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ABSTRACT

Motivation: The above-ground tissues of higher plants are
generated from a small region of cells situated at the plant
apex called the shoot apical meristem. An important genetic
control circuit modulating the size of the Arabidopsis thaliana
meristem is a feed-back network between the CLAVATA3
and WUSCHEL genes. Although the expression patterns
for these genes do not overlap, WUSCHEL activity is both
necessary and sufficient (when expressed ectopically) for the
induction of CLAVATA3 expression. However, upregulation of
CLAVATA3 in conjunction with the receptor kinase CLAVATAL
results in the downregulation of WUSCHEL. Despite much
work, experimental data for this network are incomplete and
additional hypotheses are needed to explain the spatial loca-
tions and dynamics of these expression domains. Predictive
mathematical models describing the system should provide a
useful tool for investigating and discriminating among possible
hypotheses, by determining which hypotheses best explain
observed gene expression dynamics.

Results: We are developing a method using in vivo live con-
focal microscopy to capture quantitative gene expression data
and create templates for computational models. We present
two models accounting for the organization of the WUSCHEL
expression domain. Our preferred model uses a reaction-
diffusion mechanism in which an activator induces WUSCHEL
expression. This model is able to organize the WUSCHEL
expression domain. In addition, the model predicts the dynam-
ical reorganization seen in experiments where cells, including
the WUSCHEL domain, are ablated, and it also predicts the
spatial expansion of the WUSCHEL domain resulting from
removal of the CLAVATAS signal.

Availability: An extended description of the model frame-
work and image processing algorithms can be found

*To whom correspondence should be addressed.
TThese authors contributed equally to this work.

at http://www.computableplant.org, together with additional
results and simulation movies.

Contact: emj@uci.edu

Supplementary information: http://www.computableplant.
org/ and alternatively for a direct link to the page, http://
computableplant.ics.uci.edu/btil036 can be accessed.

1 INTRODUCTION

Developmental biological systems consist of intracellular
molecular regulation networks combined with intercellu-
lar signals and transport, resulting in complex interaction
networks with the ability to control the development of multi-
cellular organisms. Experimental data of important molecular
agents and interactions are most often incomplete, and addi-
tional hypotheses are needed to explain their spatial and
dynamical behavior.

Mathematical modeling provides a powerful method for
describing and testing hypotheses about developmental bio-
logical systems. Not only can hypotheses be tested to see
whether they account for the observed data but also predic-
tions can be made for new experiments. So far, computational
models for developmental multicellular systems have mostly
been developed fobrosophila [see e.g. von Dassoet al.
(2000); Mjolsness (2001); Jaegetr al. (2004)], but there
are also examples for modeling plant development [see for
a review Prusinkiewicz (2004)].

The shoot apical meristem (SAM) plays a central role in
the development of the aerial part of a plant (Steeves and
Sussex, 1998; Meyerowitz, 1997; Weigel and Jurgens, 2002).
Throughout the life of a plant, it provides new cells to the
stem, and it is also the site for the formation of new leaf
and flower primordia. Within the SAM, spatial regions of
cells are characterized by different gene expression patterns.
Although cells continue to proliferate, and individual cells
move in and out of these regions, the spatial domains stay
constant. This indicates that the organization of the SAM is
controlled by intrinsic intercellular signaling, more than by
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inheritance of information along cell lineage. This signaling
network must be highly robust, since the actual shape and si:
of the SAM vary somewhat during the growth of the plant, and
considerably among individual plants.

More evidence of the robustness of the network controlling
development can be seen in different physical perturbatiol
experiments. Dissection of the SAM, and even fine-tunec
cell ablation experiments, show that spatial expression pa
terns ‘self-organize’ into their normal patterns, with continued
shoot growth as aresult (or even the organization of more tha
one continued shoot) (Reinhamdtal., 2003).

