
© 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained

from the IEEE.

For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html.

www.computer.org/intelligent

Sigmoid: A Software Infrastructure for Pathway
Bioinformatics and Systems Biology

Jianlin Cheng, Lucas Scharenbroich, Pierre Baldi, and Eric Mjolsness

Vol. 20, No. 3

May/June 2005

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright

holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases, these works may not be

reposted without the explicit permission of the copyright holder.

68 1541-1672/05/$20.00 © 2005 IEEE IEEE INTELLIGENT SYSTEMS
Published by the IEEE Computer Society

B i o i n f o r m a t i c s

Sigmoid: A Software
Infrastructure for
Pathway Bioinformatics
and Systems Biology
Jianlin Cheng, Lucas Scharenbroich, Pierre Baldi, and Eric Mjolsness,
University of California, Irvine

B iological systems encompass everything from immune and nervous systems to

ecosystems. Systems biology, however, focuses primarily on unraveling molec-

ular systems at the level of pathways and groups of pathways in a cell and its neighbor-

ing cells. Here we address the challenge of creating an expert assistance system for

modeling biological pathways, using current soft-
ware technology to decrease development costs and
complexity. Our goal is to provide computational
support to biologists and computational scientists
who need to create and explore predictive dynamical
models of complex biological systems such as meta-
bolic, gene-regulation, or signal-transduction path-
ways in living cells.

A basic methodological roadmap for systems biol-
ogy outlines four idealized steps:

1. Identify all the system’s players or components,
such as genes, proteins, and compartments.

2. Perturb the components through a series of
genetic or environmental manipulations and
record the global response using high-through-
put technologies (such as microarrays).

3. Build a global model of the system by describ-
ing it biologically, then mathematically, then
computationally.

4. Analyze the model to generate a new testable
hypothesis. Return to step 2 to test the hypoth-
esis, and in some cases to step 1 to discover
missing components.1–3

We developed Sigmoid, a generative, scalable soft-
ware infrastructure for systems biology, to facilitate
the third and fourth steps. By integrating the hypoth-
esis and discovery phases in the research process, Sig-
moid supports the process of cycling between model
building, hypothesis generation, and biological exper-
imentation and data gathering (see figure 1).

This inference cycle demands a scalable software

architecture that can capture biological systems’
underlying complexity and effectively model their
many components and modules that operate at mul-
tiple spatial and temporal scales. We thus had to
ensure that each infrastructure component is intrin-
sically scalable both in the number of biological
objects and processes, and in their logical complex-
ity. While the infrastructure’s primary task is reverse-
engineering biological circuits, in the long run we
expect it to apply also to bioengineering projects by
supporting the design and synthesis of complex sets
of molecular interactions with a particular compu-
tational, biomedical, or biosynthetic purpose.

Sigmoid: An overview
The Sigmoid modeling system consists of dis-

tributed modules that implement the following com-
ponents (see figure 2):

• pathway and cell model generation and simula-
tion (via Cellerator, our cell model generator4),

• a pathway modeling database,
• Web services-oriented middleware,
• a biologist-friendly GUI, and
• parameter optimization and other data mining

technologies (slated for future development).

Key to the infrastructure’s design is its scalability,
ensured by leveraging symbolic computer algebra and
self-generation of database and other code from high-
level representations such as Unified Modeling Lan-
guage schema. UML offers an innovative approach to
coordinating development of Sigmoid’s various soft-

Integrating Sigmoid’s

distributed modules

in a three-tier

architecture supports

a generative, scalable

software infrastructure

for systems biology

modeling projects.

ware modules.5 Consulting with bioinfor-
maticians and biologists, we used UML to dia-
gram the most important biological objects—
reactions and molecular reactants—and their
relationships. This UML diagram then actu-
ally became source code from which several
parts of our system were automatically gener-
ated: specifically, the Sigmoid pathway-mod-
eling database (in Structured Query Language)
and the corresponding Java object hierarchy,
along with support files for facilitating the
object-relational mapping and end-user docu-
mentation. The GUI uses Java “reflection” to
automatically discover much of what it needs
to know about the Sigmoid schema. This guar-
antees that the software implements something
very close to the agreed-upon biological
objects.

