
 

--------------------------------------------------------------------------- 
*These authors contributed equally to this work 
Biology correspondence should be addressed to G.W.H. (gwhatfie@uci.edu). 
Computation correspondence should be addressed to E.D.M. (emj@uci.edu). 

 
 

APPLICATION OF A GENERALIZED MWC MODEL FOR THE 
MATHEMATICAL SIMULATION OF METABOLIC PATHWAYS 

REGULATED BY ALLOSTERIC ENZYMES 

TAREK S. NAJDI* 

Institute for Genomics and Bioinformatics, Department of Microbiology and Molecular Genetics, College 
of Medicine, University of California, Irvine, Irvine, California 92697 

tnajdi@uci.edu 

CHIN-RANG YANG* 

Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas 
Dallas, Texas 75390 

BRUCE E. SHAPIRO 

Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive, Pasadena, 
California 91109 

bshapiro@caltech.edu 

G. WESLEY HATFIELD 

Institute for Genomics and Bioinformatics, Department of Microbiology and Molecular Genetics, College 
of Medicine, University of California, Irvine, Irvine, California 92697 

ghatfie@uci.edu 

ERIC D. MJOLSNESS 

Institute for Genomics and Bioinformatics, Donald Bren School of Information and Computer Science, 
University of California, Irvine, Irvine, California 92697 

emj@uci.edu 

In our effort to elucidate the systems biology of the model organism, Escherichia coli, we have developed 
a mathematical model that simulates the allosteric regulation for threonine biosynthesis pathway starting 
from aspartate. To achieve this goal, we used kMech, a Cellerator language extension that describes 
enzyme mechanisms for the mathematical modeling of metabolic pathways. These mechanisms are 
converted by Cellerator into ordinary differential equations (ODEs) solvable by MathematicaTM. In this 
paper, we describe a more flexible model in Cellerator, which generalizes the Monod, Wyman, Changeux 
(MWC) model for enzyme allosteric regulation to allow for multiple substrate, activator and inhibitor 
binding sites. Furthermore, we have developed a model that describes the behavior of the bifunctional 
allosteric enzyme aspartate kinase I-homoserine dehydrogenase I (AKI-HDHI). This model predicts the 
partition of enzyme activities in the steady state which paves the way for a more generalized prediction of 
the behavior of bifunctional enzymes. 
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1.  Introduction 

Systems biology uses the mathematical modeling of biological networks to allow scientists to 
understand and observe complex biological behaviors and predict the outcomes of metabolic 
and genetic perturbations. The major biological networks that are undergoing active modeling 
include: transcriptional regulation, metabolic networks, signal transduction and mechanical 
networks. To integrate the large amount of data produced by these networks, it is essential to 
develop mathematical models to simulate such complex biological systems. 

Allosteric regulation has been applied to signaling molecules as diverse as regulatory 
enzymes, nuclear and membrane receptors and even spliceosome activation. In this type of 
regulation, regulatory effectors bind at sites distinct form substrates and affect the catalytic 
activity and substrate binding through a reversible conformational change which also allows 
for cooperative binding of regulators. In metabolic pathways, allosteric enzymes are located at 
key points to regulate metabolite flow. If the end product accumulates in excess of the cell's 
needs, it usually acts as an inhibitor of the first enzyme specific to its synthesis and keeps its 
own concentration and the concentration of other intermediates at steady state levels.4 This is 
where allosteric regulation of enzyme activity and its role in feedback regulation become 
important. In addition, the activity of allosteric enzymes can be positively or negatively 
regulated by the concentration of the substrate itself, or by intermediate or final products of 
other pathways. This type of regulation helps metabolic networks maintain a steady state, and 
achieve efficiency and coordination with one another. 

We have previously described kMech,1 a mathematical model tool for complex enzyme 
mechanisms, and applied it to model the biosynthesis of the branched chain amino acids, L-
isoleucine, L-valine, and L-leucine in Escherichia coli.2 As a rule of thumb, metabolic 
pathways are regulated tightly by the feedback inhibition of the end-products.  In kMech, we 
provide three basic types of inhibition (competitive, non-competitive and uncompetitive). 
Here, we develop a Generalized Monod, Wyman, Changeux (GMWC) model for the more 
complex, allosteric feedback regulation for enzymes regulated by different binding sites of 
substrates, activators and inhibitors. The GMWC model is an extension of the original MWC 
concerted allosteric transition model published by Monod et al.3 The major enhancement is 
that the GMWC model can accommodate multiple substrates with activator and inhibitor 
binding sites, whereas the original MWC can accommodate only single substrate, activator 
and inhibitor binding sites. The GMWC model is especially useful for modeling threonine 
biosynthesis in E. coli, since there are three allosteric enzymes, aspartate kinase I (AKI), 
aspartate kinase III (AKIII), and homoserine dehydrogenase (HDHI), of total six enzymes in 
this pathway (Fig. 1). 

