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Abstract

We introduce new diagrammatic notations for probabilistic independence networks

(including Bayes nets and graphical models).  These notations include new node and link

types that allow for natural representation of a wide range of probabilistic data models

including complex hierarchical models. The diagrammatic notations also support models

defined on variable numbers of complex objects and relationships.  Node types include

random variable nodes, index nodes, constraint nodes, and an object supernode.  Link

types include conditional dependency, indexing and index limitation, variable value

limitation, and gating a dependency between nodes or objects by an arbitrary graph.

Examples are shown for clustering problems, information retrieval, unknown graph

structures in biological regulation, and other scientific domains.  The diagrams may be

taken as a shorthand notation for a more detailed syntactic representation by an algebraic

expression for factored probability distributions, which in turn may be specified by

stochastic parameterized grammar or graph grammar models.  We illustrate these ideas

with previously described applications and potential new ones.

1. Extending graph notation for dependency networks

In this section we will outline current practice in labeled-graph description of

probabilistic models, and propose several useful extensions of the notation syntax, along

with their semantics in terms of probability distributions. In section 2 we will show how

to create hierarchical versions of nonhierarchical models. In section 3 we will apply the

work to models of variable-structure systems, and we will express object models using

the extended graph notation. In sections 4 and 5 we will discuss scientific application

domains in biology and geology.  In section 6 we will briefly discuss stochastic graph

grammars, and conclude.

1.1 Dependency graph notation, with plates

Consider a Directed Probabilistic Independence Network (DPIN) [Smyth et al. 1997] or

Bayes Network [Pearl 1988] as applied to the representation of a mixture-of-Gaussians
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data model for clustering.  We can introduce N real vector-valued, observable random

variables xi, each sampled from one of A normal distributions with mean ya and standard

deviation or covariance a.  The choice of Gaussian is governed by a class membership

variable ai, which is chosen from a discrete distribution on the A classes with probability

a.  In the simplest situation, a and x are random variables and all other quantities are

externally imposed and known constants.  A minimal inference problem is to observe xi

and determine ai. (The usual inference formulation of clustering also takes the y’s and

perhaps the ’s as random variables to be inferred, as will be discussed below.) For

random a and x, the network of probabilistic dependencies can be diagrammed as in

Figure 1.

Figure 1.  Directed probabilistic dependence network for a mixture of Gaussians model.  Note

repetition (marked by ellipses) of nodes and arrows in both {1..N} and {1..A} axes.  A full

clustering problem is obtained by making at least the cluster means, y, also be random variables

rather than constants.

If the diagram of Figure 1 were fully labeled with conditional probability distributions,

the mapping to a large multidimensional joint probability distribution would be the

“semantics” of the diagrammatic notation.  Without such labels, the semantic mapping is

ambiguous but often sufficient for human communication.  Both the conditional and the

joint distributions are in general arbitrary probability densities but are usually also

specifiable as symbolic algebraic expressions whose structure is reflected in the diagram.

In this particular case the probability associated with a particular data vector is

Pr a,x |y,( ) = aG x |ya , a( ) , (1)

where G is the Gaussian or Normal distribution, and therefore the global joint probability

distribution is

Pr ai ,x i | i 1..N{ } |y,( ) = ai
G x i | yai , ai( )

i . (2)

This distribrution may be reexpressed using 0/1 cluster membership indicator variables M

as
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Pr Mia ,x i | i 1..N ,a 1..A{ } | y,( ) = aG x i | ya, a( )[ ]
ia

M ia

. (3)

For this particular problem, more elaborate diagrams and their distributions could include

a prior for y (usually Gaussian as it is the conjugate distribution) and  (Gamma or more

generally a Wishart distribution), and even N, in which case statistical inference

encompasses (supervised or unsupervised) learning as well as classification. This

problem can be solved with the Expectation-Maximization algorithm [Bishop 1995].  As

an aside,  may be decorated with index a or not, and may be indexed by the internal d-

dimensional index either zero times (scalar covariance), one time (diagonal covariance),

or twice (symmetric covariance matrix), for a total of six different models.

Such DPIN (Bayes Net) diagrams can also be related to Undirected Probabilistic

Independence Networks (UPIN) [Smyth et al. 1997] and thus to Markov Random Field

formulations [Kinderman and Snell 1980] [Hinton and Sejnowski 1983] [Geman and

Geman 1984] and to the more general Boltzmann distributions long employed in

statistical physics.

The DPIN diagram above necessarily includes ellipses representing the large number of

random variables present in a network with an arbitrary number A of classes giving rise

to an arbitrary number N of data vectors.  The iteration over many variables can be

expressed diagrammatically, and the ellipses can be removed, by using the “plates”

notation [Buntine 1994] [Jordan 2003] in such diagrams as figure 2(a) and 2(b).

(a)      (b)  

Figure 2.  “Plate” diagrams for the mixture of Gaussians model.  Here, each box or “plate”

indicates replication by the number of times indicated with an enclosed index limit, A or N.

Random variables in multiple plates are multiply indexed and replicated as a cross product.  This

specifies the same topology as Figure 1, without the ellipses.

Associated with every such model is at least one underlying probability distribution

which provides the “meaning” of the diagram.  A general formulation of the distributions

compatible with a given UPIN diagram is

Pr xi | i 1..N{ }{ }( ) = c x j | x j Cc{ }( )
c

= exp Vc x j | x j Cc{ }( )
c

 

 
 

 

 
 

  (4)

Here each c is a nonnegative function of the variables in a set Cc indexed by c.  These

sets may correspond to cliques in the “triangulated” UPIN derived from the DPIN, but
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more generally they can be arbitrary interactions among variables that can’t be reduced

solely to a combination of lower order interactions.  Equivalently the energy function

potentials Vc are functions of the same variable sets Cc.

1.2 Index nodes and links

The “plates” notation has the drawback that random variable nodes must be grouped

together geometrically in order to share the same index or set of indices.  With

rectangular or even convex plates in 2D, this can only be done in general for a small

number of variables.  Furthermore, the plate notation is not literally a labeled graph

representation and thus not subject to graph composition operations or automatic

manipulation.  In practice, the number of overlaps is sometimes reduced by omitting

important details of the model.

To remove these problems and make dependency graph notation more usefully

expressive, we propose to “shrink” the plates down to nodes of a particular type.  These

special “index nodes” can be distinguished from “random variable nodes” and “external

parameter” nodes by enclosing their symbolic names in small squares rather than circles,

or dotted circles (or even no enclosure) respectively.  Now the clustering model looks as

shown in Figure 3.

 (a)  (b)   

Figure 3. (a) Clustering model with cluster number variables ai. (b) Equivalent clustering model

with cluster membership indicator variables Mia.

In these indexed probabilistic diagrams (IPD’s), links labeled by “d” (or not labeled at

all) are probabilistic dependency links, those labeled by “ ” are indexing links from an

index node to a random variable node, and those labeled by “v” indicate that a random

variable takes values in an index set. The “M” variable in Figure 3b is an indicator

variable taking values in {0, 1} and constrained to indicate a unique class a for each

datapoint xi.

Figure 4 shows a fuller diagrammatic specification of the clustering model.  Still the only

random variables are Mia (or ai) and xi, but now the full indexing as shown including the

internal index j for the vectors x and y.  A further refinement of the notation allows index

variables to be limited by upper and/or lower bounds, or other descriptors.
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Figure 4.  Mixture model showing addition of index j for dimensions of the feature vector space,

and constant nodes for index limits.

