
Clustering Analysis of Microarray Gene Expression
Data by Splitting Algorithm

Ruye Wang
Engineering Department
Harvey Mudd College
Claremont, CA 91711

Jet Propulsion Laboratory
M/S 126-347

4800 Oak Grove Dr.
Pasadena, CA 91109

Lucas Scharenbroich
Jet Propulsion Laboratory

M/S 126-347
4800 Oak Grove Dr.
Pasadena, CA 91109

Christopher Hart
California Institute of Technology

M/C 156-29
Pasadena, CA 91125

Barbara Wold
California Institute of Technology

M/C 156-29
Pasadena, CA 91125

Eric Mjolsness
University of California, Irvine

Institute for Genomics and Bioinformatics
School of Information & Computer Science

Irvine, CA 92697

Abstract

Preprint submitted to Elsevier Science 29 April 2003



A clustering method based on recursive bisection is introduced for analyzing microarray
gene expression data. Either or both dimensions for the genes and the samples of a given
microarray dataset can be classi£ed in an unsupervised fashion. Alternatively, if certain
prior knowledge of the genes or samples is available, a supervised version of the clustering
analysis can also be carried out. Either approach may be used to generate a partial or com-
plete binary hierarchy, the dendrogram, showing the underlying structure of the dataset.
Compared to other existing clustering methods used for microarray data analysis (such as
the hierarchical, K-means, and self-organizing map methods), the method presented here
has the advantage of much improved computational ef£ciency while retaining effective
separation of data clusters under a distance metric, a straightforward parallel implementa-
tion, and useful extraction and presentation of biological information. Clustering results of
both synthesized and experimental microarray data are presented to demonstrate the per-
formance of the algorithm.

1 Introduction

Various clustering analysis methods (both supervised and unsupervised), well known
in the £elds of statistical pattern recognition and arti£cial neural networks, have
been applied to the analysis of the microarray gene expression data. The typical
unsupervised methods include bottom-up hierarchical clustering Eisen et al. (1998)
and K-means clustering Tavazoie et al. (1999). All of these methods treat the genes
or the samples in the microarray dataset as points (vectors) in a high dimensional
feature space and classify them into clusters according to their locations and rele-
vant distances (similarity) in that space.

In particular, the hierarchical clustering method, which is widely used in microar-
ray data analysis, is a bottom-up process which keeps merging pairs of data points
or groups of points closest to each other in the feature space until eventually all
data points are merged into a single group. In addition, a tree structure, the dendro-
gram, can be obtained from the clustering process to present the hierarchical clas-
si£cation graphically. While the hierarchy is generated automatically, the groups of
genes need to be interpreted by a biologist to produce a biologically relevant clus-
tering. From the computational point of view, the closest-£rst merging operation is
inherently a sequential process.

Here, a top-down splitting approach for unsupervised clustering of the microarray
data is presented. As with other clustering methods used for this purpose, the top-
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down partitioning approach has also been known in other £elds such as statistical
pattern recognition, and it has been used for supervised clustering of microarray
data (Brown et al. (2000), Xiong et al. (2000), Zhang et al. (2001), etc.). However,
unlike these supervised approaches, which all make use of some prior knowledge
of the genes or the samples assumed to be available, here it is assumed that other
than the gene expression data in the microarray dataset, there is no additional infor-
mation available about either the genes or the samples. The purpose of the analysis
is simply to £nd the underlying structure of the dataset in terms of the similarities
of the genes and/or the samples. In addition, similar to the hierarchical clustering
approach, the top-down split algorithm can also generate a binary dendrogram tree
to visually present the clustering results. This can be done for both the genes and
the samples. Compared to other existing clustering methods, the top-down split-
ting algorithm possesses certain advantages including much improved ef£ciency.
Moreover, computationally, the top-down splitting algorithm lends itself naturally
to parallelization. The consecutive splitting operations can be carried out in par-
allel by different processing units of a multiprocessor computer system, thereby
speeding up the computational time tremendously.

Principal component analysis (PCA) has been widely used in clustering analysis
(Alter et al. (2000), S. Raychaudhuri (2000)). A small number of eigen-features can
be obtained by the PCA method to represent most of the variability in the dataset,
and thereby tremendously reduce the dimensionality of the feature space. For this
reason, PCA is also widely used in the analysis of large-scale microarray gene data.
A small number of eigen-genes can be obtained to represent the large number of
genes, or, on the other hand, the genes can be represented by a space spanned by a
small number of eigen-features. For example, PCA is used in Ben-Hur and Guyon
(2003) to detect stability of clustering results.

However, in classi£cation (including clustering), a feature selection method (PCA
or others) is more effective if it is adaptive to a small number (2 or 3) of classes
instead of all classes. The features selected are most relevant to separating the few,
most dissimilar classes, making the separation of less distinct classes easier at a
later stage. This idea of adaptive PCA feature selection is implemented in the split-
ting algorithm presented here.