 
 
 
 
 
 
 
 
 
 



  
 

 
 
 
 
 
 
 

 
Fig. 1. The metabolic pathway for threonine biosynthesis from aspartate in E. coli. The abbreviations of metabolites 
are: Asp, aspartate; AspP, Aspartyl phosphate; ASA, aspartate semialdehyde; Hse, homoserine; HseP, homoserine 
phosphate; Thr, threonine. The abbreviations of enzymes are: AKI, aspartate kinase I (EC 2.7.2.4); AKIII, aspartate 
kinase III (EC 2.7.2.4); HDHI, homoserine dehydrogenase I (EC 1.1.1.3); ASD, semialdehyde dehydrogenase (EC 
1.2.1.11); HSK, homoserine kinase (EC 2.7.1.39); TS, threonine synthase (EC 4.2.3.1). Feedback inhibition patterns 
are indicated by dashed lines. 

 
Threonine synthesis, starting from aspartate, is a five-step metabolic pathway (Fig. 1). The 

first step of the pathway is a two-substrate, two-product (BiBi) reaction with the two 
substrates aspartate (Asp) and ATP, and the two products Aspartyl phosphate (AspP) and 
ADP. This step is catalyzed by three isozymes, AKI, aspartate kinase II (AKII) and AKIII. 
AKI is a bifunctional enzyme (AKI-HDHI) carrying both aspartate kinase and homoserine 
dehydrogenase activities (Step three). It is an allosteric enzyme made up of four subunits and 
inhibited by threonine.5 The kinetic behavior of this enzyme can be simulated by the GMWC 
model.  This model states that the enzyme exists in equilibrium between an active (R) state 
and an inactive (T) state, whereby binding of substrate or activator will shift the equilibrium 
towards the R state while binding of inhibitor will shift it towards the T state. The fractional 
saturation (Yf) of enzyme bound by substrate is described as a function of the substrates and 
effectors.3 AKII is also a bifunctional enzyme carrying both aspartate kinase and homoserine 
dehydrogenase (HDHII) activities. This enzyme has no effectors and exists at very low levels 
in E. coli K12.6 Therefore; we did not include it in our simulation. AKIII is an allosteric 
enzyme made up of two subunits and inhibited by lysine.7 Its kinetic behavior is also 
described by the GMWC model.7

In the second step of the pathway, aspartate semialdehyde dehydrogenase (ASD) catalyzes 
a reversible two substrates/three products (BiTri) reaction with AspP and NADPH as 
substrates and aspartate semialdehyde (ASA), NADP and inorganic phosphate as products.8 
The third step is a BiBi reaction with the two substrates ASA and NADPH and the two 
products homoserine (Hse) and NADP. This step is catalyzed by HDHI activity of the bi-
functional enzymes (AKI-HDHI). HDHI is an allosteric enzyme made up of four subunits and 
is inhibited by threonine.3 Its kinetic behavior also is described by the GMWC model.3

The forth step of the pathway is a BiBi reaction with the two substrates Hse and ATP and 
two products homoserine phosphate (HseP) and ADP. This step is catalyzed by homoserine 
kinase (HSK) and competitively inhibited by threonine.9 The fifth and final step of the 
pathway is a simple one substrate/one product reaction that results in the conversion of HseP 
into threonine. This step is catalyzed by threonine synthase (TS) and has no effectors.10

The enzyme kinetics of individual enzymes of this pathway have been subjected to 
extensive study over the past 40 years. However, a detailed mathematical model of the 
pathway with allosteric regulation has not been available. 
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2.  Methods and Tools 

To generate a simulation of threonine biosynthesis, we used MathematicaTM, Cellerator, and 
kMech. MathematicaTM is software developed by Wolfram Research and used in various 
applications including mathematical calculations, solving equations, and programming. 
Cellerator is a MathematicaTM package designed for the generation of chemical reaction 
networks that describe complex cascades as well as differential equation models that are 
derived from such networks.11 These differential equations are solvable by MathematicaTM. 
kMech is a Cellerator language extension that describes enzyme mechanisms for the 
mathematical modeling of metabolic pathways. Using the law of mass action, the more 
complex enzyme mechanisms supplied in kMech are interpreted by Cellerator to generate 
ordinary differential equations (ODEs) for each reactant. Allosteric enzymes get specialized 
rate laws as discussed later in this paper and the parameters in the ODEs were obtained as 
described in the section below. The differential equations and variable definitions are then 
passed to MathematicaTM where they are solved by its numeric solver (NDSolve) function and 
times vs. concentration plots are generated. This method was described in detail previously.1

