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S1 Experimental details

S1.1 PIN1::GFP fusion construct

8763 bp of Arabidopsis genomic DNA were PCR amplified from IGF BAC F6D5 us-

ing the primers (5’ CTGACAAGTGTCACGCCTCT3’ and 5’ CAAATCATGTGTC-

GACTTCCA3’) and the amplified product was TA cloned into pGEMT easy (Promega).

The mGFP5 (a gift from J. Hasseloff) coding regions was PCR-amplified with the primers

(5’ CTC GAG CAG TAA AGG AGA AGA ACT TTT CAC 3’ and 5’ CCT CGA GGC

TTT GTA TAG TTC ATC CAT GCC 3’) containing XhoI sites. This GFP clone

was subsequently inserted in frame into a unique XhoI site located within the central

hydrophilic region of the PIN1 protein. A NotI fragment containing the entire PIN1 ge-

nomic clone as well as GFP was then transformed into Ler plants in the pART27 binary

transformation vector (1) using Agrobacterium-mediated transformation (2) and plants

harboring the transgene were selected for kanamycin resistance. To test functionality, T1

transgenic lines were crossed to pin1-4 heterozygotes. Five independent F3 families were

identified that were homozygous for the pin1-4 allele and segregating for the PIN1::GFP.

In all lines complete rescue of the pin1-4 phenotype co-segregated with the kanamycin

resistance marker.
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S1.2 Confocal microscopy

Tissue was prepared by applying 10 mg ml−1 FM4-64 (Molecular Probes) to intact inflo-

rescences. After 30 minutes inflorescences were detached and fixed in 4% paraformalde-

hyde containing 0.1% Tween 20 and 0.1% Triton X-100 at 4◦ C for 1 hr. Mature buds

were then dissected away and the meristem immersed in 50% glycerol under a coverslip

ready for imaging using a Zeiss Plan-Apochromat 63x/1.40 NA objective. A 488 nm

laser line was used to excite both GFP and FM4-64 and the emission was split using a

545 nm secondary dichroic.

S2 Computational and model details

S2.1 Template data extraction

The template extraction is performed in four steps from the confocal data [5]. (1)

The background is extracted from the membrane image using a snake algorithm [12]

initiated by manually clicking around the SAM. (2) Cell compartments are extracted in

the membrane marked picture using a watershed type of algorithm [2]. As preprocessing,

the image is smoothed using region averaging (intensity values are averaged using a region

with a radius of ten pixels twice). The original resolution of the data is 0.15µm per pixel.

This is followed by the use of a gradient descent algorithm on the intensity, starting from

each individual pixel. All pixels ending up in the same intensity minimum are taken as
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defining a cellular compartment. (3) Membrane/wall compartments are typically thinner

than the pixel resolution of the data, so these compartments are created by defining pixel

subsets within a cellular compartment that are immediate neighbors to another cellular

compartment. The extracted compartments are shown in Figure 1B in the paper. (4)

Using the pixel subsets extracted as compartments in the membrane image, the PIN1

image is used to extract average PIN1 intensities for each compartment (Figure 1C,D in

the paper). These numbers are, for simplicity, interpreted as relative concentrations of

PIN1.

S2.2 Detailed model on a cell-wall topology with experimental parameters

All reaction and transport mechanisms used in the model are provided in Table S1,

and combined in Equations S1-S4. The compartmentalization and illustration of the

transport/cycling are shown in Figure S1. Parameter values used are provided in Table

S2. The compartmentalization is simplified to include a single cytoplasm compartment

and surrounding each cytoplasm compartment are wall/membrane compartments toward

each neighboring cell or the SAM boundary (Figure S1). The auxin model includes ac-

tive and passive transport across membranes (between cellular and wall compartments),

diffusion within the walls, and production and degradation. PIN1 is allowed to cycle

between cellular and membrane compartments, but never moves between cells.

