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Abstract

Rapid advances in molecular biology and genomics in recent years
have highlighted the need for theoretical tools to analyze and inte-
grate a flood of data. Models, both at detailed biochemical and at
more abstract levels, could help make sense of experimental observa-
tions, fragmentary by nature, and formulate new hypotheses for test-
ing, on a broad range of questions surrounding the development and
physiology of organisms. In this review we present mathematical and
computational models of molecular processes underlying biological de-
velopment, and concentrate on the role of gene and their interactions.

We describe in greater detail a gene network modeling formalism,
based on neural networks, that was introduced by Mjolsness et al.
to study gene regulatory interactions during development; and the
application of this framework in a computational model of Drosophila
early neurogenesis. Although such models are only small steps in the
elucidation of how genes orchestrate the complex patterns of neural
development, they could provide directions to subsequent research,
and could be refined to deal with more powerful data as they become
available.

Genomic Advances Document Unity of Life

From bacteria and their limited repertoire of multicellular forms to primates
and their elaborate nervous systems, the diversity of form and function and
the interdependence between the two have occupied biologists for a long time:
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how are morphological and behavioral patterns of individual organisms coded
for and what forces bring them about? how is the tremendous richness of
these patterns generated in nature, what rules or constraints determine its
generation and what purpose might it serve? Evolutionary biology provides
of course a framework for addressing questions like these, but now, with the
advent of molecular techniques and their widespread application, we have
the unique opportunity to explore at a mechanistic level how life’s diversity
is generated and why.

In the last 30-40 years, molecular methods for manipulating primarily ge-
netic material but also other cellular components have allowed researchers to
investigate hitherto inaccessible processes both at the cell level and at higher
levels of integration. Workers in the biological sciences, from basic research
to agriculture and medicine, now have a common language to communicate
their experiences in distant fields. Genes and entire biochemical pathways
isolated in one experimental system (yeast, for instance, or C. elegans) can
now almost routinely be identified in many other organisms, not only provid-
ing clearer answers to questions originally investigated in individual species
but also revealing previously unimagined levels of homology.

Examples from many biological systems abound. A particularly striking
one is that of homeotic genes which are necessary for specifying animal body
patterns; they are transcription factors, containing a conserved region that
binds to DNA, and determine regional identity. Their characteristic mutant
phenotypes, which can lead to body part duplication or replacement of one
body part by another (e.g. legs in place of antennae), had long puzzled ge-
neticists who had studied them in Drosophila; in fact in 1978 one of those
researchers, E.B.Lewis, formulated a detailed hypothesis as to how homeobox
genes might have contributed to the evolution of the fly body plan, thus an-
ticipating many related discoveries in the following decade [51]. These genes
were first cloned in Drosophila [63, 86], and because of the conserved region,
the homeobox, their homologues were subsequently isolated in many other
different phyla, from cnidarians to vertebrates [3, 47, 72, 85, 50] and were
shown to be organized in similar gene groupings and expressed in the same
order along the body axis as in Drosophila. Such findings have prompted the
re-evaluation of homologies between body parts across phyla and evolution-
ary relationships in general, and have provided insights into the evolution of
developmental mechanisms, pointing to the importance of regulatory gene
evolution in morphological diversity [14].

Other examples of genes and pathways conserved across species include,



to name but a few: the Ras family of G proteins which integrate inputs
from a wide range of cellular pathways and control many aspects of cell
proliferation and differentiation in yeast, flies, nematodes and mammals, by
transmitting signals from tyrosine kinases at the plasma membrane through
a kinase cascade to the nucleus [7]; the mitogen-activated protein kinase
(MAPK) pathway, which consists of a cascade of three classes of kinases that
deliver signals from membrane to nucleus, and which was first identified in
the mating response pathway of yeast (Saccharomyces cerevisiae) and then
in many metazoans (in metazoans, the MAPK cascade conveys inputs of
Ras proteins, among others) [74]; the homologous pathways which regulate
fly and vertebrate limb development, as in the case of the hedgehog family of
proteins involved in the anteroposterior patterning of the limb [49, 20, 83, 21];
the family of nuclear receptors, such as steroid, retinoid and thyroid hormone
receptors, which mediate the potent effect of hormones on gene expression
and which are dominant regulators of organ physiology as well as of insect
morphogenesis [6, 41, 57, 97].

