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ABSTRACT 

 

 We have developed an enzyme mechanism language for the mathematical 

modeling of biochemical pathways. This language, kMech, is a comprehensive collection 

of single and multiple substrate enzyme reactions and regulatory mechanisms that 

extends Cellerator function for the mathematical modeling of enzyme reactions. Each 

mechanism has been codified to generate a set of elementary reactions that can be 

translated by Cellerator into ordinary differential equations (ODEs) solvable by 

Mathematica. We also present methods that use common kinetic measurements to 

estimate physical constants required to solve these ODEs. Because kMech assembles 

fundamental modular association-dissociation reaction mechanisms to describe complex 

enzyme mechanisms, the kMech/Cellerator dynamic modeling system is more flexible, 

and easily extended, than commonly used simulation systems based on Michaelis-

Menton kinetic equations. We use this system to model branched chain amino acid 

biosynthesis in Escherichia coli. Simulations of metabolic perturbations and genetic 

mutations predict results reported in the literature. 
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INTRODUCTION 

 Systems biology may be broadly defined as the integration of diverse data into 

useful biological models that allow scientists to easily observe complex cellular 

behaviors and to predict the outcomes of metabolic and genetic perturbations. Current 

and emerging high-throughput genomic and proteomic technologies now allow us to 

study the simultaneous behavior of thousands of cellular components in response to such 

perturbations. In order to integrate the large amounts of data these high-throughput 

technologies produce, we must develop computational methods to simulate complex 

biological systems.  

 As a first step towards the elucidation of the systems biology of the model 

organism, Escherichia coli, we have elected to use a dynamic modeling approach to 

describe fundamental molecular interactions with differential equations. We have also 

elected to confine our initial efforts to the complex but well-studied metabolic pathways 

for the biosynthesis of the branched chain amino acids (L- isoleucine, L-valine, and L-

leucine) 1. However, before we can mathematically simulate carbon flow through these 

pathways, we must have knowledge of the enzyme mechanism of each step in the 

pathway, we must know the values of kinetic  and physical parameters that describe these 

mechanisms, and we must be aware of the metabolic regulatory circuits that control these 

pathways. In the case of E. coli, an organism that has been studied for over fifty years, 

much of this information is available in the literature. 

In this report we present a Cellerator2  language extension, kMech, that describes 

a suite of enzyme mechanisms suitable for the mathematical modeling of metabolic 

pathways *. Each mechanism has been codified to generate a set of elementary reactions 

that can be translated by Cellerator into ordinary differential equations (ODEs) solvable 

by Mathematica. Alternatively, Cellerator can generate ODEs in System Biology Markup 

Language (SBML) for other simulators 3. We also present methods that use common 

kinetic measurements to estimate rate constants required to solve these differential 

equations. Because kMech assembles fundamental association-dissociation reaction 

mechanisms to describe complex enzyme mechanisms, the kMech/Cellerator dynamic 

                                                 
* A MathematicaTM executable, kMech.m, file and a MathamaticaTM notebook file for the simulation of 
branched chain amino acid biosynthesis, may be downloaded from the University of California , Irvine, 
Institute for Genomics and Bioinformatics website at www.igb.uci.edu/tools.htm. 
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modeling system is more flexible, and more easily extended, than commonly used 

simulation systems based on Michaelis-Menton kinetic equations 4-7. Our model 

incorporates all of the forward and reverse enzyme reactions and regulatory circuits of 

the branched chain amino acid biosynthesis pathways including: single and multiple 

substrate (Ping Pong and Bi Bi) enzyme kinetic reactions; feedback inhibition (allosteric, 

competitive, and non-competitive) mechanisms; channeling of metabolic flow through 

isozymes and transamination reactions; and active transport mechanisms.  

 L-threonine deaminase, the first enzyme specific for the biosynthesis of L-

isoleucine, is end-product inhibited by L- isoleucine, and α-isopropylmalate synthase, the 

first enzyme specific for the biosynthesis of L- leucine, is end-product inhibited by L-

leucine (Fig. 1). However, because the parallel pathways for L-valine and L- isoleucine 

biosynthesis are catalyzed by a set of bi- functional enzymes, L-valine inhibition of the 

first enzyme specific for its biosynthesis might compromise the cell for L- isoleucine 

biosynthesis.  This type of a regulatory problem is often solved by using multiple 

isozymes that are differentially regulated by multiple end-products.  In this case, there are 

three α-acetohydroxy acid synthase (AHAS) isozymes that catalyze the first step of the 

L-valine pathway, which is also the second step of the L-isoleucine pathway.  AHAS I 

has a substrate preference for the condensation of two pyruvate molecules required for L-

valine, and is end-product inhibited by L-valine. AHAS II, which has a substrate 

preference for the condensation of pyruvate and α-ketobutyrate required for L- isoleucine 

biosynthesis, is not inhibited by any of the branched chain amino acids. The third 

isozyme, AHAS III shows no preference for pyruvate or α-ketobutyrate but is inhibited 

by L-valine.  

 L-threonine deaminase (TDA) is an allosteric enzyme that exists in an active (R) 

state and an inactive (T) state. The fraction of active enzyme in the R state is determined 

by the concentrations and relative affinities of substrate (L-threonine), inhibitor (L-

isoleucine), and activator (L-valine) for the R and T states. The kinetic behavior of this 

enzyme is accurately captured by the Monod, Wyman, Changeux (MWC) concerted 

allosteric transition model 8 described in the Methods section.   

 In addition to these regulatory circuits, the intracellular levels of the branched 

chain amino acids are influenced by the reversible transamination reactions of each 
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pathway. When the intracellular levels of any of these end-product amino acids become 

high, reverse reactions to their cognate ketoacids are favored.  For example, high 

concentrations of L-valine can be converted to α-ketoisovalarate to supplement L- leucine 

production. The intracellular amino acid levels can be affected by the active transport of 

these amino acids from the extracellular growth medium. Therefore, enzymes required 

for the active transport of the branched chain amino acids into the cell against a 

concentration gradient are included in our simulations. 