2.1.  Parameter estimation and optimization 

The mathematical model for the pathway includes the entire forward and reverse single and 
multiple substrate enzyme kinetic reactions and the regulatory feedback inhibition 
mechanisms of the pathway (allosteric, competitive, and non-competitive). Enzyme kinetic 
constants for substrate (Km), inhibitor (Ki), and activator (Ka) were obtained from the 
literature. Forward and reverse rate constants (kf, kr, kfi, kri,) were approximated from kinetic 
measurements (Km, kcat). The development of such approximation methods for estimating 
unavailable model parameters were previously described.1 Intracellular enzyme 
concentrations are difficult to measure and usually are not available. For this reason, we 
previously described a method for approximating enzyme concentrations from DNA 
microarray data.1, 2  

A MathematicaTM notebook of the simulation with the detailed kMech and GMWC 
models, corresponding ODEs, kinetic rate constants, and initial conditions for solving the 
ODEs for the pathway, a MathematicaTM executable kMech.m file, and a list of reported and 
optimized enzyme kinetic and physical parameters used to solve differential equations in the 
simulation and their literature sources are available at the University of California, Irvine 
(UCI), Institute for Genomics and Bioinformatics (IGB) website, 
http://www.igb.uci.edu/servers/sb.html.  Cellerator, available at the same site, is free of 
charge to academic, U.S. government, and other nonprofit organizations. 

2.2.  Generalized Monod, Wyman, Changeux concerted allosteric transition model 
(GMWC) 

According to the original MWC model,3 an allosteric enzyme can exist in an active (R) state 
or an inactive (T) state. The fraction of active enzyme in the R or T states is determined by the 
concentrations and relative affinities of substrate (Asp for AKI and AKIII, and ASA for 
HDHI), inhibitor (Thr for AKI and HDHI, and Lys for AKIII), and activator (none present in 
this model) for the R and T states. The original model is described by Eq. (1) and Eq. (2). 
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concentrations, respectively;  Km, Ki and Ka are their respective dissociation constants; n is the 
number of substrate and effector ligand binding sites; c is the ratio of the affinity of the 
substrate for the catalytically active R state and the inhibited T state; L is the equilibrium 
constant (allosteric constant) for the R and T states in the absence of ligands; vo is the initial 
reaction velocity (initial rate of product generation, d[P]/dt); and Vmax is the maximal reaction 
velocity. 

The first equation describes the fraction of the enzyme in the catalytically active state (R) 
as a function of substrate and effector concentrations. The second equation describes the 
fractional saturation (Yf = vo/Vmax) of the enzyme occupied by substrate as a function of 
substrate and effector concentrations.12  

 Because the MWC model is an equilibrium model, it may be derived from its “partition 
function” Z,13 where                     , where i is the index of all possible enzyme states and the 
probability of any given enzyme state, Pi, is  
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Here, ∆G is Gibbs free energy difference of enzyme state and τ = kT, where T is the 
temperature and k is Boltzmann’s constant.  For example, a single binding site for ligand l 
with concentration [l] and equilibrium constant, Kl, could have a partition function 
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If we defined the free energy differences with respect to the unbound state, then 
∆G(unbound) is zero and the partition function of the ligand-bound state is the fugacity of the 
interaction between ligand and enzyme in solution, [l]/Kl. In the case of non-interacting 
systems Z1 and Z2, probabilities and partition functions both multiply: Z = Z1 Z2. If we 
imagined all binding sites, j, of an enzyme to be completely independent, the partition 
function would just be a product over sites:  
.   )/][1(∏ +=

j
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                                .   
However, the effect of binding sites on the enzyme activity is not considered in this simplified 
model and it has little biological function. 

The MWC model is a minimal complication of the non-interacting model: it has two 
global states (an active R state and an inactive T state) in addition to the local binding site 
states, occupied and unoccupied. Although all binding sites act independently in each global 
state, each binding site couples to the specific global state.  Therefore Z is a sum of two 
products over binding sites. In the R state, the independent binding sites consist of one 
substrate-binding site per subunit and one activator-binding site per subunit; all inhibitor 
binding sites have zero probability of occupancy.  If the enzyme has n identical subunits, then 
the partition function, ZR, for the R state is 
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Likewise the T state has independent binding for each substrate and each inhibitor, but not for 
any activators: 
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The MWC partition function is just the sum of these terms: 
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Generally in equilibrium statistical mechanics, thermal averages may be computed in 
terms of suitable derivatives of the logarithm of the partition function Z.  Since α is the 
fugacity variable pertaining to the substrate, the average number of binding sites occupied by 
the substrate is in general13
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For example, if we had just the R state alone with no cooperativity whatsoever, this average 
occupancy would be 

∂ log ZR
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exactly as one would expect for n independent binding sites. 