At the implementation level, this approach
creates a classical three-tier architecture with
a back end, middle layer, and front end (see
figure 3). The back end includes the database,
simulator, and other model manipulators. The
GUI front end doesn’t access these modules
directly but rather through a Web services
middleware module, which also brokers com-
munications between the back-end compo-
nents themselves. Developing the middleware
adds to development overhead but also pro-
vides immense advantages in distributed com-
puting, performance, flexibility, and scalabil-
ity. The sidebar “Sigmoid Building Blocks”
describes the technologies used in each layer.

To keep the infrastructure flexible and
manageable as it grows, we took a genera-
tive approach that partially automates the
production of both executable code and
mathematical models. This lets us start from
high-level inputs such as UML diagrams and
reaction notations that non-computer scien-
tists could understand. During implementa-
tion, we made visible the design of many
essential software objects and their relation-
ships, which made it easy to gain biologists’
insights on the infrastructure.

Although we’re developing Sigmoid com-
ponents simultaneously, some, such as the
database and simulator, are more mature and
self-sufficient than others and can be used
independently of the GUI or middleware.

Model generation and
simulation: Cellerator

Modeling a biological pathway involves
simulating dozens if not hundreds or even
thousands of elementary chemical reactions.
Whatever the details of the equations (typi-
cally differential equations) used to model

an individual reaction, manually building a
model containing many reactions is a tedious
and error-prone process. Unlike electronic
circuits, which consist of relatively few ele-
mentary building blocks, biochemical reac-
tions can take numerous elementary forms.

Our architecture therefore requires a library
of reusable reaction models expressible in a
simple, higher-level language to specify mol-
ecular species and reaction type. For example,
syntax such as “A + B � C; mass action with
rate k” specifies that molecular species A inter-

MAY/JUNE 2005 www.computer.org/intelligent 69

MathematicsBiology Computing

Hypotheses

Figure 1. Basic systems biology inference cycle.

Database
access

Model
translation

Sigmoid
pathway

representation/
storage

database

Cellerator
simulation/
inference
engine

GUI Controller: manager Model and engines

M
e
n
u

Interactive
graphic
model

(JGraph)

Graphic output

OJB
API

JLink
API

P
r
o
p
e
r
t
y

SOAP:
Web service

XML(object),
Image,

via HTTP

Figure 3. Sigmoid’s three-tier architecture.

Biologists

Bioinformaticians

Schema
Sigmoid/UML

User
interface

SME

Middleware
Jormungand

Simulator
Cellerator

Systems Biology
Markup Language

OptimizerData miner

Database
PostgreSQL

Runtime communication
Design/compile time communication

Figure 2. A top-level view of the Sigmoid architecture. Separating modules into
a communicating distributed system increases the architecture’s scalability. Our
simulator is the Cellerator model generator and simulator, the database is Sigmoid
(autogenerated from UML schema not shown), and the user interface is the Sigmoid
Model Explorer (SME).

acts with molecular species B to produce mol-
ecular species C according to the mass action
kinetic law expressed by the differential equa-
tion dC/dt = kAB, where the rate of C’s pro-
duction is proportional to the product of the
concentration of reactants A and B.

This isn’t a problem of numerical analy-
sis—several packages permit solving fairly
large systems of such equations—but rather
one of model management and scalability.
So, we selected Mathematica, a symbolic-
mathematical-language and numerical solver
based on computer-algebra objects and a rich
set of well-implemented mathematical oper-

ations. Indeed, we implemented Cellerator
as a Mathematica notebook, designed to
facilitate biological modeling via automated
equation generation.4

We’ve implemented many molecular-inter-
action models in Cellerator using various for-
malisms. These include differential equations
or stochastic molecular simulation formalism
and range from the law of mass action and
simple Michaelis-Menten models to more
complex models of enzyme reactions (such as
the Monod-Wyman-Changeaux model for
allosteric enzymes) and gene regulation.6

