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SUMMARY 
 
As a first step towards the elucidation of the systems biology of the model organism, Escherichia coli, it 

was our goal to mathematically model a metabolic system of intermediate complexity, the well-studied 

end-product regulated pathways for the biosynthesis of the branched chain amino acids, L-isoleucine, L-

valine, and L-leucine. This has been accomplished with the use of kMech [Yang, C.-R., Shapiro, B. E., 

Mjolsness, E. D., and Hatfield, G. W. (2004) Bioinformatics, in press], a Cellerator [Shapiro, B. 

E., Levchenko, A., Meyerowitz, E. M., Wold, B. J., and Mjolsness, E. D. (2003) Bioinformatics 

19, 677-678] language extension that describes a suite of enzyme reaction mechanisms. Each enzyme 

mechanism is parsed by kMech into a set of fundamental association-dissociation reactions that are 

translated by Cellerator into ordinary differential equations (ODEs). These ODEs are numerically solved 

by MathematicaTM. Any metabolic pathway can be simulated by stringing together appropriate kMech 

models and providing the physical and kinetic parameters for each enzyme in the pathway. Writing 

differential equations is not required. The mathematical model of branched chain amino acid biosynthesis 

in E. coli K12 presented here incorporates all of the forward and reverse enzyme reactions and regulatory 

circuits of the branched chain amino acid biosynthetic pathways including: single and multiple substrate 

(Ping Pong and Bi Bi) enzyme kinetic reactions; feedback inhibition (allosteric, competitive, and non-

competitive) mechanisms; channeling of metabolic flow through isozymes; and channeling of metabolic 

flow via transamination reactions; and active transport mechanisms. This model simulates the results of 

experimental measurements. 
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INTRODUCTION 
 

Systems biology may be broadly defined as the integration of diverse data into useful biological 

models that allow scientists to easily observe complex cellular behaviors and to predict the outcomes of 

metabolic and genetic perturbations. As a first step towards the elucidation of the systems biology of the 

model organism, Escherichia coli, we have elected to limit our initial efforts to the development of a 

mathematical model for the complex but well-studied metabolic pathways for the biosynthesis of the 

branched chain amino acids, L-isoleucine, L-valine, and L-leucine.  

 The biosynthetic pathways for the branched chain amino acids are shown in Figure 1 (1-3). L-

threonine deaminase (TDA), the first enzyme specific for the biosynthesis of L-isoleucine, is end-product 

inhibited by L-isoleucine, and α-isopropylmalate synthase (IPMS), the first enzyme specific for the 

biosynthesis of L-leucine, is end-product inhibited by L-leucine. However, because the parallel pathways 

for L-valine and L-isoleucine biosynthesis are catalyzed by a set of bi-functional enzymes that bind 

substrates from either pathway, L-valine inhibition of the first enzyme specific for its biosynthesis 

catalyzed by a single α-acetohydroxy acid synthase (AHAS) could compromise the cell for L-isoleucine 

biosynthesis or result in the accumulation of a toxic metabolic intermediate, α-ketobutyrate (αKB).  This 

type of a regulatory problem is often solved by using multiple isozymes with different substrate 

preferences that are differentially regulated by multiple end-products of parallel pathways.  In this case, 

there are three AHAS isozymes that catalyze the first step of the L-valine and the second step of the L-

isoleucine pathway (4). AHAS I has substrate preferences for the condensation of two pyruvate molecules 

required for L-valine biosynthesis, and is end-product inhibited by L-valine (4). AHAS III shows no 

preference for pyruvate or αKB. While this isozyme can produce intermediates for both L-valine and L-

isoleucine, it is inhibited by L-valine (4). The AHAS II isozyme has substrate preferences for the 

condensation of pyruvate and αKB required for L-isoleucine biosynthesis, and it is not inhibited by any of 

the branched chain amino acids (4). However, AHAS II is not active in the E. coli. K12 strain (5).  

Consequently, this strain cannot grow in the presence of high levels of L-valine unless L-isoleucine is 

also added to the growth medium (6). 

 TDA is an allosteric enzyme whose kinetic behavior can be described by the concerted allosteric 

transition mode of Monod, Wyman, Changeux , the MWC model (7,8).  According to the MWC model, 

TDA can exist in an active state (R) or an inactive state (T) (8,9). The fraction of active enzyme in the R 

or T states is determined by the concentrations and relative affinities of substrate (L-threonine), inhibitor 

(L-isoleucine), and activator (L-valine) for the R and T states.  

 In addition to these regulatory circuits, the intracellular levels of the branched chain amino acids 

are influenced by the reversible transamination reactions of each pathway. When the intracellular levels 
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of any of the end-product amino acids become high, reverse reactions to their cognate ketoacids are 

favored; for example, high concentrations of L-valine can be converted to α-ketoisovalerate (αKIV) to 

supplement L-leucine production. In turn, intracellular amino acid levels can be affected by their active 

transport from the extracellular growth medium. Therefore, the enzyme reactions required for the active 

transport of the branched chain amino acids into the cell against a concentration gradient are included in 

our simulations. 

 

 

EXPERIMENTAL PROCEDURES 
 
The Mathematical Model 
 Here we use kMech (10), a Cellerator (11) language extension that describes a suite of enzyme 

reaction mechanisms. Each enzyme mechanism is parsed by kMech into a set of fundamental association-

dissociation reactions that are translated by Cellerator into ordinary differential equations (ODEs) that are 

numerically solved by MathematicaTM (10).  To build a model for a metabolic pathway, users need only to 

string together appropriate kMech enzyme mechanism models and to provide the physical and kinetic 

parameters for each enzyme. The development of approximation methods for estimating unavailable 

model parameters, such as forward and reverse rate constants (kf, kr), from kinetic measurements (Km,  kcat) 

are described elsewhere (10). 