A fourth arrow type labeled by “ ” (Figure 4) specifies the index range limits such as A

(or k) and N as variables pointing into the index nodes, and a few more node and arrow

types for IPD’s will be introduced in the remainder of the paper. An alternative notation

would be to use different kinds of lines (solid, dotted, wavy, springlike, …) for the

different arrow types, as well as default arrow labels such as “ ” for arrows coming out of

index nodes and “d” for arrows coming out of random variable nodes.  These assignments

may best be done after gaining more experience with the diagrams.

The index nodes have many advantages including the natural correspondence

between graph-editing and model-editing operations.  For example, any random variable

node may be turned into a vector by indexing it with an appropriate new index node.

1.3 Connections to Stochastic Grammars and Bayes Networks

The actual probability distribution summarized by Figures 3 and 4 is the same as for

Figures 1 and 2.  It can be specified in full by a stochastic parameterized grammar

[Mjolsness 1997].  For example, Figure 5 shows a stochastic parameterized grammar

associated with the mixture mode above.  The stochastic grammar formalism can be used

to concisely express much more elaborate probabilistic models as will be shown later.

grammar mix(dataset {datapoint(xi ) | i I})

{

dataset {classmember(ai ) | i I} // a = class number

with 

Pr ai( ) =
ai

if ai 1..A{ }

0 otherwise

 
 
 

classmember(ai) datapoint(xi ),  membership(i,ai )

with  
x i ~G yai , ai( )

}
Figure 5. Reexpression of a Gaussian mixture model using two probabilistic rules in a stochastic

grammar.
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Each structured probabilistic model may be presented as an indexed probabilistic

diagram (IPD), as an algebraic expression for probability or energy, and/or as a stochastic

parameterized grammar (SPG).  The IPD is a somewhat ambiguous shorthand for the

other two specifications, unless it is annotated in detail.

As a second example, we describe the conventional static Bayes Network

formalism in three ways: a probability distribution formula, a stochastic parameterized

grammar (SPG), and a graph diagram that acts as a shorthand for either of the other

descriptions.  Given random variables Xi indexed by i in I={1…N}, and given a Directed

Acyclic Graph of dependencies Gij  {0,1} for which (after permuting the index values i)

G{i<j} = 0, we can write

Pr Xi = xi | i I{ }( ) = Pr xi | x j |Gij = 1{ }( )
i , (5)

and the very simple SPG is

grammar StaticBayesNet( start  {Xi (xi) | i  I} ) {

start  { X’i | i   I}

X’i , {Xj (xj) | Gij =1}  Xi (xi), {Xj (xj) | Gij =1}

with  
Pr xi | x j |Gij = 1{ }( )

}

Any legal order of rule firing will produce a valid sample from the joint probability

distribution.  Note that variables with no predecessors in the DAG G have their prior

distributions P(xi | { }) = P(xi) used automatically in both of these descriptions, which is

correct.  (Here {} is the empty set of random variables.) Also note that this grammar uses

many terms on the left hand side of a rule, so that it is no longer context-free.

The corresponding dependency graph description is shown in Figure 6 below:

Figure 6. Bayes network diagram with index nodes.

Implicit in this representation is the constraint that the same random variable is indexed,

for the same numeric value of i and j, even if it appears in two different places in the

diagram.  If G were not a DAG, then there would be a further ambiguity in attempting to
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unroll a cycle in the graph G for which a variable can depend (perhaps indirectly) on

itself.  But here, G is assumed to be a DAG.

1.4 Interaction/Constraint nodes

Each dependency link in the foregoing diagrams is associated with a dependency in a

conditional probability distribution P(node | predecessor nodes).  Each such conditional

distribution is a multiplicative factor  in the global joint distribution (equation (4)), or

equivalently an additive term (such as a clique potential in a Markov Random Field) in

the global energy function. For some purposes it is useful to explicitly represent such

multiplicative probability factors (or additive energy terms) in the diagrams.  For

example, some dependencies may naturally factor into several conditional distribution

terms with each with fewer random variables. Also, constraints can be represented as

probability factors  such as Kronecker or Dirac delta functions which take the value zero

wherever the constraint is violated, and one variable may be limited by several different

constraints.  These models may be represented by a new “interaction” node type,

represented here as a hexagon enclosing textual or algebraic constraint information

pertaining to probability factor .  The semantics of the whole diagram is then given by

equation (4), with any (index node, constraint node) pair connected through at least one

random variable mapping to a summation of interactions over that index node in the

energy function.

Figure 7. Illustration of probability factor/constraint node type.  This factorization cannot be

expressed by a Bayes Net [Frey 2003].

Undirected edges can be used for multiplicative factors in the overall joint probability

distribution (such as monomials in an energy function, or clique potentials in an MRF).

The constraint notation can also be combined with index nodes to impose constraints on

several indices and/or random variables.  Very similar ideas have been worked out in the

“factor graphs” of [Kschischang et al. 2001] [Frey 2003] which are bipartite graphs with

variable and constraint nodes with essentially the semantics of Boltzmann distributions,

as in equation (4).  They have been extended so that directed and undirected links may be

mixed.  They do not have index nodes or the other node and link types introduced below.

Given this full graph notation, all indexing relationships in a model can be displayed

without omission, and the labeled graph representation can be the substrate for new graph

editing and composition operations.  Some of the new graph composition operations have

A

B

C

D

E

(D|A,B)

(D|B,C)

Pr(E|C)
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natural semantics of relevance to probabilistic data modeling.  Two major improvement

possible with the improved graph notation are (a) easy introduction of hierarchical

structure into generative models, and (b) ability to express “variable-structure systems”,

with objects whose number and relationships vary as a function of other random

variables.

2. Introduction of Model Hierarchy

As another example of the expressive power of the diagrammatic index notation,

subscripts can have subscripts as in x (i1, … id) as in Figure 9a or (abbreviated) 9b.

(a)  (b)

Figure 9.  Hierarchical index specification, (a) with index limit nodes, and (b) without.

This is useful for representing d-dimensional multi-resolution image pyramids in vision,

where for example an image variable x might be indexed as 
x l , i11,...i1d( ),... iL 1,...iLd( )( ) ,

diagrammed in Figure 10a below.  Then every lower-level index such as (i21,…i2d) takes

on the same set of value regardless of value of the parent index such as(i11,…i1d) so that

the tree is automatically balanced complete.  For incomplete, unbalanced index trees one

can allocate a separate lower level index, e.g.

 
ii1  or ii11 1, ...ii1d d( )

 ,

for each value of the higher level index i1 or (i11,…i1d).  This leads to unsightly sub-sub-

sub indices in the textual representation, but is natural in the diagrammatic representation

as shown in Figure 10b.

 (a)   (b) 

Figure 10. Alternative indexing schemes for multiscale grids. (a) Regular pyramid. (b) Spatially

variable depth of resolution in a pyramidal grid. In this scheme, Nid = 0 determines that i is a leaf

node in a tree of indices for dimension d. Otherwise, the tree goes deeper (to higher level number



Labeled Graph Notations        March 2004 Eric Mjolsness

l) for that value of i.  Also, for xil at level l , indexing of x by i is gated by l (see section 4 for a

diagrammatic notation) so that only i's indexed by level l can index xil .