Aié_sdentlal tfflta).lr' the_ Conftro:j t;)f kSAMthekvilotpment tflln Fig. 1. Aschematic of the expression domain€ofAVATAL, CLAV-
rabicopss lana IS a feed-back network between € paz 5nq WUSCHEL. The solid arrows indicate the regulatory

genesCLAVATAS _(CLV3) and WUSCHEL (WUS) (Sharma ~ (indirect) interactions and the dashed arrows show the movement
et al., 2003; Weigel and Jurgens, 2002). The expressiorythe CLV3 protein.
domains of these genes are not spatially overlapping, and
intercellular signaling is essential for their mutual regula-models is such that they can form patterns with high regular-
tion to function. In a series of publications (Fletcteral., ity from a close-to-homogeneous concentration distribution.
1999; Brandet al., 2000; Schootkt al., 2000), these regu- Typically concentration peaks form with a regular distance
latory interactions have been elucidated mainly through th@etween the peaks, and this distance is dependent on the
study of loss-of- function and gain-of-function experiments.model parameters. We note the similarity of a spontaneous
The current conclusion is tha¥US inducesCLV3, and that  peak forming in such models to the centrally located and
the intercellular CLV3 acts as a ligand that, together with thespatially restricted activation USCHEL, and we will use
receptor kinase CLAVATAL (CLV1), activates a signal that such a model for inducingUS. We have chosen to use the
represse8WUS (Sharmaet al., 2003). Brusselator model (Prigogine and Lefever, 1968), although
In this work, we address the question of how W&JS  we could have chosen any pattern-forming reaction-diffusion
expression pattern is activated and confined to a small regiomodel.
of cells located centrally in the SAM. We do this by combining
in vivo confocal microscopy data with computer simulations2 SYSTEM AND METHODS
of different models foMWUS activation. An important step S ) ]
in the methodology is the attempt to quantitatively measure-1  Organization of the shoot apical meristem
WUS expression. Using a set of image processing tools, w&hroughout the life of a plant, the SAM includes a region of
compartmentalize and quantify the confocal microscopy datagells expressin@CLAVATA3 which are often regarded as the
resulting in an approximate cell-based quantitative templat@lant stem cells (Weigel and Jurgens, 2002). Th&'3 gene
for WUS expression. is expressed at the very apex in a cone shaped region (Fig. 1)
A complete model for SAM development would need to (Fletcheret al., 1999), and the CLV3 protein is secreted and
include biochemical reactions, intercellular molecular transimoves laterally from the region in which it is transcribed
portation and signaling, cellular growth and proliferation as(dashed arrows in Fig. 1) (Lenhard and Laux, 2003). A couple
well as mechanical interactions. We are developing tools foof cells below the apex, a small region of cells expresses
dealing with all apects of SAM development with the goal of the homeodomain transcription factor WUSCHEL (Fig. 1)
combining them into a single model. For now, we disregardMayer et al., 1998). This region is often referred to as the
cellular growth and proliferation (therefore making mechan-organizing center, and here, in a somewhat larger region com-
ical interactions irrelevant). The system is further simplifiedpared with WUS, the gene encoding for the receptor kinase
to atwo-dimensional description of the problem, where CLV3CLAVATAL is also expressed (Fig. 1) (Clagt al., 1997).
is not explicity modeled, but is rather included as a repressing In a series of loss-of-function and gain-of-function experi-
signal. We use cell-based compartments and model moleculanents, the interactions between YW SCHEL andCLAVATA
reactions and regulations using basic biochemical rules, angenes have been characterized (Fletehed., 1999; Brand
molecular transport is modeled as diffusion. A continuouset al., 2000; Schooét al., 2000). The conclusions from these
deterministic approach is used to model the dynamics, usingxperiments are tha#US induces bottCLV genes, and that
ordinary differential equations. CLV3 acts as a ligand for the CLV1 receptor kinase which,
The concept of pattern-forming reaction-diffusion modelsupon binding, activates a signal repressikigsS.
within biology was first introduced by Turing (1952), and Although there is a large amount of data supporting this
since then multiple variants have been used to explain variouscenario, there are still many open questions regarding this
patterns in nature (Meinhardt, 1982). The dynamics of theseetwork. One is the spatial asymmetry of the domainaiifs
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Fig. 2. A schematic figure of the cells removed in the laser ablation
experiment (Reinhardt al., 2003). The central zone with ti@t V3
expressing cells and the organizing center and\itsS expressing
cells are ablatedA() Vertical section through the center of the SAM.
(B) Horizontal section through the organizing center.