The detailed kMech models for each of the pathway enzymes (Fig. 1), a MathematicaTM 

executable kMech.m file, a MathematicaTM notebook file with detailed kMech inputs, corresponding 

ODEs, kinetic rate constants, and initial conditions for solving the ODEs (or its Systems Biology Markup 

Language, SBML version) are available at the University of California, Irvine, Institute for Genomics and 

Bioinformatics website, http://www.igb.uci.edu/servers/sb.html. The PDF version of the MathematicaTM 

notebook and a list of reported and optimized enzyme kinetic and physical parameters used in simulations 

are available in the supplemental data of the on-line version of this article. Cellerator, available at 

http://www.aig.jpl.nasa.gov/public/mls/cellerator/feedback.html, is free of charge to academic, U.S. 

government, and other nonprofit organizations. 

 

 
Carbon Flow Channeling 

Traditional modeling approaches use the Michaelis-Menten kinetic equation for one substrate/one 

product reactions, and the King-Altman method to derive equations for more complex multiple reactant 

reactions. These types of equations focus on conversion between metabolites (metabolic flux) rather than 
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enzyme mechanisms. While metabolic flux provides valuable information about biomass conversions 

(12), it cannot simulate, for example, the pathway-specific regulation patterns that control carbon flow 

channeling through the three AHAS isozymes of the parallel L-isoleucine and L-valine pathways, and the 

final transamination reactions. This level of mathematical modeling requires a detailed understanding of 

enzyme kinetic mechanisms and regulatory circuits (Fig. 2) as described below. 

 

α-Acetohydroxy Acid Synthase (AHAS) Isozymes 

The AHAS isozymes are controllers of carbon flow into either the L-isoleucine or L-valine 

biosynthetic pathway. The Ping Pong Bi Bi enzyme mechanism of these isozymes, describes a specialized 

two-substrate two-product (Bi Bi) mechanism in which the binding of substrates and release of products 

is ordered. It is a Ping Pong mechanism because the enzyme shuttles between a free and a substrate-

modified intermediate state indicated as white and shaded ovals, respectively, in Figure 2. 

Carbon flow through these isozymes is controlled by the affinities (Km) of the enzyme 

intermediates for their second substrates as shown in Figure 2 (13). For example, the AHAS II enzyme 

reactions shown in Figure 1 are described by the following reactions: 

 

23· COCOAHASIICHPyrAHASIIAHASIIPyr +→⇔+  

aALAHASIIPyrCOAHASIICHCOAHASIICHPyr +→⇔+ ·33  

 

23· COCOAHASIICHPyrAHASIIAHASIIPyr +→⇔+  

aAHBAHASIIaKBCOAHASIICHCOAHASIICHaKB +→⇔+ ·33  

 

The first reaction set is for the condensation of two pyruvate (Pyr) molecules for the biosynthesis of α-

acetolactate (αAL) of the L-valine and L-leucine pathways. The second reaction set is for the 

condensation of one Pyr molecule and one α -ketobutyrate (αKB) molecule for the biosynthesis of α-

acetohydoxybutyrate (αAHB) of the L-isoleucine pathway. As written above, the initial reaction of Pyr 

with free AHAS II to form the activated enzyme intermediate is represented twice.  Therefore, if these 

reactions were modeled, two molecules of Pyr would be consumed instead of just one for each molecule 

of Pyr or α KB produced. This redundancy can be resolved by rewriting these reactions as: 

 

23· COCOAHASIICHPyrAHASIIAHASIIPyr +→⇔+  

aALAHASIIPyrCOAHASIICHCOAHASIICHPyr +→⇔+ ·33  
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aAHBAHASIIaKBCOAHASIICHCOAHASIICHaKB +→⇔+ ·33  

 

In MathematicaTM, the Union operator is used in conjunction with the kMech PingPong models to solve 

this redundancy of pathways problem. Thus, for channeling of pyruvate through the AHAS II isozyme 

into L-valine or L-isoleucine, the user kMech inputs in MathematicaTM  syntax are: 
 

Union[ 
               AHASII, AHASIICH3CO 
Enz[{Pyr, Pyr} {CO2, aAL}, PingPong[kfAHASIIPyr, krAHASIIPyr, kcat$AHASII$Pyr, 

kfAHASIIPyr2, krAHASIIPyr2, kcat$AHASII$Pyr2]], 

⇔

                AHASII, AHASIICH3CO 
Enz[{Pyr, aKB} {CO2, aAHB}, PingPong[kfAHASIIPyr, krAHASIIPyr, kcat$AHASII$Pyr, 

kfAHASIIaKB, krAHASIIaKB, kcat$AHASII$aKB]] 

⇔

] 

 

where: Pyr and aKB are substrates; aAL, aAHB and CO2 are products; AHASII is free enzyme; 

AHASIICH3CO is the modified enzyme intermediate; Enz[…] denotes a kMech enzyme model that 

provides additional capabilities to Cellerator; PingPong indicates the enzyme model is Ping Pong Bi Bi; 

variable names with a kf- prefix are rate constants of the enzyme-substrate associations; variable names 

with a kr- prefix are rate constants of the enzyme substrate dissociations; variable names with a kcat- 

prefix are catalytic rate constants for the formation of products.  

kMech parses the three non-redundant AHAS II reactions shown above into elementary 

association-dissociation reactions and produces the following output in Cellerator/MathematicaTM syntax 

