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Abstract

In this paper we present the techniques for tracking cell
signal in GFP (Green Fluorescent Protein) images of
growing cell colonies. We use such tracking for both data
extraction and dynamic modeling of intracellular processes.
The techniques are based on optimization of energy
functions, which simultaneously determines cell
correspondences, while estimating the mapping functions. In
addition to spatial mappings such as affine and Thin-Plate
Spline mapping, the cell growth and cell division histories
must be estimated as well. Different levels of joint
optimization are discussed.

The most unusual tracking feature addressed in this paper
is the possibility of one-to-two correspondences caused by
cell division. A novel extended softassign algorithm for
solutions of one-to-many correspondences is detailed in this
paper. The techniques are demonstrated on three sets of
data:  growing bacillus Subtillus and e-coli colonies and a
developing plant shoot apical meristem. The techniques are
currently used by biologists for data extraction and
hypothesis formation.

1.   Introduction

1.1 Motivation

The deployment of in vivo live confocal microscopy has
enabled scientists to capture gene expression data and begin
to create computational models of developing cellular
organisms. Such systems include intracellular molecular
regulation networks combined with intercellular signals and
transport, cell growth and proliferation, and mechanical
interactions between cells, resulting in complex interaction

networks with the ability to control the development of
multicellular organisms.

The amount and quality of collected expression data is
significant enough that scientists are able to hypothesize
many of the underlying control circuits, but the experimental
data of important molecular players and interactions are
most often incomplete, and additional hypotheses are
needed to explain their spatial and dynamical behavior [1].
Mathematical modeling provides a powerful method for
describing and testing hypotheses about developmental
biological systems. Not only can hypotheses be tested to see
if they account for the observed data but predictions can be
made for new experiments.

The data provided by the confocal imaging technique is
available in the form of an image time series, quantification
of which is essential to creation of viable models. Different
image processing algorithms are used to extract cell
compartments and GFP fluorescence intensities within
individual cells [2,3]. It is usually assumed that the GFP
intensity is linearly related to the amount of protein, and
hence the average intensity within a cell is interpreted as a
relative protein concentration.

Once the cell boundaries and the signal within cells is
extracted from individual images, the task of finding the
correspondence between cells at different time points, so
that temporal developmental signal can be extracted for each
cell, remains. This is the problem that we will address in this
article.

1.2 Background

In general, the problem of finding correspondences or
matches between image objects is a fundamental problem in
computer image analysis. In its worst case (when each
object in one image can potentially correspond to every



object in another image) this problem may be NP-complete.
In practice this means that in order to find optimal
correspondence, combinatorially many matches have to be
considered. For large data sets, such a search leads to
prohibitive computational times. In addition, the problem
can be further complicated if unknown transformation
(mapping) is applied to the objects in different image
frames. In this case in addition to finding optimal
correspondences between points, the transformations
influencing object attributes (such as coordinates) have to be
estimated as well. This is often the case in fluorescent
imaging.

Many solutions to point matching and graph matching are
available in the literature. The state of the art work is based
on joint estimation of correspondence and spatial mappings
via optimization of energy function [5,6,7,8].  The general
framework for such optimization is proposed by Gold et al.
[4]. This framework uses the methods of deterministic
annealing [9,13] in conjunction with soft assign [10,14,15]
and clocked objectives [11] to produce an optimizing
network and a corresponding Energy function.

The success of such approach is dependent on the design
of energy function in conjunction with the choice of
optimization technique. The typical energy function consists
of two parts E = Ep + Econs. Energy of constrains (Econs) is
tightly related to optimization method being used, and
Energy of the problem (Ep) is tightly related to the problem.
Ideally Ep should use all the data and information available,
to estimate the error of given correspondence.

Of crucial importance in designing Ep is accurate selection
of mapping function. If the image data has undergone affine
transformation, the natural choice for mapping function is
obviously an affine transformation. If the parameters of such
transformation are not known, they must be estimated
simultaneously with correspondence. Another example of
mapping is Thin Plate Spline, proposed by Chui and
Rangarajan [12] for matching objects in brain MRI. It is
obvious that the Ep part of energy function varies
significantly, depending on the data and it’s behavior.

2. Problem description and objectives

In this article, we will address tracking, matching and
modeling signals in fluorescent imagery, using the latter
optimizing network. More precisely, the problem is: Given a
sequence of images (movie) depicting cell arrays, determine
the positions of each cell at each time point (track cells
through time), while recognizing cell division events and
recording cell lineage. Cell death is not observed in the
image data under study, however during growth cells often
disappear into the “out of focus” regions.