inducesCLV3 expression, why i€LV3 expressed only in a
region above th&®WUS domain? This question was addressed
in a model by Jonssoa al. (2003) where the WUS signal
was combined with a signal originating from the outer layer of
cells (the L1 layer) to inducELV3 expression. The model was
able to correctly mimic th€LV3 expression domain, given

the location of theMUS expression domain. Another open
question is how theVUS expression pattern is controlled, and

this is the main question addressed in this paper. ) - )
Fig. 3. Quantification of th&MUS expression.4) A doubly labeled

2.1.1 WUSCHEL expression and dynamics In the adult confocal image showing a horizontal sectioh7.m into the plant
plant, WUSis expressed in the organizing center in both veg-shoot. A cell membrane dye marker is shown in red, and fluores-
atitive and inflorescence SAMs (Fig. 1) (Mayatral., 1998). cenceresulting from expression of awhere the WUS promoter drivers
WUS expression is also turned on in floral meristems duringgreen fluorescent proteinpdVUS::GFP construct is shown in green.
early stages of flower development (B) Pixels extracted as background. As can be seen, older primor-

. . dia are not included in the SAM templateC)(Walls (defined by
In clvloss of function mutants, the size of thaJS expres- the borders between cell compartments) extracted by the watershed

sion domain is increased (in these mutants, the SAM itselfyrithm. ) AveragepWUS::GFP intensity for individual cells.

is enlarged, and enlargeelV expression domains are also These numbers are interpreted as relative concentrations. The color
seen) (Fletcheet al., 1999). It should be noted that, although coding is defined as black (min)-blue—red—yellow (max).

theWUSdomain is increased in size, spatial restriction on the
expression region can still be observed. confocal microscopy, in conjunction with either dyes or green
Models describing SAM dynamics need to account for thefluorescent protein (GFP) constructs that are used for labeling
ability of the expression domains to self-organize and reorgareell structures or important proteins. Here, we will use a SAM
ize. Reinhardét al. (2003) recently performed an experiment doubly labeled with a cell membrane dye marker (FM4-64)
in which subsets of cells in the tomato SAM were ablated.and a construct where the WUS promoter drives green fluor-
creating a hole in the center of the SAM and removing theescent proteingfWUS::GFP, Fig. 3). From this we extract a
cells of the organizing center (Fig. 2). The dynamic$\tJS  template which is used for comparison with the models. The
expression was then followed during SAM reorganization technique enables the recording of expression patterns in three
After the ablation, newMUS expression first reappeared at dimensions over time, but here we use data from a single
low levels in a ring-shaped domain surrounding the ablatedection corresponding to a single time point to represent the
area. At a later time point either one or two smaller, stronglyequilibrium state in a non-growing simulation.
expressing domains appeared, and for each domain a normal
growing shoot developed. In this case the two new domaing-3 | mage processing

were situated on opposite sides of the ablated region. To be able to compare models with the data provided by the
. confocal imaging technique, quantification of the image data
2.2 Confocal microscopy is essential. We use different image processing algorithms to

We have recently developed an vivo live imaging tech-  extract cell compartments and GFP fluorescence intensities
nigue which allows periodic imaging of the SAM over within individual cells. For simplicity, we assume that the
several days (Reddgt al., 2004). The method utilizes GFP intensity is linearly related to the amount of protein, and
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hence interpret the average intensity within a cell as a relative
protein concentration. More detailed information about the
algorithms used is provided as Supplementary information,
but, in short, the methodology and algorithms used are the
following:

(1) Background extraction. In the present study, a snake
algorithm working on a gradient vector flow field is used
to extract the background in the membrane picture (Xu
and Prince, 1998). It is manually initiated by clicking
around the SAM, after which the edge of the SAM is
located in the picture (Fig. 3B).