(11): 

 

{Pyr + AHASII   $Complex$Pyr$AHASII, kfAHASIIPyr, krAHASIIPyr}, 

{$Complex$Pyr$AHASII  CO→ 2 + AHASIICH3CO, kcat$AHASII$Pyr }, 

{Pyr + AHASIICH3CO    $Complex$Pyr$AHASIICH3CO$, kfAHASIIPyr2, krAHASIIPyr2}, 

{$Complex$Pyr$AHASIICH3CO$ aAL + AHASII , kcat$AHASII$Pyr2}, →

{aKB + AHASIICH3CO  $Complex$aKB$AHASIICH3CO$, kfAHASIIaKB, krAHASIIaKB}, 

{$Complex$aKB$AHASIICH3CO$ → aAL + AHASII, kcat$AHASII$aKB}. 

 

This output is passed to Cellerator where the following differential equations that describe the rate of 

change for each reactant involved in the AHAS II isozyme reaction are generated in MathematicaTM 

syntax: 
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dt
aAHBd ][  =  kcat$AHASII$aKB [Complex$aKB$AHASIICH3CO$], 

 

dt
aALd ][  =  kcat$AHASII$Pyr2 [Complex$Pyr$AHASIICH3CO$], 

 

dt
AHASIId ][  = - kfAHASIIPyr [AHASII] [Pyr]+ kcat$AHASII$aKB [Complex$aKB$AHASIICH3CO$] 

+ kcat$AHASII$Pyr2 [Complex$Pyr$AHASIICH3CO$]+ krAHASIIPyr [Complex$Pyr$AHASII$], 
 
 

dt
COAHASIICHd ]3[  = - kfAHASIIaKB [AHASIICH3CO] [aKB] - kfAHASIIPyr2 [AHASIICH3CO] [Pyr] 

+ krAHASIIaKB [Complex$aKB$AHASIICH3CO$] + krAHASIIPyr2 [Complex$Pyr$AHASIICH3CO$] 
+ kcat$AHASII$Pyr [Complex$Pyr$AHASII$], 
 

dt
aKBd ][  = - kfAHASIIaKB [AHASIICH3CO] [aKB] + krAHASIIaKB [Complex$aKB$AHASIICH3CO$], 

 

dt
COd ]2[  = kcat$AHASII$Pyr [Complex$Pyr$AHASII$], 

 

dt
Pyrd ][  = - kfAHASIIPyr [AHASII] [Pyr] - kfAHASIIPyr2 [AHASIICH3CO] [Pyr] 

+ krAHASIIPyr2 [Complex$Pyr$AHASIICH3CO$] + krAHASIIPyr [Complex$Pyr$AHASII$], 
 

dt
COAHASIICHaKBComplexd $]3$$[  = kfAHASIIaKB [AHASIICH3CO] [aKB] 

- kcat$AHASII$aKB [Complex$aKB$AHASIICH3CO$] – krAHASIIaKB 
[Complex$aKB$AHASIICH3CO$], 

 

dt
COAHASIICHPyrComplexd $]3$$[  = kfAHASIIPyr2 [AHASIICH3CO] [Pyr] 

- kcat$AHASII$Pyr2 [Complex$Pyr$AHASIICH3CO$] - krAHASIIPyr2 
[Complex$Pyr$AHASIICH3CO$], 

 

dt
AHASIIPyrComplexd $]$$[  = kfAHASIIPyr [AHASII] [Pyr] - kcat$AHASII$Pyr [Complex$Pyr$AHASII$] 

- krAHASIIPyr [Complex$Pyr$AHASII$]. 
 

These differential equations and variable definitions are passed to MathematicaTM where they are solved 

by the numeric solver (NDSolve) function and graphs of enzyme product vs. time are generated. 

 The Union operator also was used for the modeling of the L-valine inhibited AHAS I and AHAS 

III isozymes described in the supplemental data of the online version of this article. Detailed descriptions 

of other kMech models used in this simulation are published elsewhere (10). 
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Reversible Transamination Mechanism 
The pyridoxal 5’-phosphate dependent Transaminase B (TB) enzyme catalyzes the final, 

reversible, step of the biosynthetic pathways of all three of the branched chain amino acids (Figs. 1 and 

2).  The first step of each of these Ping Pong Bi Bi transamination reactions uses glutamate as an amino 

donor to form a pyridoxamine-bound enzyme intermediate (TBNH2, shaded oval in Fig. 2) for the 

transamination of the three different α-ketoacids of each pathway.  Carbon flow through TB is controlled 

by the affinities (Km) of the enzyme intermediates for their second α-ketoacid substrates as shown in 

Figure 2. The TB enzyme reactions of Figure 1 are described by the following chemical equations: 

 

Glu + TB ⇔  TB·Glu → aKG + TBNH2

TBNH2 + aKMV ⇔  TBNH2·aKMV →  Ile 

  

Glu + TB ⇔  TB·Glu → aKG + TBNH2

TBNH2 + aKIV   ⇔  TBNH2·aKIV  →  Val 

   

Glu + TB ⇔  TB·Glu → aKG + TBNH2

TBNH2  + aKIC   ⇔  TBNH2·aKIC   Leu  →

 

Since the first substrate reaction with glutamate (Glu) is the same for all three of the branched chain 

α−ketoacid second substrates, the MathematicaTM Union operator is once again used to eliminate this 

redundancy. Because transamination is reversible, kMech models must be entered in both reaction 

directions for each of the three branched chain amino acid transaminations, and again the Union operator 

is used to eliminate the duplicated second substrate reactions (TBNH2 + aKG ⇔ TBNH2·aKG  TB + 