The model is a development of the models originally proposed by Goldsmith et al [1],
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Figure S1: Illustration of the Auxin transport and PIN1 cycling models. A) AH (weak acid form)
transport. B) A− (anion form) transport. Note that also the A− influx is dependent on Pij . This rate is
low compared to the efflux, and this mechanism is not illustrated in the figure. C) PIN1 cycling model.

and Mitchison [7]. We allow auxin to appear in two forms within the plant, a weak

acid (AH) and anion (A−) form. While AH can penetrate the membrane passively, A−

needs to be actively transported, which in our model is assumed to be mediated by PIN1

located at the membrane. We assume that the reaction A−+H ↔ AH is fast and the pH

dependent equilibrium fractions are used. As the pH differs between cytoplasm and walls

the fraction of the different auxin variants in different compartment types are explicitly

accounted for (f
cell/wall

A−/AH ). These fractions are also dependent on pK = −log(A−H+/AH),

and are given by fA− = 10pH−pKd/(1 + 10pH−pKd), and fAH = 1/(1 + 10pH−pKd). Since

the PIN mediated active auxin transport is dependent on the electro-chemical gradient

between the cytoplasm and the apoplast, additional asymmetric factors, Nefflux/influx,

are used to describe the dependence on the membrane potential [1, 7, 6]. These factors

are defined by Ninflux = Neffluxe
Φ = ΦeΦ/(eΦ − 1), where Φ = zV F/RT . z is the

valence, V is the membrane potential, F is the Faraday constant, R is the gas constant,

and T is the absolute temperature.

Cellular efflux is modeled using a passive transport rate defined as Defflux = pAHf cell
AH ,

and an active rate defined by Tefflux = pA−f cell
A− Nefflux. The f cell

AH ,f cell
A− are the fractions
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of the different auxin variants in the cell, pAH and pA− are the membrane permeabilities,

and Nefflux is the factor for efflux across the charged membrane. For influx from the

walls to the cell, the passive and active rates are defined as Dinflux = pAHfwall
AH and

Tinflux = pA−fwall
A− Ninflux, where the individual parameters are defined as previously.

The resulting net auxin flux between a cellular compartment and its neighboring wall

compartment is given in Equation 2 in the paper.

In addition to this, we allow for apoplastic auxin transport modeled as diffusion of both

forms of auxin between neighboring wall compartments with a diffusion constant DA.

Also, in the final equations the volumes, distances and crossing areas of the compartments

are accounted for.

It can be noted that since fwall
AH >> f cell

AH passive transport results in higher influx to the

cells compared to efflux. For the active transport term Nefflux >> Ninflux and the PIN1

mediated influx is negligible. Auxin is dependent on PIN1 for cellular efflux, while it

passively crosses the membranes from the walls into the cells. While we simulate active

auxin efflux, for simplicity active auxin influx is not explicitly defined in the model. We

note that the phenotype of aux1 mutants, impaired in auxin influx, is not as severe as

the pin1 phenotype. However, we also do simulations where passive influx is increased

to approximate the activity of a homogeneous influx mediator.

Note that we use a single compartment for the cell cytosol, which means that we neglect

spatial variations of auxin within the cell. For this to be a good approximation, the active
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transport terms should be small compared to the internal diffusion. A crude estimation

of this is to compare DAA/L with pA−Pmembranef
cell
A− NeffluxA, where L is the cell length,

Pmembrane is the PIN1 concentration in the membrane, A is the auxin concentration,

and the other parameters are described above. This leads to values of about 140 and

50 respectively (using the maximal Pmembrane = 1µmoles per unit area, and L = 5µm).

The diffusion term is larger, but since the difference is not too large it indicates that the

model might be improved by including sub-compartments for the cytosol compartment.

The complete model is defined by the ODE equations

dAi

dt
= cA − dAAi +

1

Vi

[
pAH

∑

k∈Ni

aik

(
fwall

AH Aik − f cell
AHAi

)
(S1)

+ pA−
∑
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aikPik

(
fwall

A− Ninflux
Aik

KA + Aik
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A− Nefflux

Ai

Ka + Ai

)]
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dAij
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aijijr

dijijr

(Aijr − Aij) +
aijji

dijji

(Aji − Aij)

}]
,

dPi

dt
=

1

Vi

Ni∑

k

aik

(
k2Pik − Pi

k1A
n
k

Kn + An
k

)
, (S3)

dPij

dt
= Pi

k1A
n
j

Kn + An
j

− k2Pij. (S4)

Cytoplasmic compartments are given by single indices (i, j, k) and wall/membrane com-

partments by double indices (ij, ik), and the summations are over the set of cellular

neighbors (Ni) for a cytosol compartment i. The apoplastic diffusion terms in Eq. S2
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Table S1: Model for molecular reactions and transport in the simulations on the template. Note that
in some simulations the PIN1 extracted from the template is used and no PIN1 update is applied.