2 Need for Theoretical Tools

The list of such discoveries grows daily, supplying strong evidence about the
unity of life forms and their biological building blocks, which could not have
been anticipated, strengthening the conviction that description at the gene
level will provide a unifying principle to explain diverse biological phenomena,
and exposing the need of analytical methods to study these phenomena.
The situation is perhaps comparable to what happened in physics during
the first decades of this century, when the structure of the atom was probed
and this opened the door to the discovery of subatomic particles and a unified
way of viewing matter in all its forms. However there is a crucial difference
between today’s biology and the state of physics at the beginning of the
century: whereas physicists at the time had access to a formidable chest of
mathematical tools, which had been the language of physicists for centuries,
the theoretical means at the disposal of biologists seem limited in comparison.
There have been of course major contributions, like the work of Lotka and
Volterra on population biology and predator-prey models [56, 100], Fisher on
gene flow dynamics in populations [22], Turing on the role of reaction and
diffusion of substances in pattern formation during development [98], Thom
on the topological aspects of morphogenesis [96] and Hodgkin and Huxley on



generation and propagation of action potentials in nerve axons [35]. These
pioneering studies have helped establish whole fields of research in ecology,
population genetics, developmental biology and electrophysiology, but the
fact remains that, on the whole, theory in biology has not occupied the same
place in the interpretation of data and the designing of experiments as it has
in physics.

The need of theoretical methods in biology has become more apparent
in the last decade as data from molecular experiments are pouring in at
an ever increasing rate, especially from whole genome sequencing projects;
people have started responding to this realization, most notably in the area
of computational molecular biology, at the border between biology and bio-
chemistry, where mathematical tools (for instance, statistical analysis and
combinatorial optimization) have been applied to the study of structure and
function in genomes, genes and gene products in order to answer specific bio-
logical questions, like, for example, discovering genes in sequences, detecting
gene homologies between species, building phylogenetic trees, and predict-
ing protein and nucleic acid secondary and tertiary structure from sequence
information.

But the intensity of theoretical effort in genomic research will have to be
extended to the study of development and the phenotypic variation that it
generates and selection acts upon; in particular, it will have to be directed to
the study of genes and their involvement in these processes, since molecular
data will contain a wealth of information on developmental and evolutionary
questions.

3 Models of Molecular Processes and Devel-
opment

REACTION-DIFFUSION. There has already been a considerable amount of
work on mathematical models of development. A large part of this work has
been in the tradition of Turing’s reaction-diffusion approach, by researchers
like H. Meinhardt and J.D. Murray, who have modeled the stable patterns
that can emerge when chemical substances, morphogens (usually two in num-
ber, an activator and an inhibitor), diffuse and react with each other over
a morphogenetic field, in systems like insect segmentation, sea shells, ani-
mal coats and butterfly wings ([26, 65, 66, 68, 69], for overview of reaction-



diffusion and related models in mathematical biology see [70]). These efforts
have generally dealt with abstract quantities and have not attempted to
make explicit connections between these and interactions of specific genes,
although in some cases subsequent experimental work has provided candidate
molecules, as in the case of Meinhardt’s model of how insect leg proximo-
distal coordinates are set up [64, 5, 18].

MECHANICAL MODELS. Other researchers have considered cell move-
ments and mechanical properties of cells and tissues and modeled processes
like gastrulation and neurulation [77], cartilage condensation in limb mor-
phogenesis and patterning of feather primordia [71, 25], aggregation of Dic-
tyostelium amoebae [87], cell intercalation and sorting [95, 102, 2, 29, 30] and
skin generation [94].

LINDENMAYER SYSTEMS. Drawing inspiration from formal languages,
Lindenmayer has modeled development using sets of rules, grammars; rules
describe cellular processes like growth, division and differentiation, and are
applied to modify strings that represent organisms [53|. These, so called, Lin-
denmayer systems have been used to model growth and branching patterns
of plants [79]; they have also been extended to include cell-cell interactions,
through the use of context-sensitive grammars, as well as 2-D and 3-D cells
which can change shape, as in some of the mechanical models above [55, 54].

BiocHEMICAL KINETICS. The models above do not attempt to make
any connections to specific genes or biochemical pathways involved in the
processes modeled, and in fact most of them do not make any reference to
such factors at all. There have been models incorporating such molecular ele-
ments, although in this case modeling has been restricted to processes within
single cells. Savageau, applying methods from chemical kinetics, has modeled
biosynthetic pathways and the regulation of gene expression in prokaryotes;
he analyzed the fixed points and periodic behaviors of these systems and
also considered questions of optimality in the design of the pathways [84].
Other workers have also examined dynamical features of metabolic pathways
and gene expression [28, 37, 31, 99], Ca®" signalling [19] and the complex
interactions of progression through the cell-cycle [75].

In a similar framework, Bray has pointed out the similarities of biochem-
ical signal cascades to neural networks that might be performing some kind
of pattern recognition within cells. It has in fact been shown that chains of
chemical reactions can be viewed as neural networks that can be reduced to
Hopfield nets [34, 33, 9]. Bray has modeled networks of cell-signalling reac-
tions [8, 12] and has optimized the reaction parameters to achieve a desired



mode of functioning or output of a pathway. He has used this method to
simulate the signalling cascades involved in bacterial chemotaxis and find
reaction parameter values such that the simulated system exhibits various
chemotactic behaviors of known mutant phenotypes [11, 10].

