
A SOFTWARE ARCHITECTURE FOR DEVELOPMENTAL

MODELING IN PLANTS: THE COMPUTABLE PLANT PROJECT

Victoria Gor
1
, Bruce E. Shapiro

1
, Henrik Jönsson

2
, Marcus Heisler

3
, G.

Venugopola Reddy
3
, Elliot M. Meyerowitz

3
 and Eric Mjolsness

4*

1
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA;

1
email:victoria.gor@jpl.nasa.gov, bshapiro@caltech.edu;

2
Department of Theoretical Physics, Complex Systems Division, Lund University, Lund,

Sweden;
2
email: henrik@thep.lu.se;

3
Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA;

3
email

mheisler, venu, or meyerow@caltech.edu;
4
Institute for Genomics and Bioinformatics;

4
Bren School of Information and Computer

Sciences, University of California, Irvine CA 92607, USA;
4
email:emj@uci.edu;

*Corresponding author

Abstract: We present the software architecture of the Computable Plant Project, a

multidisciplinary computationally based approach to the study of plant

development. Arabidopsis thaliana is used as a model organism, and shoot

apical meristem (SAM) development as a model process. SAMs are the plant

tissues where regulated cell division and differentiation lead to plant parts such

as flowers and leaves. We are using green fluorescent proteins to mark specific

cell types and acquire time series of three-dimensional images via laser

scanning confocal microscopy. To support this we have developed an

interoperable architecture for experiment design that involves automated code

generation, computational modeling, and image analysis. Automated image

analysis, model fitting, and code generation allow us to explore alternative

hypothesis in silico and guide in vivo experimental design. These predictions

are tested using standard techniques such as inducible mutants and altered

hormone gradients. The present paper focuses on the automated code

generation architecture.

Keywords: Arabidopsis, Cellerator, correspondence, Delaunay triangulation, meristem,

SAM, SBML, softassign, Voronoi diagram

1. Introduction

Scientists who probe the functionality of dynamic developmental systems

often express their models mathematically; to make precise system-specific

predictions these models are typically encoded with high-level computer

languages and standard support libraries and solved numerically. However,

high-level languages and libraries typically trade efficiency for generality,

and thus may not be appropriate for large hybrid dynamical systems. They

also typically lack state-of-the-art technologies in such computationally

intensive areas as model optimization and fitting. Finally, custom designed

systems are rarely interoperable, making it difficult for researchers to

disseminate models.

We have developed an architecture aimed at production-scale model

inference. We generate simulation code from models specified in biological

and/or mathematical language. Other computational tools are used to analyze

expression imagery and other data sources, and the simulator combined with

nonlinear optimization is used to fit the models to the experimental

observations. Key elements include: a mathematical framework combining

transcriptional regulation, signal transduction, and dynamical mechanical

models; a model generation package (Cellerator) based on a computer

algebra representation; extensions to SBML (Systems Biology Modeling

Language), an exchangeable model representation format, to include

dynamic objects and relationships; a C
++

code generator to translate SBML

into highly efficient simulation modules; a simulation engine including

standard numerical solvers and plot capability; a nonlinear optimizer; and ad

hoc image processing and data mining tools. This architecture is capable of

simulating processes such as intercellular signaling, cell cycling, cell birth

and death, dynamic cellular geometry, changing topology of neighborhood

relationships, and the interactions of mechanical stresses.

Figure 1. Cellerator screen shot. Signal transduction networks are built in the Mathematica

notebook on the left by clicking on the palette on right. The interpret command converts the

reactions to differential equations. Array indices are used to indicate different cells.

2. Methods and Algorithms

Models are input in Systems Biology Markup Language (SBML), an

XML-based language for exchanging biological models. SBML is currently

supported by more than seventy five different software packages used by

biological modelers and has become the de facto standard for exchanging

models among the systems biology community (Hucka et al 2003; Finney

and Hucka 2003). The modeling interface is provided by Cellerator (Figure

1; Shapiro et al 2003), which allows users to specify models in an arrow-

based biochemical notation, and translates them automatically to differential

equations using a variety of different schemes. Cellerator produces extended

SBML Level 2 code utilizing MathSBML (Shapiro et al 2004). SBML

encoded models are parsed into internal data structures with a libSBML-

based parser (Finney et al, 2005).