Cellerator reaction models continue to prolif-

erate, along with a library of actual pathway
models comprising sets of coordinated reac-
tions, with parameters derived from the liter-
ature whenever possible. Useful models for
studying signaling and cancer, for instance,
include G-coupled protein receptor activation,
phosphoinositol metabolism reproducing an
observed peak in membrane-bound PIP3
(phosphatidyl inositol-3,4,5-triphosphate),
MAPK (Mitogen Activated Protein Kinase)
cascade7,8 with feedback and possible oscil-
lations, NF�B pathway9 with feedback and
observed oscillations, and published models
of yeast cell cycle checkpoints.

kMech (kinetic Mechanisms) is an extended
set of enzyme mechanism models for single-
and multisubstrate, positively and negatively
regulated, and allosteric enzymes.10 To illus-
trate how Cellerator works, let’s consider the
kMech model of the synthesis of the amino
acids leucine, isoleucine, and valine within the
bacterium E. coli.10 An important reaction in
that pathway is the ping-pong bi-bi mechanism
of the enzyme �-acetohydroxyacid synthase,
which catalyzes the condensation of one pyru-
vate molecule and one �-ketobutyrate mole-
cule to form one �-aceto-�-hydroxybutyrate
molecule.

This enzyme’s substrates bind in an ordered
fashion: a pyruvate molecule must bind to the
enzyme, react with a thiamine pyrophosphate
cofactor to form an active acetaldehyde group
(CH3CO), and release the first product, CO2,

B i o i n f o r m a t i c s

70 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

S1 P1 S2 P

En(a)

(b)

EnS1 Enx EnEnxS1

2

{{S1, S2 {P1, P2}, PingPong[kf1, kr1, kcat1, kf2, kr2, kcat2]}
En,Enx

Figure 4. (a) A representation of the ping-pong bi-bi mechanism of an enzyme’s action
upon substrate (input) molecules S1 and S2 to create product (output) molecules P1 and P2.
(b) The input syntactic representation for this ping-pong bi-bi model in kMech. S1 and S2

are substrates; P1 and P2 are products; En is the free enzyme; Enx is the modified enzyme
intermediate; {…} delimits ordered pairs or n-tuples; kf1 and kf2 are rate constants of the
enzyme-substrate associations for S1 and S2, respectively; kr1 and kr2 are rate constants of
the enzyme substrate dissociations for S1 and S2, respectively; and kcat1 and kcat2 are the
catalytic rate constants for the formation of products P1 and P2, respectively.

The Sigmoid architecture uses a wide variety of software,
languages, and tools, and we use publicly available open-
source tools as much as possible.

The front-end GUI uses

• Java,
• Java reflection,
• JGraph (www.jgraph.com),
• JavaScript,
• Java Web Start (http://java.sun.com/products/

javawebstart),
• HTML,
• XML, and
• a Web browser.

The middleware uses

• Java,
• Java Servlet,
• Java Server Pages,
• XML,
• Simple Object Access Protocol (SOAP, www.w3.org/TR/

soap12-part1),
• Apache Jakarta Tomcat Web server (http://jakarta.apache.

org/tomcat/), and
• Object Relational Bridge (OJB, http://db.apache.org/ojb).

The back-end solver uses

• Cellerator (www.igb.uci.edu/servers/sb.html, www.
cellerator.info),

• Mathematica (www.wolfram.com),
• JLink (www.wolfram.com), and
• Systems Biology Markup Language (SBML, http://sbml.org).

The back-end database uses

• UML (www.uml.org),
• XML,
• PostgreSQL,
• Anything from XMI Generator (AXgen, http://axgen.

sourceforge.net/),
• Velocity Template Language (VTL, http://jakarta.apache.org/

velocity),
• OJB, and
• Linux.

Sigmoid software components are available through www.
igb.uci.edu/servers/sb.html or www.sigmoid.org.

Sigmoid Building Blocks

before the second substrate, �-ketobutyrate,
can bind to the enzyme. Next, the enzyme-
bound active acetaldehyde group must be
transferred to the second substrate, �-ketobu-
tyrate, to form the second product, �-aceto-
�-hydroxybutyrate, in order to release the free
enzyme. This is a bi-bi mechanism because it
has two substrates and two products. It is a
ping-pong mechanism because the enzyme
shuttles between free and substrate-modified
intermediate states (see figure 4).

kMech parses this input into basic associ-
ation-dissociation reactions (in this case, two
single-substrate single-product reactions) that
are readable by Cellerator, which then trans-
lates them to differential equations and vari-
able definitions using mass-action kinetics.
Cellerator then solves these equations by
invoking Mathematica’s numeric solver func-
tion (NDSolve), and generates time plots,

phase plots, numerical datasets, or other
requested output forms. The Sigmoid Path-
way Modeling Database stores this enzyme
mechanism’s parameters.