Glu) of each transamination (gray arrowed lines in Fig. 2): 

→

 

Ile  + TB  TB·Ile aKMV + ⇔ → TBNH2

Val + TB  TB·Val aKIV + ⇔ → TBNH2

Leu + TB ⇔  TB·Leu → aKIC + TBNH2

TBNH2 + aKG ⇔  TBNH2·aKG   TB + Glu →

 

 These reactions are parsed by kMech into elementary association-dissociation reactions and 

passed on to Cellerator where they are processed as described above. The same method was used for 
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modeling transaminase C (TC), a reversible Ping Pong Bi Bi mechanism enzyme that uses alanine as the 

amino donor for the transamination of L-valine (Fig. 2).  

 
Allosteric Regulation 
 Threonine deaminase (TDA) is an allosteric enzyme whose kinetic behavior can be described by 

the concerted allosteric transition model of Monod, Wyman, Changeux, the MWC model (7,8).  

According to the MWC model, TDA can exist in an active state (R) or an inactive state (T) (8,9). The 

fraction of enzyme in the R or T state is determined by the concentrations and relative affinities of 

substrate (L-threonine), inhibitor (L-isoleucine), and activator (L-valine) for each state. This model is 

described by two equations: 
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m, Ki and Ka are their respective dissociation constants; n is the number of 

substrate and effector ligand binding sites; c is the ratio of the affinity of the substrate for the catalytically 

active R state and the inhibited T state; L0 is the equilibrium constant (allosteric constant) for the R and T 

states in the absence of ligands; vo is the initial reaction velocity; and Vmax is the maximal reaction 

velocity. 
The first equation describes the fraction of the enzyme in the catalytically active state (R) as a 

function of substrate and effector concentrations. The second equation describes the fractional saturation 

(Yf  = vo/Vmax) of the enzyme occupied by substrate as a function of substrate and effector concentrations 

(7). 

We have recently described implemention of the MWC model in Cellerator (10). Experimental 

values of the kinetic parameters and ligand concentrations listed above are most often available in the 

literature. However, values of c and Lo are often not available. These values can be calculated by fitting 

substrate saturation curves in the presence and absence of several inhibitor concentrations (10,14,15).  
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Approximation of Intracellular Enzyme Concentrations  
With few exceptions, intracellular enzyme concentrations are not available. However, with 

careful experimental documentation, these concentrations can be approximated from the yields and 

specific activities of purified enzymes. For example, calculations based on purification tables in the 

literature suggest that the intracellular concentration of TDA is 4 µM (16). Furthermore, recent 

experiments have shown a positive correlation between mRNA levels measured with DNA microarrays 

and protein abundance in both E. coli (17) and yeast cells (18,19). Thus, the intracellular levels of the 

remaining enzymes of the branched chain amino acid biosynthetic pathway can be inferred from the 

calculated intracellular level of TDA and the relative mRNA levels of the other branched chain amino 

acid biosynthetic enzymes using DNA microarray data (20). The data in Table 1 of the Supplemental 

Data in the online version of this article demonstrate that this is a reasonable method. Indeed, simulations 

using intracellular enzyme concentrations inferred in this manner produce experimentally observed steady 

state pathway intermediate, and end-product levels (21,22), usually within two-fold to one-half 

adjustments of these inferred values.  

 

Optimization of Model Parameters 

 A list of reported enzyme kinetic and physical parameters needed to solve the differential 

equations for the simulations reported here and their literature sources are available in Table 1 of the 

Supplemental Data in the online version of this article. The optimized values to simulate known steady 

state intracellular levels of pathway substrates, intermediates, and end-products are also listed for 

comparison. In brief, for each enzyme, there are at least three parameters needed: total enzyme 

concentration (ET), Km for each substrate and kcat for each enzyme reaction. For enzymes with additional 

regulatory mechanism, extra parameters, such as Ki for each inhibitor and Ka for each activator, also are 

required.  

In initial simulation, ET  values were inferred from Microarray data as described above; Km and 

kcat values were obtained from in vitro enzyme kinetic data of purified enzymes with the exception of 

Transaminase C (TC) and α-Isopropylmalate Isomerase (IPMI) where empirical values were used due to 

a lack of  experimental data.  These values were manually adjusted to match the published in vivo steady 

state levels of intermediate and endproduct metabolites (21,22). Interestingly, the inferred ET  and in vitro 

Km values work quit well, since the adjustments are usually within two-fold to one-half of the initial 

values. However, since many variables can influence in vitro measurements including the relative 

activities of purified enzymes, larger corrections were sometimes necessary for the estimation of kcat 

values (5 out of 9 enzymes). Once the mathematical model was optimized with the parameters reported in 
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Table 1 of the Supplemental Data of the online version of this article, it was used without further 

adjustment for the simulations of metabolic and genetic perturbations reported below. 

 
 
RESULTS 
Computational Modeling the Dynamics of Carbon Flow through the Branched Chain 
Amino Acid Biosynthetic Pathways of E. coli K12 

The three interacting metabolic pathways simulated here consist of eleven enzymes, eighteen 

metabolic intermediates, and three enzyme cofactors. The mathematical model for this metabolic system 

consists of 105 ordinary differential equations (ODEs), with 110 association and dissociation rate 

constants, and 52 catalytic rate constants. The enzymes of these interacting pathways employ three 

distinct enzyme mechanisms (simple catalytic, Bi Bi, and Ping Pong Bi Bi) that are regulated by 

allosteric, competitive, or noncomptetitive inhibition mechanisms.  As described in the Methods section, 

the physical parameters for these models have been obtained directly from the literature, calculated from 

data in the literature, or estimated by fitting experimental data (Table 1 of the Supplemental Data of the 

online version of this article). Relative intracellular enzyme levels have been inferred from enzyme 

purification and DNA microarray data (20).  