 

RESULTS  

 

Computational Modeling of the Dynamics of Carbon Flow through the Branched 

Chain Amino Acid Biosynthesis Pathways of E. coli K12 

 The three interacting metabolic pathways simulated here consist of eleven 

enzymes, eighteen metabolic intermediates, and three enzyme cofactors. The 

mathematical model for this metabolic system consists of 105 ordinary differential 

equations (ODEs), with 110 association and dissociation rate constants, and 52 catalytic 

rate constants. The enzymes of these interacting pathways employ three distinct enzyme 

mechanisms (simple, Bi Bi, and Ping Pong Bi Bi) that are regulated by allosteric, 

competitive, or noncomptetitive inhibition mechanisms.  As described in the Methods 

section, the physical parameters for these models have been obtained directly from the 

literature, calculated from data in the literature, or estimated by fitting experimental data. 

Relative intracellular enzyme levels have been inferred from DNA microarray data 9. The 

time dependent approach to steady state for the thirteen pathway intermediates and end-

products are shown in Figure 2. Steady-state enzyme activity levels have been optimized 

to properly channel the metabolic flow of intermediates through these pathways and to 

match reported in vivo levels of pathway intermediates and end-products 10, 11. The 

detailed kMech inputs, corresponding ODEs, kinetic rate constants, and initial conditions 

for solving the ODEs are presented in Supplementary Figure 1 online. 

 

Allosteric Regulation of L-Threonine Deaminase 
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 The allosteric regulatory mechanism of L-threonine deaminase was simulated 

with the MWC model employing physical parameters based on the literature and 

optimized as described in the Methods section.  The data in Figure 2 show that L-

threonine deaminase produces α-ketobutyrate at a steady state level comparable to that 

observed in vivo 10, 11, and the data in Figure 3 illustrate the response of this allosteric 

enzyme to changes in the levels of its effector ligands, L- isoleucine and L-valine. Since 

the Ki for L-isoleucine (15 µM) is much less than the Ka for L-valine (550 µM), an initial 

decrease in the fraction of active TDA as L- isoleucine accumulates is followed by an 

increase to a final steady level that accompanies the slower accumulation of L-valine 

(Figs. 2 and 3).  

 

Regulation of the α -Acetohydroxyacid Synthase (AHAS) Isozymes   

 The two-substrate, two-product, AHAS isozymes I and III employ a Ping Pong Bi 

Bi enzyme mechanism described in the Methods section (the AHAS II isozyme is 

inactive in E. coli K12; 12)  The L-valine inhibition of AHAS I and III is noncompetitive 

and, in the case of AHAS III, is incomplete since 15-20%  of the activity attained at 

saturating substrate concentrations (Vmax) remains in the presence of saturating L-valine 

concentrations 13. The data in Figure 2 show that the production of α-acetolactate (αAL) 

produced by AHAS isozymes I and III decreases as L-valine accumulates. These data 

also show that α-aceto-α-hydroxybutyrate (αAHB), primarily produced by AHAS 

isozyme III, decreases to a steady state level as its end-product inhibitor (L-valine) 

accumulates, and as its substrate, α-ketobutyrate (αKB), decreases because L- isoleucine 

accumulates and inhibits L-threonine deaminase (Fig. 1). 

 

Responses to Metabolic and Genetic Perturbations  

L-valine growth inhibition of Escherichia coli K12 is due to α-ketobutyrate 

accumulation, not L-isoleucine starvation.   

It is well known that adding L-valine at a final concentration of 1 mM to the 

medium of a growing culture of E. coli K12 cells inhibits their growth, and that this L-

valine inhibition can be reversed by L-isoleucine 14. Since the AHAS I and AHAS III 

isozymes of E. coli K12 strains are inhibited by L-valine, and since the ilvG gene for 
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AHAS II in E. coli K12 strains contains a frameshift mutation that destroys AHAS II 

activity 12, it was assumed that L-valine inhibition of AHAS I and AHAS III might inhibit 

growth by interfering with L- isoleucine biosynthesis. However, later studies 

demonstrated that the intracellular L- isoleucine leve l is not suppressed by L-valine 

because its biosynthesis is sustained even at saturating L-valine concentrations , by AHAS 

III that remains 15-20% active 13, 15 and by the activation of L-threonine deaminase that 

shuttles more substrate into the L- isoleucine pathway.  Indeed, the simulation in Figure 

4A shows that in the presence of extra-cellular L-valine, the intra-cellular L- isoleucine 

level in fact accumulates nearly nine-fold (Fig. 4A). At the same time, the pathway 

precursor of L- isoleucine, α-ketobutyrate (αKB), increases about three-fold (Fig. 4B).  

This build-up of α-ketobutyrate (αKB) is caused by L-valine activation of L-threonine 

deaminase (Fig. 4C) which increases its production, and L-valine inhibition of the AHAS 

I and AHAS III isozymes, which reduces its consumption. It is now known that this α-

ketobutyrate accumulation is toxic to cells because of its ability to inhibit the glucose 

PTS transport system 16, 17. Thus, as reproduced by our simulations, L-valine growth 

inhibition of Escherichia coli K12 is not a consequence of L- isoleucine starvation. 

The simulation results in Figure 4B show that the growth inhibiting effects of L-

valine induced α-ketobutyrate accumulation can be reversed by L- isoleucine by its 

ability to inhibit L-threonine deaminase activity. This simulation shows that, in the 

presence of 1 mM L-valine, the level of α-ketobutyrate increases around three-fold; and 

that in the presence of 500 µM L-isoleucine, α-ketobutyrate levels are reduced to the 

control level observed in the absence of L-valine. The simulation results in Figure 4C 

show that, concomitant with the rise in α-ketobutyrate observed in the presence of 1 mM 

L-valine, nearly 18% of the cellular L-threonine deaminase is converted to the active R 

state. However, concomitant with the decrease in α-ketobutyrate observed in the presence 

of 500 µM L-isoleucine, the cellular L-threonine deaminase in the active R state is 

reversed to the control level observed in the absence of L-valine. It is worth note that the 

results of these mathematical models are verified by experimental results accumulated 

from multiple laboratories over a three decade period 14, 16, 17. 