Row Reaction/ Description ODE contribution Parameters
Transport (rate/flux)

1 0 → Ai Auxin production cA cA

2 Ai → 0 Auxin degradation dAAi dA

3 Aij → 0 Auxin degradation dAAij dA

4 Ai → Aij Passive auxin (AH) transport, aijDeffluxAi Defflux = pAHfcell
AH

cell to wall

5 Aij → Ai Passive auxin (AH) transport, aijDinfluxAij Dinflux = pAHfwall
AH

wall to cell

6 Aij → Ai′j′ Auxin diffusion within walls
aiji′k
diji′k

DAAij DA

7 Ai

Pij→ Aij Active PIN1 dep. auxin (A−) aijTeffluxPij
Ai

KA+Ai
Tefflux = pA−fcell

A− Neff , KA

transport, cell to wall

8 Aij

Pij→ Ai Active PIN1 dep. auxin (A−) aijTinfluxPij
Aij

KA+Aij
Tinflux = pA−fwall

A− Ninf , KA

transport, wall to cell

9 Pi

Aj→ Pij Auxin dependent PIN1 cycling, aijk1
An

j

Kn+An
j

k1, K, n

cell to membrane
10 Pij → Pi Pin1 cycling, membrane to cell aijk2Pij k2

are explicitly given and each wall compartment has three neighbors, left and right neigh-

bors connected to the same cell (ijl, ijr) and one neighbor “connected” to the neighboring

cell (ji) cf. Figure S1 The auxin and PIN1 concentrations are given by Aa, Pa respec-

tively. Spatial variables are taken from measurements in the experimental template and

are constant during the simulations. These are compartmental volume, Vi and Vij, cross-

ing area between neighboring cytoplasm and membrane/wall compartments, aij, crossing

areas between neighboring wall compartments, aijji, and distances between neighboring

wall compartments as used in the diffusion term, dijji. Since the crossing area between

neighboring wall compartments surrounding a cell is harder to extract from the template,

we use a constant value of aijik = 0.025µm corresponding to a cell wall thickness of 50

nm. All parameters and values used in the simulations are presented in Table S2.
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Table S2: Parameters used in the template simulations. Most of the parameters are taken from [1, 7, 6]
and are further discussed in the text. In the ref column we only cite if exact the same value is used, but
in most cases similar values are used.

Par Definition Value Ref

pK equilibrium constant for auxin variants 4.7 [1],[7]

pHcell pH in the cellular compartments 7.2 [1]

pHwall pH in wall compartments 5.0 [1],[7]

fcell
AH fraction AH/A in cells 0.003 [1]

fwall
AH fraction AH/A in walls 0.334 [1]

fcell
A− fraction A−/A in cells 0.997 [1]

fwall
A− fraction A−/A in walls 0.666 [1]

pAH membrane permeability AH 3.3× 101 µms−1 [1]
pA− membrane permeability A− 1.24× 101 µms−1 [1]
V m membrane potential -100 mV [1]
Ninflux Electrochemical factor for influx 0.07 [1]
Nefflux Electrochemical factor for efflux 4.0 [1]
KA Half max Michaelis-Menten constant 1.0 µM [7]
DA Auxin diffusion (in walls) 7× 102 µm2s−1 [1])
cA Auxin production / boundary influx 0.1 µMs−1

dA Auxin degradation / boundary effflux 0.1 s−1

k1 Maximal PIN1 membrane localization rate 1.0 s−1 optimized
k2 PIN1 internalization rate 0.4 s−1 optimized
n Hill coefficient for PIN1 membranalization 3.0 optimized
K Hill half max constant for PIN1 membranalization 0.4 µM optimized

pK is from the equilibrium of the auxin variants The fractions of different auxin vari-

ants in different compartment types are pH dependent and the relation and values used

are shown in Figure S2A. The N factors due to the membrane potential (Ninflux =

Neffluxe
Φ = ΦeΦ/(eΦ − 1), where Φ = zV F/RT ) are calculated by using a membrane

potential V m = −100mV , a valence of 1, and using values for physical constants as fol-

lows. Faraday constant, F = 9.6× 104 As mol−1, the gas constant, R = 8.3 Jmol−1K−1,

and the absolute temperature, T = 300K. The dependence of these factors on the mem-

brane potential is showed in Figure S2B. KA is set within the region KA ∈ [0.3 : 2]µM

as estimated by Mitchison [7]. The diffusion rate is from estimations of auxin diffusion

in water. Simulations with a lower diffusion rate have been tried, and leads to similar re-
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Figure S2: A) pH dependence of the fraction of the different auxin variants. The lines show the
dependence and the points show the values used in the simulations. B) Membrane voltage dependence
of the factors in the PIN1 mediated transport. The absolute value of the membrane potential is used
on the x axis in the plot.