The steady state levels for the thirteen pathway intermediates and end-products are shown in 

Figure 3. Steady-state enzyme activity levels were optimized to properly channel the steady-state flow of 

intermediates through these pathways to match reported in vivo levels of pathway intermediates and end-

products (21,22). The detailed kMech inputs, corresponding ODEs, kinetic rate constants, and initial 

conditions for solving the ODEs are presented in Figure 1 of the supplemental data available in the on-

line version of this article. 

 
Allosteric Regulation of L-Threonine Deaminase (TDA) 
 The allosteric regulatory mechanism of TDA was simulated with the MWC model employing 

physical parameters based on the literature or optimized to fit experimental data (10). The data in Figure 3 

show that TDA produces αKB at a steady state level comparable to that observed in vivo (21,22). Since 

the Ki for L-isoleucine (15 µM) is much less than the Ka for L-valine (550 µM), an initial decrease in the 

production of αKB as L-isoleucine accumulates is followed by an increase to a final steady level that 

accompanies the accumulation of L-valine (Fig. 3). Correspondingly, the fraction of active TDA is 

initially decreased as L-isoleucine accumulates and countered to a steady level (5.5% of the total enzyme 

is in the active R state) while L-valine accumulates (Figure 4A). A Similar pattern was observed for the 

fractional saturation of TDA with L-threonine (v0/Vmax) in response to changes in the levels of its effector 
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ligands, L-isoleucine and L-valine. At its steady state level, TDA is only about 1.2% saturated with L-

threonine (Figure 4B). 

 

Regulation of the α-Acetohydroxyacid Synthase (AHAS) Isozymes 

 The two-substrate, two-product, AHAS isozymes I and III employ a Ping Pong Bi Bi enzyme 

mechanism described in the Methods section [the AHAS II isozyme is inactive in E. coli K12 (5)].  The 

L-valine inhibition of AHAS I and III is noncompetitive and, in the case of AHAS III, is incomplete since 

15-20%  of the activity attained at saturating substrate concentrations (Vmax) remains in the presence of 

saturating L-valine concentrations (13). The data in Figure 3 show that the production of αAL produced 

by AHAS isozymes I and III decreases as L-valine accumulates. These data also show that αAHB, 

primarily produced by AHAS isozyme III, decreases to a steady state level as its end-product inhibitor (L-

valine) accumulates, and as its substrate, αKB, decreases because L-isoleucine accumulates and inhibits 

TDA (Figure 1). 

 

Responses to Metabolic and Genetic Perturbations 
 

L-valine Growth Inhibition of Escherichia coli K12 is due to α-ketobutyrate (αKB) 

Accumulation, not L-isoleucine Starvation 
It is well known that adding L-valine at a final concentration of 1 mM to a culture of E. coli K12 

cells growing in a glucose minimal salts medium inhibits their growth, and that this L-valine inhibition 

can be reversed by L-isoleucine addition (6). Since the AHAS I and AHAS III isozymes of E. coli K12 

strains are inhibited by L-valine, and since the ilvG gene for AHAS II in E. coli K12 strains contains a 

frameshift mutation that destroys AHAS II activity (5), it was assumed that L-valine inhibition of AHAS I 

and AHAS III might inhibit growth by interfering with L-isoleucine biosynthesis. However, later studies 

demonstrated that the intracellular L-isoleucine level is not suppressed by L-valine because its 

biosynthesis is sustained, even at saturating L-valine concentrations, by AHAS III that remains 15-20% 

active (13,23) and by the L-valine activation of TDA that shuttles more substrate into the L-isoleucine 

pathway.  Indeed, the simulation in Figure 5A shows that, in the presence of extra-cellular L-valine, the 

intra-cellular L-isoleucine level in fact accumulates nearly nine-fold (Figure 5A). At the same time, the 

pathway precursor of L-isoleucine, αKB, increases about four-fold (Figure 5B).  This build-up of αKB is 

caused by L-valine activation of TDA (Figure 5C) which increases its production, and L-valine inhibition 

of the AHAS I and AHAS III isozymes, which reduces its consumption. It is now known that this αKB 

accumulation is toxic to cells because of its ability to inhibit the glucose PTS transport system (24,25). 
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Thus, as reproduced by our simulations, L-valine growth inhibition of Escherichia coli K12 is not a 

consequence of L-isoleucine starvation. 

The simulation results in Figure 5B show that the growth inhibiting effects of L-valine induced 

αKB accumulation can be reversed by L- isoleucine by its ability to inhibit TDA activity. This simulation 

shows that, in the presence of 1 mM L-valine, the level of αKB increases around four-fold; and that in the 

presence of 500 µM L-isoleucine, αKB levels are reduced to the control level observed in the absence of 

L-valine. The simulation results in Figure 5C show that, concomitant with the rise in αKB observed in the 

presence of 1 mM L-valine, nearly 18% of the cellular TDA is converted to the active R state. However, 

concomitant with the decrease in αKB observed in the presence of 500 µM L-isoleucine, the cellular 

TDA in the active R state is reversed to the control level observed in the absence of L-valine. These 

simulations are verified by experimental results accumulated from multiple laboratories over a three 

decade period (6,24,25). 