In a biochemically more concrete look at morphogen gradients during
development (cf. section on Reaction-Diffusion models above), Kerszberg
and Changeux [48] examine how different assumptions about transcription
factor dimers, autocatalytic feedback and competition for regulatory binding
sites by these dimers lead to different patterns of transcription and protein
concentration; the authors use results of the model to interpret morphogen
gradients of Bicoid and Hunchback in the Drosophila blastoderm (see also
section on blastoderm below).

von Dassow et al. [101] have more recently also looked at developing
Drosophila embryos, using a pretty realistic biochemical interaction model:
they examined interactions between segment polarity genes and found that
the whole system is dynamically robust and can resist changes to its kinetic
parameters.

PHAGE A. In work concentrating on gene interactions, Shea and Ackers
[89, 1] have developed a detailed quantitative model of regulation of cer-
tain genes of bacteriophage A that are involved in maintenance of the lyso-
genic state (when the prophage gets integrated into the DNA of the host)
and induction of lysis (when the virus actively replicates). In constructing
their model, the authors stayed very close to biochemical facts concerning
the structure of the genes involved and their promoters, binding constants,
dimerization, cooperative interactions and so on. In a hybrid modeling ap-
proach, McAdams and Shapiro have also looked at the lysogeny-lysis switch
of phage A [62]. by integrating chemical kinetics with an electrical circuit
simulation of the genes and regulatory interactions that control this switch.

BooLEAN NETS. In a different vein, abstracting away from biochemi-
cal detail, Kauffman has introduced networks of elements with binary states
to model gene regulatory interactions [42]. These boolean networks are in-
tended to be idealizations of continuous dynamical systems with elements
that behave in a sigmoidal fashion (as is the case with many cellular and bio-
chemical processes); they are believed to capture a skeleton of the dynamical
structure of such continuous systems (see Chapter 5 in [45] and references
therein). Since boolean networks have finitely many different states, they
are guaranteed to have fixed points and state cycles, which could be viewed
as corresponding to stable differentiation states and periodic behaviors of



cells — and such parallels are being explored in specific cases where known
gene expression patterns appear to be consistent with this description [92].
Kauffman has explored the stability of the dynamics of these boolean nets,
which depends on the number of inputs of each element, and on the num-
ber of elements [42, 43, 44]. He has also ascribed fitness values to different
configurations of boolean nets and investigated features of the fitness land-
scapes that result in such configuration spaces, like number, similarity and
accessibility of fitness peaks [46].

4 Gene Net Framework

Genes being a natural module for the description of living systems, they also
appear to be a natural level of abstraction for integrated biological models.
Starting from this premise, Mjolsness, Sharp and Reinitz [67] have introduced
a modeling framework for the study of development, centered around genes
and their interactions. This framework shares features with the models de-
scribed above but in a combination that is not found in any of the others. It
incorporates features that allow modeling of processes at a tissue level, like
the reaction-diffusion and mechanical models, for instance, but unlike the
biochemical kinetics and phage A models; and unlike the former but similar
to the latter, it also includes a description of molecular processes, like gene
expression. The modeling framework consists of two major components:

e 1. A neural network representation of molecular level interactions;
gene interactions, as well as other molecular signalling and regulatory
events, are modeled as a particular kind of neural nets, recurrent nets
with connections allowed in both directions between any pair of nodes
([36], see also [32] for a survey of recurrent nets and neural nets in
general); in this formulation, gene product concentrations correspond
to node activation levels and connection weights to gene interaction
strengths.

e 2. A Lindenmayer-system-like grammar of rules [53, 79|, L-grammar,
which describe cell-cell interactions and changes in number, type and
state of cells.



4.1 Dynamics

In more detail, genes in such networks interact as nodes in a recurrent neural
net, summing inputs from other genes at any given time t

ua(t) = 37 Tuun() 1)

where T is the matrix of gene interactions and v,(t) gene product concentra-
tions within the cell; if we include interactions with neighboring cells, this
becomes

ua(t) =y Tuwy(t) + Z > Tuti(t) (2)

where 7' is the matrix of gene interactions with neighboring cells and the
i (t) gene product levels in neighboring cell i. Concentration v,(t) of the
product of gene a then changes according to

dv,
dt

= Rog(uqa(t) + ha) — Aava(t) (3)

where wu,(t) is the linear sum of Eq. 1, R, the rate of production of gene a’s
product, h, the threshold of activation of gene a and )\, the rate of decay
of gene a product; function g is a monotonic, non-linear function, usually a
sigmoid, like the following one which we have used in gene net models and
which is centered at 0 and takes values between 0 and 1:

g(z) = 0.5(1 + ———). (4)