sults. Auxin is also allowed to be homogeneously produced and degraded in cells, where

the auxin production term could also be interpreted as auxin transported into the simu-

lated region from the cells outside of the region. There are no experimental estimates of

these rates, and we have elaborated with different values, most leading to similar results

as the presented ones (see e.g. Figure S5). It is an apparent problem to estimate the

reliability and certainty of experimental parameter values. For example, other values

for the membrane permeability constant of the protenated form of auxin appear in the

literature [6]. This value is about a factor 60 times lower and might increase the need

of an AUX mediated influx for our model. But introducing an influx mediator would

also require knowledge of the positioning of the influx mediator and an estimate of its

permeability constant which is currently unknown.

All simulations using a constant PIN1 distribution from the template, starts with a
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A. B.

Figure S3: Auxin equilibrium concentrations for simulations on the template with extracted PIN1
concentrations. KA in the MM- description of active auxin concentration is varied from KA = 1, to
boundaries estimated in Mitchison [7]. A) KA = 0.3. B) KA = 2.0.

homogeneous auxin distribution (Figure 2 in the paper, and Figures S3-S5). In the

simulation presented in Figure 4A in the paper, auxin is kept constant at the equilibrium

from the constant PIN1 simulation (Figure 2A in the paper). Initial values for PIN1 are

taken from the template, and the PIN1 cycling model is allowed to redistribute the PIN1

within each cell.

S2.2.1 Parameter sensitivity

To check the sensitivity to parameters, simulations where parameter values are changed

one at a time are performed to see how the auxin distribution changes. In these simula-

tions the PIN1 distribution is held constant. In Figure S3-S5 some examples are shown,

and the conclusion from this analysis is that the qualitative behavior of the simulation

is fairly robust.
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A. B.

Figure S4: Auxin equilibrium concentrations for simulations on the template with extracted PIN1
concentrations. The pA− in the active auxin transport terms are varied twofold from the value pA− =
12.4 estimated by Goldsmith [1]. A) 0.5pA−. B) 2.0pA−.

A. B.

Figure S5: Auxin equilibrium concentrations for simulations on the template with extracted PIN1
concentrations. The auxin levels (production) is varied twofold from the value cA = 0.1. A) 0.5cA. B)
2.0cA.
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Table S3: Model for molecular reactions and transport in the simulations including cellular growth and
proliferation. X is only produced outside the apical region modeled using the step function Θ(x) which
equals 1 for x ≥ 0 and zero for x < 0.

Row Reaction/ Description ODE contribution Parameters
Transport (rate/flux)

1 0 → Ai Auxin production cA cA = 0.0
2 0 → Ai Auxin prod. outside central zone. cA2Xi cA2 = 0.002
3 Ai → 0 Auxin degradation dAAi dA = 0.001
4 Ai → Aj Passive auxin transport DAi D = 0.01

5 Ai

P∗ij→ Aj Active PIN1 dep. auxin transport TP ∗ij
Ai

KA+Ai
T = 0.036, KA = 1.0

6 0 → Xi X production cXΘ(
p

x2
i + y2

i −RX) cX = 0.1, RX = 1.5, 2.0
7 Xi → 0 X degradation −dXXi dX = 0.1
8 Xi → Xj X diffusion DXXi DX = 0.01

S2.3 Growth simulations using the cell-based model

For the simulations including cellular growth we use the cell-based model, where most

spatial contributions are not accounted for in molecular reactions. Neither is the con-

centration decrease due to dilution in a growing cell accounted for. For simulating a

simple shoot topology, cells are restricted to a half-sphere/cylinder surface with a radius

R = 7.0 (Figure 5 in the paper). Cells are removed from the system when its position is

below a threshold zremove = −15 as measured from the half-sphere to cylinder connection

at z = 0. In the reversal simulations, the cells are modeled on a two-dimensional plane

(Figure 6 in the paper), and cells are removed outside a threshold radius Rth = 13. All

reaction and transport mechanisms present in the model, together with parameter values

used are presented in Table S3.
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Auxin model

Equation 2 in the paper is used for describing the auxin transport, where i and j are two

neighboring cells. As the model creates auxin peaks in cells that are moving out from

the apical region, the apex would quickly be depleted from auxin unless new auxin is

supplied. We have chosen to include homogeneous auxin input and output terms in the

model to solve this problem. These terms could be interpreted as production/degradation

within the L1 layer or influx/efflux from the surroundings. The complete auxin model is

described by

dAi

dt
= cA − dAAi + cA2Xi + D

∑

k∈Ni

(Ak −Ai) + T
∑

k∈Ni

(P ∗
ji

Aj

KA + Aj

− P ∗
ij

Ai

KA + Ai

) (S5)

where the summations are over the set of cell neighbors, Ni. Xi is a molecule not present

in the central zone (as described below), and the X dependent auxin production is used

to break the symmetry and decrease the probability of peak formation in the central

zone. Parameter values used in the presented simulations are D = 0.01, T = 0.036,