 

Simulating the Metabolic Engineering of an L-Isoleucine Over-producing E. coli K12 
Strain.   

An obvious goal of modeling biological systems is to facilitate metabolic engineering for the 

commercial production of specialty chemicals such as amino acids. In the past, this has been largely 

accomplished by genetic manipulation and selection methods.  For example, a common strategy to over-

produce an amino acid has been to isolate a strain with a feedback resistant mutation in the gene for the 

first enzyme for the biosynthesis of that amino acid. Here we use our model to determine the effects of a 

feedback resistant TDA for the over-production of L-isoleucine. We can simulate a TDA feedback 

resistant mutant strain (TDAR) by increasing the Ki for L-isoleucine to a large number, (e.g. 100,000 µM).  

The simulation in Figure 6A shows that in the absence of L-isoleucine inhibition, the activator and 

substrate ligands drive nearly 100% of cellular feedback resistant TDAR to the active R state compared to 

the wild type enzyme that is only 6% present in the active R state. However, in spite of this increased 

amount of enzyme in the active state, the data in Figure 6B show that AHAS III is able to support only a 5 

to 6 fold increase in L-isoleucine production in a feedback resistant E. coli K12 compared to a wild type 

strain. At the same time, the steady state level of the AHAS III substrate, αKB, is increased about forty-

fold (Figure 6C).  This is because E. coli K12 does not have an active AHAS II isozyme that favors the 

condensation of pyruvate and αKB for L-isoleucine production; thus, αKB would accumulate to toxic 

levels. These simulation results suggest that in order to over-produce L-isoleucine, the αKB accumulation 

must be reduced. The results in Figure 6D show that restoring a wild type AHAS II isozyme and 

simulating an attenuator mutation that elevates the levels of all of the enzymes of the L-isoleucine and L-
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valine parallel pathways 11-fold (26), both avoids buildup of αKB and subsequent pathway intermediates 

(Figure 6C), and results in a forty-fold increase in L-isoleucine production. These simulated results that 

show that high level overproduction of L- isoleucine in E. coli requires a functional AHAS II isozyme and 

a de-attenuated genetic background (ilvGMEDA-att-) agree with experiments performed by Hashiguchi et 

al. of the Ajinomoto Co., Tokyo, Japan (27). 

 

Excess L-Valine Supplements L-Leucine Synthesis 

An Escherichia coli K12 ilvC strain lacking IR activity cannot produce α,β-dihydroxy-isovalerate 

(αDHIV) and α,β-dihydroxy-β-methylvalerate (αDMV), intermediates of the common pathway for the 

biosynthesis of all three branched chain amino acids, L-isoleucine, L-valine, and L-leucine (Figure 1). 

However, IR deficient strains can grow in the presence of only L-isoleucine and L-valine. They do not 

need L-leucine because L-valine can be transaminated to αKIV, a precursor of L-leucine biosynthesis, by 

the reverse reactions of TB and TC.  The simulation results in Figure 7 confirm that in the extra-cellular 

presence of 500 µM L-valine and L-isoleucine, enough L-leucine can be produced to support the needs of 

an ilvC strain. 

 

 

DISCUSSION 
In this report, we describe a mathematical simulation of branched chain amino acid biosynthesis 

and regulation in E. coli.  This approach involves the following steps: 

 

1. The identification of all the molecular participants including enzymes, metabolites, and 

coenzymes, as well as the enzyme kinetic and regulatory mechanism of each enzyme (defined in 

Figure 1 and Table 1 in the Supplemental Data of the online version of this article).  For well-

studied model organisms, such as E. coli, these types of information often are available in 50 

years of scientific literature and several online databases (28-32).  

2. The development of approximation methods for unavailable model parameters. For example: the 

approximation of rate constants (kf, kr) from kinetic measurements (Km, kcat) described by Yang et 

al. (10); the approximation of kcat from the activity of purified enzymes; and the approximation of 

intracellular enzyme concentrations (ET) from enzyme purification and DNA microarray data. 

3. The use of the information obtained in steps one and two to create, as accurately as possible, 

calculation-independent, models that describe the catalytic and regulatory mechanisms of each 

enzymatic step (kMech).  
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4. Stringing together appropriate kMech models and providing the physical and kinetic parameters 

for each enzyme in the pathway. 

5. The generation of ordinary differential equations to describe each enzyme mechanism in terms of 

fundamental molecular interactions (Cellerator). 

6. The optimization of model parameters to simulate known steady state intracellular levels of 

pathway substrates, intermediates, and end-products. 

7. The comparisons of simulated and observed results of biochemical and genetic perturbation 

experiments. 

 

This type of deterministic continuous modeling of metabolic systems can provide valuable 

information such as predicted steady state levels of metabolic substrates, intermediates, and end-products, 

and predict the outcomes of biochemical and genetic perturbations that require detailed enzyme kinetic 

and regulatory mechanisms. Traditional modeling approaches use the Michaelis-Menten kinetic equation 

for one substrate/one product reactions, and the King-Altman method to derive equations for more 

complex multiple reactant reactions. These types of equations are called steady-state velocity equations 

since the derivatives of concentration of each reactant in the model over time are set to zero to simplify a 

set of non-linear differential equations to linear algebra equations (33). Therefore, the kinetic model based 

on this approach has embedded the steady-state hypothesis. In contrast, the model generated by 

kMech/Cellerator consists of non-simplified, non-linear differential equations that describe the rates of 

change of each reactant in the model over time. To build a pathway model, users only need to call upon 

kMech models for the enzyme mechanisms of a pathway without writing any differential equations. 