Cell extraction. Cells are extracted from the mem-
brane picture using a watershed algorithm (Gonzalez
and Woods, 2002). The algorithm starts in each pixel
and walks downhill in the ‘intensity landscape’ until it
reaches a minimum. All pixels that end up in a single
minimum are regarded as one cell. A picture of the bor-
ders of the extracted cells can be seen in Figure 3C.
A beneficial feature of this algorithm is that it is easy to
extract neighborhood relationships, including the length
of the ‘wall’ connecting two neighbors. Included in
this algorithm is a preprocessor that reduces noise by
a simple region averaging.

Gene expression extraction. By using the cell informa-
tion extracted from the membrane picture, the average
intensity within each pixel subset defining a cell is
extracted from th@WUS::GFP picture (Fig. 3D).

(@)

3)

@)

2.4 Modeing

A complete model for developmental biological systems
needs to account for a diverse set of biological, chemical
and physical features. Included among these are molecular
reactions, gene regulation, intercellular molecular transport

corresponding protein concentration is defined by

dv,- 1
E:t_ig ;Tijvj+hi , 1)
whereg(x) is the sigmoidal function
1 X
(x)== (1 + —) . 2
8 > i )

The parameter; is the inverse maximal rate, ahdsets
the basal expression level. Tig parameters define the
strength of the regulatiory (regulatingi). A positiveT
defines an activation, whereas a negaffvéeads to a
repression.

Molecular transport. Transport between neighboring
cells is modeled by a passive diffusion. The transport
of a moleculex between two cellg, j is, in our ODE
setting, modeled as
dxi

dr

whereD is the diffusion constant. When simulating on
a template where more spatial properties are accounted
for, the more detailed model is

dx,' Ajj

— :D/_lj j T Ay
dr dijvi(xj Xi)

D(x; — x;), 3

(4)

whereA;; is the intersection area between the cells and
d;; is the distance between the cell centevs.is the

cell volume and accounts for the fact that the number
of molecules leaving one cell is the same as the number
that enter the next. The diffusion constants are related
to the lattice constants b’ =k D to compensate for
the spatial contributions introduced.

and signaling, cell growth and proliferation, and mechan- . . .
ical interactions between cells. The models presented in thi%‘A"1 Basic assumptions of the models The main ques-

work describe only a subset of these features, which will b lon addressed in this paper is how the sharply restricted
discussed in more detail below ' SCHEL expression pattern forms at the center of the SAM

We use spatial compartmentalization at a cellular level antgF'gs. 1 and :.)’)'. Bo.th models presented here utilize a repress-
do not account for cellular growth or proliferation. Molecu- Ive signal originating from the surface cells (L1 layer). We

lar levels are described by concentrations, and deterministi@ave previously shown how such a signal may be dynamically

. . . . - maintained (Jonssatal., 2003). As discussed in section 2.1
ff I DE f - o e : '
ordinary differential equations (ODEs) are used for describ art of this signal might originate from CLV3 moving later-

ing the dynamics. The models presented here are built from ) . L N
three main components: ally from its expression domain (Fig. 1). The repressive signal

is combined withWUS activation, for which two different

hypotheses are compared in this study.

(1) Molecular reactions. Basic mass action kinetics is used, e restrict simulations to two-dimensional sections of the
where reaction rates are proportional to the concentragsam. This sets some limitations on how well the models can
tion of reactants. predict experimental data, as will be discussed in the Results

(2) Generegulation. We use sigmoidal functions to describe and Discussion section. The main results, on the other hand,
the interactions in a gene regulatory network (GRN)are not dependent on this. Essentially, only an additional
(Mjolsnesset al., 1991; Mjolsness, 2001). The reg- repression in/ffrom the stem is needed for the models to be
ulation of a genei, modeled as the change in the extended into three dimensions.
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Activator
networ k
L1 Y IWUS+H——STEM
diffusive