Cell centroids and other attributes have been previously
extracted from such images using various image processing
algorithms as described briefly in Section 6. Extraction of
cell attributes from individual images is not a focus of this
paper. Instead, we concentrate on determining
correspondences between already extracted cells in
consecutive images. Determining such correspondences

between cells can be very challenging, especially for low
sampling rate, when cells move a lot from frame to frame. It
often requires modeling of cell motion. In addition, the
limitations of imaging process and image processing
algorithms produce mistakes in extracted cell attributes,
therefore making matching job even harder.

The main challenge here is to design the Ep and mappings
adequate for extraction and modeling of temporal cell
signals. The form of some of these mappings is known a
priori. For example, it is usually known that the data might
undergo rotation and translation or other Euclidean or affine
transformations during development. But there are other
mappings present in cell colonies that are less clear and
extremely important. Such mappings are caused by cell
growth and cell division (growth transformation), and they
are by far less known and they are actually the object of the
scientific study. In fact, the growth transformation involves
(is a function of) cell products and is tightly interconnected
with the dynamic network of the cell colony under study. In
principle, as far as cell growth and cell division
transformations (mappings) are concerned, we are
confronted with a “chicken and egg problem”. To extract the
signal from the data, one must hypothesize the mapping, but
two hypothesize the mapping one must extract the signal
from the data. In this way our objectives form a closed loop
(Figure 1). Each node in a loop enables next node. Once
again a simultaneous solution is desired, but it is only
possible if the form of growth and cell division mappings
can be hypothesized. Practically, this problem is solved by
incremental improvement of Ep, and analysis of obtained
solutions.

In such approach we would start with a very simple Ep,
and we would apply it to the best obtainable data. Such data
must be collected at the fastest sampling rate possible, so
that cell displacement due to growth and cell division
transformations is negligible. That allows us to ignore
growth transformation, while extracting a temporal cell
signal, and then to hypothesize such transformation given
extracted signal. Once the form of growth transformation is
hypothesized, the simultaneous solution for growth mapping
and correspondence can be obtained, and then the
interactions of these transformations with other cell
data/parameters can be hypothesized and formulated as a
dynamic network.

Figure 1. The objectives loop. Each objective enables
the next one.

Extract temporal cell
signals (cell data over
time)

Hypothesize and learn
cell growth and cell
division transformations

Determine interactions of
these transformations
with other cell variables

Formulate plant as a
Dynamic network



3. Approach to solution: Sequential vs.
Simultaneous solutions

Our general approach to the solution is to encode problem
goals as terms in an objective function and to determine the
point (cell) correspondence and transformation parameters,
which optimize the objective function. Such optimization
can be done in steps with simpler energy functions, where
each optimization step assumes the results from previous
optimization steps (Figure 2), or it can be done jointly with
one more complicated (Eq. 3 and Eq. 5) energy function
modeling all the unknown mappings.

Since after each step in sequential processing, the overall
search space is significantly reduced, and since the energy
functions for such processing are generally much simpler,
the sequential solution is faster and easier to implement. The
drawback, of course, is that not the entire search space has
been evaluated and the optimal solution with respect to all
variables might be less accurate. However, if the sequential
process is stated in such way that most reliable optimization
components are done first, the accuracy of the results in
practice might even exceed the one obtained with joint
optimization. Often, for easier data sets, when the
displacement of the cells in consecutive images is small the
sequential approach outperforms joint optimization (See
Section 6). Nevertheless, this is not the case with more
challenging data sets. In these cases, joint optimization tends
to outperform sequential processing.

Our approach to cell tracking in fluorescent imagery will
start with the simple objective functions suitable for
sequential optimization (Eq.1) and (Eq.2), and it will
progress to the more complicated energy functions, suitable
for simultaneous optimization.

4. Sequential Solution

In sequential optimization the energy function is split into
components and each component is optimized separately
without feedback. Sequential optimization for the problem
of extracting temporal cell signals from GFP data is depicted
in Figure 2. This approach first determines point matching
in each pair of two consecutive images. It ignores cell
growth and cell division mappings and calculates
correspondences using Ep as in (Eq. 1).