For the MWC model, then, the average number of binding sites occupied by the substrate 
is ∂ log ZMWC
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Therefore,                               , which demonstrates Eq. (2). 
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However, the original MWC model can only accommodate one substrate, one activator 

and one inhibitor. In order to model multiple-ligand allosteric enzymes in E. coli, we 
developed a Generalized MWC (GMWC).  In this model, each substrate will have its own 
activator and inhibitor and each triple of a substrate, its activator, and its inhibitor will have a 
corresponding triple of binding sites on each subunit. 

The GMWC model can be derived in a similar way to the MWC derivation above, by 
elaborating the picture of the enzyme and its binding sites.  We assume each subunit has Q 
different substrate binding sites, each of which binds a different but necessary substrate Sq.  
For simplicity, assume also each substrate has one corresponding activator aq and one 
inhibitor iq.  

To find the partition function and therefore the kinetics for this GMWC model, we 
generalize the foregoing equations by reasoning as follows. If there were only one global state 
for the enzyme, all binding events would be independent of one another.  The partition 
function would be a product of independent partition functions, one per binding site, as 
follows:  



  
 

∏∏∏ +++=+++=−
q

n
q

n
q

n
q

q
qqq

n
state iasiasZ )1()1()1()1)(1)(1(1

 

Here q indexes the Q substrates; sq=[Sq]/KMq is the fugacity of the substrate at any of its 
(identical) sites, [Sq] is the concentration of substrate q, and KMq sets the scale for [Sq] and is a 
generalized version of the dissociation constant of the enzyme-substrate complex in steady 
state; similarly, aq=[Aq]/Kaq where [Aq] is the concentration of activator for substrate Sq; 
iq=[Iq]/Kiq where [Iq] is the concentration of inhibitor for Sq. 

However, the actual situation is different: there are two global states of the n-subunit 
enzyme, the “R” and “T” states.  In the R state, activators can bind but not inhibitors.  In the T 
state, inhibitors can bind, but not activators.  In either state, production occurs in proportion to 
the number of subunits containing all required substrates.   Thus the partition function is a 
sum of two terms, one for the R state omitting inhibitors from the hypothetical single-state 
partition function shown above, and one for the T state omitting activators, with an extra 
multiplicative constant L due to the free energy difference between the two global states when 
all binding sites are empty, and also an extra multiplicative constant c for each substrate 
owing to the change in free energy when that substrate is bound to a site within the T state 
rather than the R state.  The partition function is again a sum of non-interacting binding site 
products: 

ZGMWC = (1+ sq )n (1+ aq )n

q
∏ + L (1+ csq )n (1+ iq )n

q
∏  

From this form, we can see that the rate of product generation (v0) is proportional to the 
fraction of subunits at which all required substrates and no inhibitors are present, which is: 
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where Vmax = kcat[E] and [E] is the total enzyme concentration. This is the differential equation 
used for the GMWC model. An illustration of Yf function with q = 2 is shown in Fig. 2. A 
more detailed version of the model can be derived, using the same logic as above, to 
incorporate the effects of competitive inhibition at the substrate and activator binding sites: 
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qs  is the net competitive inhibition for the substrate sq, and qa is the net competitive 
inhibition for the activator aq. Yet more general parameterizations of this model could provide 
new c factors: c(s) for     and c(a) for     in the T state, so that their binding affinity may be 
unequal in the R and T states, and could also allow any of the factors c: c(s)q and c(a)q to 
depend on q. The detailed documentation of the implementation of the GMWC model can be 
found in the Cellerator web site and the “Help” section in Cellerator. 
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Fig 2.  An illustration of the generalized MWC model. This is an example of an allosteric enzyme with four 
protomers, two substrates and two inhibitors. The black circles represent substrate 1; the black triangles represent 
substrate 2; the grey squares represent inhibitor 1; the grey ovals represent inhibitor 2. The diagram illustrates a part 
of possible enzyme-substrate and enzyme-inhibitor binding states. As described in the text, the Yf function of the 
GMWC model is the fraction of the active enzyme bound by all required substrates for its function, which is the 
fraction of the active enzyme bound by both substrates 1 and 2 as illustrated in this diagram. The denominator of the 
Yf function represents all possible enzyme-substrate and enzyme-inhibitor binding states, and the numerator of the Yf 

function represents all possible enzyme-two substrates binding states.  

3.  Pathway Modeling 

As discussed previously,1, 2 traditional approaches to model enzyme kinetic pathways have 
mostly relied on the Michaelis-Menten kinetic equation for one substrate/one product 
reactions and the King-Altman method to derive equations for complex multiple reactant 
reactions. In these studies, non-linear differential equations are simplified into linear algebra 
equations.14 On the other hand; kMech/Cellerator models include non-linear differential 
equations where complex enzyme mechanisms including single and multiple substrate 
enzyme kinetic reactions, and ligand activation and feedback inhibition mechanisms are taken 
into consideration. 