Several extensions to SBML have been proposed and will likely be

adopted in SBML Level 3 (Finney et al 2004). In particular, SBML Level 2

does not support spatially-dependent models where each biological entity is

individually defined and enumerated, and further, does not provide any easy

way to describe dynamic geometry and variable size models resulting from

cell birth, death, and differentiation. Therefore we have adopted (Finney et al

2003) to describe dynamic topology and connectivity in terms of arrays, and

have extended Cellerator, MathSBML and libSBML accordingly.

The automatic code generator is central to the architecture. It consists of

an inferencer, a rule segmenter and optimizer, and application code writer

modules (Figure 2). It queries the parser for SBML structures and produces

efficient C++ application code. The resulting C++ code is then compiled

into object code optimized for the desired application. The first two modules

of the automatic code generator – the inferencer and rule segmenter – are

pre-processors. They are called once for each SBML model, independent of

the application software to be generated. The inferencer receives parsed

SBML structures from the parser and infers element attributes given the

element name. This reflects the inverse relationships between SBML

elements and their attributes. For example, the extended SBML has a

parameter attribute foreach that indicates the compartment; the

inferencer creates a list of inferred elements, such as the list of parameters in

each compartment.

Figure 2. System Architecture.

The rule segmenter and optimizer translates SBML rules (which represent

mathematical equations using a subset of MATHML) into C++ and performs

all necessary renaming of SBML model objects into C variables. Portions of

SBML formulas that have no immediate C++ representation, such as the

MATHML function sum (which sums a formula over an index) are broken

up into sub-rules with intermediate variables; these are later translated into

loops or other appropriate control and data structures. Future enhancements

will include formula optimization. Identical portions of the formula will be

separated into intermediate rules that are only executed once; scalar formulas

inside loops will be pre-evaluated outside of the loop. The renaming function

completes the work of this module. For example, individual array elements

are referenced by index with an SBML model utilizing the MATHML

selector operator; this is replaced by the appropriate C array reference such

as name[j].

The application code writer takes as input the C++ model representation

generated by the rule segmenter and inferencer, along with an application

request, chosen from a menu of available applications. The output is

application source code that can be compiled and linked with the chosen

application. The application code writer consists of a three-level library. The

top level contains all of the application-dependent code. This application

level software is high-level code that is updated as new applications are

added. Applications that exist or are being developed include various

forward developmental simulators including genetic regulatory network

(GRN) temporal synthesis; 4
th

 and 5
th

 order Runge-Kutta differential

equation solvers; and optimizers such as Lam-Delosme simulated annealing.

In addition, this top level includes overloaded routines that originate at the

second level thereby allowing the top level to access this lower level

functionality. The second level, SBML level software, contains all processes

that are not application dependent. This library has entry points for accessing

all SBML attributes and elements. The third, and lowest level, is the utility

library, which contains common operations such as vector algebra and

memory maintenance.

Figure 3. Vertical SAM cross-sections at two different times showing nuclear-localized GFP

expressed from a ubiquitous promoter. A flower primordium is emerging at the upper left.

3. Results and Discussion

The SAM (Figure 3) is the plant tissue where regulated cell division and

differentiation lead to plant parts such as flowers and leaves. We are using
green fluorescent proteins to mark specific cell types and acquire time series
of three-dimensional images via laser scanning confocal microscopy. The
three-dimensional reconstruction starts from “stacks” of horizontal sections
(Figure 4). Such sections are combined to produce four-dimensional
visualizations (3 spatial dimensions plus time) using various programs we
have developed.

In any 3D image stack there is a correspondence problem: which cells in
one image correspond to which cells in the adjacent cross-section? Cell
membranes that are transverse to the image are clearly visible, but it is
possible to miss nearly horizontal walls that lie between sections and must be
inferred. With a time-course of 3D stacks the formation of floral meristems,
cell growth, displacement, and division all complicate the problem. Nuclear
locations are determined using a 3D gradient descent algorithm based on
image intensity.