 

Metabolic Engineering L-Isoleucine Over-Production.   
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An obvious goal of modeling biological systems is to facilitate metabolic 

engineering for the commercial production of specialty chemicals such as amino acids. In 

the past, this has been largely accomplished by genetic manipulation and selection 

methods.  For example, a common strategy to over-produce an amino acid has been to 

isolate a strain with a feedback resistant mutation in the gene for the first enzyme for the 

biosynthesis of that amino acid. Here we use our model to determine the effects of a 

feedback resistant L-threonine deaminase for the over-production of L- isoleucine. We 

can simulate a L-threonine deaminase resistant mutant strain by increasing the Ki for L-

isoleucine to a large number, (e.g. 100,000 µM).  The simulation in Figure 5A shows that 

in the absence of L-isoleucine inhibition, the activator and substrate ligands drive nearly 

100% of cellular feedback resistant L-threonine deaminase (TDAR) to the active R state 

compared to the wild type enzyme that is only 6% present in the active R state. However, 

in spite of this increased L-threonine deaminase activity, the data in Figure 5B show that 

the amount of L- isoleucine produced in a feedback resistant E. coli K12 strain is only 

about 5 to 6 fold  more than that produced by a wild type strain. On the other hand, the 

steady state level of α-ketobutyrate is increased about forty-fold (Fig. 5C).  This is 

because E. coli K12 does not have an active AHAS II isozyme that favors the 

condensation of pyruvate and α-ketobutyrate for L-isoleucine production; thus, α-

ketobutyrate accumulates. These simulation results suggest that in order to over-produce 

L- isoleucine we must remove this bottle-neck. The results in Figure 5D show that 

restoring a wild type AHAS II isozyme and simulating an attenuator mutation that 

elevates the levels of all of the enzymes of the L- isoleucine and L-valine parallel 

pathways 11-fold 18 both avoids buildup of subsequent pathway intermediates (Fig. 5C) 

and results in a forty-fold increase in L- isoleucine production. These simulated results 

that high level overproduction of L- isoleucine in E. coli requires a functional AHAS II 

isozyme and a de-attenuated genetic background (ilvGMEDA-att
-
) agree with 

experiments performed by Hashiguchi et al. at the Ajinomoto Co., Tokyo, Japan 19. 

 

Excess L-Valine Supplements L-Leucine Synthesis.   
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An Escherichia coli K12 ilvC strain lacking acetohydroxyacid isomeroreductase 

(IR) activity cannot produce α,β-dihydroxy-isovalerate (αDHIV) and α,β-dihydroxy-β-

methylvalerate (αDMV), intermediates of the common pathway for the biosynthesis of 

all three branched chain amino acids, L-isoleucine, L-valine, and L- leucine (Figure 1). 

However, acetohydroxyacid isomeroreductase deficient strains can grow in the presence 

of only L- isoleucine and L-valine. They do not need L- leucine because L-valine can be 

transaminated to α-ketoisovalerate (αKIV), a precursor of L- leucine biosynthesis, by the 

reverse reactions of transaminase B and C.  The simulation results in Figure 6 show that 

in the extra-cellular presence of 500 µM L-valine and L- isoleucine enough L- leucine can 

be produced to support the needs of an ilvC strain. 

 

 

DISCUSSION 

 

Because kinetic rate constants and in vivo enzyme concentrations are usually 

unavailable, existing models often employ Michaelis-Menton pseudo steady state 

assumptions. These models use experimentally measured Km (
f

catr

k
kk +

), and Vmax 

( catT kE ⋅ ) values to derive differential equations that describe one-way carbon flux 

reactions 4-7. However, while Km and Vmax values are often available for most enzymes, 

these methods do not allow the modeling of many biologically important enzyme 

parameters. A major achievement of the methods reported here is the development of 

kMech, a Cellerator language extension that describes a collection of complex enzyme 

reactions and metabolic regulatory models. Because kMech describes complete enzyme 

reaction mechanisms it allows the incorporation of, among other parameters, both free 

enzyme and enzyme-substrate complex concentrations as well as forward (kf), reverse (kr) 

reaction and catalytic (kcat) rate constants. This advantage is illustrated by the fact that the 

Michaelis-Menton kinetic models do not allow accurate modeling of channeling substrate 

flow among the AHAS isozymes. In this case, it was important to use kMech models 

with complete enzyme mechanisms that account for the fact that each enzyme is 

partitioned between a substrate intermediate and a catalytic form, and that each enzyme 
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has different end-product inhibition properties. The Michaelis-Menton kinetic models 

also do not allow accurate modeling of carbon flow through the reversible transaminase 

reactions. In this case, the same enzyme, TB, catalyzes the reversible transamination of 

all three branched chain amino acids. Thus, the relative affinities and concentrations of 

these amino acids and their cognate ketoacids for the pyridoxal (TB) and pyridoxamine 

(TBNH2) enzyme intermediates defined by the kMech models determine the rates of 

transamination of each end-product amino acid.  

In spite of the fact that E. coli genetic and metabolic regulation mechanisms have 

been studied for more than fifty years, not all the physical parameters required for the 

metabolic simulation of the branched chain amino acid biosynthetic pathways, or any 

pathways, are contained in the literature. However, to use the kMech reaction models we 

must know the kinetic rate and catalytic constants for each enzyme mechanism. Thus, it 

was necessary to develop methods to obtain robust estimates of these parameters from 

available kinetic data. In the Methods section we describe a Lambda (Λ) approximation 

method to estimate kinetic constants, kf and kr, from experimentally measured enzyme 

turnover numbers (kcat) and Km values. We also describe an Omega (Ω) approximation 

method to estimate inhibition constants, kfi and kri, from measured Km, Ki, and estimated 

kf and kcat values.  Intracellular enzyme levels can be inferred from the specific activities 

of purified enzymes and DNA microarray measurements.  For the simulations reported 

here, each of these experimentally constrained parameters for each enzyme reaction was 

optimized to predict experimentally-measured, intracellular, substrate, intermediate, and 

end-product concentrations. 

The methods that we have developed to simulate the metabolic regulation of 

branched chain amino acid metabolism in E. coli represent the first level of a bottom-up 

approach to an elucidation of the systems biology of this model organism. The metabolic 

pathways described here are further regulated by hierarchical levels of genetic regulatory 

mechanisms that respond to chemical and environmental signals.  These hierarchical 

levels of control are: (i) global control by chromosome structure, (ii) global control of 

stimulons and regulons composed of many operons, and (iii) operon-specific controls 20.  