3.1.  Bifunctional Aspartate Kinase I-Homoserine Dehydrogenase I (AKI-HDHI) 

AKI-HDHI is a bifunctional enzyme carrying both aspartate kinase (AKI) and homoserine 
dehydrogenase (HDHI) activities. It catalyzes two different steps of the same pathway. This 
bifunctional activity was modeled in a way that the binding of either substrate Asp or ASA 
shifts the equilibrium towards one of the activities, namely, the kinase or the dehydrogenase 
activity of the active (R) state of the enzyme, while binding of the inhibitor threonine shifts 
the equilibrium towards an inactive (T) state and binding of the substrates Asp and ASA shifts 
it back towards the active (R) state (Fig. 3).  
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Fig. 3. A model for the bifunctional enzyme AKI-HDHI. The diagram shows that the substrates Asp and ASA will 
trigger the switch to the kinase and the dehydrogenase activities of the enzyme respectively, while the inhibitor Thr 
will shift the equilibrium from the active (R) state of the enzyme to the inactive (T) state. Abbreviations used here 
are: RAKI, active state of Aspartate Kinase I; RHDHI, active state of Homoserine Dehydrogenase I; TAKI, inactive state 
of Aspartate Kinase I; THDHI, inactive state of Homoserine Dehydrogenase I; Asp, aspartate; ASA, aspartate 
semialdehyde; Thr, threonine. 
 

The GMWC inputs for the interchange between AKI kinase and HDHI dehydrogenase 
activities are described by the two reactions below: 

 
        ASA 

{{{AKI ⇒ {HDHI}, 
     {{},{},{}} 
 

GMWC [cGMWC→ cASA, LGMWC→ LASA, nGMWC nASA, KGMWC {KmHDHIASA}, 
kcatGMWC kcat$AKI$HDHI]}} 

→ →
→

 
            Asp 

{{{HDHI {AKI}, ⇒
        {{},{},{}} 
 

GMWC [cGMWC→ cAsp, LGMWC→ LAsp, nGMWC nAsp, KGMWC→ {KmAKIAsp}, 
kcatGMWC kcat$HDHI$AKI]}}  

→
→

 
Here, the interchanging enzymes are on either side of the reaction arrow and the substrates for 
these enzymes are on top of the arrow. The scheme is followed by the reaction type of 
enzyme mechanism and the parameters required for such mechanism. On the other hand, the 
GMWC inputs for the interchange of AKI and HDHI between each of their active (R) and the 
inactive (T) state are described by the following: 
 

        AKI 

{{{Asp {AspP}, ⇒
         {{},{Thr},{}} 
 
GMWC [cGMWC→ cAKI, LGMWC LAKI, nGMWC nAKI, KGMWC→ {KmAKIAsp, 
KiAKIAspThr}, kcatGMWC kcat$AKI$Asp]}} 

→ →
→

 
        HDHI 

{{{ASA {AKI}, ⇒
        {{},{Thr},{}} 
 
GMWC [cGMWC→ cHDHI, LGMWC→ LHDHI, nGMWC nHDHI, KGMWC {KmHDHIASA, 
kiHDHIASAThr}, kcatGMWC kcat$HDHI$ASA]}} 

→ →
→

 
Here, and for the rest of the reaction schemes, the substrates are listed on the left hand side of 
the reaction arrow, the products on the right hand side of the arrow, the enzyme on top of the 



arrow and the effectors, if present, below the arrow. This scheme is followed by the reaction 
type of enzyme mechanism and the parameters required for such mechanism. Cellerator 
translates the above GMWC models into the fraction of substrate saturated enzyme (Yf) as a 
function of the substrate (Asp for AKI and ASA for HDHI respectively) and the inhibitor 
(Thr) as seen in Eq. (1) and Eq. (2). 

(1) 

(2) 
 

3.2.  Aspartate kinase III (AKIII) 

AKIII is an allosteric enzyme inhibited by lysine and is also described by the GMWC model: 
 
       AKIII 

{{{Asp {AspP}, ⇒
       {{}, {Lys}, {}} 
 
GMWC [cGMWC→ cAKIII, LGMWC LAKIII, nGMWC nAKIII, KGMWC → {KmAKIIIAsp, 
KiAKIIIAspLys}, kcatGMWC kcat$AKIII$Asp]}} 

→ →
→

 
Cellerator translates this model into the fraction of substrate saturated enzyme (Yf) as a 
function of the substrate (Asp) and the inhibitor (Lys) as seen in Eq. (3).  
 