Figure 4. Horizontal SAM cross-sections, showing pPIN1:PIN1GFP (expressed in the cell

membranes) in combination with pFIL:dsREDN7 (nuclear, seen here primarily in the

primordia) at two time points 33 hours apart; also illustrating the budding of new floral

meristems (A: initial view, B: final view).

Automated extraction of cell walls (or cell membranes) is more
complicated, as we have discussed. It is possible to estimate their locations
using the Voronoi diagram (also called a Dirichlet tessellation) of the nuclear
centers; nearest-neighbor links are then given by the corresponding Delaunay
triangulation (figure 5). The Voronoi “cell” defined by any nuclear center p
is the polygon that contains all of the points that are closer to p then to any
other nuclear center q; the Voronoi diagram is the collection of all such
Voronoi cells. The Delaunay triangulation is the dual of the Voronoi
diagram, namely the collection of lines drawn from each nucleus to all of its
nearest neighbors. The walls of the Voronoi diagram are the perpendicular
bisectors of the Dalaunay triangulation. This principle that cell walls are
equidistant from nuclei is beautifully reflected by the watershed transform
(Vincent and Soille, 1991), an image segmentation algorithm based on

mathematical morphology (Sternberg, 1986). The watershed transform is
used in combination with Voronoi diagrams for detecting cell walls in
images. When the walls are visible, they are detected form the gradient of
image data; and when the walls are not visible, they are inferred by the
Voronoi diagram (figure 6). Voronoi diagrams and Delaunay triangulations
are computed with Qhull (open source software, www.qhull.org).

Figure 5. Meristem cross-section stained to show cell membranes and nuclei, superimposed

with manually tagged cell-centers and the corresponding Voronoi diagram (left) and Delaunay

Triangulation (right). A small number of cell centers were left unmarked; the corresponding

Voronoi cells were added to the adjacent cells.

Figure 6. Raw image (left), segmentation of image into cells (center), and cell walls
determined with a watershed algorithm (right).

Determining which cells in one 3D image correspond to which cells in the
next image is a case of the classic correspondence problem (Post, 1947);
many solutions to both point-matching and graph-matching correspondence
problems have been published to this extremely difficult problem. Recent
work is based on joint estimation of correspondence and spatial mappings via
optimization of an energy function (Gold et al 1996). The general framework

uses the method of deterministic annealing in conjunction with the softassign
algorithm and clocked objectives to produce an optimizing network and a
corresponding energy function (Gold et al 1996; Koslowsky and Yuille,
1994; Mjolsness and Miranker, 1998). The specific energy function used for
cell tracking determines cell correspondence, while estimating the mapping
functions, such as affine and thin-plate spline transformations (Chui and
Rangarajan, 2000) and cell growth and division history.

Table 1. A selection of typical Cellerator arrows.

Arrow Description

p1A1 + p2A2 + q1B1 + q2B2 +

p1A1 + p2A2 + q1B1 + q2B2 +

Law of mass action, one-way and reversible;

optional stoichiometry

S P

E Enzymatic mass action, same as

S + E SE P + E

S P
F

E
Reversible enzymatic mass action

S + E SE P + E and

P + F PF S + F

S P
F

E
Reversible enzymatic mass action

S + E SE PE P + E

P + F PF SF S + F

S P, S P
E

, S P
F

E Michaelis-Menten Kinetics;