So, as table 1 shows, Cellerator converts
symbolic reactions to mathematical equations
and solves these using Mathematica. As we’ll
see shortly, it then sends the simulation results
to the middleware controller. We can also write
Cellerator models in SBML (Systems Biology
Markup Language, an XML-based protocol for
systems biology information interchange) for
exchange with other cell simulation systems.

The Sigmoid Pathway Database
We drew upon several existing open-source

projects to implement the Sigmoid Pathway
Database. This lightened the core software
development load considerably, so we could
focus on tying the components together to

produce the specific software products we
needed. PostgreSQL, a leading open source
database, provides the database implementa-
tion. A UML schema (see figure 5) defines
the pathway model database with four major
class hierarchies: Reactions, Reactants, Mod-
els, and Knowledge Sources. Reactions use
Reactants for their products, substrates, and
enzymes, and parameterized Reactions com-
pose Models. These three class hierarchies
use Knowledge Sources to reference external
information about themselves.

We built the initial Sigmoid database by
hand to get started but also sought a method
to automatically transform the class descrip-
tions in the high-level UML diagram into a
set of instantiable objects upon which we
could build applications. Our solution uses
the open-source software AXgen to read
UML diagrams and provide an API to the

MAY/JUNE 2005 www.computer.org/intelligent 71

Table 1. Elementary Cellerator Arrows.

Cellerator arrow Name of Reaction, differential equations Typical biochemical notation

S � P Conversion:

A � B � C Unidirectional reaction:

A � B n � C Unidirectional reaction with cooperativity n
(n must be an integer):

A � B � C Bidirectional reaction:

� � A Creation:

A � � Annihilation:

Enzymatic (catalytic) reaction:

dX
dt

dE
dt

k SE k k Xf r= − = − +()

dS
dt

k SE k X
dP
dt

kXf r= − + =, ,

S E X E P
k

k

kf

r

+ ⎯ →⎯← ⎯⎯ ⎯ →⎯ +S P
E⎯ →⎯← ⎯⎯

A k⎯ →⎯
dA
dt

kA= −

k A⎯ →⎯
dA
dt

k=

dA
dt

dB
dt

dC
dt

k AB k Cf r= = − = − +
A B C

k

k

f

r

+ ⎯ →⎯← ⎯⎯

dA
dt

dB
dt

kAB
dC
dt

n= = − = −

A nB Ck+ ⎯ →⎯

dB
dt

kAB
dC
dt

kAB= − =,

dA
dt

kAB= − ,

A B Ck+ ⎯ →⎯

dP
dt

kS
dS
dt

kS= = −,

S Pk⎯ →⎯

diagram’s structure, thus permitting auto-
generation of software components from a
master UML diagram. AXgen has interfaces
to both the Novosoft UML library (nsuml)
and the NetBeans MetaData Repository
(MDR) library, so we can use one tool to read
a much wider variety of UML than would
otherwise be possible. Once a UML diagram
is loaded, a set of Java classes is generated
for each corresponding UML class.

Apache Velocity Template Language sim-
plified the process of generating classes by let-
ting us create templates that interact with live
Java code. In addition to the Java object class
hierarchy, the auto-generation framework cre-
ates the necessary auxiliary files. In Sigmoid’s
current implementation, this includes SQL
files, creating a database for the schema
defined in the master UML diagram and a
mapping from the generated Java classes to the
database. This mapping uses OJB, an open-
source XML-based object relational bridge.
Eventually, we may also be able to autogener-
ate user interface widgets for each class.