 
 
 
 

(3) 

 

3.3.  Aspartate semialdehyde dehydrogenase (ASD) 

This step catalyzed by ASD is a reversible two substrate/three products reaction (BiTri). Its 
kMech inputs are: 
 
                                      ASD 

Enz [{AspP, NADPH}⇔ {ASA, NADP, Phosphate},  
BiTri [kfASDAspP, krASDAspP, Kcat$ASD$AspP]] 
 
                                                      ASD 

Enz [{ASA, NADP, Phosphate} {AspP, NADPH},  ⇔
TriBi [kfASDASA, krASDASA, Kcat$ASD$ASA]] 
 
The first kMech input is for the forward reaction, and the second kMech input is for the 
reverse reaction. The metabolites in the bracket on the left side of arrows are substrates, and 
on the right are products. Enzyme names are above the arrows. BiTri and TriBi indicate 



  
 

enzyme mechanisms. Variable names with kf - prefixes are rate constants of the enzyme-
substrate associations; variable names with kr - prefixes are rate constants of the enzyme 
substrate dissociations; variable names with kcat - prefixes are catalytic rate constants for the 
formation of products. The detail description of how kMech parsing the enzyme models into 
association-dissociation reactions in Cellerator syntax, then translated into ODEs can be 
found in our previous publication1 and at the UCI, IGB web site. 

3.4.  Homoserine kinase (HSK) 

The step catalyzed by HSK is a two substrate/two products reaction (BiBi) reaction 
competitively inhibited by threonine (Thr). Its kMech input is: 
 
                              HSK 

Enz [{Hse, ATP} {HseP, ADP}, ⇔
BiBi [ kfHSKHse, krHSKHse, kcat$HSK$Hse], CI [ Thr, kfiHSKHseThr, kriHSKHseThr]] 
 
CI indicates competitive inhibition. Thr is the competitive inhibitor that competes with 
substrate for the same binding site. Variable names with a kfi - prefix are rate constants of the 
enzyme-inhibitor associations; variable names with a kri - prefix are rate constants of the 
enzyme-inhibitor dissociations. 

3.5.  Threonine synthase (TS) 

The last step is a simple one substrate/one product reaction catalyzed by TS. This basic 
enzyme model is provided by Cellerator: 
 
{{ASA→Ø, kfASA}} 
{{Hse Ø, kfHse}} →
{{Thr Ø, kfThr}} →

4.  Results 

4.1.  Data fitting for the GMWC model 

In order to apply the GMWC model to AKI, HDHI and AKIII, several parameters are 
required as described above. S, A, I, n, Km, Ka, and Ki, are usually available in literature. 
However, the values of c and L are often not available. Such values can be calculated by 
fitting substrate saturation curves in the presence and absence of various inhibitor 
concentrations.1, 15 Here, the c and L values for AKI, HDHI and AKIII were calculated by 
finding the minimum sum of squared differences between theoretical data and experimental 
data with the non-linear programming MathematicaTM function, FindMinimum and fitting 
data from inhibition curves in the presence of the substrate available in the literature.16, 17, 18 
For example, the fractional saturation of AKIII in the presence of several concentrations of 
the inhibitor, Lys and how this fits with data obtained from the literature, is shown in Fig. 4. 
 
 
 
 
 



 A. B. c
 
 
 
 
 
 
 

 
Fig. 4. Optimization of physical constants, c and L, for the concerted transition allosteric Monod, Wyman, and 
Changeux (MWC) model. (A) Black dots represent experimental measurement of Yf values for E. coli Aspartate 
Kinase III with substrate (Aspartate, Asp) and various inhibitor (Lysine, Lys) concentrations. The solid curves 
represent theoretical Yf values of calculated with c and L values determined from Panel B. (B) The error function 
(Err) is the sum of squared differences between experimental data (black dots) and theoretical Yf values calculated 
with values of c from 0 to 1, and L from 0 to 1800. The pair of c and L values that produce minimum errors are 
c=0.00005, L=1000. 
 

 In this case, and due to the lack of experimental data, we were limited to constructing our 
fitting curve using only one concentration of the substrate Asp and several concentrations of 
the inhibitor Lys. This fitting was sufficient for the calculation of the c and L values of AKIII. 
MathematicaTM notebooks fitting the experimental data of AKI, HDHI and AKIII, and 
computing the c and L values, respectively, are available online at our web site listed above. 
Our computations show that for AKI, c = 0.0001 and L = 10000, for AKIII, c = 0.00005 and L 
= 1000 and for HDHI, c = 0.008 and L = 3000. So in the case of these three enzymes, c << 1 
and L >> 1 which indicates that the substrates will only bind to the enzymes in the active 
state, and the majority of enzymes will be in the inactive state when no substrate, activator or 
inhibitor are present. The values of c and L can be varied between 10-fold and one tenth of the 
estimated values above without changing the concentration of threonine predicted in our 
simulation significantly. 