Figure 2. Sequential solution for tracking cell signals.
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The remaining component of the sequential solution is
tracking. In general, tracking combines pairwise matches to
produce the tracks (paths) of the cells through the entire
image sequence (movie) and builds the lineage tree.  If the
cells move randomly in the image and do not follow any
trajectory that can be modeled, or if such trajectory is not
immediately observable (as is often the case with sequential
approach), not much can be gained from tracking in terms of
accuracy of the results. In this case, pairwise matches are
given a priori, and tracking is just a greedy search
implemented via simple “bookkeeping” algorithm. The only
improvement this algorithm makes in terms of accuracy is
some inference of missing or merged cells, resulted from the
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mistakes of cell extraction algorithms. The result of the
tracking algorithm is a list of tracks (track data), each track
specifying the coordinates and attributes of one cell in all
images it exists in. Once such tracks are extracted and the
attributes of cells over time can be quantitatively examined,
the model for cell motion and growth can be assumed and
fitted into existing data (Model Fitting step).

5. Simultaneous solutions

5.1 Pairwise matching with cell division

In simultaneous solution the components of sequential
solution are combined in joint optimization. We first attempt
to perform joint optimization of cell matching and sibling
matching. We use Robust Point Matching algorithm
utilizing Thin Plate Spline (TPS) transformations with
softassign embedded in deterministic annealing loop [12].
The full objective function ( E = Ep + Econst) in such
matching problem is given in (Eq.3)
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distance error of hypothesized correspondence. Parameter
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θ
regulates the probability of cell matching to nothing.
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θ  decreases the probability of non-matches
during stochastic optimization and vise versa. The third term
in E is the standard thin-plate spline regularization term
which penalizes the local warping coefficients 
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part of d which is different from an identity matrix I. 
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of the energy function represent the constraints imposed on
the problem (Econst). The second term is an entropy barrier
function with the temperature parameter T=
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1 β . It is used
in deterministic annealing step [9]. The fifth term is a
stochastic optimization term with the Lagrange parameters
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µk  corresponding to the rules r(k) realized by softassign
[10]. The details of novel normalization rules for this
pairwise matching are presented in Section 5.3.

5.2 Tracking with cell division and affine
transformation

Finally, we attempt to combine all steps of sequential
process in one joint optimization. This is achieved with the
Energy function in (Eq. 5).
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   (Eq.5)

This energy function is minimized by estimating track

coordinates at time t (

€ 

yα
t ) and affine transformation 
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At ,
while minimizing: total error between estimated tracks and

true point coordinates at time t (
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xi
t ) (first term of first sum);

total error between consecutive points of each track, given
estimated affine (second term of first sum); total error

between sibling track (

€ 

yβ
t ) and it’s transformed parent

(third term of first sum). The remaining two sums of this
energy function constitute Econs (the energy of constrains).
As before, there is an entropy barrier function terms (last
terms of second and third sums) with annealing temperature
T; and unique correspondence optimization terms with

Lagrange parameters 
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between tracks and points at time t (
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for L and N performs joint optimization for track and sibling
matching, and optimizing these matrices jointly for every
time point t performs joint optimization of tracks. We
included entropy and unique correspondence constraints for
each correspondence problem and scaled the energy

function with 

€ 

e−λt , thus placing more weight on earlier
matches to insure forward directionality of the solution
dynamics.

As was stated in the background section the joint
optimization is made possible by softassign, deterministic
annealing and clocked objectives methods. The softassign is
based on Sinkhorn’s theorem [16], which states that a
doubly stochastic matrix is obtained from any positive
square matrix by alternating row and column
normalizations.  Such a normalization process is directly
related to solving for Lagrange multiplier parameters. The
original entries of the stochastic matrix (in this approach L,
and N) are typically an error term 
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Qijobtained by setting the
partial derivatives of Energy function E with respect to
correspondence matrices to zero (
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conjunction with deterministic annealing can find global
minimum in the assignment problem [9]. As the temperature
is reduced the doubly stochastic matrix approaches a
permutation matrix imposing an additional constraint
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0
1
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.

To obtain closed form solutions for unknown parameters
the method of Clocked Objectives is used. In this method
the unknown parameters are obtained by differentiating
energy function with respect to these parameters and setting
result to 0 (to find the minimum). The closed-form solutions
are obtained in the iterative scheme [11]. The iterative
scheme for the given problem is represented by formula in
(Eq.6). This formula states that in iterative scheme first the
track values 
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yα
t  have to be estimated by calculating an

analytical solution to 
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∂E ∂yα
t = 0 , then assuming found

track values; the transformation matrix 
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At has to be
estimated by calculating an analytical solution to
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dE ∂At = 0 . Then assuming the current estimates for
track values and affine transformation, the correspondence
matrices 
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Lαi
t  and 
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Nβα
t are determined by solving for

Lagrange multipliers 
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µ,η, ˆ µ , ˆ η  via previously described
softassign technique.
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F⊕ = F y,A, (L,µ),(L,η , (N, ˆ µ ),(N, ˆ η    (Eq.6)

5.3 Normalization rules for pairwise matching

In order to facilitate Robust Point Matching Thin-Plate
Spline (RPM-TPS) algorithm [12] for more than one
possible mapping several correspondence matrices have
been used (indexed by

€ 

α ). One matrix representing a usual
one-to-one match, and the other two, similarly, representing
possible split into a one-to-two match (See Figure 3). The
exclusion requirement has been implemented through
modified row and column unique correspondence
constraints.