V({1 + 22)

Levels of gene products should be thought to correspond to gene product
activities in the biological system rather than to actual concentrations, and
gene interactions should be thought to correspond closer to genetic rather
than specific biochemical (transcriptional etc.) interactions. The form of Eq.
3 can be justified as follows: if we consider gene a as a producer molecule
that can be either in an activated/producing state or in inactivated/non-
producing one, depending on the concentrations of other gene products that
can bind at its regulatory regions, then the amount of species a produced is
proportional to the fraction of time that gene a spends in the activated state
(or equivalently to the fraction of producer molecules in that state); species
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Raw materials Species a

Producer for species a

Figure 1: Tllustration of the biochemical model incorporated in Egs. 3 and 5:
production of species a depends on the activation of gene a, which is determined
by the binding of gene products b and ¢ at regulatory regions of gene a and by
interactions of these with the transcription apparatus at the gene. Adapted from
Fig. 2 in [67].

a also decays at a rate A\, independent of gene product concentrations. This
is expressed in the following equation (which has the same form as Eq. 3):

dv,
dt

= R,[FractionActivated] — \,v, (5)

where [FractionActivated] is the fraction of time that gene a is activated. It
is this fraction, which depends on the concentrations of other gene products,
that is approximated by the recurrent net formulation of Eq. 3. See also Fig.
1. For a more detailed biochemical rationale of why gene expression kinetics
can be approximated by Eq. 3 see Section 4 in [67].

4.2 L-grammar

The gene net framework allows for cell transformations in the models; for
instance, cells may change their state (i.e. the levels of gene products or
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other state variables), change type, give birth to other cells, die. These
transformations are represented by a set of grammar rules, the L-grammar,
as in Lindenmayer Systems [53, 79]. Rules are triggered depending on the
internal state of each cell (or perhaps also of other cells) and are of two kinds,
discrete and continuous time rules. Transformations that happen gradually
(smoothly) over time are described by continuous time rules, while processes
that occur as abrupt, discontinuous changes are given by discrete time rules,
which are instantaneous. Rules may involve one or more cells, representing
intracellular processes and cell-cell interactions, respectively (see Fig. 2).
How rules are triggered depends on the internal state of each cell (or perhaps

INTERPHASE
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ENTERING MITOSIS

SYMMETRIC DIVISION

O

O

ASYMMETRIC DIVISION

@

PROPAGULE DIFFERENTIATION

& — O

Figure 2: Graphical representation of the set of rules that are applied to cells
in the model. Blue and red disks denote cells in interphase, black disks cells in
mitosis and the larger circle a propagule with its stored reserves. Note that the
asymmetric cell division rule produces two cells which differ in their gene product
concentrations and are depicted by different colors, whereas the symmetric division
rule produces identical cells.

also of other cells). There are some constraints as to what rules may be active
in a cell at any given time: only a single continuous one-cell rule is allowed
at a time but several continuous two-cell rules may operate simultaneously;
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only one birth or death rule may occur at a time, but other discrete rules
that bring about changes in cell type may happen simultaneously, as long as
they all transform a cell to the same cell type. A set of binary variables C
keep track of what rules are active in any particular cell at any given time.
Vector u of Eq. 2 is therefore more accurately given, for a cell ¢, by

=Y CITy-vi+ ) Cf ZAUTQ v, (6)
r r ]

where T7 is the interaction strength matrix for one-cell rule r; v; the state
variable (gene product concentration) vector for cell i; T% the interaction
strength matrix for two-cell rule r (r, of course, in both sums of Eq. 6 is just
a a dummy variable that stands in for the actual names of the rules, which
could be, for instance, mitosis, cell-death, interphase and so on); v; the state
variable vector for cell j, located in the neighborhood of cell i, the type of
neighborhood being specified in particular models; A;; a factor that modifies
the influence of cell j on cell 7 and depends on the geometry of cells and their
positions in a model. Variables C] determine which rules in Eq. 6 operate
at any given time; if C7 = 1 then the corresponding rule is active, while if
C7 = 0 the rule is inactive; these C' variables encode the constraints on rule
activity that were described above.

When two rules cannot be both active at the same time, the rule of highest
strength at that time wins: strength, ST, of rule r in cell ¢ signifies the likeli-
hood that rule r will be triggered in that cell at that time, and depends on
the internal state of the cell (and perhaps also on interactions with neigh-
boring cells). Considering only dependence on the internal state of the cell
itself (i.e. on the state variable vector v;), rule strength is given by

S{:VZ"S,«—{—QT (7)

where s, is a vector that describes how each state variable of the cell con-
tributes to the strength of rule r and 6, is the default likelihood that rule r
will be triggered.