4.2.  Threonine biosynthesis is feedback regulated by threonine 

To simulate constant flux, the first derivatives of substrates such as Asp, ATP and NADPH 
were set to zero. Relative enzyme concentrations were inferred from DNA Microarrays data. 
Initial concentrations of threonine and the intermediates Asp-P, ASA, Hse and Hse-P were set 
to zero. Substrates of the pathway were set to values of intracellular concentrations reported in 
the literature, such as Asp whose initial concentration was set to 3600 µM.19 Forward and 
reverse rate constants were approximated as described previously.1 The differential equations 
were solved by MathematicaTM and plots for the formation of intermediates and products 
versus time were generated. As shown in figure 4, the concentration of Asp was kept at steady 
state conditions as reported in literature.19 The concentrations of the other intermediates start 
at zero and reach a steady state level after a certain time has passed. At the beginning, a sharp 
rise in the concentrations of Asp-P, ASA, Hse and Hse-P is observed followed by a sharp rise 
in the concentration of threonine. This initial rise in the concentrations of Asp-P, ASA, Hse 
and Hse-P is followed by a sharp drop as soon as the concentration of threonine rises which 
demonstrates feedback inhibition mechanisms on AKI, HDHI and HSK by threonine. As a 
consequence, threonine levels start to drop and partially release inhibition in the 
concentrations of intermediates (e.g. ASA) (Fig. 5). At the end, all metabolites reach their 
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respective concentrations at steady state conditions. The intracellular   concentration of   
threonine   reported in literature is within the range of 290 to 520 µM which closely matches 
that seen in the simulation. 20, 21  

 
 
Fig. 5. Simulation of carbon flow through the threonine biosynthesis pathway. The graphical insets show the 
approach (minutes) to steady state (µM) synthesis and utilization of the substrates, intermediates, and end-products of 
the pathway. Abbreviations used here are: Asp, aspartate; AspP, Aspartyl phosphate; ASA, aspartate semialdehyde; 
Hse, homoserine; HseP, homoserine phosphate; Thr, threonine; AKI, aspartate kinase I; AKIII, aspartate kinase III; 
HDHI, homoserine dehydrogenase I; ASD, semialdehyde dehydrogenase; HSK, homoserine kinase; TS, threonine 
synthase. Feedback inhibition is indicated by dashed lines. Starting concentration of Aspartate is kept constant at 
3600 µM. 

4.3.  The mathematical model predicts the partition of enzyme activities of a 
bifunctional enzyme 

The allosteric bifunctional enzyme AKI-HDHI was modeled as described earlier in Fig. 3. 
The enzyme has the kinase and dehydrogenase activities and the switch to either activity 
depends on the amounts of substrate Asp or ASA available. The intracellular concentration of 
AKI-HDHI protein inferred from DNA microarrays is 16 µM and in the model, each activity 
is given an initial concentration of 8 µM when both substrates are not present. As seen in Fig. 
6, constant Asp (3600 µM) leads to a higher fraction of the enzyme having an AKI kinase 
activity initially. This fraction drops when the concentration of ASA (substrate for HDHI) 
increases. At the same time, an increase in the fraction of enzymes having the HDHI 
dehydrogenase activity is observed. The opposite effect is then observed when threonine 
feedback inhibition occurs. The partition of both enzyme activities stabilizes when the 
concentrations of both substrates reach steady states. The model predicts the fraction of 
enzyme having the kinase activity is around 15/16 while that of the fraction having the 
dehydrogenase activity is around 1/16. This kind of prediction can be generally applied to 
other bifunctional enzymes important for the regulation of metabolic flux channeling.  
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
 
 
 
 
 
 

 
Fig. 6. Simulation of the fractional activities of the allosteric bifunctional enzyme aspartate kinase I-homoserine 
dehydrogenase I. The total concentration of the enzyme used here is 16 µM and the concentration of aspartate is kept 
constant at 3600 µM. The data show the concentrations (µM) of both kinase and dehydrogenase activities as steady 
state is approached (minutes), where the fraction of enzyme having the kinase activity is around 15/16 while that of 
the fraction having the dehydrogenase activity is around 1/16. 

4.4.  Simulating the metabolic engineering of a threonine over-producing E. coli K-12 
strain 

One of the goals of systems biology is to facilitate the metabolic engineering of 
microorganisms that overproduce certain chemicals such as amino acids. One important 
approach utilizes the production of strains with feedback resistant mutations in the enzymes 
that regulate the metabolic pathway for the production of the desired product. To test the 
ability of our model to simulate such an effect, the production of threonine was determined in 
the presence of various concentrations of lysine in both wild type and lysine feedback 
resistant AKIII mutant. As seen in Fig. 7, increasing concentrations of lysine result in a 
stronger inhibition and a lower threonine production at steady state in the wild type. On the 
other hand, an overproduction of threonine is observed in the lysine feedback resistant AKIII 
mutant even in the presence of a high concentration of lysine. This phenomenon is observed 
even in the presence of wild type AKI which is normally feedback inhibited by threonine.  
These results are consistent with the data published by Ogawa-Miyata et al.21 where lysine 
feedback resistant AKIII mutants were shown to boost threonine production following the 
addition of lysine.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 7. Simulated effect of lysine feedback resistant aspartate kinase III on threonine production.  The data show the 
concentrations (µM) of threonine as steady state is approached (minutes) in the presence of different concentration 
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(µM) of lysine. The solid line represents wild type AKIII while the dashed line represents lysine feedback resistant 
AKIII mutant. 