KA = 1.0, cA = 0.0, cA2 = 0.002 and dA = 0.001.
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PIN1 model

For the PIN1 polarization we use the linear auxin dependance, f(Aj) = k1Aj in equation

4 in the paper, and assume equilibrium concentrations leading to

P ∗
ij =

k1AjP
tot
i

k2 + k1

|Ni|
∑

k∈Ni
Ak

(S6)

where P tot
i is the total amount of PIN1 in the cell and is assumed to be constant in these

simulations (P tot
i = 1, ∀i). We use k2/k1 = 0.3 and the summation is again over the

set of cell neighbors, Ni. The number of neighbors |Ni| enters as a spatial contribution

where membrane sizes are approximated to be equal for all membranes surrounding a

cell.

Central zone definition

The central zone peripheral zone difference is defined in the model by using a molecule X

that is produced only outside an apical region, and degraded everywhere. This molecule

is allowed to diffuse, and it induces auxin production. The ODE describing the dynamics

is given by

dXi

dt
= cXΘ(

√
x2

i + y2
i −RX)− dXXi + DX

∑

k∈Ni

(Xk −Xi) (S7)
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where the summation is over the set of cell neighbors, Ni, and the step function Θ(x)

equals 1 for x ≥ 0 and zero for x < 0. In all simulations, parameter values cX = 0.1,

dx = 0.1 and DX = 0.01 has been used. Two values of RX = {1.5, 2} are used in the

half-sphere cylinder simulations (Figure 5 in the paper), and RX = 2.0 is used in the

reversal simulation (Figure 6 in the paper).

Cell growth and proliferation model

Cells are modeled as spheres with a radial growth described by

dri

dt
= kgrowthri

(
1− ri

rmax

)
(S8)

In the half-sphere cylinder simulations (Figure 5 in the paper), parameter values kgrowth =

0.002 and rmax = 2.0 are used for cells on the half-sphere, while the growth is truncated

(dri/dt = 0) for cells on the cylinder surface (z < 0). For the reversal simulations on

the two-dimensional plane (Figure 6 in the paper), kgrowth = 0.002 and rmax = 2.0 is

used for all cells. To produce the plots, the simulation is stopped when a peak is about

to form, and then restarted with zero growth rate (kgrowth = 0.0). The reason for this

is that it easier to follow the polarization reversal if there are no dividing cells in the

neighborhood.

Cells divide when they are larger than a threshold value (ri > 0.9). At division, two

new cells conserving the mass of the mother cell are created with a random deviation
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of the individual sizes of V1 = (0.5 ± kdiff )V , V2 = (0.5 ∓ kdiff )V , where V is the size

of the mother cell and V1, V2 are the sizes of the daughter cells and kdiff = 0.2 is used.

Initially at division the two new cells are placed at a random direction on the surface,

a distance h = 0.3rmother apart, centered around the mother position. The molecular

concentrations in the daughter cells are inherited from the mother.

In the half-sphere cylinder simulations, cell division is only present at the apex (Rxy <

5.0), while there is no cell division further down. Together with the growth truncation

(at Rxy >= 7.0), this leads to a shoot that has an apical region with cellular growth

and division, one region where growth but not division is present, and lastly, a region

without growth or divisions.

Mechanical interactions

Mechanical interactions are modeled using overdamped spring forces (two-dimensional

versions of dxi/dt = kspring((xj − xi) − drelax), where xi, xj are the positions of cells

i, j and drelax is the resting length of the spring) between neighboring cells [9, 3, 4]. In

the presented simulations, we have only used a repulsive interaction when the distance

between the cell centers is less than the resting length of the spring. The resting lengths

of the springs allow for an overlap of the spheres (d0 = fov(r1 + r2)), where r1, r2 are the

radii of the cells.) In the simulations, parameter values krepulsive
spring = 0.2, (kadhesive

spring = 0.0),

and fov = 0.75 are used.