Rule strengths together with the constraints determine which rules are active
at a given time, and along with the parameters of state variable dynamics,
T,R,h, and X of Egs. 3 and 2, and geometry factors A, completely specify
how the modeled system develops.
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4.3 Optimization

Models using the gene net framework can be formulated as optimization tasks
that seek values for the model parameters such that the model optimally fits
biological data or behaves in a certain desired manner. Such requirements
can be captured in a so called cost function (or energy function) E(v), which
depends on the state variable values v during development of the system; F|
of course, ultimately depends on the values of model parameters. A common
example of a cost function is a least-squares cost function

E= Z (UELMODEL(t) - UzDATA(t))Qv (8)

cells,genes,times

which is the squared difference between gene product concentrations in the
model and those in the data, summed over all cells and over all gene products
and times for which data is available.

A quadratic penalty term on these parameters, of the form

Penalty = Z wp? 9)

parameters

where p; are parameter values and w; weights (usually the same for all pa-
rameters), is added to F to produce the final, objective, function which is
optimized:

Objective = wpE(v(p)) + w,Penalty(p) (10)

p being the vector of model parameters and wg, w, weights for the energy
and penalty terms of the objective function, respectively. The penalty term
prevents optimized parameters from growing excessively large and hence sat-
urating the sigmoid functions of the model or causing overflow errors in
computer simulations. It effectively restricts the search space and thus may
facilitate the optimization; however, if the restricted search space does not
contain the sought optima or if, depending on the optimization algorithm
used, parts of the parameter space are not equally accessible from all other
parts of the space, this may adversely affect the optimization search — see
[24] for a discussion, in the context of genetic algorithms, of this and the
more general problem of optimizing objective functions that have many com-
ponents.

The objective functions in gene net models typically have a large number

12



of variables, are highly nonlinear and cannot be solved analytically or read-
ily optimized with deterministic methods. We have therefore used numerical,
stochastic techniques to optimize them, namely simulated annealing (SA) and
genetic algorithms (GA). Both of these optimization methods have a number
of parameters that can affect their performance and need to be tuned for
each individual problem.

For more details on this connectionist framework and its application to
lateral inhibition models, see Mjolsness et al. [67] and Marnellos (1997) ([58]
section 2.1).

4.4 Overview

This combination of differential equations and grammatical structure is in-
tended to make models computationally feasible and yet maintain a wide
repertoire of behaviors at the molecular and tissue levels. Grammars can be
thought to summarize aspects of the intracellular and intercellular dynamics
of the system being modeled, which would otherwise require a large num-
ber of extra state variables and model parameters to describe. So grammars
offer a concise and thus computationally tractable representation. The neu-
ral net idealization representing molecular interactions is at a similar level
of abstraction as the biochemical kinetics models; the phage A models, in
contrast, incorporate much greater biochemical detail and it would be very
expensive computationally to have that much detail in models of multicellular
development.

The neural net idealization has the following additional advantage: neural
nets can be “trained” to produce desired outputs. This property of the neural
net formalism has been extensively studied [32] and there are algorithms to
perform the training — for instance, in the case of sufficiently simple recur-
rent neural nets, there are even deterministic methods (like those described
in [78, 103]) to do the training. In the gene net framework, training corre-
sponds to fitting experimental observations, or having the simulated system
behave in a desired fashion, by optimizing the adjustable parameters of the
gene nets, i.e. gene interaction strengths, activation thresholds etc.; this is
similar to what Bray has done in his bacterial chemotaxis models mentioned
above [11, 10], which of course are models of single cells only.

The scope of biological questions that can be addressed with the gene net
framework is comparable to that of Kauffman’s boolean nets which are com-
putationally less expensive than gene nets; however, because of the binary
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way in which they represent molecular events and because they do not rep-
resent cells, tissues or such entities, boolean nets cannot be readily used to
interpret a large body of molecular and cell-level experimental observations.

A framework very similar in scope, structure, expressiveness and level
of biochemical detail to the gene net method has also been proposed by
Fleischer [23]. Its main differences with the gene net framework are that it
does not have grammar rules to represent state changes in cells, but instead
uses conditional terms in the ordinary differential equations that describe
how state variables change; state variable dynamics are not neural-net-like
but of a more arbitrary form that can be specified by the user; and it has
mainly been used to simulate artificial configurations of cells and not interpret
biological observations.