In the following, the basic methods of the top-down splitting algorithm will be
discussed in detail in section 2, various advantages of the algorithm will be sum-
marized in section 3, and the performance of the algorithm will be compared with
that of other algorithms, in particular the bottom up hierarchical clustering method.
Finally, in section 4, the clustering results generated by applying the top-down split
algorithm to two experimental microarray data sets will be presented.
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2 The top-down split clustering algorithm

It is assumed in the following that the expression levels of K genes from L sam-
ples (different experimental conditions, tissue samples, time courses, etc.) are ob-
tained from the microarray data. The clustering analysis of this 2D data array can
be carried out in either or both of the two dimensions. We can treat the genes as
K data points (vectors) in an N -dimensional feature space Xk = [x1, · · · , xL]T

(k = 1, · · · , L), or the samples as N data points in an L-dimensional feature space
Yn = [y1, · · · , yN ]T (n = 1, · · · , N ). In either case, the data points are partitioned
recursively to form a set of clusters containing similar genes or similar samples, and
a binary hierarchical structure is generated along the way to reveal the relationship
(similarity and difference) between the clusters. This process can be carried out all
the way until each cluster contains one data point and a complete dendrogram tree
of the points is obtained. The clustering algorithm discussed below assumes each
data point is a gene, although the discussion is equally valid for the clustering of
the samples.

2.1 Top-down recursive bisection

Each bisection of a group of K data points is carried out in the following steps:

(1) Obtain a subset of features
The dimensions of a microarray are usually high (minimally, thousands of

genes from tens of samples) for a clustering application. To reduce the dimen-
sionality of the feature space for computational ef£ciency, an adaptive feature
selection/extraction process is needed to obtain a small subset of features most
relevant to a group of data points so that they can be optimally separated into
two subgroups. To do so, we £rst obtain and sort the variances of all N fea-
tures:

σ1 ≥ σ2 ≥ · · · ≥ σN

We then choose the M (M < N ) features corresponding to the M largest
variances to preserve most of the energy (representing information of sepa-
rability) contained in the dataset. Speci£cally, M is so chosen that the ratio∑M

i=1 σi/
∑N

i=1 σi representing the percentage of energy preserved is greater
than some speci£ed threshold (e.g., 90%).

(2) Project data to a 1D space
The partitioning is to be carried out in only one particular dimension cor-

responding to a certain feature, which could be either the best feature (with
maximum variance σ) among the M original features chosen above, or a lin-
ear combination of these M features. Appending principal component analy-
sis (PCA) method, we £nd the eigenvector corresponding to the largest eigen-
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value of the covariance matrix of the data in the M-dimensional space:

Σx =
1

K

K∑

i=1

(Xi − µx)(Xi − µx)
T

where µx is the mean of all points:

µx =
1

K

K∑

i=1

Xi

All K data points in the N -dimensional space are projected onto this line,
which contains the maximal possible information in a single dimension along
which the data points are to be separated into two groups. This step can be
considered as a feature extraction effort following the feature selection in the
previous step.

(3) Partition all data points into two subgroups
Sort all K data points projected on the direction (from smallest or most neg-

ative, to largest), and partition them into two parts. Among all K − 1 possible
ways for the partitioning, we choose the one corresponding to the maximal
between-class distance de£ned as

p1(µ1 − µ0)
2 + p2(µ2 − µ0)

2 = p1p2(µ1 − µ2)
2

where µi, Ki and pi
!
= Ki/(K1 + K2) are the mean, number of points, and

proportion of each of the two groups (i = 1, 2), and µ0 = p1µ1 + p2µ2 is the
mean of all K = K1 + K2 data points.

A binary tree structure (in either depth or breadth-£rst order) is generated by carry-
ing the above steps for the bisection recursively at each node of the tree until each
leaf node contains only one data point.

2.2 Supervised version

In some situations, certain additional information about the genes or the samples
may be available which can be utilized to better classify the data. For example,
the tissue types (e.g., cancer vs. normal) of the samples in the microarray may
be known. In this case, the above steps can be modi£ed to take advantage of the
additional information. First, an alternative criterion for feature selection can be
used:

J =
sb

sw
=

∑
k pk(mk − mo)2

∑
k pkσk
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where sw and sb are, respectively, the within-class and between-class scatter mea-
sures de£ned as

sw =
∑

k

pkσk, sb =
∑

k

pk(mk − mo)
2

The summation is over all known classes with mean mk, variance σk, and a priori
probability pk (e.g., proportion of the samples belonging to the kth class), and mo

is the overall mean of all data points. The feature used for partitioning can be either
the original feature with maximum J value, or the top PCA component obtained
from the M features corresponding to the M largest J values. The sample points
are then partitioned according to their known class identities. One particular crite-
rion Zhang et al. (2001) can be used to optimally partition the data according to a
criterion based on an entropy impurity measure:

∆I = Ip − (K1I1 + K2I2)/K

where Ip, I1 and I2 are the impurity measures of the whole group, the left subgroup
and right subgroup, respectively, which are de£ned as

I = −
∑

k

pklog(pk)

For example, if k = 2, the impurity (entropy or uncertainty) I = 0 when p1 =
0 and p2 = 1, while I reaches a maximum value when p1 = p2 = 1/2. The
partitioning corresponding to the largest ∆I value ensures the smallest impurities
I1 and I2 of the two resulting subgroups, i.e., they each contain most of the data
points belonging to one or few classes.

2.3 Special treatment of points close to boundary

The dataset to be subdivided at each node of the tree is not necessarily linearly
separable, i.e., it may be impossible to partition the feature space by a hyper-plane
(perpendicular to the direction onto which all data points are projected) without cut-
ting a group of tightly clustered points into two parts, even though the partitioning
steps discussed above guarantee certain optimality.