2.1 Example: Hierarchical Clustering

Here is a two-level hierarchical generalization of the mixture model above.

Figure 11. Two-level hierarchical mixture model.

which in a fully hierarchical version would be:

     

Figure 12.  Arbitrary depth hierarchical mixture model.

2.2 Example: Information Retrieval

Recall the mixture of Gaussians model (above).  It is closely related to mixture models

for document “topic” content [Hoffman 1999; Jordan et al. 2003]. The probability

decomposition proposed by [Hofmann 1999] for latent semantic indexing approach to

textual information retrieval is:
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Pr ,w( ) = Pr ( )Pr w |( ) = Pr( ) Pr w | z( )Pr z |( )
z (6)

A elaborated by [Blei et al. 2003] this may be diagrammed as follows:

Figure 13.  Document topic model.

In this diagram the notation is as follows.  The index nodes are:  n  {1 … N} indexes

the documents; m {1 … M} indexes the word positions in a document (padded out to

maximal document length, or else subscripted as Mn); k {1 ... K} indexes the topics a

word or document can be “about”; v  {1 … V} indexes the vocabulary of possible

words.

The random variable nodes are: wnmv=0 or 1 depending on whether or not word position m

in document n is occupied by vocabulary word ; znmk = 0 or 1 depending on whether

word position m in document n is about topic k; nk = the prior probability (mixture

parameter) of topic k in document n, for all word positions.

The constant parameter nodes are:  = a parameter for the probability distribution on

probability distributions such that   k nk = 1 (e.g. the Dirichlet distribution); N and M,

the number of documents and words in a document respectively.

Note similarities and differences compared to the clustering network.  The inexact

mapping between the two model graphs is:   , M  z, x  w, i m, N N, k K,

a k . Differences include the ,  n indices. 

This is a very simple mixture model.  As in clustering, one can view the number of words

drawn from a particular topic as a multinomial distribution, or one can view the topic

(znm*) of each word m in each document n as drawn independently from the same

distribution ( ).
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Natural elaborations for this model include the introduction of a hierarchical structure

wherever it would make sense: on the topic index k, for hierarchical topic clustering  k 

(k1,  k2…), and on the document index, n, for document segmentation into chapters,

sections, paragraphs, and other parts.  n  (n1, n2, … m1, m2, …) .    [Blei et al. 2003]

proposed a hierarchical topic model using the “Chinese restaurant process”.  Note that (n,

m) is already a hierarchical index on word positions in a corpus, so the new index would

end in m as well.  [Hearst 1994] introduced information retrieval models for topic

boundaries within a document.

There are a variety of ways to formulate such models.  Figure 14 provides a

representation of the topic hierarchy model of [Blei et al 2003].  Figure 15 proposes a

novel generalization to include both topic and document hierarchies.

  

Figure 14. Hierarchical topic model from [Blei et al. 2003] model, redrawn and relabeled.  The

topic index k is hierarchical and indexed by a topic level number lt. T is a hierarchical mixing

proportion vector.



Labeled Graph Notations        March 2004 Eric Mjolsness

    

Figure 15. A generalization to express both topic and document hierarchies, as trees.

2.3 Example: Bioinformatics

Another example that shows how to reexpress structured probabilistic models in a

scientific domain is a model relating gene sequence and mRNA expression data by way

of regulator binding site and module membership variables [E. Segal et al. 2003].  It is
diagrammed in Figure 16.  The “logit” expression has a nontrivial algebraic structure.  S

is the sequence of nucleotides upstream of or otherwise capable of regulating expression

in a particular gene g.  R denotes the possession of regulatory motif r by gene g.  M

denotes the membership of gene g in module m.  E denotes the expression value of

mRNA coded for by gene g in experiment j.

Figure 16. Model for regulation of mRNA expression level as a function of sequence information

[Segal et al. 2003].
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3. Variable-Structure Systems.

3.1. Variable number of nodes.

One approach to variable structure systems is to allow subscript limits to become random

variables.  For example the number of clusters, k, can become a variable in the mixture

model described above:

Figure 8.  Mixture model with variable number of classes.

This is useful for example for expressing clustering models with an unknown or variable

number k of cluster centers, and an unknown discrete probability distribution  on those k

cluster centers.  The prior on k and  can be given for example by “power law prior” such

as a finite sampling of infinitely many clusters whose population frequencies are given by

a power law with exponent .  Alternatively it could be given by a Dirichlet distribution

with its own exponents.

Here is a stochastic parameterized grammar associated with the above model:

grammar MixGaussian ( dataset(N, )  {datapoint(x) | i  {1..N} }) {

dataset(N, )  clusterset(k, , N)

with ( , k) ~ PowerLawPrior(N, )  // or a Dirichlet distribution

clusterset(k, , N)  {cluster(a, ya, a, na)}

with ya ~ Gaussian(0,1)

Pr( ) = ( | , )    // Gamma or Wishart distribution

na ~ Multinomial(N, k, a )

where  = diag( )

cluster(a, ya, a, na)  {datum(x), b  {1.. na } }, filledclass(a, na)

with xab ~ Gaussian(y, )

{datum(xab) | a in 1 .. k and b in 1.. na }, {filledclass(a, na) | a in {1..k}}

 {datapoint(xi ) | i  {1..N}}

with {M} ~ uniform permutations M such that ib Mi,ab = na

subject to xi = a,b Mi,ab xab

}
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The SPG is a useful tool for describing DPIN’s in which the structure of the conditional

independence network, including the existence of particular variables or dependency

relationships, depends on the values of other random variables.  In this case, the number

of classes (and hence a or M variables) is determined by random variable k (or A), and the

dependency between ya and xi is present or not dependent on the value of ai or Mai.  This

kind of dynamic structure is not well captured by a fixed-structure Bayes Network; it

requires large increases in dependency fanin that are problematic for general-purpose

inference algorithms.

3.2 Variable Link Structure

We have already seen how to make the number and nature of the objects in a data model

depend on other random variables and therefore vary from one sample to the next.  Now

we generalize to variable link or relationship structure, arriving at variable-structure

systems such as those required in biological development [Mjolsness, Sharp and Reinitz

1991].

Recall the constraint node representation for factoring conditional or joint densities from

section 1.4.  As an example involving directed edges, in equation (1) for a mixture of

Gaussians, the separate factors

x i | ya, a ,Mia( ) = G x i | ya, a( )
M ia

 (7)

would each correspond to an interaction node which “gates” the influence of y and  on x

under the control of the matrix random variable M (here, used in the indicator variable

form M {0,1}).  M itself is regulated by the constraint that for each data point i, its sum

over all classes a is one.  Both constraints can be diagrammed in a useful template or

idiom for gated interactions:

Figure 17.  Constraint node for the cluster membership variable M.

s

y

M

xgated Normal

a i

Mia =1
a



Labeled Graph Notations        March 2004 Eric Mjolsness

Using interaction nodes one may naturally diagram sparse random adjacency matrices

(data graph or relationship structures).  In Figure 17 above, simply replace the cluster

membership node M with a general adjacency matrix node G {0,1}, and replace the

constraint node 
Mia =1

a with a different interaction such as a Boltzmann distribution

with energy function on G’s total number of edges, its indegree distribution, and its

outdegree distribution:

Edegree G( ) = µ iaGiaia
+ f in Giaa

( )
i

+ f out Giai
( )

a  . (8)

A Boltzmann distribution on adjacency matrices with this form of energy function can

serve as a prior probability distribution on sparse graphs.