Fig. 4. A schematic illustration of the activator model. The activ-
ator network produces a pattern of an activator molecule whic
is inducing WUS. This activation is combined with a repressing

signal originating from the surface layer of cells. The repress

ive contribution originating from the stem is not applicable in our

IWUS ——— STEM

L1 Y

diffusive

ig. 5. A schematic illustration of the repressor model. ThE&S
expression is normally on (6= WUS) in all cells. TheWUS
expression domain is restricted by the repressive signal described
in Figure 4.

two-dimensional system, butis needed in a three-dimensional mode,,,ahle 1 Parameter values used in the simulations

2.4.2 Activator model The main assumption in this model Parameter Activator model Repressor model

is that WUS expression is induced by an activator pro-

duced by a pattern-forming, reaction-diffusion model (Fig. 4)ky.dy, Dy, kp 0.2,0.1,0.1,30 02,0.1,0.1,30
(Meinhardt, 1982). Inherentin the activator model dynamics i w: i Ty 305' 0.1,0-20 10,0.1,2-30
the ability to create regular patterns of activator concentration§w};’ 0102 0.4 0.1

at distinct spatial distances, even from close-to-homogeneoysp, 'p, 001,01, 15

initial concentrations. The distances between concentration

peaks can be tuned by model parameters to allow for only a

single peak within the SAM. To ensure that the activator peak ) . )

is positioned at the center of the SAM, a small repression ofS the included repression from, modeled as an increased
the activator from an L1 originating signal is included. activator degradation.

The only intercellular interaction within the model is the 5 4 3 Repressor model  We have also implemented a model
passive transport of diffusive molecules (denoted using thgith a simpler hypothesis for the activatiortSexpression
V2 operator in the equations). The model is defined as (Fig. 5). The basic idea of this model is th&tJSis normally

expressed everywhere, unless a repressor is present. In the

daw 1

—— =g (hy + TypaA + Ty Y) — dyy W, (5) model, an L1 originating signal repressé&)S expression,
d 7 and the ODE equations are defined by

dy

— =kyL1 — d,Y + D,V?Y, (6) dw 1

dr ’ g ’ E = _[_g (hw + Twa) —dyW, (9)
dA w
—=a—(b+B)A+cA’B—dY + D,V?4A, (7) dy

dr E:kyLl—de—f-DyVZY. (10)
dB

— =bA — cA’B + D, V?B. (8) _ . . -

dr W is again the WUS concentration, and it is repressed by the

L1 originating signa¥ . Atermh,, > O is used to define abasal
expression level folMUS It also has a simple degradation
‘term. The equation foY is exactly the same as in the activ-
ator model, and agaih is treated as a boundary condition
Igpresent only in the L1 layer).

W is the WUS concentration. It is induced by the activator
A, repressed by, and also has a simple degradation term
Y is the diffusive L1 originating signal molecule, which is
constantly induced b¥.1, and also has a simple degradation.
L1 is treated as a boundary condition, and is present only i
the outermost layer of cells (L1 layer); hence we model the2.4.4 Parametersandinitial values The main pointin this
production ofY using a linear term (which becomes booleanpaper is to show the behavior of different conceptual models
in this setup). Among the different available activator mod-for WUSactivation. A complete investigation of the parameter
els, we have chosen to use the Brusselator model, which space, or an optimization of the parameter values, has not been
considered simple yet robust in its pattern-forming abilitiescarried out. Instead, we have coarsely adjusted the parameters
(Prigogine and Lefever, 1968). We will not go into details to approximately fit the data, and we have tried to use the
about the Brusselator model since itis outside the scope of thsame parameter values for both models where applicable. For
work, but note only that Equations (7) and (8) are the standeompleteness, we present the values for all parameters used
ard equations except for theZY term in Equation (7), which in the simulations in Table 1.
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In the template simulations a more detailed model for diffu- A
sion is used [Equation (4)] in which the topological properties
are accounted for. The extracted space is ‘normalized’ to gel
an average cell volume equal to one. Note that we use exacth
the same parameter values for both models when simulated o
the template as is used for the lattice simulations, except for the
compensation in diffusion constani®’(= kp D) owing to the
spatial contributions. This indicates a robustness for both the
models.