To identify the data points which may be misclassi£ed by the bisection, a buffer
zone around the partitioning hyper-plane is de£ned according to the between-class
distances used previously to £nd the maximum distance. On either side of the par-
titioning plane, another plane is found corresponding to a distance slightly smaller
than (e.g., 0.9 of) the maximum distance. Each data point in this buffer zone be-
tween these two planes is classi£ed into either of the two classes determined pre-
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viously, according to its Euclidean distances to its closest neighbors in the two
classes. Here all N features are used to £nd the Euclidean distances, as the data
points inside the buffer zone cannot be well separated along the direction previously
chosen and additional in formation from other dimensions is needed to determine
to which of the classes they belong.

As the result of such a special treatment of the data points in the buffer zone, the
feature space is no longer partitioned rigidly by a hyper-plane. Instead, the space is
separated by a ¤exible surface which allows the data points close to the boundary
the freedom to choose their identities according to their nearest neighbors’ identi-
ties.

2.4 Truncation of the top-down hierarchy

When needed, the bisection clustering described above can be carried out recur-
sively (in either depth-£rst or breadth-£rst order) to build a downward growing
binary tree until eventually each terminating or leaf node contains only one data
point. In this case, a complete hierarchical structure, a binary dendrogram, is con-
structed by which the relationship among all the data points (individual genes) in
terms of their similarities is represented. This can reveal some underlying structures
of the dataset.

Alternatively, it may not be necessary to carry the bisection all the way to the end
to get a complete dendrogram, if it is of interest to £nd the possible clusters formed
by similar genes. In this case the process of the top-down tree construction can be
truncated by terminating the bisection early according to certain criterion. Each of
the leaf nodes of such an incomplete tree represents a cluster of similar genes. The
relationship among these clusters may still be revealed by the partial dendrogram
tree formed before the termination of the splitting process.

The truncation can be determined in various ways. If the total number of clusters
is known a priori, or it can be estimated by other means, the breadth-£rst bisection
recursion can be terminated when the number of nodes in the tree exceeds the
known number of clusters. Alternatively, if it is not desirable to have any cluster
containing fewer than a certain number of data points, the recursion (in either depth
or breadth-£rst order) along a branch can be terminated whenever the end node of
a branch contains fewer data points than the smallest size desired. However, for
reasons to be discussed below, one may want to carry the bisection a few levels
further down before terminating the process. For example, to carry the process two
levels lower than that determined by a speci£ed number of clusters K, one could
terminate the process after 4K nodes are obtained.
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2.5 Merge back process

The top-down recursive bisection described above can be followed by a £nal clean-
up and correction process carried out in a bottom-up fashion to merge the nodes
at the lowest levels of the hierarchy. This process may be needed in some unusual
situations (depending on the speci£c dataset) where the tree structure generated by
the top-down bisection may be unbalanced, so that some nodes reach the minimum
cluster size or contain single data point much earlier than others, thereby causing
the corresponding tree branches to terminate at levels much higher than others.
When such an unbalanced tree is truncated, the sizes of the leaf nodes could vary
drastically. To ensure that the £nal clustering results re¤ect objectively the actual
dataset, independent of the particular order of the bisection operations (the order
of the tree nodes, either depth or breadth £rst), a bottom-up merge back process
following the top-down bisection process will allow the opportunity to readjust
the clustering according to the similarities between all clusters of the leaf nodes
and thereby to correct the potential problem of diverse cluster sizes. Moreover,
the merge back process will also correct any possible misclassi£cations made in
previous bisection process (although this is unlikely due to the ¤exible partitioning
surface).

In the merge back process, the two classes nearest to each other are merged to form
a single class and this operation continues until the number of classes is reduced to
reach the desired number. While Euclidean distance (squared) between the means
of two classes

DE(i, j) = (µi − µj)
T (µi − µj) (1)

could be used to determine the two classes closest to each other, other distance
metrics may be more suitable to represent the similarity between classes containing
multi-points. Typically, Mahalanobis distance

DM(i, j) = (X − µi)
T Σ−1

i (X − µi) (2)

and Bhattacharyya distance

DB(i, j) = (µi − µj)
T (Σi + Σj)

−1(µi − µj) (3)

can be more properly used to represent, respectively, the similarity between a point
and a group of points and the similarity between two groups. Here µi and Σi are
the mean vector and covariance matrix of the ith class. Note that the Euclidean
distance DE is directly affected by a scaling transform (y = cx) of the dataset,
while both distances DN and DB are invariant with respect to scaling, as they are
both normalized by the covariance matrix.
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However, some degenerate cases need to be considered when some of the classes
contain few or even a single point, a likely situation to encounter while merging
the leaf nodes of the tree structure. Speci£cally, when the number of data points
in a class is smaller than the dimension of the feature space, the covariance matrix
does not have full rank and its inverse does not exist. In particular, if a class con-
tains only one point, its covariance matrix is zero, and the corresponding distances
become in£nity (DM = ∞ if Σi = 0, DB = ∞ if Σi = Σj = 0), although it is
still meaningful to have some distance de£ned to measure the similarity between
two single points. In order to measure in general the similarity between points and
classes mixed together under all circumstances, a new distance is de£ned as:

Dnew = (µi − µj)
T (αΣ0 + Σi + Σj)

−1(µi − µj) (4)

where Σ0 is the covariance matrix of the entire dataset involved, and α is a scaling
factor. When one or both of Σi and Σj are zero, the distance becomes the Euclidean
distance (squared) between the two mean vectors, scaled by the overall covariance.
The distance so de£ned uni£es all three distances DE , DM and DB to cover all
cases including degenerate ones. Note that the distance metric so de£ned is always
invariant with respect to scaling, as the Euclidean distance between the means is
still normalized by the overall covariance Σ0 even when both Σi = Σj = 0. Also
note that the new distance has a smooth transition between all three distances.