5 Applications of the Gene Net Framework

DROSOPHILA BLASTODERM. Reinitz, Mjolsness and Sharp [81, 82| have
applied the gene net framework to an early stage of development of the
Drosophila embryo (the blastoderm stage). They have looked at the well-
characterized hierarchy of regulatory genes that control the early events of
Drosophila embryogenesis by setting up their expression patterns along the
embryo’s length and dividing it into segments. This includes maternal gene
products, bicoid (bed) and hunchback (hb), expressed in broad gradients along
the anteroposterior axis of the embryo, and so called gap, pair-rule and seg-
ment polarity genes, which end up segmenting the whole length of the embryo
into stripes, each a single cell wide [76, 38, 93]. As the expression of these
genes does not vary along the dorsoventral axis of the blastoderm and since
there are no separate cells at the blastoderm stage but the embryo is a syn-
cytium of nuclei arranged at its surface like a shell, the authors have modeled
the system as a single row of nuclei which are the sites of gene expression
and which interact with each other through the diffusion of gene products.
They have investigated questions of positional specification in the blas-
toderm and their model has yielded predictions and interpretations of ex-
perimental observations: it predicted that Bicoid and Hunchback proteins
cooperatively determine position in the anteroposterior axis [81], which has
subsequently been confirmed by experiment [90]; and offered insights into
the spatiotemporal expression pattern of pair-rule gene even-skipped (eve),
on questions like which domains of gap gene expression set the boundaries of
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eve stripes, and on the timing and order of appearance of these stripes [82].
Moreover, the model provided an explanation for a cell-biological observa-
tion, namely that pair-rule mRNA’s are apically localized: it showed that eve
stripes do not form unless Eve protein has very low diffusivity, which could
presumably result from its apical localization.

DROSOPHILA NEUROGENESIS. Marnellos and Mjolsness [60, 61| have
worked on early neurogenesis in Drosophila and constructed models to sim-
ulate how neuroblasts and sensory organ precursor (SOP) cells differentiate
from proneural clusters of equivalent cells (see more below). These neuroge-
nesis models have made predictions about the dynamics of cluster resolution
and how the interplay of factors like proneural cluster shape and size, gene
expression levels, and strength of cell-cell signalling determine the timing and
position of appearance of neuroblasts and SOP cells; and about the robust-
ness of this process and the effects of perturbations in gene-product levels on
cell differentiation.

XENOPUS CILIATED CELLS. In a more recent model Marnellos and Mjol-
sness [59] probed lateral inhibitory signalling through the Delta-Notch path-
way and its role in the emergence of Xenopus ciliated cells in a salt-and-
pepper pattern on the, initially uniform, epidermis. The model reproduced
the phenotypes observed experimentally under the assays tested. Statisti-
cal analysis of “genotypes” in the model suggested that the model could
account for the variability of embryonic responses to the experimental as-
says, and highlighted a component of lateral inhibition that may be the chief
source of this variability.

6 A Gene Net Model of Early Neurogenesis
in Drosophila

6.1 Background

In Drosophila, neuroblasts and sensory organ precursor (SOP) cells differ-
entiate from epithelia to give rise to the central nervous system in the fly
embryo and to epidermal sensory organs in the peripheral nervous system of
the adult fly, respectively. Neuroblasts are neural precursor cells that divide
to form neurons and glia; they segregate from the ventral neuroectoderm of
the embryo in a regular segmental pattern. SOPs appear at stereotypical
positions on imaginal discs of fly third instar larvae and divide to produce a
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neuron and three other cells that form Drosophila’s sensory organs, like the
bristles on its thorax.

The activities of two main sets of genes working in opposite directions are
thought to underlie this differentiation process: one promoting neural devel-
opment and the other preventing it and favoring epidermal development.
Neuroblasts and SOPs differentiate from apparently equivalent clusters
of cells expressing genes of the achaete-scute complex, so called proneural
genes. Eventually only one cell from each proneural cluster retains proneural
gene expression and becomes a neuroblast or SOP, in a process referred to as
cluster resolution (see Fig. 3). Proneural genes thus promote the neuronal
fate. The other set includes a number of genes also encoding nuclear proteins,
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Figure 3: (a) Proneural gene expression in clusters in a Drosophila wing disc
(the appendage of the fly larva that gives rise to the wing and the back of the
adult). The lacZ reporter gene indicates achaete expression (achaete is one of the
proneural genes). (b) Detail of (a), note cluster on lower left that has not yet
resolved; other clusters appear to be at a more advanced stage of resolution.

like genes of the Enhancer-of-split (E(spl)) complex and hairy as well as other

genes for membrane and cytoplasmic proteins; all these tend to suppress
neurogenesis and promote epidermal development. In this paper we refer
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to this set of genes as epithelial genes — in the literature they are called
“neurogenic” genes, because loss-of-function mutations of these genes lead to
overproduction of neurons.

Cluster resolution and the singling out of neural precursors from within
proneural clusters is brought about by inhibitory lateral signalling between
adjacent cells, through the signalling pathway of receptor Notch and its ligand
Delta; the neural fate is promoted in the future neuroblasts and SOPs and
suppressed in other cells.