3.3 Observations on the graph prior

By comparison with [Morris et al. 2003], equation (8) is a factorable and solvable

statistical mechanical system when there is either an indegree or an outdegee term alone.

Morris et al. use just one degree prior for a symmetric (undirected) graph, but incorporate

a posterior that depends on multiple graphs each of which has a degree prior.  Similar

“exponential” probability distributions on graphs are discussed in the review by

[Newman 2003]. To understand the Boltzmann distribution in the more complex

situations of both indegree and outdegree terms constraining a directed graph, or a degree

term constraining an undirected graph, we can calculate the volume (= exponential of the

entropy) of a constant-energy slice of adjacency matrix space.  We do this by calculating

the number C of graph adjacency matrices corresponding to a given degree distribution

(m1, … mN) where mi is the integer degree of the i'th node, and where self-connections are

allowed.  The number C(m1, … mN) is given by the generating function:

JN z( ) = C m1,...mN( )
m{ }

zi
m i

i=1

N

= zi
Gii

i=1

N

ziz j( )
Gij

i, j=1
i< j

N

G ij |
Gij 0,1{ }

   i j

 

 
 

  

 

 
 

  

= 1 + zi( )
i=1

N

1 + ziz j( )
i, j=1
i< j

N

(9)

for undirected graphs.  For directed graphs there are both outdegrees m and indegrees n,

and the number C(m1, … mN, n1, … nN ) of graph adjacency matrices compatible with all

these degree constraints is given by
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KN x,y( ) = C m1,...mN ,n1, ...nN( )
m{ }

xi
mi

i=1

N

y j
n j

j=1

N

= xiy j( )
Gij

i, j=1

N

G ij |
Gij 0,1{ }
 
 
 

 
 
 

= 1 + xiy j( )
i, j=1

N

. (10)

Other additive energy function terms can express more detailed prior biases on the graph

structure of G. For example, one may count and reward or penalize graph “motifs” such

as loops in the graph G by adding the penalty term tr[G
T
/(1 –  G) ] , which weights

longer loops with higher powers of . Related ideas are reviewed by [Newman 2003] as

“exponential random graphs” along with preferential attachment and vertex duplication

distributions.  [Ziv et al. 2003] describe a graph feature vocabulary built from the

adjacency matrix, used to discriminate graphs from different distributions.  As an

example of the expressive power of features built from functions of the adjacency matrix,

the prior (a) below expresses prevalence of triangles i j k i, following [Ziv et al.],

and the prior (b) below expresses occurrences of an arbitrary subgraph, some of whose

edges (gab=1) must map directly to edges of G and some of whose edges (  
 

g ab =1) can

appear indirectly as a sequence of edges of G:

GijG jkGki
ijk (a)

  

Gia jb( )
gab G

1 G
 

 

 

 
ia jb

 

 
 

 

 
 

 
g ab

abi1 ..in{ } . (b)

Expressible graph motifs include bottlenecks, feedback loops, feedforward loops, lock-

and-key node connection biases, and so on.   However, each motif must be present

exactly to be counted and the objective functions are high order.  A more flexible option

would be to add an inexact graph-matching objective function [Gold et al. 1996] between

G and g to the Boltzmann distribution.  This objective includes new matching variables

Mia between nodes of G and of g and it maximizes the number of consistent “rectangles”

of links in Gij, gab, Mia and Mjb.  If we integrate probability over configurations of M,

rather than maximizing probability over them, then the probability of G is increased by

its possession of multiple possibly inexact copies of a graph motif g.

3.4 Gating graphs and relationships

Taking Edegree(G) to refer to any such Boltzmann distribution on graph structures, the

resulting template diagram is:
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Figure 18.  Constraint node for the graph sparse adjacency matrix variable G.

As a diagrammatic abbreviation, one can allow G to become another (user-defined,

dynamically variable) link type and link label, like d, , , and v, in the diagrammatic

notations of Figure 19a or even 19b.

(a) (b)

Figure 19.  Abbreviated notation for gating of the interaction between x and y by G.  (a) with

index nodes, or (b) with vector notation for the random variables x and y.

(By convention, every component xi of x depends on every component yj of y unless

explicitly restricted.) This pattern may be iterated to make a network of possible

relationships, e.g.

Figure 20.  Network with multiple relationships each represented by a graph.

A biological example might relate y to states of genes, x to states of proteins, and z to

states of transcription factor binding sites that act on genes, with apparent circularity to

be removed by introduction of dynamics as described later.
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The associated probability distribution for a G-mediated relationship between x and itself

may be taken to be, following equation (4), one of the sequence of increasingly general

Boltzmann distributions below:

E = GijV xi ,x j |Tij( )
ij

+ Edegree G( )

= Gi
cG j

cV xi ,x j |T
c( )

ijc

+ Edegree G( )

E = Gj
c

j

 

 
 

 

 
 V x j |Gj

c = 1{ } |Tc( )
i{ }c

+ Edegree G( )

.

In this way we can introduce one or many dynamic or data-dependent relationships, such

as G above, between a set of random variables.  For example there could be one graph A

representing adjacency and another graph C representing containment among volume

elements in a geometric model.  Note also that the conditional distribution of G given x is

influenced by compatibility between the node variables as measured by pairwise

potentials V.

3.5 Introduction of “Objects”

For knowledge representation it is useful to consider a special case in which the entities

related by a link in G are groups of variables (representing “objects”) rather than single

variables.  Simply make each variable x above be a vector by adding an index to the x’s

but not the G’s:

Figure 21. Introduction of objects.

This dependency graph allows all internal variables yjb of object j to influence all internal

variables xia of object i, provided only that the relationship Gij between the two objects is

nonzero.  If instead there is one or more preferred wiring patterns gab among the internal

variables in any two objects, then we can use a graph decomposition form such as

G(ia) (jb) =  G ij g ab

y

G

x

j i

b a
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to gate the connections between yjb and xia . For example, the wiring pattern index 

could take values  =1 for Adjacency and =2 for Containment in a geometric model.

Each wiring pattern  could gate a separate potential function V.  Note that, if wiring

patterns  are as numerous as course-scale index pairs (ij), then we can recover a

modular but otherwise unstructured hierarchical network G(ia) (jb) = G(coarse)
ij g

ij
ab  .

Figure 22. Multiple relationships among objects.

The variables in such an object may be grouped together diagrammatically with another

shape such as a triangle, representing an object instance.  Optionally objects may be

assigned types . The resulting compound object node is shown in Figure 23(a). Unlike

the plate notation, overlaps and recursive substructure are not allowed within the node in

such a diagram but must be represented by relationship nodes in a graph structure as

shown in Figure 23(b). These triangle object nodes also have similarity to class nodes in a

Universal Modeling Language (UML) diagram, though UML is a much more elaborate

notation without a probabilistic interpretation.