2.6 Estimate number of clusters

In unsupervised classi£cation such as clustering analysis there is little a priori in-
formation regarding the dataset, such as roughly how many clusters exist in the
dataset and how separable they are. In some cases, the top-down split algorithm
discussed above may provide some clue for such information based on the distri-
bution of the distance between the two subgroups at each tree node. In a typical
situation where a set of clearly separable clusters exist in the feature space, the
number of clusters in the dataset may be estimated from the histogram of all the
between-class distances at the tree nodes, such as the one shown in Fig. 1. Usually
the larger distances close to the right end of the histogram are from the top level
nodes in the tree (close to the root), while the smaller distances to the left of the
histogram are from the nodes close to the bottom (the leaves) of the tree. (However,
note that there does not exist a strict monotonic relationship between the distance
and the depth of the node.) Moreover, once the bisection is carried out enough times
to reach the inside of a cluster of points, the distances between the two subgroups
in the cluster (intra-cluster) become drastically smaller than those between clus-
ters (inter-cluster). Consequently in the distance histogram there typically exists a
dense peak composed of a large number of intra-cluster distances, many more than
the number of inter-cluster distances in a much coarse distribution towards the right
end of the histogram. The number of clusters can therefore be roughly estimated

9



Fig. 1. Split distance histogram with one gap. The transition to widely spaced, singular
entries marks the beginning of the cluster count.

Fig. 2. Under, proper, and over classi£cations of clusters. Underestimating leads to local
’superclusters’ while overestimating causes bisection along a cluster’s principle axis.

by £nding the point that separates the two different regions in the histogram. The
number of splits to the right of this point correspond to the bisections needed to
partition the data to reach the individual points inside the clusters (middle panel of
Fig.2). The dataset will be either under classi£ed if the top-down split process is
terminated too early (left panel of Fig.2), or over classi£ed if it is terminated too
late (right panel of Fig.2).

Moreover, the histogram of distances may also re¤ect some more complicated
structure of the dataset. For example there may exist multi-level structure in the
dataset, such as a cluster of clusters of data points in the space. In this case, there
may exist two gaps in the histogram representing the two levels of clusters. If the
top-down splitting process is terminated at a distance corresponding to the £rst gap
on the right of the histogram (truncation point 1 in Fig.3), the leaf nodes of the
resulting tree will represent the top level clusters (left panel of Fig. 4), while if the
splitting process is terminated at a distance corresponding to the second gap on the
left (truncation point 2 in Fig.3), each leaf node will represent a group of data points
forming a lower level cluster (right panel of Fig. 4).
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Fig. 3. Split distance histogram with two gaps

Fig. 4. Shallow (left) and deep (right) clusterings. The shallow clustering successfully £nds
’clusters of clusters’.

2.7 Clustering of the samples in microarray

Sometimes it is of interest to classify the samples (of different tissues obtained
under different experimental conditions or times) from a study, while treating the
genes as the features. The algorithm discussed above can be applied, in exactly
the same fashion, to the same microarray data, with its two dimensions swapped.
However, as there are in general many more genes (now treated as features) in the
microarray data than the samples (K $ N ), the dimensions of the covariance ma-
trix (needed for the PCA feature selection) can be very high (K by K), causing two
potential problems: (1) the computation of its eigenvalues/vectors may be very time
consuming, and (2) memory may become limiting. In this case, one could always
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limit the dimension of the feature space by using only a manageable number of fea-
tures. Due to the two step feature selection/extraction process discussed above, it
is likely that the essential information is preserved in the small number of features
actually used.

2.8 Display of the dendrogram

The dendrogram generated by the bisection process can be easily visualized based
on the hierarchical structure recursively built during the top-down process of the
algorithm. Starting from the root, the binary tree can be trivially drawn, also top-
down and recursively, until eventually each leaf node contains a single gene, or a
cluster of similar genes. In exactly the same fashion, the dendrogram tree for the
experiments can be drawn for the other dimension of the microarray.

3 Advantages of the method

The above method of partitioning the data points has some general advantages.

First, by splitting the dataset from top down, the clusters may be identi£ed much
more quickly than if a bottom-up merging algorithm is used as the data points inside
the clusters no longer need to be classi£ed. The top-down splitting is especially
effective when the dataset contains a large number of genes which form a small
number of clusters of similar genes. For example, if the dataset contains many
thousands of genes which form only a few tens of clusters, the clusters can be
obtained quickly after only a few top-down splitting steps, whereas a bottom-up
process will have to work through many unnecessary merging steps to £nally reach
the cluster level.