17



The calculations of the spring forces in a two-dimensional plane, as used in the rever-

sal simulation, are straightforward. When the cells are restricted to the half-spherical

surface, the curvature needs to be included. Distances are measured using the shortest

distance (following the great circle passing through the cell centers). When calculating

the total positional update for a cell, forces from all neighbors are added up on the

tangential plane to the half-sphere surface defined at the current cell position. After the

movement in this plane, the cells are projected down to the half-cylinder surface.

Neighborhood

Neighbors for cells are defined at each time step as cells (spheres) that have an overlap,

d12 < r1 + r2, where d12 is the distance between the cell centers, and redefined directly

at division for the dividing cells. This is determining which cells that have transport

in-between each other as well as which cells that (potentially) interact mechanically.

S3 Possible mechanism for auxin feedback to PIN1 cycling

All of the differential equation terms in Table S1 and S3 follow from the corresponding

reaction mechanisms under either the law of mass action or the M-M approximation in

enzyme kinetics, with the exception of the reaction governing auxin feedback from cell j

to PIN1 cycling in cell i with Hill function or linear rate law. We now exhibit an example
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mechanistic model which can relate this reaction and the differential equation term we

have used for it.

The mechanistic model is in the form of a feedback pathway from auxin in cell j, to

the PIN1 cycling in cell i from the central cytosolic compartment i to the boundary

compartment (ij) with cell j. All reactions in this pathway are assumed to be fast with

respect to those of Table S1, except for the final feedback regulation of the transport

Pi → Pij. The pathway contains four new protein players (Table S4): two proteins

Yj and Bjn that amplify auxin in cell j by a Hill’s function; a ligand Lji that carries

this signal to the boundary of cell j with cell i; a receptor Rij in cell i that receives the

signal by binding with Lji (forming a receptor- ligand complex denoted Cij); and a second

messenger Mij that is activated by Cij to form M∗
ij, the catalyst for the transport reaction

Pi → Pij. All these reactions are shown in Table S5, broken down into subnetworks 1,

2, and 3. These reactions and subnets are also shown in machine-executable form in

the Cellerator [10] notebook feedbackpath.nb. The exact rate law for reactions 1 and

2 follow from the concept that there are n identical and non-interacting auxin-binding

sites on protein B. If m − 1 of them have auxin already bound, then binding reactions

Bj(m−1) → Bjm proceed in proportion to the number of unbound sites (n− (m− 1)). If

m sites are occupied, then unbinding reactions (Bjm → Bjm−1) proceed in proportion to

m. This explains the constants in the reaction schema proposed.

The assumptions of low occupancy for reactions 1 and 2, and high occupancy of reaction
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7, in Table S5 are satisfied if we have the limits

k′f
k′r

Aj << 1, , and (S9)

K ′
M << M tot

ij , (S10)

where M tot = Mij + M∗
ij is constant. Under these assumptions, it is possible to derive

the equilibrium conditions for each subnetwork above. They are:

Subnet1: Bjn = BT k′nfA
n
j /k′nr , where BT =

∑
l Bjl. This raises auxin to the n’th power.

Subnet 2: Lji = (v′/k′)YjA
n
j /(K

n
Hill + An

j ), where KHill = (K ′/BT )1/nk′r/k
′
f . This provides a

Hill’s function.

Subnet 3: M∗
ij = VeffA

n
j /(Kn

Hill,eff + An
j ), where KHill,eff = (k′k′4K

n
Hill/(k

′k′4 + k′3v
′Yj))

1/n,

and Veff = k′3v
′v′1R

T
ijYj/(k

′
2(k

′k′4 + k′3v
′Yj)), where RT

ij = Rij + Cij. This moves

information in the form of a Hill’s function from cell j to cell i.

Finally subnet 4 moves slowly, with rate in direct proportion to the catalyst M∗ which

is present proportionate to the Hill’s function of auxin in cell j:

M∗
ij =

VeffA
n
j

Kn
eff + An

j

(S11)

The final rate law is then

dPij

dt
= k′1M

∗
ijPi − k2Pij (S12)
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Table S4: Example feedback pathway players
Row Molecule Description

1 Aj auxin in (neighboring) cell j (as already in paper)
2 Bj(m) n-sited auxin-binding protein, with any m out of n sites filled
3 Yj a one-sited enzyme that converts B into ligand L
4 Lji ligand in cell j, adjacent to cell i
5 Rij receptor in cell i, adjacent to cell j
6 Cij activated receptor-ligand complex in cell i, adjacent to cell j
7 Mij second messenger in cell i, adjacent to cell j
8 M∗

ij activated second messenger in cell i, adjacent to cell j
9 Pi cytosolic PIN1 in cell i (as already in paper)
10 Pij PIN1 in cell i, adjacent to cell j (as already in paper)

as claimed. Note that the Hill function becomes linear, so that f(A) = A, in the limit

n = 1, Keff >> Aj.