(a) (b)

Figure 23. (a) triangle node groups essential elements of an object: its random variables x, its

internal index a, and its type value .  (b) Relationship G between two sets of object nodes gates

their probabilistic dependencies.
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3.6 Relation to Probabilistic Relational Model (PRM)

A PRM as described in [Friedman et al. 1999] is a relational database model with an

added dependency graph structure, consistent with the relational model schema.  We map

PRM’s into the object dependency graphs introduced above as follows:

Classes or entity types such as X and Y are mapped into indexed sets of random variable

groups such as {xi} and {yj}. Class instances or entities such as x  X are mapped into

particular random variable groups such as xi and yj. Attributes such as x.a and y.b are

mapped into particular random variables such as xia and yjb. Binary relations such as

(X,Y) are mapped into graphs G (X,Y) = { G  ij } .  These also define single slots.

Slot chains such as . .  are mapped into matrix multiplication of the corresponding

adjacency matrices, e.g. jk G  ij G  jk G kl . Given a starting object indexed by i, this

computes a set of possible related objects indexed by l via slot chain . .  .  All possible

results of slot chains of any length (including zero) may be computed from the

components of matrix I/(I-  G’) , as 1 , where G’ =  G  . Dependencies and Parent

sets such as Pa(x.a) are mapped into attributes reachable by g, for i=j, or by G’/(I-  G’) g.

There is room for debate here about the best extent of a parent set, since for some

databases, I/(I-G’) is nearly dense. A choice of aggregation operators over multiple

attributes reached from a given slot chain is a feature of PRM that is not modeled in

detail by the diagram above.

The schema for a PRM is the pattern of wiring ( , x, y) by which binary relations indexed

by  relate variable classes such as x and y.  It is implicit in the diagrams above, but can

be made explicit with the addition of yet another index  on the random variables x to

designate their type, and a schema wiring pattern S  among types and binary relations.

Then we obtain a metamodel for all PRM’s:

Figure 24. Probabilistic relational model.
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Note that each G  is variable and data-dependent in a PRM, but g is constant and so is the

schema S.

 3.7 Frames and Semantic Networks

The basic object x, of type , with attributes indexed by a, possibly related to object y,

can be redrawn as a “frame instance” in a very simple semantic network by using the new

object node (here denoted with a triangular shape) to group x, , and a as in Figure 21.

This diagram is consistent with the previous notation for Frameville networks [Mjolsness,

Gindi and Anandan 1989; Anandan Letovsky and Mjolsness 1989; Mjolsness 1997]

governed by Boltzmann energy functions, except that we have instances without the

“class” information such as S and g via the potentials H.  Those can be restored, as shown

in Figure 25.

Figure 25. Frame instances with schema.

Compare this object model to the following Frameville diagram and objective function,

in which ( , ) and ( , ) play similar roles. INA is S, ina is G, M is internal to the hard-

typed objects. However, differences between the objects above and Frameville include:

(a) the fact that in the latter system the assignment of instances i to types  is flexible,

allowing for type uncertainty during inference and the use of inheritance; (b) constraints

on S enforcing the interpretation of a compositional hierarchy (INA or part-of) and/or

inheritance hierarchy (ISA relationship) in Frameville; (c) Frameville is usually regarded

as having undirected dependencies so that inference can proceed in any direction; (d) the

omitted H parameter-check term is similar to g and the omitted clique potentials, except

that H is indexed by object type rather than by relation.

G

j i

S

xayb
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Figure 26. Frameville objective function diagram, from [Mjolsness 1997].

In this way we are able to group random variables into larger units of “memory”

analogous to record structures in a programming language or frame instances in a

semantic network style knowledge representation scheme, and to index these frame

instances in such a way that they can point to one another by way of sparse graphs.  We

thus arrive at a graphical notation for objects and relationships similar to “Frameville”

networks.

3.8 Local node dynamics

The variable-structure relationship diagrammed above can provide the topology within

which node dynamics are local, for example in a recurrent neural network or other

feedback-capable model of transcriptional and other biological regulatory networks

[Mjolsness Sharp and Reinitz 1991].  Other examples include modeling internal

dynamics of extended objects such as storms in the atmosphere, or geological processes

resulting in changes to strata, or articulated mechanical objects in robotics and vision.

One key to this application is to introduce a new index node “t” for time.  This

corresponds to loop unrolling in a conventional neural network.  As before, we can also

introduce internal vector indices a (not shown) for the state variables v.

Figure 27. Objects with node dynamics.
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The return arrow from v to v allows the change of state sampled at time t to be added

into the state vector at time t+1.  The resulting graph of dependencies is still a Directed

Acyclic Graph.

A generic energy function for dynamics, local to the network, is then:

E = C1 Gij
a uia t( ) F i( ) j( ) v j t( ), pija( )[ ]

2

ijat

+ C2 uia t( )( )
2

t,i,a

 + C3 vi t + t( ) vi t( )( ) / t gia uia t( )( )
a

 

 
 

 

 
 

2

it

where

G = Gij
a

a   .

The complete collection of node and link types can be put into a type hierarchy.

Inheritance relationships between object types can be understood as inheritance of parent

type parameters, relationships (slots), and optionally also terms in the energy function.

In the applications to follow, we will adopt the frame instance notation and terminology

(including inheritance relationships) for object-level probabilistic dependency diagrams.

With implicit graph priors, every network diagram corresponds to a probability

distribution over networks including their dynamics.  Expected temporal behaviors of

high probability dynamical networks in such a distribution could be characterized in

many ways, including their approximability by simpler networks including but not

limited to those exhibiting attractor dynamics.

4. Application: Biological Regulatory Networks

Here we outline application of object-level probabilistic dependency graphs to biological

regulatory networks.

4.1 Regulatory network dynamics

A generic dynamic regulatory model, local to graph 
G = Gij

a

a , can be written:

  

E = Gij
sa uia

s t( ) F s i( ) j( ) v j t( ), pija
s( )[ ]

2

/ i( ) j( ) uia
s t( )( )

2

s 1,+1{ }ijat

+ C ui
s t( )( )

2

t,i,s

 + vi t + t( ) vi t( )( ) / t gia
+ uia

+ t( )( )
a

+ vi t( )gia uia t( )( )
a

 

 
 

 

 
 

2

/ i( ) vi t( )( )
2
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For example, the law of mass action can be expressed with F=log(.) and g =

exponential(.), and recurrent neural network style Gene Regulation Networks can be

written using F = identity and g = a sigmoidal function.  Other dynamics can be

implemented with hidden units. The (optional) a index serves to distinguish different

interaction nodes that lead from  j to i, corresponding for example to different reactions

with j as an input and i as an output.  Interactions are also classified as synthetic or

degradational, s = +1 or –1, with slightly different dynamics.  The standard deviation

function serve to implement a Langevin equation stochastic model, in which standard

deviations are typically proportional to the square root of the number of molecules, or to

model measurement error which may be for example a positive linear function of the

concentration.

The form of the dynamics F
s

 assumed for regulatory interactions between regulators of

type  and regulates of type  is diverse. It depends on modeling choices for a wide

variety of biological processes including enzyme kinetics (represented with mass action

or Michaelis-Menten kinetics, or much more detailed models for allosteric enzymes),

transcriptional regulation, translational control, protein complex formation and

degradation, active degradation of protein, and so on [Shapiro et al. 2003]. Many

different regulatory models may be required in a single network. Hence, F is indexed by

object types  and .