one-way and reversible

S P

E Conversion of A to B, facilitated by E,

via Hill function

A B

Regulation of B (A unaffected) by Hill function,

sigmoid, NHCA, or S-System

{S1,S2 ,...} {P1,P2 ,...}
{{A1 ,A2 ,...},{I1 ,I2 ,...}}

E Generalized MWC with multiple substrates,

products, activators, and inhibitors

{S1,S2 ,...} {P1,P2 ,...}
{{A1 ,A2 ,...},{I1 ,I2 ,...},{{Q1 ,Q2 ,...},{R1 ,R2 ,...}

E

Generalized MWC with competitive inhibition

We are using this simulation environment to extend and enhance our

previously reported developmental simulations of the shoot apical meristem

(SAM) (Jönsson et al 2003, 2005; Mjolsness et al 2004). Our working

hypothesis is that SAM development can be described by the differential

expression of key regulatory proteins such as CLV1 (a receptor kinase),

CLV3 (thought to be the CLV1 ligand),WUS (a transcription factor

negatively regulated by CLV1) and a layer-1 specific protein (L1SP). For

example, activation of CLV1 might be described by the reactions

CLV1+CLV 3 CLV1*

CLV 3

The dependence of CLV1 and CLV3 on WUS, perhaps through a

hypothetical diffusible intermediary (CLV3I1), has been inferred from

experiments. A second diffusive signal is postulated to originate from L1SP

and diffuses into the rest of the meristem via messenger CLV3I2. CLV3 is

turned on only if the sum CLV3I1+CLV3I2 exceeds threshold.

WUSI WUS

WUS CLV 3I1

L1SP CLV 3I2

CLV 3I1+CLV 3I2 CLV 3

where WUSI is a hypothetical WUS inducer that originates either in or below

the corpus. The expression A B is the Cellerator notation for genetic

regulation (see Table 1). Inhibitory feedback is provided by a proposed entity

Z that sequesters activated CLV1, and when activated, sequesters or removes

WUSI:

Z +CLV1* Z1

Z1+WUSI Z2

Additionally, an unknown diffusible messenger Y creates a surface specific

expression pattern for L1SP, which is itself inhibited by STEM, a

hypothetical gene expressed only in the lowest meristem layer:

Y L1SP

STEM Y

Here the first reaction is activating, and the second is inhibitory; both

genetic regulation and inhibition are modeled by Hill functions with different

parameters. To maintain homeostasis we include the reactions

CLV 3,CLV 3I1,WUS

and describe diffusion using a simple compartmental approach. A Cellerator

model for a single cell that is very similar to this one is illustrated in figure 1.

A two-dimensional 133-cell Cellerator implementation has 5422 reactions

and 1596 differential equations.

The computable plant architecture provides a systematic, highly

automated technique for predictive model generation. The approach

combines computer-algebraic representations of biological and mathematical

models to produce efficient and problem-specific simulation code. This code

can be immediately linked with a menu of external solvers and quantitative

predictions generated from the resulting simulations. This architecture is

scalable and directly applicable to large-scale developmental systems such as

the SAM. The use of extended SBML ensures that models will be

interoperable, reusable, and readable by others. Novel to this approach are

connections to external solvers by way of automatic code generation and the

ability to interpret and solve any biological developmental or cellular process

via automatic generation of mathematical and computational tools. Thus no

labor is expended writing and debugging problem-specific code, allowing

researchers to spend more time on the wet bench. Further details can be

found at the project web-site, http://www.computableplant.org.

Acknowledgments

This work was supported by the United States National Science

Foundation (NSF) under Frontiers in Integrative Biological Research (FIBR)

grant number EF-0330786. HJ was supported, in part, by the Knut and Alice

Wallenberg Foundation through Swegene. Portions of the research described

in this paper were performed at the California Institute of Technology.

References
Chui, H. and Rangarajan, A. 2000. A new algorithm for non-rigid point matching. Proc. IEEE

Conf. on Computer Vision and Pattern Recognition, 2:44-51.

Finney, A. and Hucka, M. (2003) Systems Biology Markup Language: Level 2 and Beyond.

Biochem. Soc. Trans, 31: 1472-1473.

Finney, A., Gor, V., Bornstein, B., and Mjolsness, E. 2003. Systems Biology Markup

Language (SBML) Level 3 Proposal: Array Features, http://www.sbml.org/wiki/arrays.

Finney, A., Hucka. M., Bornstein, B.J., Keating, S., Shapiro, B.E., Matthews, J., Kovitz, B.,

Funahashi, A., Schilstra, M., Doyle, J.C., and Kitano, H. 2004. Evolving a Lingua

Franca and Accompanying Software Infrastructure for Computational Systems Biology:

The Systems Biology Markup Language (SBML) Project. IEE Systems Biology. 1(1):41-

53.
Finney, A., Hucka, M., Bornstein, B., Keating, S., Shapiro, B.E., Matthews,J., Kovitz, B.,

Schilstra, M., Funahashi, A., Doyle, J., and Kitano, H. 2005. Software Infrastructure for
Effective Communication and Reuse of Computational Models. In System modeling in
cellular biology: From concepts to nuts and bolts, ed. Szallasi Zoltan, Vipul Periwal,
Joerg Stelling, in press.