5.  Conclusion 

To model the behavior of complex biological systems, we have elected a “bottom-up” 
approach that incorporates detailed enzyme kinetic and pathway-specific regulatory 
mechanisms from the literature into our model. Using kMech/Cellerator, models for enzyme 
mechanisms and their patterns of regulation are converted automatically into association-
dissociation reactions, and then into differential equations. These equations are solved by 
MathematicaTM to simulate the model and generate the graphical output. In addition to 
simplifying the underlining mathematics of writing down differential equations, this approach 
allows us to examine the biochemical behavior of metabolites and enzyme states in the 
pathway with greater detail. Furthermore, the GMWC model expands our ability to simulate 
the behavior of allosteric enzymes and their feedback inhibition mechanisms through binding 
of different substrates, activators and inhibitors. As demonstrated here in two different cases, 
our simulation closely matches data in the literature. In addition, the bifunctional enzyme 
model allows us to predict the partition of enzyme activities in the steady state, and new 
hypotheses and experimental designs can be generated through this type of prediction.  

To these ends, we have developed a technique for incorporating realistic enzyme 
mechanisms such as multiply regulated allosteric enzymes within metabolic models. The 
resulting rate laws take a novel algebraic form, and it cannot be promised that yet more 
realistic models of enzymes and regulation by molecular complexes will remain within this 
expanded vocabulary of algebraic forms for rate laws.  Indeed consideration of “molecular 
machines” in the cell leads us to speculate that detailed models of molecular mechanism may 
become increasingly elaborate in their algebraic form. The question then arises as to whether 
the realistic models that reflect diverse mechanisms can be homogenized into approximating 
dynamics that are simpler than GMWC from the point of view of its traditional algebraic 
expression (Of course GMWC is very simply invoked in kMech.) We do not think that 
enough groundwork has been done yet in developing detailed enzyme-centric models of a 
variety of metabolic networks, including their regulation, to conclude with confidence 
whether they can be uniformly approximated within a modeling framework of simpler and 
more uniform algebraic form. However, we discuss here some of the future possibilities in 
this direction. 

The most widely used homogeneous modeling framework in the field of metabolic 
engineering is metabolic control analysis (MCA).  In contrast to our enzyme-centric approach, 
one major limitation of the traditional MCA is its assumption that a system is always in a 
steady state. Therefore, the traditional MCA approach is not suitable for modeling the 
transient phenomena from perturbations of metabolic parameters such as enzyme expression 
levels and the concentrations of metabolites and ligands that regulate enzyme activities by 
feedback.22 Another major limitation of traditional MCA is its assumption of linearity, which 
is violated by allosteric enzyme mechanisms. These limitations are removed by several other 
modeling techniques such as the Power-law approximation (S-system),23 the (Log)Linear 
refinement of the MCA model22 and  lin-log kinetics24 which have been developed to consider 
enzyme concentrations, feedback regulators and reversible enzyme reactions in the models. 
Other homogeneous-form but nonlinear, dynamical network frameworks for 



phenomenological modeling have been developed for regulatory networks outside of the field 
of metabolism.25  

Whether any such models can closely approximate an enzyme-centric model such as ours 
is a potentially fruitful line of future investigation. Unfortunately, there is reason to believe 
that biology is more complicated than what those models can realistically reflect without the 
introduction of numerous extra dynamical variables. In the threonine biosynthetic pathway 
presented here as an example, in order to model the aspartate kinase isozymes (AKI, AKII 
and AKIII) that are controlled by different modes of regulation, the MCA models must allow 
multiple fluxes for the conversion of Asp to AspP and to model the bi-functional enzyme 
(AKI-HDHI) carrying both aspartate kinase and homoserine dehydrogenase activities, the 
fluxes of Asp to AspP and ASA to Hse have to be dependent on each other. Also in our model 
for the branched chain amino acid biosynthetic pathway2, several enzymes are shared by two 
pathways and their fluxes vary and shift between their partner pathways. These facts point out 
the fundamental drawback of the MCA approach in considering metabolic networks as a 
collection of independent chemical conversions. In contrast, our non-linear, enzyme-centric 
modeling approach relies on simulating metabolic networks as a collection of enzymes 
depending on their individual catalytic and regulatory mechanisms. Our experience suggests 
this can be done systematically for models of successively larger and more inclusive 
metabolic systems. For these reasons, modeling key allosteric regulators using the GMWC 
model presented here is especially important to facilitate the genetic engineering of metabolic 
pathways. 
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