The resulting model class shares features with more specialized ones of [Segal, Yelensky
and Koller 2003], [Imoto, Goto, Miyano. 2002], and other recent attempts to create a

probabilistic framework for inferring cellular regulatory networks.
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4.2 Central Dogma Networks

If we use a general form for regulatory dynamics such as the above and define the object

types  to be genes, proteins and the like, we can outline a more detailed Central Dogma

(CD) network (Figure below).  It is constructed by considering the most basic categories

of reactants  (such as DNA, RNA, and protein) and the likely reaction types  among

them (cf. dynamical equation above).  As more basic biological mechanisms are

understood, such as regulation by small RNA’s, they can be added to the diagram with

consequent global effects on the model. Dotted circles are constant or observed values.

Figure 28. A Central Dogma network.

Note the multiple types of observational data that serve to constrain the model. The

version of the diagram above assumes the organism in question has been sequenced. In

greater detail, the network is:
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Figure 29. Central Dogma network, refined.

In this diagram, note the role of the sparse matrix C of adjacency relationships in a

protein complex, defined in terms of the protein index j; the compound observation index

 which includes time point, experimental condition, organism species or taxon, and

subcellular localization; and the multiple protein-complex reaction types. The protein

interaction network Q includes subnetworks Q1, Q2, and Q3 of protein-protein interactions

involved in complex assembly/disassembly, protein state modification, and controlled

degradation, all likely to be modeled with different dynamical models.  Sequence

information from genomes of multiple related species can be used to better define

coding/noncoding regions in DNA [Seipel and Haussler] and protein-DNA binding sites

[Moses et al. 2004, Kellis et al. 2003].

4.3 Pathways

Overlapping and/or interacting pathways are also important.  Each may, in principle,

involve most or all of the central dogma network types.  Hence a pathway index  would

be “orthogonal” to a mechanism index .  Indeed, the global reaction connectivity graph

G can be recursively decomposed first according to CD types (giving rise to connection
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matrices G
p:DNA,p:p

=T, G
gene,p:DNA

=W, and so on), and then according to hierarchical

overlapping pathway memberships.  The pathway decomposition can be expressed by

indexing each CD object type  by a hierarchical version of index  (not shown above)

whose deepest level is the object instance index (i, j, etc., also omitted above except for

protein index j).  The connection matrices T, W, and so on would simply have a degree

prior or bias which favored intra-pathway connections without prohibiting inter-pathway

connections.  In this way, pathway membership is a property of the model but not of the

system being modeled.

A very simple example of such a pathway model is provided by the general architecture

of a “core/leaf” regulatory model, in which a fully recurrent core network connects

outwards, with little if any feedback, to a set of leaf nodes each of which receives input

from a small number of core nodes.

4.4 Separation of time scales

Some variables may evolve much faster than others as a consequence of parameter

settings with a large dimensionless ratio.  This happens for example in the Michaelis-

Menten approximation to mass action kinetics.  As another example, a higher order (k>2)

clique interaction may influence variable x as a function of a fast variable y and a

normally slow-changing variable z.  In this case, a slow input z may effectively gate a fast

input, acting to change the topology of the fast timescale network.  Such phenomena may

be modeled by replacing the time index t with two indices (tfast, tslow), each with the full

connectivity that t had. A true separation of time scales may then allow the graph to be

simplified by eliminating the indexing of slow variables by tfast and possibly simplifying

the potential functions. In this way local node dynamics (as above) can give rise to

network connectivity dynamics on a slower scale.

Another variation of this technique is to replace t by (c, t) where c is a condition index

that is associated not with slow time scales but with altered experimental conditions

reflected in (c indexing of) network structure, such as (a) altered initial conditions, (b)

mutant genotypes including deletions or conditional knockouts, and (c) transgenic

organisms.

A very different separation of timescales is that between organismal and evolutionary

time.  In this case the dynamics of connections is intrinsically different from that of

nodes.  The phylogeny relationship  in the diagram above can be used to define

potential functions for integrated or interacting evolutionary/regulatory networks.
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5. Application: Computational Field Geology

Here we outline an application of object-level probabilistic dependency graphs to

computational field geology.  Prior work in object-level computational approaches to

geological inference include [Simmons 1983] [Ady 1993] and [Sakamoto 1994], but they

are non-probabilistic.  The goal here is to create a generative statistical model of layered

strata resulting from repeated geological processes such as deposition, deformation,

faulting, erosion, and so on. To this end we introduce relevant object types and

relationships. The types include 2D and 3D geometrical objects (e.g. surface and volume

elements) and compositions thereof (e.g. surfaces and volumes). Adjacency relationships

are indicated in this particular example by sharing lower-dimensional substructures. The

types also include rock facies, which are groups of rocks with similar observable

properties such as spectra and visual texture. Processes are modeled as discrete or

continuous-time firing of rules in a grammar of geological transformations. Object types

and relationships are introduced using frame “slot”, “parameter”, and “inheritance”

notation.

layeredStructure (contains {layer}, {boundarySurface})

layer (ISA thinVolume)

(between B1:boundarySurface, B2:boundarySurface)

(matrixComposition C1:composition)

(embedComposition C2:composition)

(cutby {Fi=fault}) (boundedby {B1, B2, Fi})

boundarySurface (ISA surface) (between layer1, layer2)

composition({faciesContent(p  , facies })

thinVolume (ISA volume)

(between B1:boundarySurface, B2:boundarySurface)

// Has simplified mechanics and boundaries compared to volume.

// p  gives mixture probabilities for layer-wide facies content

volume (contains {volement} {vertex(x)}) (boundedby {surface})

surface (contains {facet} {vertex(x)}) (boundedby {curve})

(composition {faciesContent(p  , facies })

// surface weathering effects on volume facies

volement (contains {vertex(x)}) (boundedby {facet})

(embeddedDist{patch(y, )})

// Maintain convexity so volement, and its facets,

// are all determined as the convex hull of its vertices.

// e.g. two dual surface tilings, offset in z, give tetrahedral tiling.

// Patches are Gaussian blobs in an optional spatial distribution

// of embedded material.

stressedVolement( , ˆ  ) (ISA volement) // local strain and stress tensors , ˆ  
curve (contains {segment})

facet (contains {vertex(x)}) (boundedby {segment})

segment (boundedby {vertex(x)})
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facies( , µ, c, (s))

// µ is the mixture probability vector for minerals in facies 

// c is a vector of observables for facies :

Concatenate spectra, rotation invariants of visual texture, etc.

Spectral components of c can be a complicated function of µ .

// (s) is a rock size distribution

faultedLayeredStructure (ISA layeredStructure) (contains {fault})

fault (ISA surface)

Major transformations to be modeled with stochastic grammar rules include:

Deformation: layeredStructure, forceSurface  layeredStructure, forceSurface

// use elastic/viscoelastic dynamics to respond to stress through deformation

Relaxation: layeredStructure  layeredStructure

// use viscoelastic/plastic dynamics to relax stress over time

Faulting: layeredStructure, fault  faultedLayeredStructure

// add fault, redraw volements along it, and shift all volement positions

Deposition: layeredStructure, flowField2D, flowHistory, source  layeredStructure

// adds a layer on top, from surface source

Sedimentation: layeredStructure, flowHistory, source  layeredStructure

// adds a layer on top, from above e.g. marine deposition or airfall

Erosion: layeredStructure, flowField2D, flowHistory  layeredStructure

// removes material, forming a new top surface for exposed layers

Impact: layeredStructure, volement, impact  layeredStructure

// numerous alterations including excavated layers

Regridding: layeredStructure  layeredStructure

// adjusts the grid for better use of limited grid points,

leaving interpolated field unchanged

Note the use of slot chains as in PRM. Note also the need for new flowField, flowHistory

and forceSurface objects (below) and grammar rules to create them.

forceSurface  (ISA surface) (contains {forceFacet(f) })

forceFacet(f) (ISA facet) (contains {vertex})

Hence:

forceSurface ({F’l}, Eq’lm,np)},  {F’l =forceFacet(fl,  {X’lm})},{X’lm =vertex(x’lm)}

// fl = force (vector) per unit area of facet l.