Figure 3. Paired stochasticity of corresponding joined
rows. 
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three matrices.

As before, a unique match constraint along columns
insures that there is no more than one match for each point
from the second set. Therefore, the normalization rule
asserting unique j point for each i point is the same (Eq. 7).
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i,α
∑ =1                                                       (Eq.7)

However, for j-summations a different rule is in effect.
There can be either parent-to-one or parent-to-two daughter
correspondences, but not both. This leads to
(Eq.8)
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If corresponding summations for the three matrices

(including the slack elements) are: 
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above rules are satisfied by multiplying each I-raw by
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κ0
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i  accordingly as in (Eq.9).

Paired constraint of corresponding joined rows from the
first and the second matrices as well as the first and the third
(Figure 3), insure that annealing procedure will leave either
one match for a point from the first set in the upper matrices,
or two possible matches on the same-indexed rows in the
matrices below, but never both of them at the same time.
Because each member of each matrix multiplies a separate
term in the objective function (see Eq. 3), this approach
provides both simultaneous solution of the split-matching
problem and flexibility in coupling different points from
different matching possibilities.
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6. Experiments

We have used three data sets in our analysis: 3-
dimensional images of a growing plant shoot-apical
meristem, 2-dimensional images of developing colonies of
bacillus Subtillus, and 2-dimensional images of developing
colonies of e-coli. The extraction of cell coordinates from 3-
d images has been performed via standard gradient descent
method by the team of scientists from Lund University,
Sweden, under the leadership of Henrik Jönsson.   The
extraction of cell coordinates and other cell attributes from
2-d images have been previously accomplished by the
Caltech team under the leadership of Michael Elowitz. They
used iterative erosion/dilation algorithms for this purpose.

The e-coli and bacillus Subtillus data sets are 2-
dimensional. It is possible to visualize and ground truth
these data (Figure 4, Figure 5). The bacillus Subtillus and e-
coli are not rigidly attached to each other and can move
noticeable distances from frame to frame. Such motion is
the main challenge of these data sets.

The shoot apical meristem data is 3-dimensional. In this
data, cell walls are attached to each other, and interact
mechanically preventing large displacements. In this data
cells appear to move outwards (Figure 6b)), but such motion
can be observed only over large time lapses (about 10 time
points); locally cell displacements appear random. This can
be modeled as an additional track constraint in the joint
track optimization method. It is more difficult to visualize
and ground-truth this data. To evaluate roughly the
performance of this data track statistics and visualization
tools have been used.

Currently, tracking (matching all pairs of images
simultaneously as in Eq. 5) suffers from track fragmentation
(breaking up of one cell track into few segments). The main
reason for this is that number of tracks has to be
significantly larger then number of cells in individual image
(especially in the beginning of the sequences). Therefore,
for the goodness of match based on Euclidian distance, it is
less costly to fit few tracks into set of points, rather then
one. We attempted to control this problem with slack
parameter 

€ 

θ  and by adding of an additional term (the
squared sum of correspondence matrix entries, excluding
slacks), but did not get much more control over the problem.

This study still continues. Therefore for comparison of
sequential and simultaneous methods, we focus on
sequential approach in Eq. 1) and Eq. 2) and joint
optimization approach in Eq. 3).

In bacillus Subtillus data, estimating track values   via
sequential approach slightly outperformed the joint
optimization approach. In joint optimization approach 68
points were matched wrong out of total 2217 points
collected from 22 images, therefore amounting to 3% error.
In sequential optimization (pairwise matching with TPS)
approach 40 points were mismatched, therefore amounting
to 1.8% error.

Figure 4 depicts the tracking of one colony (out of 6) on
22 consecutive images (only 4 early consecutive images are
displayed here due to the lack of space). The corresponding
cells are numbered with the same track number. The track
identification numbers of found siblings are displayed in
parenthesis under current track number.