Second, it is not unusual for a microarray to have a large number (thousands or
tens of thousands) of genes from a large number (tens or hundreds) of samples
from different experimental conditions, tissues, time points, and so on. It is, in
general, impossible to £nd a small set of features spanning a subspace in which
all data points are well separated. However, with the top-down split algorithm, at
each iteration only a subset of the data points are subdivided at a node of the tree
(and in general, the lower level a node is at, the smaller the group of points to be
subdivided). It is therefore possible to £nd a small subset of features (or their linear
combinations ) containing suf£cient information to separate the particular subset
of points. As this adaptive feature selection can effectively reduce the number of
features needed for the bisection at each node, the amount of computation can be
drastically reduced. However, this adaptive feature selection cannot be used in a
bottom-up merging algorithm because all features are needed for computing the
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inter-group distances to determine which two groups of points to merge.

Third, due to the adaptive feature selection aspect of the splitting method, certain
biological insights regarding the genes and samples under study may be revealed.
For example, if the clustering is done to the genes, one may learn from the features
adaptively selected for separating the genes into two groups which experimental
conditions or tissue samples are most signi£cant for distinguishing between the
two groups. Similarly, if the clustering is done to the samples, one may learn which
genes are responsible for causing two different types of tissues. Such biological
insights may provide more valuable information than the simple classi£cation of
the genes.

Fourth, in general, a group of K points can be partitioned into two subgroups in
2K−1 − 1 different ways. Moreover, the computation in the potentially high dimen-
sional feature space can be very time consuming. By projecting the feature space
to a single dimension while still keeping a large percentage of the total energy
(representing separability information) preserved, the computational complexity is
drastically reduced due to the reduction of both dimensionality (from high to one di-
mensional space) and the number of possible bisections (from exponential O(2K−1)
to linear O(K)). The optimal partitioning can be easily identi£ed.

Finally, it is desirable to put the genes in the microarray in a certain order after
clustering analysis so that the most similar genes are arranged more closely to each
other than those less similar. In general, there are 2K−1 different ways to arrange
the K leaf nodes of a binary tree in a linear order. A separate step for £nding the
optimal (Eisen et al. (1998), Biedl et al. (2001)) ordering of the genes is usually
needed after the clustering analysis. The top-down split algorithm provides an easy
way to make such an ordering without any extra step, as the recursive bisection of
the gene groups is always carried out according to some prominent feature (or lin-
ear combination of some prominent features) based on which all genes are sorted.
In other words, the clustering process always systematically rearranges the genes
during the top-down recursion. The only effort needed for the optimal ordering of
the leaf nodes of the complete dendrogram by the end of the clustering is to decide
the order of the two subgroups at each node, depending on which of them is more
similar to their parent node’s sibling (Alon et al. (1999), Rose et al. (1990)). In fact,
the gene array reordered by the clustering algorithm looks very smooth with only a
few discontinuities at the boundaries between major subgroups.

4 Testing and comparison with other algorithms

To test the effectiveness of the top-down splitting algorithm (TSplit), it was run over
a large number of synthetic datasets and compared to the well-known K-means al-
gorithm, as well as the XCluster algorithm (Eisen et al. (1998), Sherlock (1999)),
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Fig. 5. Example of data in PCA space. There is a mix of tight and diffuse clusters of various
sizes

XCluster was chosen because it is a tree-based clustering algorithm which is com-
monly used in the bioinformatics community and, due to its bottom-up nature, pro-
vides good contrast to TSplit’s top-down technique.

4.1 Synthetic data

The synthetic data used for the comparison tests is composed of a mixture of spher-
ical Gaussian probability distribution functions. The Gaussians are constructed in
a hierarchical manner so as to produce a 7500 point dataset with 15 clusters each
composed of three smaller clusters, for a total of 45 clusters in all. A typical exam-
ple of the synthetic data, projected into 2D PCA space, can be seen in Figure 5.

The datasets are parameterized by number of datapoints, dimensionality and vari-
ance ratio. The variance ratio represents the ratio between variances in successive
levels of the hierarchy. A ratio less than 1.0 causes the clusters to become tighter
in lower levels. In contrast, a ratio above 1.0 forces the clusters to become more
diffuse. It has been empirically observed that all the clustering algorithms at our
disposal begin to degrade in performance when the ratio exceeds 1.0 and fail com-
pletely at a ratio of 2.0 (Hart et al. (2003b)). The datasets which show a range of
values means the variance ratio was chosen independently for each branch of the
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Linear Assignment Comparisons of Synthetic Data

K-means

Dimensions Ratio avg. std. Tavazoie XCluster/Agglom TSplit

3 0.1 0.6353 0.0497 0.3727 0.9999 0.9521

3 0.3 0.6945 0.0535 0.3324 0.8380 0.8923

3 0.5 0.6806 0.0334 0.4567 0.6445 0.6447

3 1.0 0.1997 0.0048 0.1993 0.1869 0.1695

3 2.0 0.0951 0.0010 0.0963 0.0929 0.0887

10 0.1 0.6923 0.0497 0.4011 1.0000 0.8151

10 0.3 0.6673 0.0441 0.5157 1.0000 0.9775

10 0.5 0.7808 0.0352 0.5585 0.9785 0.9025

10 1.0 0.7721 0.0309 0.6684 0.1513 0.3913

10 2.0 0.1679 0.0020 0.1725 0.0333 0.0617

30 0.1 - 1.0 0.7981 0.0353 0.4127 0.7991 0.9833

30 0.3 - 2.0 0.5967 0.0373 0.2315 0.0951 0.0955

Table 1: Linear Assignment scoring over parameterized datasets. Scores fall in the range
of 0.0 (no points matching) to 1.0 (all points matching) when compared against the ground
truth of the datasets.

hierarchy from that range inclusive.