So, we replaced the entire Sigmoid schema
and hand-coded database of over 100 rela-
tions with autogenerated, functionally equiv-
alent code. Throughout this process, the 100-
table Sigmoid database schema (largely a
hierarchy of biological reaction and reactant
types) functioned as a remotely accessible
database. We’ve also successfully populated
Sigmoid’s generative version with several
existing models—for example, of the MAPK
and NF�B pathways—and with selected
metabolic pathways from E. coli for biosyn-
thesis of branched-chain amino acids. These
models contain parameter sets and initial con-
dition sets that engender qualitatively differ-
ent behaviors, such as oscillations’ presence
or absence. Populator programs currently
under development will import data from
other sources (including SBML files and
other databases) into Sigmoid. This will
increase Sigmoid’s power considerably by
capturing diverse community input and mak-
ing it available to end-user biologists in an
integrated manner.

Intelligent middleware
for scalable services

We built an intelligent, distributed Web
middleware layer to access the Sigmoid data-
base and translate reaction sets into Cellera-
tor’s input language. The middleware then
calls Cellerator for model generation and
simulation and receives output data and plots
in response, which it passes to the GUI.
Although it requires some development and
maintenance effort, this layer provides a
gateway between Sigmoid’s front and back
ends that allows each to evolve indepen-
dently as long as it maintains its middleware
interface. Most important, we can scale the
middleware to serve more simultaneous
users simply by increasing the computational
and database server resources.

Large-scale distributed systems use sev-
eral middleware technologies including
SOAP, Common Object Request Broker
Architecture (CORBA), Java Remote Method
Invocation (RMI), and the Windows Dis-
tributed Component Object Model (DCOM).
We used Apache SOAP 2.3.1, hosted by
Tomcat Application Server 4.1.27, to imple-
ment Sigmoid’s middleware. SOAP’s advan-
tages include openness, simplicity, seamless
and natural integration with widely accessi-
ble Internet infrastructures, and full language
and platform independence. These features
meet our requirements for biological path-
way modeling. Because SOAP is built on
cross-platform technology standards such as
HTTP and XML and uses lightweight XML
to encode and transmit data between appli-
cations through HTTP port 80, it enables
cross-platform, cross-language communica-
tion over the Internet and through firewalls.

We created and integrated the following
middleware services, shown in figure 6:

• The request-response processing module
interfaces with the client, dispatching its
requests to the database or simulation
engines and returning the responses to the
client. Client applications can call this mod-
ule via SOAP-based RPC (Remote Proce-
dure Call) as if calling a local function.

• The security management module checks
the client’s identity and password.

• The load balancing module assigns client
requests evenly to different database or
computation servers.

• The database access module fetches data
from and stores data in the Sigmoid database
via OJB. OJB provides an object-oriented
interface to the relational database, mapping

B i o i n f o r m a t i c s

72 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Requests

OJB

Intelligent middleware

JLink

 To/from
simulation

 To/from
database

Security
management

Load balancing

Database
access

Translation and
simulation

access

Request/
response

processing

Figure 6. The Sigmoid intelligent-middleware structure. The request-response processing
module receives requests from and returns results to the client. The database access and
translation and simulation access modules interface with their corresponding back-end
components via OJB and JLink, respectively.

ReactionReactant Model

<implements>

Knowledge source
(a)

ClassName

JavaClassName
(b)

OJBClassName

AbstractClassName

Figure 5. (a) High-level interaction of the Sigmoid schema’s four main class hierarchies
and (b) implementation classes derived from a single UML class, “ClassName.”

between the Sigmoid object and relational
database schemas.

• The translation and simulation access mod-
ule translates biological pathway objects
into Cellerator text-encoded commands and
sends them via JLink to Mathematica’s
model generation-simulation engine. (JLink
is a Mathematica add-on that lets Java appli-
cations call Mathematica functions.)

These modules are exposed as Web services
that Java application programs and other
clients can access.

Available Java Web services are expand-
ing steadily and currently include getModel,
updateModel, saveModel, getModelList, simulateModel,
simulateModelTime, simulateModelPhase, and simu-
lateModelTransfer. These can also serve as open
APIs for third-party client programs to com-
municate with Sigmoid’s back-end knowl-
edge database and simulation engines.