The first, or highest, level of control is exemplified by DNA-topology-dependent 

mechanisms that coordinate basal level expression of all of the genes of the cell  
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(independent of operon-specific controls). This level is mediated by DNA architectural 

proteins and the actions of topoisomerases in response to nutritional and environmental 

growth conditions 21. The second level of control is mediated by site-specific DNA 

binding proteins, which, in cooperation with operon-specific controls, regulate often 

overlapping groups of metabolically related operons in response to environmental or 

metabolic transitions or stress conditions. The  third level of control is mediated by less 

abundant regulatory proteins that respond to operon-specific signals and bind in a site-

specific manner to one or a few DNA sites to regulate single operons. All of these 

regulatory levels participate in the regulation of the production of cellular proteins 

required for growth and intermediary metabolism.  Each of these levels of control impacts 

metabolic regulation by influencing enzyme levels. Thus, a complete model of branched 

chain amino acid biosynthesis in E. coli must include these higher levels of gene 

regulation. To this end we are currently working on another software package, gMech, 

that will describe genetic regulatory mechanisms such as attenuation, activation and 

repression, and DNA topological mechanisms assembled from the fundamental 

association-dissociation reactions as in kMech. Ultimately, these kMech and gMech 

models will be integrated with built- in Cellerator signal transduction cascade and cell 

development models. These efforts will be appropriate for mathematically modeling the 

metabolic, genetic, and developmental systems of any organism. 

 

 

METHODS 

 

Lambda approximation method for enzyme rate constants: 

In contrast to other models that simulate metabolic flux with Michaelis-Menton 

based rate equations 4-7, we have employed the kMech/Cellerator package to generate 

ordinary differential equations (ODEs) that describe detailed interactions between 

substrates, products, enzymes, enzyme intermediates, and coenzymes.  However, in order 

to solve these ODEs, we need to obtain values for forward and reverse kinetic rate 

constants kf, kr, that are often not available. To deal with this problem, we developed the 

Lambda (Λ) approximation method described in detail below. Briefly, this method 
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calculates these constants from the easily determined, and usually available, enzyme 

parameters, Km (Michaelis-Menten constant) and kcat (catalytic constant or enzyme 

turnover number).  This approach results in simple  mathematical relations that can be 

used to estimate rate constants of differential equations for enzyme reactions. For 

example, a single substrate-single product enzyme reaction can be represented as: 

r

catf

k
CEnEnAEnA

  kk

            

                  

+→⇔+ ………………………….(1)  

where A is the substrate, En is the free enzyme, EnA is the enzyme-substrate complex, C 

is the product, kf is the forward (association) rate constant, kr is the reverse (dissociation) 

rate constant, and kcat is the catalytic rate constant (enzyme turnover number). The 

Michaelis-Menton pseudo-steady state hypothesis assumes that, in the biological enzyme 

reaction, En, A, and EnA reach equilibrium rapidly relative to the rate of catalysis. Thus, 

according to the Law of Mass Action, 

 [ ][ ] [ ]EnAkEnAk catf   〉〉 …………………………….(2) 

 In this case, the ratio of 





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
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EnAk

cat

f  represents a large number Q that varies with time as 

the reaction approaches steady state, 

  
[ ][ ]
[ ]EnAk

EnAk
Q

cat

f= ………………………………………(3) 

In the special condition (denoted by *) where [ ] mKA =*  (the Michaelis-Menton 

constant), 50% of En is saturated with A at steady-state equilibrium; In other words, the 

amounts of free and substrate-bound enzyme are equal, 

 [ ]*A
k

kk
K

f

catr
m =

+
= ,…………….…………....…..(4) 

[ ] [ ]** EnAEn = . 

Consequently, the large quantity Q becomes a constant in this condition, 

 
[ ] [ ]

[ ] cat

mf

cat

f

k

Kk

EnA
EnA

k

k
Q

⋅
==

*
**

* …………………….(5) 

Therefore, we define Λ as a special case of Q above, 
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cat

mf

k

Kk ⋅
=Λ ………………………….……………...(6) 

[ ] [ ] [ ]*** EnAkEnAk catf ⋅Λ= ………………………..(7) 

 where Λ is a large time-invariant constant number, and the larger Λ is, the faster EnA 

reaches steady state equilibrium.  

By rearrangement of (6), we can approximate kf as, 

  
m

cat
f K

k
k

⋅Λ
= . ………………………………………..(8) 

 Now, by substitution of (8) into (4), we can approximate kr as 

catr kk ⋅−Λ= )1( ……………………………………..(9) 

By substitution of equations (3) and (9) into the differential equa tion describing the state 

of EnA, we obtain, 

  

[ ] [ ][ ] [ ] [ ]
[ ][ ] [ ] [ ]
[ ][ ] [ ]EnAkEnAk

EnAkEnAkEnAk

EnAkEnAkEnAk
dt
EnAd

catf

catcatf

catrf

⋅Λ−=

−⋅−Λ−=

−−=

             

)1(              

         = [ ][ ] [ ][ ]
Q

EnAk
EnAk f

f ⋅Λ−  

        [ ][ ]EnAk
Q f⋅
Λ

= )-1( ……………………...(10) 

If the value of Λ is large enough and close to Q ( 1≈
Λ
Q

), the equation (10) ≈ 0, 

and EnA reaches steady state equilibrium after a short time (equation (7)), which is the 

same as the Michaelis-Menton pseudo-steady state assumption 22. To determine the value 

of Λ, we varied Λ from 10 to 1,000,000 in simulations with no significant changes in the  

steady levels of intermediates and end-products. Consequently, in simulations reported 

here, the value of Λ  is always set to 100. 

Km values are obtained from the literature, and kcat (mole/min/mole) values are 

calculated from Specific Activities (µmole/min/mg) and molecular weights of purified 

enzymes. However, because of uncertainties about the percentages of purified enzymes 

that are active, kcat values often require adjustments to fit experimental data.  
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The same Λ approximation methods, (7) and (8) are also used for multiple 

substrate and product enzymes that bind and release reactants in a Ping Pong fashion. 