The K-means algorithm was run with £ve different random seeds for choosing the
initial placement of means and also by the method described in Tavazoie et al.
(1999) of placing means maximally distant from one another. The scores in the ta-
bles represent the average score as well as the standard deviation over the £ve trials.
The XCluster/Agglom and TSplit algorithms are deterministic and their scores are
placed in the last two columns, respectively. All the algorithms used the Euclidean
distance metric.

To compare cluster outputs two objective metrics are used (Hart et al. (2003a)):

(1) a “Linear Assignment” (LA) scoring function, which optimizes a linear function
of a permutation matrix to £nd the best correspondence between two clustering out-
puts using a matching algorithm Gabow (1973), and (2) the Normalized Mutual In-
formation (NMI) (Forbes (1995)). These comparison experiments were performed
using the MLX package of machine learning algorithms and scoring methods (Hart
et al. (2003a)).

In addition, the full dendrograms were truncated into non-hierarchical clusterings
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NMI Comparisons of Synthetic Data

K-means

Dimensions Ratio avg std Tavazoie XCluster/Agglom TSplit

3 0.1 0.9212 0.0114 0.7937 0.9998 0.9795

3 0.3 0.9223 0.0142 0.7929 0.9260 0.9457

3 0.5 0.8074 0.0047 0.7645 0.7697 0.7675

3 1.0 0.3326 0.0016 0.3320 0.3090 0.2880

3 2.0 0.1532 0.0013 0.1532 0.1423 0.1303

10 0.1 0.9334 0.0109 0.7774 1.0000 0.9216

10 0.3 0.9271 0.0109 0.8845 1.0000 0.9918

10 0.5 0.9517 0.0085 0.8847 0.9903 0.9443

10 1.0 0.7863 0.0089 0.7595 0.1815 0.4913

10 2.0 0.2051 0.0018 0.2111 0.0150 0.0766

30 0.1 - 1.0 0.8705 0.0116 0.7227 0.8064 0.9802

30 0.3 - 2.0 0.8935 0.0119 0.5383 0.0020 0.0099

Table 2: Normalized Mutual Information scoring over parameterized datasets. Scores fall
in the range of 0.0 (no points matching) to 1.0 (all points matching) when compared against
the ground truth of the datasets.

in order to allow comparison with the ground truth 45 clusters of the synthetic
data and also with each other. XCluster was augmented with an agglomeration
heuristic (Hart et al. (2003b)) to convert its full dendrogram. This stands in contrast
to the stopping criteria for TSplit, described previously, which terminated before
constructing the full dendrogram.

A strong Linear Assignment score indicates that two clusterings are nearly iden-
tical. In terms of con£dence values, two random clusterings return a score of 1

k ,
where k is the number of clusters. For the synthetic data with 45 clusters, a linear
assignment score of 0.022 represents a mutually random pair of clusterings. This
bound expectation holds in the case of equal number of clusters.

The second method of cluster comparison, Normalized Mutual Information, is
computed by the formula

nmi(S,R) = 1 − H(S,R) − H(R)

H(S)
(5)

where H(S) and H(R) represent the information contained in the rows and columns
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of the confusion matrix C computed by

H(X) = −
∑

i

xi log(xi) (6)

and H(S,R) is the joint-information computed by

H(X,Y ) = H(C) = −
∑

j

∑

i

cij log(cij) (7)

From Tables 1 and 2 two observations may be made. First, both TSplit and XClus-
ter/Agglom consistently outperform K-means over the low-dimension, low-variance
datasets with K-means scoring between 10% and 25% below the other methods.

Second, TSplit and XCluster/Agglom produce roughly comparable results through
the low-dimensional datasets. However, in the high dimensional case (30 features),
TSplit displays a clear improvement over XCluster/Agglom in both Linear Assign-
ment and NMI. It is important to note that all the algorithms completely fail at a
variance ratio of 2.0.

4.2 Stability Analysis

It is important to assess the stability of the clustering algorithm, in terms of how
sensitive the clustering result is with respect to varying levels of perturbation in the
data. If some small perturbation in the data would cause substantial changes in the
clustering outcome, the algorithm is not stable and its results not reliable.

To examine the stability of the algorithm, two types of perturbation are considered.
First, the dataset is randomly sub-sampled at various rates (>50%). Or, alterna-
tively, different amount of Gaussian noise is added to the dataset. In either case, the
clustering results between many trials are compared by Linear Assignment score
based on the confusion matrices and a composite measure of stability is generated.
This process is depicted in Figure 6.

4.2.1 Self-Consistency Tests

The dataset is £rst randomly sub-sampled at various rates p ∈ P = {0.6, 0.7, 0.8, 0.9}
(|P | = 4), and for each rate p, N=10 clustering trials are conducted. For each pair
of two sub-sampling rates p and q (e.g., p = 0.8, q = 0.7 in Figure 6), a confusion
matrix is obtained based on the common data points (the intersect C = Sp ∩ Sq

of the two sub-samplings Sp and Sq). Then the Linear Assignment scores averaged
over all combinations of the trials of the two sub-sampling rates is obtained as the
corresponding element of a 4x4 stability matrix representing the consistency of the
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Fig. 7. Self-consistency at a variance ratio of 0.5 with subsampling (left) and added noise
(right). Both tables exhibit high agreement (>96%) except for the greatest additive noise,
which achieved >88% agreement.

clustering results across all sub-sampling rates. Such a stability matrix obtained
from a 10-dimensional dataset is shown on the left of Figure 7.