The Sigmoid Model Explorer
interface

The last system component to be initiated,
and the most recent to achieve demonstra-
tion-level functionality, is the SME Web-
compatible GUI. This Java application incor-
porates several useful elements that support
browsing and selecting objects from the
model database, editing objects and their
attributes including numerical parameters,
and displaying and editing network layouts:

1. The Tree Viewer displays biological
objects, such as pathways, reactions,
and their constituent reactants and para-
meters, in a compositional hierarchy
(see figure 7a, left panel).

2. A biological-network layout view uses
JGraph libraries for semiautomated
layout of small circuits (see figure 7a,
center panel), with a window that lets
users edit and save layouts as bipartite
labeled graphs with user-definable
mapping of object types to icons (see
figure 7a, far right panel).

3. Alternative displays for the left panel
include a folder hierarchy of dis-
playable simulation results.

4. An optional output previewer permits
side-by-side comparison of multiple
plots from multiple simulations (see
figure 7b).

5. A full output viewer (using JAI, Java
Advanced Imaging, for good image
quality) allows annotation of simula-
tion outputs for a primitive scientific

MAY/JUNE 2005 www.computer.org/intelligent 73

Figure 7. These views of the Sigmoid Model Explorer display a portion of the MAPK
pathway. (a) Three panels show, from left to right, the tree view of compositional
hierarchy, a network layout visualization, and the parameter-editing panel. Along
the top are various action buttons for saving and running the model, and for switching
the main panel to view output plots. The user can select reaction icons. (b) The optional
output plot preview panel permits comparison of plots from multiple simulations.
(c) The full output display mode allows annotation.

(a)

(b)

(c)

B i o i n f o r m a t i c s

74 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

notebook, with EPS publication-quality
output (see figure 7c).

6. User-selectable JPEG/GIF icon sets
display biological object types.

SME also provides back-end connections to
the middleware, including database and simu-
lator access, and uses Java reflection to discover
the current Sigmoid object hierarchy and data-
base schema for displayable objects and model-
editing methods. These features let users

• visualize, design, edit, and store pathway
models, parameters, and initial conditions
and their properties;

• simulate the models by calling the simu-
lator through the middleware; and

• view and compare simulated models’
properties—for instance, by viewing the
temporal evolution of chemical species’
concentration under different conditions.

Users can download and automatically
update SME via the Web. It runs from any
Web browser as a Java Web Start or local
client program and enables simulations to
execute remotely, and other software plat-
forms besides SME can use Sigmoid through
its Web services.

Refining the infrastructure
We have made available initial versions

of the main components providing an
infrastructure that already yields biologi-
cally relevant results. For instance, the
E. coli metabolic pathway model correctly
predicts the effect of certain mutations,
and the MAPK cascade model shows that,
on the basis of the parameter sets and
initial conditions chosen, it can generate
a switch-like or graded input-output re-
lationship, or even produce oscillatory
behavior.

Ongoing development
Development and expansion of Sigmoid

continues at all levels. Since the GUI medi-
ates the user experience, it will attract the
largest number of feature requests. Because
the overall architecture is now functional,
many of these requests can be met at reason-
able levels of effort and cost. New back-end
modules under development—for instance,
to optimize models or learn from data—will
enhance end-user capabilities.

We also need new reaction types in Celler-
ator to deal with various kinds of (nontran-
scriptional) feedback. New reaction types—
for example, those used in modeling metabolic
pathways (such as Generated Monod Wyman
Changeux [GMWC])—will need to be expo-
sed to model new pathways beyond MAPK
and NF�B. Scaling Sigmoid up will require
expert evaluation of allowed and suggested
mappings from biological reaction mecha-
nisms to mathematical reaction models.

With such powerful tools, the models cre-
ated in Sigmoid will be of unique value to
biologists. Within Sigmoid such models can
guide the design of scientific experiments that
discriminate between alternative hypotheses.
Models will be exportable, using SBML, to
other cell simulation and pathway database
environments so that they aren’t confined to
a particular software environment.