Because of this simple user input and the integration of kMech, Cellerator, and MathematicaTM, human 

errors are greatly reduced (10). To allow kMech/Cellerator to be utilized by an audience with little or no 

programming experience, a java-based graphical user interface (GUI) is under development. This 

graphical editor is designed to help users to construct pathways, select enzyme mechanisms, and enter 

required physical and kinetic parameters with simple point-and-click methods. 

In contrast to “top down’ metabolic flux balance analysis (FBA) methods (34), which provide 

valuable information about biomass conversions without knowing individual enzyme mechanism and 

pathway-specific regulation patterns (12), the kMech/Cellerator models described here represent a 

“bottom up” approach to an understanding of complex metabolic networks.  The model presented here is 

incomplete for many reasons, primarily, because it does not exist in the context of the bacteria cell. In 

addition to the metabolic regulatory mechanisms considered here, carbon flow through metabolic 

pathways is affected by a hierarchy of additional controls of gene expression levels that affect pathway 

enzyme activities and amounts. These hierarchical levels of control, from the most general to the most 
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specific, are: (i) global control of gene activity mediated by chromosome structure (3), (ii) global control 

of the genes of stimulons and regulons (35), and (iii) operon-specific controls. The first, or highest, level 

of control is exemplified by DNA topology-dependent mechanisms that coordinate basal level expression 

of all of the genes of the cell (independent of operon-specific controls). This level is mediated by DNA 

architectural proteins and the actions of topoisomerases in response to nutritional and environmental 

growth conditions (3). The second level of control is mediated by site-specific DNA binding proteins, 

which, in cooperation with operon-specific controls, regulate often overlapping groups of metabolically 

related operons in response to environmental or metabolic transitions or stress conditions (35). The third 

level of control is mediated by less abundant regulatory proteins that respond to operon-specific signals 

and bind in a site-specific manner to one or a few DNA sites to regulate single operons. Each of these 

levels of control impacts metabolic regulation by influencing enzyme levels. Thus, a complete model of 

branched chain amino acid biosynthesis in E. coli must include these higher levels of gene regulation.  To 

incorporate these higher levels of regulation we are currently developing a set of models that describe the 

genetic regulatory mechanisms that control the operons of the ilv regulon. To these ends, we face new 

challenges. For example, while the ordinary differential equations we are using for metabolic pathways 

are a deterministic and continuous approximation for an average representation of interactions between 

large numbers of discrete molecules (e.g. enzymes and metabolites), McAdams and Arkin point out that 

because each cell contains only one gene/operon there can be large differences in the time between 

successive events in regulatory cascades across a cell population that can produce probabilistic outcomes 

(36). To address this and other issues, we are currently working on another software package for genetic 

regulatory mechanisms, gMech, that implements stochastic simulation algorithms such as Gillespie’s 

algorithm (37), and the Langevin equation (38) that accommodate stochastic noise. This gMech software 

package will contain models for genetic regulatory mechanisms such as attenuation, activation and 

repression, as well as DNA topological controls.  Therefore, the work presented here should be 

considered as a first step of a “bottom up” approach that integrates biochemical information from the 

literature and bioinformatics databases, and relative gene expression data from DNA microarrays to build 

a self-regulated metabolic pathway in E. coli.  As high throughput technologies for genomics, proteomics 

and metabolomics grow, we expect that a similar approach will soon be feasible in higher organisms. 
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FIGURE LEGENDS 
 

Figure 1.  Traditional Metabolite Conversion Pathways for the Biosynthesis of the Branched Chain 

Amino Acids, L-Isoleucine, L-Valine, and L-Leucine. The abbreviations of enzymes involved in the 

common pathway for branched chain amino acid biosynthesis are: TDA, L-threonine deaminase (EC 

4.3.1.19); AHAS, acetohydroxy acid synthase (EC 4.1.3.18); IR, acetohydroxy acid isomeroreductase 

(EC 1.1.1.86); DAD, dihydroxy acid dehydrase (EC 4.2.1.9); TB, transaminase B (EC 2.6.1.42); TC, 

transaminase C (EC 2.6.1.66); IPMS, α-isopropylmalate synthase (EC 4.1.3.12); IPMI, α-isopropylmalate 

isomerase (EC 4.2.1.33); IPMDH, β-isopropylmalate dehydrogenase (EC 1.1.1.85); LIV-I, L-leucine, L-

isoleucine, and L-valine transporter I; LS, L-leucine specific transporter. The abbreviations of metabolites 

are: Thr, L-threonine; Ile, L-isoleucine; Val, L-valine; Leu, L-leucine; Glu, L-glutamate; Ala, alanine; 

Pyr, pyruvate; αKB, α-ketobutyrate; αAL, α-acetolactate; αAHB, α-aceto-α−hydroxybutyrate; αDHIV, 

α,β-dihydroxy-isovalerate; αDMV, α, β-dihydroxy-β-methylvalerate; αKIV, α-ketoisovalerate; αKMV, 

α-keto-β-methylvalerate; αKG, α-ketoglutarate; αIPM, α-isopropylmalate; βIPM, β-isopropylmalate; 

αKIC, α-ketoisocaproate; ex-Ile, extracellular L-isoleucine; ex-Val, extracellular L-valine; ex-Leu, 

extracellular L-leucine. Gene names for each enzyme are italicized. Enzyme reactions are indicated by 

arrows. Feedback inhibition patterns are indicated by dashed lines. Activation is indicated by a plus sign, 

and inhibitions are indicated by vertical bars. The line through AHAS II, ilvGM, indicates that this 

isozyme is not active in E. coli strain K12. 