However, in the general case of two-substrate, two-product, enzymes that bind and 

release reactants in a Bi Bi fashion, kf and kr are approximated according to equations 

(10) and (11).  

B
m

A
m

cat
f

KK

k
k

⋅

⋅Λ
=  ……………………………………..(10) 

catr kk ⋅−Λ= )1(  …………………………..…………(11)  

where A
mK  is the Km for substrate A, and B

mK  is the Km for substrate B. 

 

Omega approximation method for enzyme inhibition rate constants: 

In addition to needing methods to approximate forward and reverse reaction rates 

of enzyme substrate binding reactions, kf, kr, we need to be able to estimate the forward 

and reverse rate constants for enzyme-inhibitor binding reactions, kfi, kri. To accomplish 

this we define a value Ω that approximates the rate that an enzyme binds to its substrate 

relative to its inhibitor. Like the derivation of Λ, the derivation of Ω is based on the 

Michaelis-Menten pseudo-steady state assumption. The kfi is approximated by  

ffi kk ⋅Ω=  

, and kri is approximated by  

ifri Kkk ⋅⋅Ω= . 

As shown in the detailed derivation provided as Supplementary Figure 2 online, value of 

Ω can be an arbitrary number if free enzyme, enzyme-inhibitor complex, and enzyme-

substrate complex are in the steady state equilibrium. Consequently, in simulations 

reported here, the value of Ω is always set to 1. 

 A list of reported and optimized enzyme kinetic and physical parameters needed 

to solve the above equations can be found in Supplementary Table 1 online.  

 

Approximation of Intracellular Enzyme Concentrations from Microarray analysis 

With few exceptions, intracellular enzyme concentrations are not available. 

However, with careful experimental documentation, these concentrations can be 
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approximated from the yields and specific activities of purified enzymes. For example, 

calculations based on purification tables in the literature suggest that the intracellular 

concentration of L-threonine deaminase (TDA) is 4 µM 23. Furthermore, recent 

experiments have shown a positive correlation between mRNA levels measured with 

DNA arrays and protein abundance in both E. coli 24 and yeast cells 25. Thus, the 

intracellular levels of the remaining enzymes of the branched chain amino acid 

biosynthetic pathway can be inferred from the calculated intracellular level of L-

threonine deaminase and the relative mRNA levels of the other branched chain amino 

acid biosynthetic enzymes. The data in Supplementary Table 1 online demonstrate that 

this is a reasonable method. Indeed, simulations using intracellular enzyme 

concentrations inferred in this manner using DNA microarray data 9 produce 

experimentally observed steady state pathway intermediate, and end-product levels 10, 11 

within two-fold to one-half adjustments of their inferred values. 

 

Simulation of L-Threonine Deaminase Activity and Regulation 

 The concerted transition allosteric model of Monod, Wyman, and Changeux, the 

MWC model, is described by two equations 8. The first equation describes the fraction of 

the enzyme in the or catalytically active state (R) as a function of substrate and effector 

concentrations. 

 

  R = 
nn

n

cL )1()1(
)1(

αα
α

+++
+

     (1) 

 

The second equation describes the fractional saturation (Yf ) of the enzyme occupied by 

substrate as a function of substrate and effector concentrations. 
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In order to simulate the MWC model several parameters such as substrate ( S ), activator 

(A), and inhibitor (I) concentrations and their respective dissociation constants Km, Ka, 

and Ki must be known:. With these values, usually available in the literature, the values 

of α, β , and γ are calculated. The value of n, the number of substrate and effector ligand 

binding sites is also, usually available (n = 4 for E. coli L-threonine deaminase); 

however, with few exceptions the values of c, the ratio of the affinity of the substrate for 

the catalytically active R state and the inhibited T state, and L0, the equilibrium constant 

(allosteric constant) for the R and T states in the absence of ligands, are unavailable. 

However, these values can be readily derived by fitting generally available substrate 

saturation curves generated in the presence of several inhibitor concentrations as 

originally described by Hatfield 26. The values of c  (0.013) and 0L  (1.05), used for the 

simulations reported here were obtained by finding the minimum sum of squared 

differences between theoretical data and experimental data with the non-linear 

programming Mathematica function, FindMinimum (see Supplementary Figure 3 online).   

 

The Development of kMech Models for the  Simulation of Enzyme Reaction 

Mechanisms 

Ping Pong Bi Bi Model  The α-acetohydroxyacid synthase (AHAS) isozymes catalyze 

the condensation of either two molecules of pyruvate (pyr) to form one molecule of the 

L-valine and L-leucine precursor α-acetolactate (αAL), or one molecule of pyruvate and 

one molecule of α-ketobutyrate (αKB) to form one molecule of the L- isoleucine 

precursor, α-aceto-α-hydroxybutyrate (αAHB) (Fig. 1). Each of these isozymes catalyzes 

their reactions with a Ping Pong Bi Bi enzyme mechanism 27. It is an ordered Bi Bi 

mechanism because a pyruvate molecule must bind to the enzyme, react with a thiamine 

pyrophosphate cofactor to form an active acetaldehyde group (CH3CO), and release the 

first product, CO2, before the second substrate, pyruvate or α-ketobutyrate can bind to the 

enzyme. Next, the enzyme bound active acetoaldehyde group, must be transferred to the 

second substrate, pyruvate or α-ketobutyrate, to form the second product, α-acetolactate 

or α-aceto-α-hydroxybutyrate and to release the free enzyme. It is a Ping Pong 
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mechanism because the enzyme shuttles between a free and a substrate-modified 

intermediate state. 