Likewise, we continue to expand and popu-
late the Sigmoid database. Database populator
codes import relevant data from other reaction
and pathway data sources (depending on their
accessibility to software agents), such as the
Kyoto Encyclopedia of Genes and Genomes
(KEGG), SiBML/GeneNet, Cytoscape, Reac-
tome, the Saccharomyces Genome Database,
BioCyc, and BioModels. These connections
can use a systems biology communications
infrastructure such as SBML, BioPAX, Sys-
tems Biology Workbench, BioSpice, Monod,
and many others. These each have their own
strengths and specializations. For example, the
current versions of KEGG and BioPAX are bet-
ter developed for metabolic pathways than for
signal transduction pathways, Sigmoid’s initial
focus. We can increase standardization and
interoperability by using SBML, Gene Ontol-
ogy, and other de facto standards as they
emerge.

Scalability issues
While it’s sound practice to have several

parallel efforts across multiple research
groups, we believe Sigmoid’s most distinc-
tive advantage is its scalability. A simple path-

T h e A u t h o r s
Jianlin Cheng is a PhD candidate in computer science at the Institute for
Genomics and Bioinformatics at the University of California, Irvine. His
research interests include algorithms and applications for bioinformatics,
systems biology, and machine learning. He has an MS in computer science
from Utah State University. Contact him at the School of Information and
Computer Sciences, Univ. of California Irvine, Irvine, CA 92697-3425; jian-
linc@uci.edu; www.ics.uci.edu/~jianlinc.

Lucas Scharenbroich is a graduate student in the School of Information and
Computer Science at the University of California, Irvine. He is also affiliated
with the Machine Learning Systems group at NASA’s Jet Propulsion Labo-
ratory. His research interests include probabilistic modeling and its applica-
tion to bioinformatics, remote sensing, and planetary science. He has a BSEE
from the University of Minnesota, Duluth. Contact him at the School of Infor-
mation and Computer Sciences, UCI, Irvine, CA 92697-3425; ischaren@
uci.edu; www.ics.uci.edu/~lscharen.

Pierre Baldi is a professor in the School of Information and Computer Sci-
ence and the Department of Biological Chemistry at the University of Cali-
fornia, Irvine. He is also director of UCI’s Institute for Genomics and Bioin-
formatics and is a layer leader at CalIT2, the California Institute for
Telecommunications and Information Technology. His research focuses on
AI, machine learning, and bioinformatics. He received a PhD in mathemat-
ics from the California Institute of Technology. Awards include the 1993 Lew
Allen Award at the Jet Propulsion Laboratory and a Laurel Wilkening Fac-
ulty Innovation Award at UCI. Contact him at the Inst. for Genomics and
Bioinformatics, School of Information and Computer Sciences, UCI, Irvine,
CA 92697-3425; pfbaldi@ics.uci.edu; www.ics.uci.edu/~pfbaldi.

Eric Mjolsness is Systems Biology Program Leader for the Institute for
Genomics and Bioinformatics and a professor in the Computer Science Depart-
ment at the University of California, Irvine. His research interests include con-
structing scientific inference systems and applying techniques from machine
learning, pattern recognition, image understanding, nonlinear optimization, and
statistical physics to computational biology and other sciences. He received his
PhD in physics from the California Institute of Technology. Contact him at Inst.
for Genomics and Bioinformatics, School of Information and Computer Sci-
ences, UCI, Irvine, CA 92697-3425; emj@uci.edu; www.ics.uci.edu/~emj.

way contains a dozen or more reactions that
a set of about 50 elementary equation mod-
els can represent, taken from a growing
library of reaction model types as in figure 4.
To reverse-engineer cells, this number must
scale up progressively to 500, 5,000, 50,000,
and perhaps even 500,000 and beyond.

Clearly, this scale-up requires software that
can help generate models of increasing size,
complexity, and sophistication. Likewise, as
our understanding of systems biology pro-
gresses, the schema we use to store models
and biological information must evolve. The
ability to automatically regenerate entire data-
bases from a modified schema becomes
essential. Generative tools, such as autogen-
eration of the database and compatible object
APIs from a UML schema and of mathemat-
ical models from reaction notation using com-
puter algebra, have already proven effective in
curbing the cost of adding new features to the
Sigmoid architecture.