We start the simulations in a state where WieandY con-
centrations are zero in all cellg; is set to one in the surface
(L1 layer) cells and zero in all other cells; is not updated,

and this arrangement sets productionYofonly in the L1
layer cells. The Brusselator molecule$,and B, are initi-
ated to a small random valug0(: 0.1]) in each cell to avoid

a completely homogeneous state. This randomness does n
influence the equilibrium state of the system or any of the
results.

3 IMPLEMENTATION

The software used for this work was developed by the
authors and implemented mostly ir+G-. The exception

is the snake algorithm for extracting background pixels
which is implemented in Matlab and uses the GVF package
(http://iacl.ece.jhu.edu/projects/gvf/).

The model simulator is implemented irtG- and designed
for multicellular modeling. In addition to what is described in
this paper, it also allows for cell—-cell signaling, cell growth
and proliferation, and mechanical interactions between ceII<
(Jonssonet al., 2004; Jénsson and Levchenko, 2005).
all 5|mulat|ons presented in this work, a fifth-order Runge—
Kutta solver with adaptive stepsize is used for the numerical
integration of the ODEs (Pressal., 1992).

Visualizations have been made using-€ software that

reads the simulator output and creates tiff (template simula-
tions) or postscript (lattice simulations) output. Fig. 6. Equilibrium concentration for different molecules for both
models simulated on the extracted templat@ WUS in the activator

model. 8) WUS in the repressor modelC) L; in both models
4 RESULTS AND DISCUSSION (which is not updated during the simulation€)) ( in both models.
4.1 Simulationson atemplate, wild-type behavior (E) The activatorA (only present in the activator modelf)(The

We first set out to determine how well the models recreate thghlbitor B (only present in the activator model). Color coding as in
wild-type WUSCHEL expression domain. We chose to per- igure 3.

form these simulations on the extracted template in order to

directly compare the result with the quantified experimentall.; (which is marking the L1 layer) are presented. The shiftin
data (Fig. 3). The equilibrium WUS concentration is presen-position might be a consequence of implementing the models
ted in Figure 6. As can be seen in the figure, the equilibriumn two dimensions, since the actual peak position is determ-
expression for both models defines a small, fairly distinctined by the complete three-dimensional contribution of the
region ofWUS expression in the central part of the meristem,repressing signal. In Figure 6 the equilibrium concentrations
similar to the experimental data. The spatial position of thefor A andB are also presented. The activatois a smoother
WUS expression domains in the two models are slightly dif-version of WUS levels, an8 is almost the inverse of. When
ferent from the experimental position (cf. Figs 3 and 6). Thelooking at the activator concentration, it is obvious thatthe L1
positioning in the models depends on the L1 originating sig-originated signal’ is not necessary in the activator model to
nal Y, which in turn depends on the topology of the L1 layer. create a spatially distindMUS expression domain, but is

In Figure 6C and D, the equilibrium concentrationsYoand  included based on the experimental data.
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Note also that, although the simulations were carried oufA