These enzyme mechanisms can be represented in a reaction- like notation for input 

into kMech and Cellerator, and subsequent computer simulation. The kMech input 

representation for the Ping Pong Bi Bi model is 
 

                En, Enx 
Enz[{A, B}⇔ {C, F}, PingPong[kf1, kr1, kcat1, kf2, kr2, kcat2]] 

 

where A and B are the substrates; C and F are the products; En is the free enzyme; and 

Enx is the modified enzyme intermediate; kf1 and kf2 are the rate constants of the 

enzyme- substrate binding for A and B, respectively; kr1 and kr2 are the  dissociation rate 

constants for the enzyme substrates A and B, respectively; kcat1 and kcat2 are the 

catalytic rate constants for the formation of products C and F, respectively; and the 

prefix, Enz[…] is the name of a new formal function defining additional capabilities 

provided to Cellerator by kMech . 

 kMech interprets this input and converts it to more elementary reactions (in this 

case, two single-substrate single-product reactions) defined in Cellerator as follows:  
 

{A + En ⇔ $Complex$A$En$, kf1, kr1}, 

{$Complex$A$En$ → C + Enx, kcat1}, 

{B+ Enx ⇔ $Complex$B$Enx$, kf2, kr2}, 

{$Complex$B$Enx$ → F + En , kcat2} 

 

 The first of these symbolic reactions represents the formation of the enzyme 

complex with substrate A (which is given the new name “$Complex$A$En$”).  This 

reaction is reversible and has forward rate kf1 and reverse rate kr1.  The second reaction 

represents the release of product C from the complex $Complex$A$En$, and the  

formation of the enzyme intermediate Enx. It is irreversible and has rate kcat1. The third 

and fourth reactions of the kMech output represent the formation of the enzyme complex 

with substrate B ($Complex$B$Enx$ from B and Enx) with rates of kf2 and kr2, and the 

release of product F and free enzyme En with rate kcat2.  

Given these reactions, the Cellerator “interpret” function generates the following 

Mathematica formatted differential equations: 
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A’[t] = = -kf1 A[t] En[t] + kr1 $Complex$A$En$[t], 

B’[t] = = -kf2 B[t] Enx[t] + kr2 $Complex$B$Enx$[t], 

C’[t] = =kcat1 $Complex$A$En$[t], 

F’[t] = = kcat2 $Complex$B$Enx$[t], 

En’[t]= = -kf1 A[t] En[t] + kr1 $Complex$A$En$[t] + kcat2 $Complex$B$Enx$[t], 

Enx’[t]= = -kf2 B[t] Enx[t] + kcat1 $Complex$A$En$ [t] + kr2 $Complex$B$Enx$[t], 

$Complex$A$En$’[t] = = kf1 A[t] En[t] – kcat1 $Complex$A$En$[t] – kr1 $Complex$A$En$[t], 

$Complex$B$Enx$’[t] = = kf2 B[t] Enx[t] – kcat2 $Complex$B$Enx$[t] – kr2 $Complex$B$Enx$[t] 

 

These differential equations and variable definitions are passed to Mathematica where 

they are solved by the numeric solver (NDSolve) function and time plots are generated.  

Alternatively, Cellerator can output a model in Systems Biology Markup Language 

(SBML) for input into another cell simulation environment 3. 

 

Carbon Flow Channeling  The above differential equations accurately model the 

kinetic behavior of AHAS II, which is not inhibited by L-valine. However, since AHAS 

isozymes are controllers of carbon flow distribution to either L- isoleucine or L-valine and 

L- leucine biosynthesis by selectivity (Km) of their second substrate 13, it was necessary to 

combine the “Union” operator from Mathematica with kMech inputs as shown below: 
 

Union[ 

                AHASII, AHASIICH3CO 
Enz[{Pyr, Pyr}⇔ {CO2, aAL}, PingPong[kfAHASIIPyr, krAHASIIPyr, kcat$AHASII$Pyr, kfAHASIIPyr2, 

krAHASIIPyr2, kcat$AHASII$Pyr2]], 

 

                AHASII, AHASIICH3CO 
Enz[{Pyr, aKB}⇔ {CO2, aAHB}, PingPong[kfAHASIIPyr, krAHASIIPyr, kcat$AHASII$Pyr, kfAHASIIaKB, 

krAHASIIaKB, kcat$AHASII$aKB]] 

] 

(The first reaction is for the L-valine & L-leucine pathways, and the second reaction is for the L-isoleucine pathway.)   

 

This union operator is used to eliminate the duplicated first substrate reaction, and allows 

the following reactions that represent a branch-point for carbon flow into the L-valine 

and L- leucine or L-isoleucine pathways 28. This channeling of carbon flow is controlled 

by the active AHAS II isozyme intermediate(AHASIICH3CO): 
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                 + Pyr⇔ $Complex$Pyr$AHASIICH3CO$b→  aAL 

Pyr + AHASII ⇔ $Complex$Pyr$AHASII$ → CO2 + AHASIICH3CO 

                 + aKB⇔ $Complex$aKB$AHASIICH3CO$→  aAHB  

 

(aAL is the precursor of the L-valine & L-leucine pathways; aAHB is the precursor of the L-isoleucine pathway) 

 

Reversible Transamination Mechanism   The reversible mechanism of the 

transaminase B and C enzymes (Fig. 1) are described by a Ping Pong model in which the 

enzyme shuttles between pyridoxal phosphate (TB) and pyridoxamine phosphate 

(TBNH2) bound states. Thus, the kMech inputs of the transaminase B reaction for L-

isoleucine synthesis are as follows: 
 

                       TB, TBNH2 
Enz[{Glu, aKMV} ⇔ {aKG, Ile}, PingPong[fkfTBGlu, fkrTBGlu, fkcat$TB$Glu, fkfTBaKMV, fkrTBaKMV, 

fkcat$TB$aKMV]]    (forward reaction) 

 
                    TB, TBNH2 
Enz[{Ile, aKG} ⇔ {aKMV, Glu}, PingPong[rkfTBIle, rkrTBIle, rkcat$TB$Ile, rkfTBaKG, rkrTBaKG, 

rkcat$TB$aKG]]     (reverse reaction) 

 

Transaminase B catalyzes the final step of the biosynthetic pathways of all three of the 

branched chain amino acids, L- isoleucine, L-valine, and L- leucine.  Each of these 

transamination reactions use glutamate as an amino donor to form the pyridoxamine 

intermediate (TBNH2) that can transaminate the a-ketoacids of each pathway. The 

kMech input for these reactions are  
 

Union[ 

                       TB, TBNH2 
Enz[{Glu, aKMV} ⇔ {aKG, Ile}, PingPong[fkfTBGlu, fkrTBGlu, fkcat$TB$Glu, fkfTBaKMV, fkrTBaKMV, 

fkcat$TB$aKMV]] 

 

                       TB, TBNH2 
Enz[{Glu, aKIV} ⇔ {aKG, Val}, PingPong[fkfTBGlu, fkrTBGlu, fkcat$TB$Glu, fkfTBaKIV, fkrTBaKIV, 

fkcat$TB$aKIV]] 

 

                       TB, TBNH2 
Enz[{Glu, aKIC}⇔ {aKG, Leu}, PingPong[fkfTBGlu, fkrTBGlu, fkcat$TB$Glu, fkfTBaKIC, fkrTBaKIC, 

fkcat$TB$aKIC]] 

] 
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Since each of these pathway reactions share the glutamate substrate reaction, the Union 

operator is used to eliminate the duplicated first substrate reactions. 
 