In a similar fashion, the stability of the algorithm is also tested with different
amounts of additive noise. The level of noise is measured in terms of the fraction
of the standard deviation of the whole dataset. Four levels 1%, 5%, 10% and 20%
of noise are added to the dataset. For comparison, adding 20% noise to the dataset
is roughly equal in magnitude to the standard deviation of the clusters within the
dataset. Same as the sub-sampling test, for each noise level N=10 trials are carried
out. The resulting 4 by 4 stability matrix is shown on the right of Figure 7, with
each element representing the linear assignment score computed based on a pair
of two levels of noise added to the data, averaged over all trials for the two noise
levels.

It is seen that most scores in the two matrices are greater than 90%, indicating that
the clustering results across different sub-samplings or different levels of noise are
highly consistent, i.e., the clustering algorithm is stable.

18



0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.2

0.4

0.6

0.8

1

Pe
rc

en
t a

gr
ee

m
en

t w
ith

 g
ro

un
d 

tru
th

Fraction subsampled

Mixture of Gaussians, 10 dimensions

variance ratio 0.1
variance ratio 0.3
variance ratio 0.5
variance ratio 1.0
variance ratio 2.0

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

STD of Gaussian noise as a fraction of total dataset variance

Pe
rc

en
t a

gr
ee

m
en

t w
ith

 g
ro

un
d 

tru
th

Mixture of gaussians, 10 dimensions

variance ratio 0.1
variance ratio 0.3
variance ratio 0.5
variance ratio 1.0
variance ratio 2.0
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4.2.2 Comparison with Ground Truth

While it is desirable for a clustering algorithm to be stable and generate consistent
results, it is even more important for the algorithm to generate correct (as well as
consistent) results. To test our algorithm in this regard, we further compared its
clustering results against the ground truth of a synthetic dataset composed of £ve
overlapping spherical Gaussians.

The clustering results for the datasets of different variance ratios (0.1, 0.3, 0.5,1.0
and 2.0) are shown in Figure 8. The dataset with variance ratio 2.0 is the most dif£-
cult one to classify for which our algorithm and all other clustering methods com-
pared (K-means, XCluster/Agglom, etc.) performed poorly at this variance ratio,
generating clustering results roughly equivalent to random assignment of classes
(corresponding to a linear assignment score of 0.2). This performance can be treated
as the baseline for measuring other clustering performances. Our clustering algo-
rithm is applied to the dataset sub-sampled by different rates and with different
amounts of noise added, and the results are compared with the ground truth in
terms of the Linear Assignment as shown in Figure 8. It is seen, as expected, that
the performance improves as sub-sampling rate increases (left graph), and worsens
as the level of noise increases (right graph). However, the most important obser-
vation is that regardless of the absolute value of the scores, they are remarkably
consistent across all different sub-sampling rates or different noise levels, and none
of the curves cross others at any point, indicating that the algorithm is highly stable.

4.3 Visualization of the splitting process

Figure 9 shows the £tness function for the £rst four layers of the tree. The vertical
bar indicates where the node was split. The dataset in this £gure is the 30000 point,
30 dimensional dataset with a variable variance ratio between 0.1 and 1.0.
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Fig. 9. The £tness function used to identify splitting points exhibits a discontinuity at the
maximum when a clear point exists.

A soft, rounded peak in the £tness plot represents a splitting point where the two
subsets are not well separated. A plot which has its maximum at a sharp peak means
that the two clusters are well-separated.

4.4 Performance relative to XCluster/Agglom

Since it was shown in the previous section that TSplit produces clusterings of the
same approximate quality of XCluster/Agglom, it is instructive to compare the ex-
ecution time of the two algorithms.

A serial scalability test was performed by taking a random subset of N points from
the 30,000 point dataset shown in Figure 5 and timing the execution for each algo-
rithm to £nd 45 clusters. The summary of timings are shown in Figure 10. TSplit
has a much smaller absolute execution time and also exhibits superior scaling rela-
tive to XCluster/Agglom.

4.5 Full Tree Decomposition

It is sometimes useful to view the full tree structure of a clustering since a human
may be able to pick up patterns which cannot be extracted by the particular analysis
method employed. TSplit can easily be run down to nodes of size one which pro-
duces a full tree decomposition of the dataset. Since XCluster also produces such a
decomposition, the two algorithms may be visually compared.
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The following £gures show the decompositions of a small (99 point) example
dataset from Eisen et al. (1998). An observation consistent over several different
datasets is that TSplit appears to produce a more balanced splitting. The trees for
TSplit and XCluster shown in Figure 11, on the left and right respectively, have
depths of 7 and 10.

5 Parallelization

The top-down approach of the algorithm leads to a natural parallel implementa-
tion. In the section we detail our implementation strategy and address the major
bottleneck in the serial algorithm.

5.1 Coarse partitioning

Since no information is shared between subtrees during construction, this method
is trivially parallelizable. Our strategy is simple: begin with all processes attached
to the root node and divide them proportionally between the children. This has the
bene£t of providing more computation resources near the top of the tree where the
nodes are most likely to contain a large number of data points. As the tree is split,
the processes are diffused until each node has a single process attached to it. At this
point, the splitting process continues in a serial manner.
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Fig. 11. TSplit (left) vs. XCluster (right) full dendrogram. TSplit’s dendrogram is more
balanced and thus more compact than XCluster.