The objects and relationships listed above can be interpreted in two closely related ways:

as objects and relationships in an object-level probabilistic independence network, as

defined above, and as collections of linked terms (corresponding to the object types

above) that may appear on either side of a rule in a parameterized graph grammar.  The

rules in a grammar serve to define dependency relationships, with RHS random variables

depending on LHS random variables with an earlier discrete “time” index.
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Figure 30 shows a portion of the above network of objects and relationships in the

present diagrammatic notation.

Figure 30.  Geological objects.

5.1 Deformation

A deformation rule can take the form

layeredStructure({Ll}), {Ll = layer({Vi})},{Vi =volement({Xk|Vik=1})},

{Xk=vertex(xk)}, forceSurface({F’m})},

{F’m =forceFacet(fm,  {Xk|Smk=1} )}

 layeredStructure({Li}), {Ll = layer({Vi})},{Vi =volement({Xk|Vik=1})},

{Xk=vertex(x’k)}, forceSurface({F’m})},

{F’m =forceFacet(fm,  {Xk|Smk=1} )}

where Eqik,i'k’ = Vik Vi’k’ kk’ // alternative numberings name the same vertex

under E(x’) = ik Voli Evol({uk = x’k – xk},{Vik})

+ mk Aream Esurf({uk = x’k – xk},{ Smk })

// x’ chosen under elastic energy function.

// Then x’ becomes the new x, i.e. material is viscoelastically relaxed

// unless residual stress  is stored e.g. with stressedVolements.

For relatively small displacements u, the energy function Evol is a quadratic function of

the strain  ab = u(ab) = (u a,b + u b,a)/2 [Landau and Lifshitz] incorporating material

inhomogeneities, anisotropies, and a global Euclidean coordinate system invariance. Here

“,b” subscript is the spatial derivative operator defined on an interpolated strain function

of position.  Stresses ˆ   are forces per unit area, derived as derivatives of E with respect to

strain.  For large displacements, more sophisticated invariant energies must be used

[Terzopoulos et al. 1987, Grinspun et al. 2003].
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A key idea for this application is that one or more boundary surfaces of the

layeredStructure, on the bottom and/or sides, are chosen and subjected to constant

isostatic pressure (stress in the exterior volume due to pressure and gravity alone, as if the

exterior volumes were fluid enclosed in a balloon).  If necessary, first augment the

layeredStructure with a deep bottom layer, then cut the layeredStructure by the desired

force-application surface “forceSurface” to make it a boundary.  During relaxation,

displace this surface along with the layeredStructure volume but keep its forces

compatible with those due to an exterior fluid volume, e.g. constant or isostatic.  An extra

grammar rule will be required to create the desired forceSurface.  Major special cases that

can be treated this way include uplift (centered at a point or on a line), slumping

(likewise), lateral compression, and lateral extension.

To minimize E, one may use viscoelastic stress tensor dynamics.  To sample from it will

require other techniques.

A similar discussion applies to the “relaxation” rule which however will be augmented

with velocity-dependent viscoelastic stress tensor terms resulting in dynamics for

relaxation of stress.  Deformation, relaxation, sedimentation and erosion together allow

one to define a nontrivial scenario and test an inference algorithm.

5.2 Sedimentation

A sedimentation grammar rule can take the form:

layeredStructure({Ll | l  {1 .. lmax}}),  flowHistory( z),

source(matrixComposition  MC, embedComposition EC)

 layeredStructure({Ll | l  {0 .. lmax}}),

L0 =layer(matrixComposition  MC, embedComposition EC, {Vi}),

{Vi =volement({Xk}, embeddedDist({patch(y, )})) }

In greater detail: construct a new thin volume L0 on top of a triangulated surface S by

constructing the dual tessellation, raising its height by z/2, and adding another copy of

triangulated surface S, raised everywhere by z.  Connect vertices locally for a

volumetric triangulation of a new layer of thickness z.  Supply a patchy distribution of

embedded material (a superposition of spatial Gaussians) and restrict it to each volume

element in turn.

6. Discussion

A more general and convenient graphical notation for generative models has been

introduced.  Its expressiveness is supported by examples described in previous work in

biology, geology, hierarchical clustering models, and variable-structure systems.  It
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enables us to look forward to greatly simplified invention of new algorithms involving

hierarchical models and variable-structure systems.

Such graph representations of generative models, and implicitly, of statistical inference

algorithm families for their inversion, have several potential advantages. They may serve

as a substrate for automated creation of inference algorithms.  This can happen by

converting equation-labeled graph structures into mathematical pseudocode and

compiling that into conventional programming languages.  Or, graphs can be manipulated

automatically by graph composition and editing operations.  Indeed, graphs can be

generated by statistical models in the form of graph grammars.  For example, hierarchical

graphs of varying degrees of regularity can be generated by the grammar and recursion

relations below:

grammar graph-recursion (start  {node(i), G-connection(a, i, j)} ) {

start  node’((0)), G-connection(1, (0), (0))

N=node’(i)  N=node(i), { node’((i, in)) | A((i, in))=1   ^  in < imax }

under E = µ (i, in) A((i, in))

G-connection(a, i, j), N=node((i, in)), M=node((j, jn))

 { G-connection(b, (i, in), (j, jn)) | 
Gin jn

ab

=1 }, N, M

}

In this grammar, boldface indices i etc. correspond to index tuples (i1, i2, … in-1) and (i, in)

denotes the tuple extension to (i1, i2, … in).

In this way, 
Gin jn

ab

 acts as a reusable wiring pattern or cable or, when i = j, as a reusable

subgraph.

The corresponding graph recursion relationship is [Mjolsness Sharp and Alpert 1989]

G i1 ...iL( ) j1 ... jL( )
a0 = Gil j l

al 1al[ ]
A

i1 ...iL( )
A

j1 ... jL( )

l=1

L

al{ }

This form generalizes all previous ones mentioned above.

Acknowledgements.  The author benefited from discussions with Michael Turmon and

Max Welling, as well as Barbara Wold, Christopher Hart, Padhraic Smyth, Ashley

Davies, Kenneth Hurst, and the students of ICS 280F Winter 2004.  The work was

supported by the Physical Sciences Division of the NASA's Office of Biological and

Physical Research (OBPR), by the NASA Intelligent Systems program, by the National

Institute for General Medical Sciences, BISTI program, and by the School of Information



Labeled Graph Notations        March 2004 Eric Mjolsness

and Computer Science at the University of California, Irvine.



Labeled Graph Notations        March 2004 Eric Mjolsness

References

B. E. Ady, “Towards a Theory of Spatio-Chronological Relations for Geoscience”,

Ontario Geological Survey Open File Report 5854, 1993.