      + aKMV ⇔ $Complex$aKMV$TBNH2$→  Ile 

Glu + TB ⇔ $Complex$Glu$TB$ → aKG + TBNH2       + aKIV   ⇔ $Complex$aKIV$TBNH2$  →  Val 

      + aKIC   ⇔ $Complex$aKIC$TBNH2$ →   Leu  

 

In this case, the channeling of carbon flow to end-products is controlled by the enzyme- 

pyridoxamine intermediate (TBNH2).  

A similar approach was applied on the reverse reaction to eliminate the duplicated 

second substrate reaction  
 

Ile  + TB ⇔  $Complex$Ile$TB$ → aKMV  + 

Val + TB ⇔  $Complex$Val$TB$ → aKIV  +   TBNH2    + aKG   ⇔ $Complex$aKG$TBNH2$  →  TB + Glu 

Leu + TB ⇔ $Complex$Leu$TB$ → aKIC  +   

 

Extensions of Enzyme Reaction Models with Regulatory Circuits 

 The AHAS I and III isozymes are controlled by a noncompetitive inhibition 

mechanism 13. This mechanism can be described by the following kMech input : 
 

                 En, Enx 
Enz[{A, B}⇔ {C, F}, PingPong[kf1, kr1, kcat1, kf2, kr2, kcat2], NCI[inh, kfi1, kri1, kfi2, kri2, residualRate]] 

 

Here, inh is the inhibitor name, kfi1, kri1, and kfi2, kri2 are inhibitor association and 

dissociation rate constants for the first and second substrate reactions, respectively, and  

NCI stands for non-competitive inhibition. residualRate is the fraction of maximal 

enzyme activity (Vmax) remaining at saturating inhibitor concentrations. The detailed 

reactions and equations that include these noncompetitive inhibition and residual activity 

parameters can be found as Supplementary Figure 4 online.   

 In the case of α-isopropylmalate synthase (IPMS), the binding of the first 

substrate acetyl-coA, is competitive ly inhibited by L- leucine; and the second substrate 

reaction with α-ketoisovalerate is non-competitively inhibited by L-leucine 29.  The 

kMech input for this model is 
 

                 En, Enx 
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Enz[{A, B}⇔ {C, F}, PingPong[kf1, kr1, kcat1, kf2, kr2, kcat2], CI[inh, kfi1, kri1], NCI[inh, kfi2, kri2]] 

 

Here CI stands for competitive inhibition. Other notations are as described above. The 

detailed reactions and equations for competitive and noncompetitive reactions are 

included in the Supplementary Figure 4 online. 

 

Bi Bi Model (General Case) 

 Unlike the Ping Pong Bi Bi mechanisms described above where two substrates 

must bind in an ordered fashion, the general Bi Bi describes a two-substrate two-product 

reaction where there is no required order for the binding of substrates to the enzyme, or 

the release of products, and product formation occurs only after the formation of the 

enzyme-two substrates complex. The kMech input for this Bi Bi mechanism is 
 

     En 
  Enz[{A, B} ⇔ {C, F}, Bi Bi[kf1, kr1, kcat1]] 
 

The resulting Cellerator reactions and Mathematica formatted differential equations for 

this enzyme reaction are shown in the Supplementary Figure 4 online. This kMech model 

describes the acetohydroxyacid isomeroreductase (IR) with substrates α-acetolactate 

(αAL) or α-aceto-α-hydroxybutyrate (αAHB) and NADPH, as well as the reaction of β-

isopropylmalate dehydrogenase (IPMDH) with its substrate β-isopropylmalate (βIPM) 

and NAD. 

 

Simple Catalytic Model 

 The dihydroxyacid dehydrase (DAD) enzyme catalyzes a simple single substrate, 

single product reaction that involves no cofactors or enzyme intermediates. This is a basic 

Cellerator reaction called ‘catalytic’ represented as 
 

      En 
 {A⇔ F, kf, kr, kcat} 

 

This model also describes the α- isopropylmalate isomerase (IPMI), and the active 

transport systems of branch chain amino acid transport enzymes catalyzed by the LIV I 

(for L- leucine, L- isoleucine, and L-valine), and LS (L- leucine specific) transport 
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systems30.  These transport systems were incorporated to simulate the uptake of 

extracellular branched chain amino acid additions required for perturbation experiments 

described above. 
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Figure Legends: 
 

 

Figure 1.  The Biosynthetic Pathways for the Branched Chain Amino Acids, L-

Isoleucine, L-Valine, and L-Leucine. The bi- functional enzymes involved in the 

common pathway for branched chain amino acid biosynthesis are abbreviated as follows: 

TDA, L-threonine deaminase (EC 4.3.1.19); AHAS, acetohydroxyacid synthase (EC 

4.1.3.18); IR, acetohydroxyacid isomeroreductase (EC 1.1.1.86); DAD, dihydroxyacid 

dehydrase (EC 4.2.1.9); TB, transaminase B (EC 2.6.1.42); TC, transaminase C (EC 

2.6.1.66); IPMS, α-isopropylmalate synthase (EC 4.1.3.12); IPMI, α-isopropylmalate 

isomerase (EC 4.2.1.33); IPMDH, β-isopropylmalate dehydrogenase (EC 1.1.1.85). Gene 

names for each enzyme are italicized. Feedback inhibition patterns are indicated by 

dashed lines. The amino donor for TB is L-glutamate. The amino donor for TC is L-

alanine. 