The ease of parallelization of such a top-down technique stands in sharp contrast
to a bottom-up strategy, which entails a non-trivial amount of communication be-
tween processes. On machines with slow or high-latency communication, the over-
head may negate the bene£t of parallelizing. Our algorithm does not suffer a high
communication overhead.
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5.2 Fine partitioning

Each node may have several processes at its disposal and they should be used as
ef£ciently as possible. Fortunately, the computations for determining the optimal
splitting point of a node are amenable to parallelization as well.

The optimization process reduces to £nding the maximum of an array and returning
its position. This is ef£ciently handled by scattering the data across the available
processes and reducing the local maximum to the root node of the communication
subgroup.

The bottleneck of the splitting process is the special treatment of points near the
boundary. If this buffer zone is large (several thousand points), its evaluation can
take over 99% of the runtime for the splitting process.

5.3 Merging subtrees

After the full tree has been built by each process, one is left with N subtrees which
share a common root. For the algorithm to continue, these subtrees must be merged
at the master process into a single tree.

Our solution to this problem is to serialize each subtree via a preorder traversal and
send the full subtree to the master process in a single transfer. The subtree is merged
into the full tree node-wise by £rst searching for the node’s parent and linking it to
the appropriate branch. The preorder traversal guarantees that a parent node will be
merged in before any of its children.

A summary of the parallel splitting algorithm is contained in Table 5.3.

6 Experimental results

6.1 Scalability test

The parallel algorithm was run multiple times using different number of processors
(1, 2, 4 and 8) and different data sizes (25000, 50000 and 100000 data points) to
£nd its scalability. The results are summarized in Table 4.

Here the £rst column on the left shows the number of data points, the £rst row
on top shows the number of processors used, and the values in the table represent
the total execution time in second. The £rst three plots in Fig. 12 show how the
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root ← all processes

Q ← root

while Q not empty

node ← pop(Q)

if ¬ valid node

continue

end if

Np ← number of processes in node

split(node)

if Np = 1

left child ← process

right child ← process

else

Nl ← number of points in left child

Nr ← number of points in right child

p ← (Nl
Nr

)

left child ← processes[1 ... p]

right child ← processes[p+1 ... Np]

end if

Q ← left

Q ← right

end while

merge_trees()

Table 3: Pseudo-code for the parallel implementation of TSplit

Number of Processors

Datapoints 1 2 4 8

25000 126.3 66.7 52.2 29.0

50000 399.0 199.4 149.9 76.6

100000 1098.5 574.5 298.6 169.0

Table 4: Runtime (in seconds) of TSplit on dataset size versus number of processors. The
speedup is nearly linear as the number of processors increases.
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execution time reduces as the number of processor increases for the three datasets,
and the last plot shows the speedup S[n] = T [n]/T [1] as a function of the number
of processors. As can be see in the £gure, the S[n] scales almost linearly with the
number of processors, and the ef£ciency E = S[n]/n (the slope) increases toward
1 when the number of data points increases. All these results show that the parallel
algorithm exhibits good scalability.
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Fig. 12. Log-log plots of execution time vs. processors for 25,000 (top-left), 50,000
(top-right), and 100,000 (bottom-left) data points. The fourth plot shows the relative
speedup for each plot plus the average over all three datasets.

6.2 Clustering of a yeast dataset

The splitting clustering algorithm was applied to the yeast S. cerevisiae dataset
used in Eisen et al. (1998) as the second example. The upper and lower portions of
the complete dendrogram generated by clustering analysis of both the 2,467 genes
and the 79 samples is shown in Figures 13 through 14. To maximally display the
expression levels, pseudo colors are used to show the high expression levels in red,
low levels in blue, and middle levels in yellow.

6.3 A supervised example

The clustering process can be considered as the training phase and the tree struc-
ture obtained can be used as a trained classi£er for other sample data with un-
known identities. Moreover, biological/medical insights may be obtained from the
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Fig. 13. Clustering result of yeast dataset (top segment)

tree such as which genes are associated with certain diseases.

The top-down split algorithm was applied to a set of microarray data containing
12,558 genes from 54 cancer tissue samples (Scho£eld et al. (2001)). Without any
prior knowledge of the genes, the unsupervised version of the clustering analysis
was used to obtain a complete dendrogram of the genes. However, as a clinical

26



Fig. 14. Clustering result of yeast dataset (bottom segment)

classi£cation of each tissue (class 1 or class 2) was known, the supervised version
of the algorithm could be used for the tissue clustering. At each tree node one of
the 12,558 genes was selected as the best feature to partition the tissue samples
according to their known classes.

The resulting dendrogram was able to fully separate the two cancer tissue classes
using only three genes. At the very top level, most of the class 2 samples are sepa-
rated from the rest (all class 1 plus two class 2 samples). In the next two levels, the
remaining two class 2 samples are separated from the class 1 samples by two more
genes.

7 Conclusion

We have presented an ef£cient, top-down clustering algorithm which may be ap-
plied as either an unsupervised or a supervised learning algorithm. Our testing
shows it to be more ef£cient than comparable algorithms while still producing
equivalent quality clusterings.
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Future work will be focused toward automatically extracting information from the
inter-cluster distance histograms and further investigation into the adaptive nature
of the recursive partitioning.
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