Several other genes that are involved in this specification of cell-fate are
also expressed in characteristic spatial and temporal patterns during the pro-
cess (for reviews see [13, 73, 4]).

Despite the number of empirical observations that have been gathered, sev-
eral features of this system remain unexplained: a precise characterization of
lateral signalling is still lacking; we do not understand dynamical aspects of
the system, for example, whether and how the shape and size of proneural
clusters determine how cluster resolution proceeds; it is not clear what the
role, if any, of cell delamination, which accompanies neuroblast differentia-
tion in the fly embryo, is.

6.2 Model

In our model, cells are represented as overlapping circles in a 2-dimensional
hexagonal lattice; the extent of overlap determines the strength of interac-
tion between neighboring cells. Cells in the model express a small number
of genes corresponding to genes that are involved in neuroblast and SOP
differentiation. In the work presented here we have used networks with four
genes (one corresponding to the proneural group, another for the epithelial
group and two for the ligand and receptor, respectively, mediating cell-cell
signalling).

Genes interact as nodes in recurrent neural nets, as described above in Equa-
tions 2 and 3. The matrix T" of gene interactions has the structure depicted in
the table below; columns in this table are for input genes and rows for genes
affected (empty boxes signify zero interaction strength. i.e. no interaction):
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Intracellular Interactions

Proneural | Epithelial | Receptor | Ligand
Proneural ¢ ¢
Epithelial ¢ ¢
Receptor ¢ ¢
Ligand ¢ ¢

This table shows that we have allowed only proneural and epithelial gene
products to directly regulate the expression of other genes (themselves in-
cluded), since these two genes correspond to transcription factors in the real
biological system.

We have modeled lateral interactions between cells by the binding of lig-
and to the receptor in the neighboring cell and subsequent regulation of the
epithelial gene by the active ligand-receptor complex — this corresponds to
the signal relayed from activated Notch receptor to epithelial gene E(spl).
In more detail, the ligand-receptor reaction is assumed to be governed by
mass-action type kinetics:

L+RSLoR (11)
where L is ligand (on one cell), R receptor (on a neighboring cell) and Lo R
the active receptor-ligand complex; the rate of the reaction to the right is, say,
ky and to the left k9. If vy, is ligand concentration, vg receptor concentration
and [Lo R] concentration of the receptor-ligand active complex, then we have
that

d|L
7[ ° R] = kivpvg — kz[L © R] (12)
dt
dv dv
d—tL — d—f = —I{,'I’ULUR + kQ[L e} R] (]‘3)

This reaction is assumed to take place at a much faster timescale than gene
expression and to have reached a steady state before influencing gene expres-
sion. Thus the epithelial gene in a cell receives input from receptor-ligand
complexes activated by ligand in the six surrounding cells (the lattice is
hexagonal).
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We optimize on gene interaction strengths in order to fit gene expression
patterns described in the literature; the cost function optimized is a least-
squares one, as in Eq. 8. We have used a stochastic algorithm, simulated
annealing, for this optimization. For more details on the model and the op-
timization method used see [58, 61].

The gene expression datasets we optimize on, the training datasets, are
adapted from schematic results described in the experimental literature [17,
91, 39]; they specify the initial pattern of concentrations of the gene prod-
ucts, i.e. the proneural clusters, the desired intermediate pattern, and the
desired final pattern when the proneural clusters have resolved to single cells
expressing the proneural gene at high levels (see Fig. 4); it is left to the
optimization to find the right model parameters so that the system devel-
ops from the initial state through the intermediate one to the desired final
one. The initial concentrations of receptor and ligand are uniform for all
cells and their subsequent concentrations are not constrained by the dataset
(in this respect, they are comparable to hidden units in neural nets). With
parameter values derived by optimization on the dataset of Fig. 4, the model
makes predictions about how the interplay of factors like proneural cluster
shape and size, gene expression levels, and strength of cell-cell signalling de-
termines the timing and position of appearance of neuroblasts and SOP cells;
and about the robustness of this process and the effects of gene product level
perturbations on cell differentiation.

The figures below (taken from [61]) illustrate the robustness of model
results to small perturbations (Fig. 5) and the kind of predictions that the
model makes (Fig. 6); these can also be viewed as in silico tests of possible
biological manipulations and experiments.

7 Discussion

In this paper we have presented an overview of computational models of gene
regulation that have been applied to questions in biological development,
including fairly detailed models of biochemical reactions and their dynamics
as well as more abstract reaction-diffusion and boolean network models. In
particular we have concentrated on a gene network model based on Mjolsness
et al. framework, as it has been applied to early neurogenesis in Drosophila.