Thus, the rate law in reaction 9 of Table S1 has at least one possible mechanistic realiza-

tion in the form of a feedback pathway that includes a new receptor, ligand, and second

messenger. Many other detailed hypotheses are also possible and would do the same job.

S4 PIN1 cycling parameter optimization

To be able to optimize the PIN1 cycling model using the two-dimensional single-time

point template of PIN1 some assumptions are necessary. (1) The molecular transport

and reactions involved are fast compared to the growth of the plant such that the con-

centrations within compartments can be assumed to be in or close to equilibrium. (2)

The detailed auxin transport model provides a good estimation of the auxin equilibrium
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Table S5: Example feedback pathway reactions
Row Reaction Rate
Subnet 1 (fast): (m ∈ {1, ..n})

1 Bj(m−1)
Aj→ Bj(m) Aj(n−m + 1)k′fBj(m−1)

2 Bj(m) → Bj(m−1) Bj(m)mk′r
Subnet 2 (fast):

3 Bj(n)
Yj→ Lji

v′YjBjn

K′+Bjn

4 Lji → Bj(n) k′

Subnet 3 (fast):
5 Lji + Rij → Cij k′3LjiRij

6 Cij → Lji + Rij k′4Cij

7 Mij
Cij→ M∗

ij
v′1CijMij

K′
1+Mij

8 M∗
ij → Mij k′2M

∗
ij

Subnet 4 (slow):

9 Pi

M∗
ij→ Pij k′1M

∗
ij

10 Pij → Pi k2

concentrations given PIN1 localization as input. Given these assumptions, we use the

following schema to optimize the PIN1 cycling models:

1. We simulate the detailed auxin transport model until equilibrium is reached using

static compartmental topologies and PIN1 concentrations as extracted from the

template (Figure 1D in the paper).

2. We simulate the PIN1 cycling model until equilibrium is reached (or calculate equi-

librium concentrations) using static compartmental topologies, cellular PIN1 con-

tents as extracted from the template, and static auxin concentrations resulting from

the previous step. Cellular PIN1 contents are the total amount of PIN1 in the cel-

lular compartment and connected membranes (Figure 1C in the paper).
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3. We use an objective function to determine the difference of PIN1 localization be-

tween template and model. We use an average squared error as objective function

E = 1/Ncomp

∑Ncomp(P template
comp − Pmodel

comp )2, where Ncomp is the number of compart-

ments, and P template
comp ,Pmodel

comp are the PIN1 concentrations from the template and

model respectively.

4. We redo step 2 and 3 using an optimization algorithm by which parameters are

adjusted until optimal values are found.

For step 2 in the optimization procedure, we use the analytically calculated equilibrium

concentrations for the comparison to the extracted template values. The PIN1 equilib-

rium (from Equations S3,S4) and P tot
i V tot

i = PiVi +
∑

k∈Ni
Pikaik) are given by

P ∗
i =

KP P tot
i V tot

i

KP Vi +
∑

k∈Ni

An
k

Kn+An
k
aik

, (S13)

P ∗
ij =

An
j

Kn+An
j
P tot

i V tot
i

KP Vi +
∑

k∈Ni

An
k

Kn+An
k
aik

, (S14)

where P tot
i V tot

i for different cells are measured in the experimental template. Since the

equilibrium concentrations are used in the optimization, only the relative strengths of

the cycling rates (KP = k2/k1) can be optimized, together with the Hill coefficient, and

constant, n, K. We use a simple local search algorithm, where a single parameter is

randomly chosen and multiplied (or divided) by a factor 1.01. The algorithm is greedy

and the new parameter value is only kept if the cost E is lowered. Using multiple
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restarts with random initial parameter values suffice to find good solutions. There is a

well defined region in parameter space that corresponds to good solutions as can be seen

in Figure S6A, and solutions found when the local optimizer is restarted 100 times is

shown in Figure S6B.

