→
�

Xc�� where c is the grid coordinate for molecules of
type X and c� is any neighboring compartment. Diffusion is
to adjacent compartments only, so the L1 distance between c
and c� is 1. In the experiments shown, d=3. As Fig. 11
demonstrates, ER-leap may be used to accelerate systems
with many reaction channels. It also demonstrates the feasi-
bility of applying ER-leap to spatially structured models.

Although the three-dimensional grid of compartments
simulated here results in efficient simulation on a relatively
highly connected network of reactions and reactants, with a
graph diameter proportional to the cube root of the number
of nodes, the ER-leap algorithm could be stressed to the
point of inefficiency by other topologies. For example, a
fully connected �diameter one� compartment graph, or a
scale-free �logarithmic or sublogarithmic diameter� compart-
ment graph, each have much higher connectivity than was
tested here. Further work will be required to evaluate and
possibly adapt the ER-leap algorithm for such alternative
large-scale network structures.

IV. CONCLUSIONS

We have derived an exact accelerated algorithm for sto-
chastic simulation of chemical reactions, using rejection
sampling together with upper and lower bounds on the prob-
ability of an outcome of a run of L reactions. We have dem-
onstrated a speedup to sublinear time for simulating a large
number of reaction events. We have verified the accuracy of
the method with sensitive tests including examples from the
CALIBAYES test suite and a chaotic reaction network.

We note that the SSA has also been accelerated, without
approximation, by executing one reaction event at a time,
lowering the cost of sampling each reaction event when there

FIG. 9. Varying L for birth/death process with rate of birth 0.1 and death
0.11. X�0�=1�107. X�0�=5�106. Simulation from t=0 to t=5. Initially as
we increase L, CPU runtime drops dramatically until the optimum at about
L=115 which is about 22 times faster than SSA. For larger L, the rejection
of proposed samples starts to decrease performance and there is a monotonic
increase in CPU computation time.
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FIG. 10. �Color� ER-leap contour plot of log CPU time per unit simulation
time vs simulation time and leap size L. Overlay of optimal and heuristic
choice of L �from one run�. Notice that the optimal leap L* changes during
simulation from L*=34 at t=0 to about L*=8 at t=6. Basic cascading
network �S1→S2, S2→S3, S3→S4� and all rates of 1.0. Initial values:
S1=4.2�104, S2=4.0�104, S3=3.5�104, and S4=0. Results averaged
over 500 runs.

FIG. 11. Speedup is calculated as SSA wall clock time divided by ER-leap
wall clock time. It increases monotonically from a one-cell system with ten
reaction channels to a 4�4�4 grid with 1504 reaction channels. In ER-
leap L was chosen automatically, and averaged 23 over all experiments.
Error bars are one standard deviation. Same rate parameters as Fig. 3. Rate
of diffusion is 0.01 and the initial number of molecules in each cell is
X�0�=5.0�104, Y�0�=4.5�105, Z�0�=3.0�104.
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are many possible reactions to choose from.19 An alternative
acceleration of SSA has been proposed20 based on exploiting
cycle structure. The present ER-leap algorithm is based on
the R-leap algorithm11 that accelerates the SSA by efficiently
executing a number of reaction firings together. ER-leap of-
fers an acceleration that is more general than the efficient
sampling of many reaction channels or types19 or the exploi-
tation of cycles.20 Instead, like an approximate acceleration
scheme, it exploits the scaling possible for large numbers of
reactant particles �molecules� and of reaction events. In these
conditions, and for reaction networks �such as the
Williamowski–Rossler oscillator� for which high-accuracy or
exact simulation is necessary to find the correct long-time
behavior, ER-leap may turn out to be the currently preferred
algorithm. In any case, the existence of ER-leap demon-
strates that it is possible to create exact, accelerated SSA
which scale better than SSA with respect to the number of
reactant particles and reaction events. Among these exact
methods, only ER-leap has been demonstrated to have an
asymptotically sublinear �roughly 2 /3 power of SSA� simu-
lation time as a function of the number of reaction events for
a regular family of simulation problems, namely two exactly
solvable networks �Galton–Watson and dimerization� in a
test suite for SSAs.

Future work includes the hybridization of the present
ER-algorithm with techniques from other exact simulation
algorithms that more directly address scaling with the num-
ber of reaction channels, as well as improvements in the
extension of the ER algorithm to spatially dependent sto-
chastic simulations. The numerical experiments of Sec. III E,
along with previous work such as the use of tau-leap21 and
R-leap22 in spatial models, show the feasibility of spatial
stochastic simulations but do not, we think, exhaust the av-
enues for their acceleration.

Software for the ER-leap algorithm is provided at http://
computableplant.ics.uci.edu/erleap.
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