 
 
Figure 2.  Simulated Flow of Carbon Through the Branched Chain Amino Acid 

Biosynthetic Pathways of Escherichia coli K12.  The graphical insets show the 

approach (minutes) to steady state (µM) synthesis and utilization of the intermediates and 

end-products of the pathways.  The intermediates are abbreviated as follows: Pyr, 

pyruvate; αKB, α-ketobutyrate; αAL, α-acetolactate; αAHB, α-aceto-

α−hydroxybutyrate; αDHIV, α,β-dihydroxy- isovalerate; αDMV, α, β-dihydroxy-β-

methylvalerate; αKIV, α-ketoisovalerate; αKMV, α-keto-β-methylvalerate; αIPM, α-

isopropylmalate; βIPM, β-isopropylmalate; αKIC, α-ketoisocaproate.  The starting 

substrates L-threonine and pyruvate are supplied at rates to maintain constant levels of 

520 µM and 1000 µM, respectively.  For the transamination reactions, L-glutamate (TB) 

and L-alanine (TC) are supplied at rates to maintain a constant level of 2000 µM each. 

For the isomeroreductase (IR) reaction, NADPH is supplied at a rate to maintain a 

constant level of 1000 µM. For the isopropylmalate synthase (IPMS) reaction, acetyl-coA 

is supplied at a rate to maintain a constant level of 1000 µM. The beginning substrates 

(L-threonine and pyruvate) levels, as well as the end-product (L- isoleucine, L-valine, and 
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L- leucine) levels, agree with measured values 10, 11.  Where available, the ranges of 

reported values for pathway intermediate and end-product levels in cells growing in a 

glucose minimal salts medium are shown in parentheses (µM) in the inset graphs. 

 
 
Figure 3.   Allosteric Regulation of L-Threonine Deaminase (TDA).  (A) The Fraction 

of TDA in the Active R State. At time = 0, and an initial L-threonine concentration of 

520 µM, about 0.65 of the TDA enzyme is in the active R state. As L- isoleucine 

accumulates, TDA is end-product inhibited and as L-valine accumulates this inhibition is 

slowly countered until at steady state only about 0.05 of the total enzyme is in the active 

R state. (B) The Fractional saturation of TDA with L-threonine (v0/Vmax). At time = 0, 

and an initial L-threonine concentration of 520 µM, 0.08 of the total enzyme is saturated 

with L-threonine. At a final steady state level of end-product synthesis, it is only 0.012 

saturated with L-threonine. 

 
 
Figure 4.  Metabolic Effects of Excess L-Valine on Branched Chain Amino Acid 

Biosynthesis in Escherichia coli K12.  The simulation conditions described in Figure 2 

were used for the simulations presented here except excess extra-cellular L-valine was 

added at a rate sufficient to be maintained at a concentration of 1 mM.  The data in panel 

(A) show that, as described in the text, excess L-valine increases rather than inhibits L-

isoleucine biosynthesis. The data in Panel (B) show that excess L-valine causes a three-

fold increase in the intracellular accumulation of α-ketobutyrate (αKB), that is restored to 

control levels by the extra-cellular addition of 500 µM L-isoleucine. The data in panel 

(C) show that the accumulation of α-ketobutyrate observed in the presence of excess L-

valine coincides with the conversion of nearly 18% of the cellular L-threonine deaminase 

to a catalytically active R state; and, that the subsequent extracellular addition of 500 µM 

L-isoleucine reverses this transition to the control level. 
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Figure 5.  Metabolic Engineering of an Escherichia coli K12 Strain that 

Overproduces L-Isoleucine. The simulation conditions described in Figure 2 were used 

for the simulations presented here except that the L-threonine deaminase feedback 

resistant mutant (TDAR) was simulated by increasing its Ki for L- isoleucine to 100,000 

µM; and the ilvGMEDA operon attenuator mutant (ilvGMEDA-att
-
) was simulated by 

increasing  TDA, AHAS II, DAD and TB total enzyme levels 11 fold 18.  The simulation 

in panel (A) shows that the effect of the feedback resistant TDA mutant (TDAR) is to 

allow the positive effector ligands, L-threonine and L-valine to transition nearly 100% of 

the TDA enzyme to the active R state. The simulation results in panel (B) show that L-

isoleucine production in the TDAR mutant is 5 to 6-fold increased.  The simulation in 

panel (C) demonstrates that in a TDAR K12 mutant, the intermediate, α-ketobutyrate 

(αKB) accumulates to a level 40-fold higher than in a wild type K12 strain; however, 

when the AHAS II isozyme is restored, and the bi- functional enzymes of the L- isoleucine 

and L-valine pathways are genetically de-repressed 11-fold (ilvGMEDA-att
-
), α-

ketobutyrate accumulation is relieved (panel C), and L- isoleucine synthesis is increased 

more than 40-fold over the wild-type K12 level (panel D). 

 

 

Figure 6.  An Acetohydroxyacid Isomeroreductase (IR) mutant (ilvC) Escherichia 

coli K12 Strain is auxotrophic for L-Isoleucine and L-Valine, but not L-Leucine.  

The simulation conditions described in Figure 2 were used for the simulations presented 

here except that the initial concentration of isomeroreductase (IR) were set to zero to 

simulate an ilvC mutation, and extra-cellular L-valine and L-isoleucine were supplied at a 

level of 500 µM each. The results show that αKIV (panel A) and L- leucine (panel B) are 

produced in an ilvC strain in the presence of extra-cellular L-valine and L- isoleucine.  
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Figure 1 (Hatfield) 
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Figure 2 (Hatfield)



5 10 15 20

0.02

0.04

0.06

0.08

0.1

5 10 15 20

0.02

0.04

0.06

0.08

0.1

A

B

min

min

F
ra

ct
io

n 
of

 s
ub

st
ra

te
bo

un
d 

T
D

A
F

ra
ct

io
n 

of
 T

D
A

in
 th

e 
ac

ti
ve

 s
ta

te

Yf

R

Figure 3 (Hatfield)
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Figure 4 (Hatfield)
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Figure 5 (Hatfield)
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Figure 6 (Hatfield)