S5 Analysis of the simplistic model

To further investigate the behavior of the simplified model, we have carried out a linear

stability analysis of Equation 4 in the paper at the homogeneous fixed point (Ai = A,∀i)

in the one-dimensional periodic case. The Jacobian matrix, Jij = dfi/dAj has elements

defined by

Jij = 0, |i− j| > 2, (S15)

Jij = −TP

4
, |i− j| = 2, (S16)

Jij = D +
TP

2
, |i− j| = 1, (S17)

Jij = −2D − TP

2
, |i− j| = 0, (S18)
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Figure S6: Optimization for the PIN1 cycling model using a non-linear auxin dependence for the cel-
lular to membrane term. The parameters that are optimized and shown in the plots are the relative
internalization/membranalization strengths, KP = k2/k1, and the Hill coefficient and constant, n,K.
A) Mean squared error, Etot for different parameter values. B) Solutions found by restarting the local
optimizer 100 times with different initial parameter values. The optimimum parameter set chosen for
further investigations is also marked in the plot (n = 3.0, K = 0.4, and Kp = 0.4).
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and the eigenvalues of this matrix determine the stability of the homogeneous state [11].

The matrix is translationally invariant, and the eigenvalues are given by

λp =
∑

k

Jk0e
−ipk (S19)

= −(2D +
TP

2
)e0 + (D +

TP

2
)(e−ip + e−ip)− TP

4
(e−2ip + e−2ip) (S20)

= −2D + (2D + TP ) cos(p)− TP cos2(p), (S21)

where p = 2πpk/N , and N is the number of cells, and pk ∈ [0..N − 1] (p ∈ [0 : 1)).

The eigenvalues for different parameter values are shown in Figure S7A for continuous

values of p (infinite sized lattice). As can be seen in the figure, some parameter values

give rise to positive eigenvalues, leading to instability of the homogeneous fixed point.

The constraint on the parameters for an unstable homogeneous state can be defined by

looking at the largest eigenvalue (λmax > 0) among the allowed p values and leads to

D/TP < 0.5. The conclusion is that for large enough active transport, the homogeneous

fixed point is unstable and a small deviation from this will result in spatially patterned

auxin concentrations.

To conclude the analysis presented here, we have also looked at the eigenvectors con-

nected to the maximal eigenvalues. The eigenvectors can be written as Ak = exp(±ipk),

and since p for the maximal eigenvalues larger than zero is restricted to p ∈ [0, π/3] the

wavelength of the eigenvectors, ωk, in cell space are restricted by 6 ≤ ωk ≤ ∞ (Figure

S7B). Hence the patterns are in an initial phase when leaving the unstable homogeneous
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Figure S7: A) Eigenvalue distribution for similar values of D/TP as used in the simulations presented
in Figure 3 in the paper. The homogeneous state is unstable if the maximal eigenvalue is larger than
zero. B) Distance between peaks at initial dynamics around the unstable homogeneous fixed point as a
function of D/TP .

fixed point peaks at least six cells apart, and, in theory, there is no upper limit on the

distance between peaks in this infinite one-dimensional case. The analysis is an inves-

tigation of the behavior close to the homogeneous state where not only the maximal

eigenvalue is positive. The dynamics away from this state are not analyzed using this

linear approach, but the final equilibrated states (Figure 3 in the paper) still show nice

resemblance of the initial breaking patterns from the analysis. It should be noted that

while we have presented this analysis for a simplistic description of the model to clarify

the underlying dynamics, analysis of models using a more detailed description of cycling

and transport leads to similar conclusions, including analysis of models including cellular

and wall compartments explicitly.
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S6 Tools and implementation details

S6.1 Image processing tools

The image analysis tools are described in some detail in [5]. The background extraction,

uses a matlab script which utilizes the GVF-package [12] (http://iacl.ece.jhu.edu/projects/gvf/).

We are greatful to Ylva Aspenberg for the implementation. The other image processing

tools used are special purpose software written in C++. The software is built around a

watershed [2] type of algorithm and is applicable to two and three dimensional (confocal)

images.

S6.2 Modeling tools

All models are simulated in a C++ program which numerically solves the ODE equations

using a 5th order Runge-Kutta solver with adaptive time steps [8]. It allows for changes

in the number of variables and equations (e.g. at cell divisions) during the simulations. It

includes an extendable library of reaction, transport, growth, and mechanical interaction

mechanisms suitable for developmental and multicellular simulations.
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S6.3 Visualization tools

Model results are visualized using C++ programs that reads the simulator output and

creates tiff (Figures 1, 2, 4, 5) or postscript (Figure 6) output. The three-dimensional vi-

sualizations (Figure 5 and Supplementary movies) use openGL (http://www.opengl.org)

and produces tiff files as output. Movies from these tiff files are created using Quick-

time Professional (http://www.apple.com). Plots (Figures 3,4) are created using gnuplot

(http://www.gnuplot.info).
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