These principles of self-generation and
scalability lie at the heart of the Sigmoid
architecture, and database software engi-
neering might benefit generally from auto-
generation of object-relational database code
from UML. We are also exploring whether
fundamental software classes for nodes, net-
works, and communications can be reused
across different networks, from the biologi-
cal reaction networks we wish to simulate to
the machine learning networks we use to
reverse-engineer them.11 In short, can gener-
ative network software classes enable signif-
icant advances in intelligent systems design?

We’ve made encouraging progress, but
several challenges remain. On the

modeling side, we haven’t yet found a com-
plete mathematical formalism for scale-up.
How should we handle and integrate multiple
temporal and spatial scales over several orders
of magnitude, and complex combinations of
continuous, stochastic, and discrete events with
different levels of compartmentalization? On
the GUI side, network layout and editing scal-
ability remain unresolved. Can we rapidly
zoom up and down, from molecular reactions
to cellular function? As research proceeds, we
hope to answer these questions.

Acknowledgments
This work has been supported by NIH grants

GM069013 and T15LM007443, NSF grant EIA-
0321390, a Laurel Wilkening faculty innovation
award, a UC Systemwide Biotechnology Research

and Education Program #2002-06 award, NCI
Director’s Challenge support to Children’s Hospi-
tal of Los Angeles, NASA Intelligent Systems Pro-
gram funding, and the Institute for Genomics and
Bioinformatics at UCI. We thank students, pro-
grammers, and colleagues who provided us with
valuable feedback or helped implement particular
components of the infrastructure. These include
Lee Bardwell, Ben Bornstein, Ben Compani, G.
Wesley Hatfield, Peter Hebden,Andre Levchenko,
Elliot Myerowitz, Doug Molina, Kirill Petrov,
Sonia Ralaivola, Bruce Shapiro, Trent Su, Diane
Trout, Barbara Wold, and Chin-Ran Yang.

References

1. T. Ideker et al., “Integrated Genomic and Pro-
teomic Analysis of a Systematically Perturbed
Metabolic Network,” Science, vol. 292, 2001,
pp. 929–934.

2. P. Baldi and G. Wesley Hatfield, DNA Micro-
arrays and Gene Regulation: From Experi-
ments to Data Analysis and Modeling, Cam-
bridge Univ. Press, 2002.

3. E. Mjolsness and D. DeCoste, “Machine
Learning for Science: State of the Art and
Future Prospects,” Science, vol. 293, 14 Sept.
2001, pp. 2051–2055.

4. B.E. Shapiro et al., “Cellerator: Extending a
Computer Algebra System to Include Bio-
chemical Arrows for Signal Transduction

Simulations,” Bioinformatics, vol. 19, no. 5,
2003, pp. 677–678.

5. G. Booch, I. Jacobson, and J. Rumbaugh, The
Unified Modeling Language User Guide,
Addison-Wesley, 1998; www.uml.org.

6. I.H. Segel, Enzyme Kinetics, John Wiley and
Sons, 1993.

7. B.E. Shapiro, A. Levchenko, and E.D. Mjol-
sness, “Automatic Model Generation for Signal
Transduction with Applications to Map Kinase
Pathways,” Foundations of Systems Biology, H.
Kitano, ed., MIT Press, 2002, pp. 145–162.

8. L. Bardwell, “A Walk-through of the Yeast
Mating Pheromone Response Pathway, Pep-
tides, vol. 25, no. 9, Sept. 2004, pp. 1465–1476.

9. A. Hoffmann et al., “The I�B-NF�B Signal-
ing Module: Temporal Control and Selective
Gene Activation,” Science, vol. 298, 2002, pp.
1241–1245.

10. C.R. Yang et al., “An Enzyme Mechanism
Language for the Mathematical Modeling of
Metabolic Pathways,” Bioinformatics, vol. 21,
no. 6, March 2005, pp. 774–780.

11. P. Baldi, Y. Chauvin, and V. Mittal Henkle,
“Software Foundation Libraries for the
Design of Intelligent Systems,” Proc. 10th
Italian Workshop Neural Nets, Springer-Ver-
lag, 1998, pp. 17–39.

MAY/JUNE 2005

Adapting Agile
Approaches

Incorporating COTS

Software Engineering
Project Management

New Trends in
Software Testing

Visit us on the Web at

www.computer.org/sof tware

Mastering software
with these future
topics:

IEEEIEEE