on a non-growing_ t_emplate, the models are not sensitive to ‘Q’““'!'!..',z" ‘Q’““'!'!.."z"
individual cell positions, and as long as the L1 layer of cells .‘.0.02..50,0" .xo.ﬂg .:0.0&
stays intact the models will also be applicable to growing ...Q“'...&““ ..‘Q.‘".."““
.Q‘...‘C."..‘. ..‘...“.".“‘
plants. @aleny ] amally” (fagte
§55.5". Sifias  aanS., Serses
4.2 Latticesimulations ‘:‘,‘:0:0;‘,“\':‘0..'5 .:...:.:‘;Q.“\,.:.'..‘...
In the previous section we studied the equilibrium expres- “,’Q’ltl,o...t 090.%%:0:8:%8¢
. . . . . LSRN LS OA TN
sion of WUS In this section we will study two perturbation .,...“‘ g .'l...‘ "‘
experiments discussed in Section 2.1.1. We do this in a lattice Sagse Sagse
setting, and we note that the equilibrium expression patterns
are satisfactory since both models create WUS peaks in thé D
. . L] ]
central region of the SAM (Fig. 7A and B). ‘Q“"'..."." .Q““i...".oo
. _ . SRS L RSP RRAX
421 Decreasing the repressing signal  As a first perturb- ...a.‘..'.."‘:“‘ ...a.“"."‘:“
ation to the system, we look at the dynamics resulting from a :.b.‘...‘ e ...Q‘.g alat 2 ...‘.g
weakened repressive signal. This can be interpreted as awealg-li:. i.::; :-:: ':gl
ening or removal of CLV3. As discussed in Section 2.1.1, it ...‘..".Q ‘.‘.'..... ...... .'......
is expected that theUS region will expand. The equilib- @ 0aS BSOS e OCRIPR
. ! . 2 s . S5=0¢ OOQ... 32,09
rium concentrations of WUS for both models are presented in 0.’;..““" '.‘..““‘s
Figure 7B and C. In both models, tiidJSexpression domain ‘0ggre® ‘Qqgre®
increases in size, with the behavior more exaggerated in the
repressor model. The activator model can hence be interpretesl ® e
as being more robust to fluctuations of the repressing signal. S AL/ KAL)
Robustness is in general a favorable feature of a model, espe- ‘:0::!!-..'.:" ‘:’::!!-..'.:"
cially in thi ideri - i .QO. 1§29,92:% S0 %1 929.92%
y in this case, considering that these expression domains ...‘.“1.’,0‘.‘ ..“.‘"."“.‘
are stable over time and are very similar in different plants. :.’.‘...D.Q""‘...g'.g ...'.‘. » ""‘...g'.g
However, we do not draw any conclusions from this since :"'i’..u‘ “i":: :ii'..u' ‘;g.:;
the robustness should, rather, be investigated for the com-‘g‘.oro“.“‘."....'.. "".’0:0.‘.“ ‘0...'..
plete feed-back network, which is out of the scope of these ‘.’,‘Q:l.=!‘g0‘.’..0 ‘.%?:g%g!.:.‘.’
models. 0 Pe® O Pe®
.l....".“" .l...""““
4.2.2 Laser ablation experiment An important feature of se@,
the SAM, including thaMUS expression domain, is the cap- G “““'..".'
ability of reorganization, which we address by modeling the .Q‘O.“-|. '0“
laser ablation experiment described in Section 2.1.1. To do ’&‘Q%‘?&&Q%
) e« DS 3
this, the central cells are removed from the SAM, and the - as
models are simulated on the new lattice (Fig. 7E-G). In the " (]

laser ablation simulation, the activator model creates two
new, spatially distinctWUS domains at opposite sides of the
ablated region. This is in full agreement with the experiment
[c.f. Section 2.1.1 and Reinharetal. (2003)]. Furthermore,
this simulation recreates the dynamics of the experiment, since

it first induces.a circular domain of weakly expressiWyS g 7. wus protein concentrations in lattice simulatioA){(8)
cells surrounding the ablated cells. _ Equilibrium concentrations in simulations of the unperturbed model.
The repressor model, on the other hand, does not indugg) Activator model. B) Repressor modelQ)—(D) Simulations of
any spatially distincMUS domain. The equilibriumMUS  aperturbed system where the repressive signal is reduced by a factor
expression is in a ring-shaped domain surrounding the ablateaf two. The parametet, is set to half its original valueQ) Activ-
cells with fairly low expression. ator model. D) Repressor modelE)—(G) Simulations of the laser
Hence, the activator model exhibits the very important abil-ablation experiment.H) Early time point for the activator model.
ity to recreate a spatially distin®MUS expression domain (_';)_Eq“"'b””m Co_ncef””atr']on for the actlvztolr rgoldeG)(Equn- ,
from a physically perturbed system. Since this is a feature o orium concentration for the repressor model. Color coding as In
. . ; L . igure 3. In C)—(G), the maximal color value is set to the maximal
the actual biological mechanism, it is a required property for, : I
. . value in the unperturbed situatiorA(, (B)).
any model trying to address the mechanism underlyitéS
expression.
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