In e-coli data (Figures 5b), 5c)), the joint optimization
approach overall outperforms sequential approach,
producing 5.35% error vrs. 6.44% error (in sequential
approach). The e-coli data is different from bacillus
Subtillus data, it is complicated by the presence of long
irregular cells as in Figures 6b) and 6c). The energy
functions were mainly designed for Subtillus data, without
consideration for long irregular cells, therefore the worst
performance has been expected. However, the joint
optimization method demonstrated to be more robust by
outperforming sequential method on this difficult data.
Figure 6a) depicts the percentage error for 35 pairwise
matches (36 individual images). Since the total number of
cells in each image of the sequence is different there is no
direct relationship between overall error and error/per
image. For example, if some early image contains two cells,
one of which is matched wrong, there will be 50% error for
this image, but overall percent error increase will be
negligible. The results of sequential optimization are
displayed with dashed line, and the results of joint
optimization are depicted with solid line. Note that both
algorithms resulted with 0 error for first 25 images, however
the error rates grow with complexity (number of cells) and
an increase in missed (by segmentation process) cells.

Another interesting factor to observe is that the errors
produced by sequential and joint optimization approaches
are somewhat orthogonal, meaning that the erroneous
matches seem to be different for both approaches. In
sequential approach most of the errors were produced in
matching of the siblings: 11.9% error for sibling matching,
4.2% error for same cell matching. In joint optimization
approach 4.2% error was accomplished in sibling matching,
and 5.8% error was produced in same cell matching.
Moreover, joint optimization errors appear to be of global
character. For example, note erroneous track 78, such
mismatch is easily detected with a sanity test based on
distance only. Sequential optimization errors are mainly
local. Note erroneous tracks 3 and 54. This leads to the
possibility that overall results can be improved by
combining the results of both algorithms.



Finally, we present some preliminary results of tracking
signal in shoot apical meristem data. In the absence of
ground-truth, we have used statistics to select reasonable
solutions.  Such statistics include the average density of
tracks and the average standard deviation of tracks, which
are inversely related; and also include the number of
orphans (newly appearing cells without matched parent) and
number of deaths (disappeared cells). The latter two
measures ideally should be very small, but such criterion
cannot be enforced rigidly. Extracting these statistics under
present conditions assists in selecting reasonable solutions,
but is not sufficient for comparative analysis.

One such solution is depicted in Figure 5. For reasons of
legibility only few tracks are included in the plot of Figure
5-a). The star denotes the beginning of the track, and
branches represent cell divisions. The newly born cells are
connected to their parents with black dashed lines. One can
observe that cell motion appears locally random, but a
global outward growth tendency is observed as well. A
clearer view of an outward growth tendency form an
interpolated total displacement field for 10 time points, is
depicted in Figure 5-b).

Figure 4. Pairwise matching for tracking bacillus
Subtillus data.

a) Percentage error for 35 pairwise matches produced
by sequential optimization approach (dashed line) and
joint optimization approach (solid line).

b) Matching cells in e-coli images 31/32 with
sequential optimization approach. Matches displayed
on raw image data.



c) Matching cells in e-coli images 34/35 with joint
optimization approach. Matches displayed on
segmented image data.

Figure 5. Sequential vrs. joint optimization in e-coli
data.

6.   Conclusions and plans

In this paper we have demonstrated sequential and joint
optimization techniques applied to tracking cell signals in
GFP images. There are two main challenges that such
tracking has to confront. The first challenge is matching
allowing one-to-two correspondences. We have addressed
this challenge with an extended softassign algorithm, which
performs well and presents a valuable general tool for the
solution of one-to-many correspondences. The second
challenge is missing cells mistakes produced by cell-
segmentation. Some of these mistakes were addressed
successfully via track inference in the sequential approach.
The more general approach, which performs joint estimation

of track values, can handle missing cells better, but it suffers
from track fragmentations. Such an approach is more
important when cell motion has structure or can be
expressed as a function of cell variables. Therefore, it is
more likely to be used in the final dynamic model. In the
future, we plan to deal with cell segmentation (extraction)
mistakes by performing cell segmentation and cell matching
jointly. This is especially useful since there is no automatic
way to assess the goodness of the segmentation, but there is
a way to assess goodness of the match (number of
unmatched points).

a) Selected tracks generated for shoot apical meristem
data.

b) The interpolated displacement field for large time
step.

Figure 6. Tracking Plant Shoot Apical Meristem Data.

Our current software is used by biologists to extract the
cell signals from GFP imagery. Given such signals,
scientists are able to hypothesize the details of underlying
cell processes, to model these processes in dynamic
networks and to make predictions about organism behavior.



On the other hand, such models and predictions allow for
better signal extraction (tracking algorithms), producing
more accurate data for use in biological research.
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