Gold, S., Lu, C-P., Rangarajan, A., Pappu, S., and Mjolsness, E. 1995. New algorithms for 2D
and 3D point matching: pose estimation and correspondence. Adv. In Neural Information
Processing Systems, 7:957-964.

Gold, S. and Rangarajan, A. 1996. Softmax to Softassign: Neural network algorithms for
combinatorial optimization. J. Artificial Neural Networks 2(4):384-399.

Koslowsky, J.J and Yuille, A.L. 1994. The invisible hand algorithm: solving the assignment
problem with statistics physics. Neural Networks 7:477-490.

Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin, A.P.,

Bornstein, B.J., Bray, D., Cornish-Bowden, A., Cuellar, A.A., Dronov, S., Gilles, E.D.,

Ginkel, M., Gor, V., Goryanin, II., Hedley, W.J., Hodgman, T.C., Hofmeyr, J.H., Hunter,

P.J., Juty, N.S., Kasberger, J.L., Kremling, A., Kummer, U., Le Novere, N., Loew, L.M.,

Lucio, D., Mendes, P., Mjolsness, E.D., Nakayama, Y., Nelson, M.R., Nielsen, P.F.,

Sakurada, T., Schaff, J.C., Shapiro, B.E., Shimizu, S., Spence, H.D., Stelling, J.,

Takahashi, K., Tomita, M., Wagner, J., and Wang, J. 2003. The systems biology markup

language (SBML): a medium for representation and exchange of biochemical network

models. Bioinformatics 19:513-523

Jönsson, H., Shapiro, B.E., Meyerowitz, E.M., and Mjolsness E. 2003. Signaling in

Multicellular Models of Plant Development, in On Growth, Form, and Computers, ed.

Bentley P and Kumar S, Academic Press, pp.156-161.

Jönsson H, Heisler, M., Reddy, G.V., Agrawal, V., Gor, V., Shapiro, B.E., Mjolsness, E., and

Meyerowitz, E.M. 2005. Modeling the organization of the WUSCHEL expression

domain in the shoot apical meristem, Bioinformatics, in press.

Mjolsness, E., and Miranker, 2. 1998. A Lagrangian Formulation of Neural Networks II:

Clocked Objective Functions and Applications. Neural, Parallel, and Scientific

Computations. 6(3): 337-372.

Mjolsness, E., Jönnson, H., Shapiro, B.E., and Meyerowitz, E.M. 2004. Modeling plant

development with gene regulation networks including signaling and cell division, in

Bioinformatics of Genome Regulation and Structure, ed. N. A. Kolchanov, Kluwer

Publications, pp. 311-318.

Post, E., L., A variant of a recursively unsolvable problem, 1946. Bull. Am. Math. Soc.,

52:264-268.

Shapiro, B.E., Hucka, M., Finney, A., and Doyle, J. 2004. MathSBML: A package for

manipulating SBML-based biological models. Bioinformatics. 20(16): 2829-2831.

Shapiro, B.E., Levchenko, A., Wold, B.J., Meyerowitz, E.M., and Mjolsness, E.D. 2003.

Cellerator: Extending a computer algebra system to include biochemical arrows for

signal transduction modeling. Bioinformatics 19: 677-678.

Sternberg, S.R. 1986. Grayscale Morphology, Computer Vision ,Graphics, Image Processing.

35(3): 333-355.

Vincent, L. and Soille, P. 1991. Watersheds in digital spaces: an efficient algorithm based on

immersion simulations. IEEE Trans. Patt. Anal. Mach. Intel. 13(6): 583-591.

	Text2: Preprint from Bioinformatics of Genome Regulation and Structure, ed. N. A. Kolchanov, Kluwer Publications. (2005, in press).