 
 
Figure 2.  Enzyme-Centric, Metabolic Pathways for the Biosynthesis of the Branched Chain Amino 

Acids, L-Isoleucine, L-Valine, and L-Leucine. The abbreviations of enzymes and metabolites are the 

same as in Figure 1. Ovals represent enzyme molecules. White ovals indicate free enzyme states and 

shaded ovals indicate intermediate enzyme states with a function group attached to enzymes. Enzyme 

reactions are indicated by arrowed lines. Reversible reactions are indicated by gray arrowed lines. 

Switching between free and intermediate enzyme states are indicated by double-arrowed dashed lines. 

 
 
Figure 3.  Simulated Flow of Carbon Through the Branched Chain Amino Acid Biosynthetic 

Pathways of E. coli K12.  The graphical insets show the approach (minutes) to steady state (µM) 

synthesis and utilization of the substrates, intermediates, and end-products of the pathways.  The 

intermediates are abbreviated as described in the legend of Figure 1. The starting substrates L-threonine 

and pyruvate are supplied at rates to maintain constant levels of 520 µM and 1000 µM, respectively.  L-

glutamate (Glu) and alanine (Ala) for the transamination reactions, are supplied at a rate to maintain 
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constant levels of 2000 µM each. For the IR reaction, NADPH is supplied at a rate to maintain a constant 

level of 1000 µM. For the IPMS reaction, acetyl-coA is supplied at a rate to maintain a constant level of 

1000 µM. The beginning substrates (L-threonine and pyruvate) levels, as well as the end-product (L-

isoleucine, L-valine, and L-leucine) levels, agree with measured intracellular values (21,22).  Where 

available, the ranges of reported values for pathway intermediate and end-product levels in cells growing 

in a glucose minimal salts medium are shown in parentheses (µM) in the inset graphs. 

 
 
Figure 4.   Allosteric Regulation of L-Threonine Deaminase (TDA).  (A) The fraction of TDA in the 

active R state. At time = 0, and an initial L-threonine concentration of 520 µM, about 65% of the TDA 

enzyme is in the active R state. As L-isoleucine accumulates, TDA is rapidly end-product inhibited and as 

L-valine accumulates this inhibition is slowly countered until at steady state only about 5.5% of the total 

enzyme is in the active R state. (B) The fractional saturation of TDA with L-threonine (v0/Vmax). At time = 

0, and an initial L-threonine concentration of 520 µM, 8% of the total enzyme is saturated with L-

threonine. At a final steady state level of end-product synthesis, it is only 1.2% saturated with L-

threonine. 

 
 
Figure 5.  Simulated Effects of Excess L-Valine on Branched Chain Amino Acid Biosynthesis in E. 

coli K12.  Conditions described in Figure 2 were used for the simulations presented here except excess 

extra-cellular L-valine was added at a rate sufficient to be maintained at a concentration of 1 mM.  The 

data in panel (A) show that, as described in the text, excess L-valine increases rather than inhibits L-

isoleucine biosynthesis. The data in Panel (B) show that excess L-valine also causes a four-fold increase 

in the intracellular accumulation of αKB, which is restored to control levels by the extra-cellular addition 

of 500 µM L-isoleucine. The data in panel (C) show that the accumulation of αKB observed in the 

presence of excess L-valine coincides with the conversion of nearly 18% of the cellular TDA to a 

catalytically active R state; and, that the subsequent extracellular addition of 500 µM L-isoleucine 

reverses this transition to the control level (Fig. 3A). 

 
 
Figure 6.  Simulation of an E. coli K12 Strain that Overproduces L-Isoleucine. The simulation 

conditions described in Figure 2 were used for the simulations presented here except that a L-threonine 

deaminase feedback resistant mutant (TDAR) was simulated by increasing its Ki for L-isoleucine to 

100,000 µM,  and the ilvGMEDA operon attenuator mutant (ilvGMEDA-att-) was simulated by increasing  

TDA, AHAS II, IR, DAD and TB total enzyme levels 11 fold (26) (3).  The simulation in panel (A) shows 
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that the effect of the feedback resistant TDA mutant (TDAR) is to allow the positive effector ligands, L-

threonine and L-valine to transition nearly 100% of the TDA enzyme to the active R state. The simulation 

results in panel (B) show that L-isoleucine production in the TDAR mutant is 5 to 6-fold increased.  The 

simulation in panel (C) demonstrates that in the TDAR K12 mutant, the intermediate, αKB accumulates to 

a level 40-fold higher than in a wild type K12 strain; however, when the AHAS II isozyme is restored, 

and the bi-functional enzymes of the L-isoleucine and L-valine pathways are genetically de-repressed 11-

fold (ilvGMEDA-att-), αKB accumulation is relieved (panel C), and L-isoleucine synthesis is increased 

more than 40-fold over the wild-type K12 level (panel D). 

 

 

Figure 7.  An Acetohydroxy acid Isomeroreductase (IR) mutant (ilvC) Escherichia coli K12 Strain is 

auxotrophic for L-Isoleucine and L-Valine, but not L-Leucine.  The simulation conditions described 

in Figure 2 were used for the simulations presented here except that the initial concentration of IR was set 

to zero to simulate an ilvC mutation, and extra-cellular L-valine and L-isoleucine were supplied at a level 

of 500 µM each. The results show that αKIV (panel A) and L-leucine (panel B) are produced in an ilvC 

strain in the presence of extra-cellular L-valine and L-isoleucine.  
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Figure 7 (Hatfield)
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