P. Anandan, Stanley Letovsky, and Eric Mjolsness. “Connectionist Variable-Binding by
Optimization”, August 1989 Cognitive Science conference proceedings.

C. M. Bishop, Neural Networks for Pattern Recognition. New York: Oxford, 1995.

David M. Blei, Andrew Y. Ng, Michael I. Jordan, “Latent Dirichlet Allocation”. Journal
of Machine Learning Research 3 (2003) 993-1022 .

David M. Blei. Thomas L. Griffiths, Michael I. Jordan Joshua B. Tenenbaum,

Hierarchical Topic Models and the Nested Chinese Restaurant Process.  Advances in

Neural Information Processing 2003.

W. L. Buntine. Operations for Learning with Graphical Models, Journal of Artificial

Intelligence Research 1994.

Brendan Frey, “Extending Factor Graphs so as to Unify Directed and Undirected
Graphical Models”, Proceedings of the Nineteenth Conference on Uncertainty in
Artificial Intelligence, Morgan Kaufmann, 2003.

Nir Friedman, Lise Getoor, Daphne Koller, Avi Pfeffer, Learning Probabilistic Relational
Models. IJCAI, 1999.

Marti A. Hearst. “Context and structure in automated full-text information access”.
University of California at Berkeley dissertation. Computer Science Division Technical
Report, 1994.

G. E. Hinton and T. J. Sejnowski. Optimal Perceptual Inference. In Proc. of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 448–453.
Washington, DC. 1983.

Thomas Hofmann, “Probabilistic Latent Semantic Analysis”.  Proc. of Uncertainty in
Artificial Intelligence, UAI 1999.

Thomas Hofmann. Probabilistic latent semantic indexing. Proceedings of the Twenty-
Second Annual International SIGIR Conference on Research and Development in
Information Retrieval, 1999.

Stuart Geman and Donald Geman, “Stochastic relaxation, Gibbs distribution and the
Bayesian restoration of images”. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6(6):721—741, 1984.

L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning Probabilistic Relational

Models, in Relational Data Mining, S. Dzeroski and N. Lavrac, Eds., Springer, 2001.



Labeled Graph Notations        March 2004 Eric Mjolsness

Steven Gold, Anand Rangarajan, and Eric Mjolsness. “Learning with Preknowledge:

Clustering with Point and Graph Matching Distance Measures”, Advances in Neural

Information Processing Systems 7, editors Tesauro, Touretzky, Leen, MIT Press, 1995.

E. Grinspun, A. Hirani, M. Desbrun, P. Schroder, “Discrete Shells”, Eurographics/

SIGGRAPH Symposium on Computer Animation, 2003.

S. Imoto, T. Goto, S. Miyano. Estimation of genetic networks and functional structures
between genes by using Bayesian networks and nonparametric regression. Pacific
Symposium on Biocomputing, 7: 175–186, 2002. http://psb.stanford.edu/psb-online/

M. I. Jordan. Graphical models. In press: Statistical Science (Special Issue on Bayesian

Statistics), 2003.  http://www.cs.berkeley.edu/~jordan/publications.html, 2003.

M. Kellis, N. Patterson, M. Endrizzi, Birren B, E. S. Lander. Sequencing and comparison
of yeast species to identify genes and regulatory elements.  Nature. 2003 May
15;423(6937):241-54 .

R. Kinderman and J.L. Snell, Markov Random Fields and Their Applications.
Providence, RI: Amer. Math. Soc., 1980.

F. R. Kschischang, B. J. Frey, and H.-A. Loelinger, “Factor graphs and the sum-product
algorithm”.  IEEE Transactions on Information Theory, Special Issue on Codes on
Graphs and Iterative Algorithms, 47(2):498-519.

L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd edition.  Butterworth-
Heinemann 1986.

Eric Mjolsness, David H. Sharp, and Bradley K. Alpert, “Scaling, Machine Learning, and
Genetic Neural Nets”. Advances in Applied Mathematics, June 1989.

Eric Mjolsness, Gene Gindi, and P. Anandan. “Optimization in Model Matching and

Perceptual Organization”, Neural Computation, vol 1 no 2, Summer 1989.

Eric Mjolsness, David H. Sharp, and John Reinitz, “A Connectionist Model of
Development”, Journal of Theoretical Biology, vol 152 no 4, pp 429-454, 1991.

Eric Mjolsness, "Symbolic Neural Networks Derived from Stochastic Grammar Domain

Models", in Connectionist Symbolic Integration, eds. R. Sun and F. Alexandre, Lawrence

Erlbaum Associates, 1997.

Q. Morris, B. Frey, C. Paige, “Denoising and untangling graphs using degree priors”,

Advances in Neural Information Processing Systems 2003.

A.M. Moses, D.Y. Chiang, and M.B. Eisen, “Phylogenetic Motif Detection by
Expectation-Maximization on Evolutionary Mixtures”. Pacific Symposium on
Biocomputing 9:324-335 2004.



Labeled Graph Notations        March 2004 Eric Mjolsness

M. E. J. Newman “The structure and function of complex networks”. SIAM Review 45,
167-256 (2003).

Judea Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference.  Morgan Kaufmann Publishers, 1988.

M. Sakamoto, “Mathematical Formulations of Geologic Mapping Process – Algorithms

for an Automatic System”.  Journal of Geosciences, Osaka City University, vol 37, p.

243-292, March 1994.

Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N. Module

networks: Identifying regulatory modules and their condition-specific regulators from

gene expression data. Nat Genet. 2003 Jun; 34(2):166-76.

E. Segal, R. Yelensky and D. Koller.  Genome-wide discovery of transcriptional modules
from DNA sequence and gene expression.. Bioinformatics, Vol. 19 Suppl. 1, pages
i273–i282 , 2003.

E. Segal,  J. Stuart, D. Koller, and S. Kim, A Gene Co-Expression Network for Global

Discovery of Conserved Genetics Modules,.  Science, 2003 October, 302(5643): 249-55.

Bruce E. Shapiro, Andre Levchenko, Elliot M. Meyerowitz, Barbara J. Wold , and Eric

D. Mjolsness Cellerator: extending a computer algebra system to include biochemical
arrows for signal transduction simulations.  Bioinformatics vol. 19 no. 5, pages 677–678,
2003.

Simmons, Reid G., Representing and Reasoning about Change in Geological
Interpretation.  Masters thesis, Massachusetts Institute of Technology, December 1983.

Siepel, A. and Haussler, D., Combining Phylogenetic and Hidden Markov Models in

Biosequence Analysis. (2003). In Proceedings of the 7th Annual International

Conference on Research in Computational Molecular Biology (RECOMB 2003), pp.

277-286.

Padhraic Smyth, David Heckerman, and Michael I. Jordan, “Probabilistic Independeince
Networks for Hidden Markov Probability Models”, Neural Computation vol. 9 no. 2,
1997.

D. Terzopoulos, J. Platt, A. Barr, and K. Fleisher, “Elastically deformable models”.  In

Proceedings of SIGGRAPH, pp. 205-214, 1987.

Etay Ziv, Robin Koytcheff, Chris Wiggins “Novel systematic discovery of statistically
significant network features” Preprint,  Arxiv Condensed Matter, abstract cond-
mat/0306610.