Although different in detail, all such models offer insights into the pro-
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Initial (¢ = 1) Middle (¢ = 75)

Figure 4: Cells are modeled as circles on a hexagonal lattice. Gene expression is
represented by disks, proneural expression in brown, epithelial in green, and where
the two overlap in yellow-green; disk radius is proportional to level of expression.
This figure shows the training dataset: on the left, the initial concentrations of
the gene products — there is only proneural gene expression in three symmetrical
clusters; in the middle, the desired intermediate pattern of expression; on the right,
the desired final pattern of gene expression — proneural expression is retained only
in the central cell of each cluster, the future neuroblast or SOP, whereas all other
cells express the epithelial gene. Times ¢ indicate the points in the run when the
desired expression pattern is compared with the actual one (see Eq. 8); at ¢t = 1
there is of course only initialization and no comparison. Initial concentrations of
ligand and receptor are not shown.

cesses under study, by posing biological questions in more concrete terms
and testing the logical consistency and inferences of underlying assumptions.
The gene network approach has the advantages that, through its grammar
strucrture, it can represent a large spectrum of molecular and tissue-level pro-
cesses, while at the same time being computationally tractable, and, because
of its neural net dynamics, it is suitable for having its adjustable parameters
trained on experimental data or optimized to produce other desired behav-
iors. However, as with other models with parameters fitted on experimen-
tal data, available regression methods (like optimization through simulated
annealing, used in the neurogenesis model presented above) are often inade-
quate for fitting the parameters of gene network models; this could limit the
scalability of such models.

Neurogenesis, which we have examined in this review using our gene net-
work model, encompasses general questions of cell differentiation in epithelia
and tissue level dynamic interactions, that are relatively simple to formu-
late and yet complex enough to be of theoretical and experimental interest,
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since such processes occur repeatedly in metazoan development. We have
been able to extract predictions about the dynamics of proneural cluster
resolution and draw conclusions about mechanisms that may be sufficient
or necessary for neuroblast and sensory organ precursor differentiation. We
have also tested how robustly various genotypes lead to cluster resolution,
under various perturbations.

The kinds of questions that can be posed with the model described above
are not only of relevance to neurogenesis in Drosophila but are common to
many developing organisms, especially in view of the fact that homologues to
genes involved in Drosophila neurogenesis have been isolated in many species
from worms to mammals, participating in a variety of developmental pro-
cesses. In vertebrate neurogenesis such homologues act in ways similar to
those of the Drosophila genes to regulate the number of neurons generated
(see [16], [52]); one would therefore expect that a theoretical and empir-
ical understanding of Drosophila neurogenesis would provide insights into
neurogenesis in higher vertebrates, for instance, into questions surrounding
neuronal proliferation in the developing mammalian cortex (see [15], [80]). Tt
would be interesting to see an extension of the neurogenesis model presented
here to mammalian neurogenesis, now that molecular data are becoming
increasingly available in this area too.

Considering ways to move ahead with developmental modeling approaches
more generally, one has to observe that models described in this review have
been primarily concerned with the dynamics of development, i.e. how cells
develop in space and time. Such models can, of course, be constrained by
the large amounts of genomic data becoming available, but, still, they can-
not incorporate all the available data without becoming intractable. A good
portion of these biological data is of a qualitative nature, so cannot be read-
ily mapped to precise interaction strengths between the components of a
model. Other methods are needed to achieve a more comprehensive bio-
logical knowledge representation. Researchers have recently experimented
with graphical models and pathway/model databases. Graphical models [27]
attempt to systematically describe relationships (edges) between elements
(nodes) in biological systems, bringing together data on mRNA expression,
protein interactions, environmental conditions, etc.; these descriptions are
probabilistic with probabilities conditioned on existing data, allow inferences
from these data, and point to areas where more data are needed. Path-
way/model databases [40] describe metabolic and gene-regulatory networks,
enzymes and other proteins, and try to present a more global picture of many
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interacting processes within an organism; they are based on an ontology —
which is a database structure or schema that captures important features of
the underlying system and precisely defines their relationships — and include
theories about how the organism works that can be derived from the ontol-
ogy. For such databases to extract knowledge from large datasets, methods
for efficiently generating mathematical model , storing them in the databases,
comparing them to each other, and validating them against existing data will
also be needed. In connection with this last point, see, for instance, Cellera-
tor [88], a program that allows users to specify a set of biochemical reactions,
group them in a hierarchical graph structure that corresponds to the process
modeled, translate them to ordinary differential equations and solve them.
Both graphical models and pathway /model databases appear to be attrac-
tive vehicles for storing the more detailed kind of dynamical models presented
in this review, for comparing them to each other and to available data and
for assessing how well they fit in the more global ontology of an organism.
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