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Abstract

Deformable models are central to non-rigid motion analy-
sis, shape matching and non-rigid medical image registra-
tion. Spline-based deformations are a very popular class
of parameterizations of deformable models and have been
heavily used in multiple domains. In a somewhat separate
sub-field, weighted graphs are a frequently used object pa-
rameterization. Graph matching using weighted graph ob-
ject parameterizations finds application in a spectrum rang-
ing from rigid pose estimation to deformable object recogni-
tion. Here, we demonstrate a hitherto unsuspected relation-
ship between spline-based deformable models and weighted
graphs. It turns out that spline parameterizations in the
kernel representation can be used to construct equivalent
weighted graphs. With this connection established, we en-
vision a cross-fertilization between these two seemingly dis-
parate sub-fields of computer vision.

1. Introduction

Deformable models are very useful in domains such as ar-
ticulated and non-rigid motion analysis [1], shape matching
and recognition [15], deformable templates [25] and non-
rigid medical image registration [19]. Depending on the
task at hand, deformable models can be used to character-
ize object deformations or spatial mappings. In problem
domains such as deformable object recognition, object de-
formations are important, whereas, in medical image reg-
istration, spatial deformations are paramount. In the past
decade, spline-based deformable models have been widely
utilized in situations calling for object and/or spatial defor-
mations.

In a somewhat separate sub-field, attributed, weighted,
relational graphs have been the mainstay of object models
for some time [10, 8]. Here, weighted graphs been used as
object representations in problem domains such as pose es-
timation [8] and model matching [17, 4]. Since graphs eas-
ily encode rigid invariants (rotation, translation), they are

particularly useful in rigid matching situations such as pose
estimation. In addition, graphs have been pressed into ser-
vice in non-rigid matching domains as well [12, 2].

The need for modeling non-rigid deformations arises for
different reasons in different domains. In character recogni-
tion, spline models are routinely constructed to model the
objects (characters). Recognition is carried out by eval-
uating a distance measure between the spline models of
the stored and incoming characters [15]. In medical im-
age registration, thin-plate splines [23] are routinely used to
characterize spatial deformations. Non-rigid registration is
achieved by solving an associated (spline) regression prob-
lem [6]. However, a neat divide between using object defor-
mation models in recognition and spatial deformation mod-
els in registration is not forthcoming. Spatial and object
deformations have been used in recognition [3] and in reg-
istration [24, 20] respectively.

Turning to graph representations of objects, we find
recognition and pose estimation problems cast as weighted
graph matching (WGM) [2, 8]. The notorious correspon-
dence problem raises its head here with most graph match-
ing problems requiring that we solve for vertex permuta-
tions or closely related parameterizations [10]. In contrast
to the earlier spline parameterization divide between object
and spatial deformations, there is no such obvious concep-
tual divide here.

Our primary objective in this paper is to build a bridge
between spline-based deformable models and weighted
graphs for non-rigid matching. We begin with a spline pa-
rameterized non-rigid matching problem. In particular, we
leave open the choice of the spline kernel to be used. Re-
gardless of the particular choice of kernel, splines are used
to characterize the spatial deformation between two point-
sets. In contrast to many previous approaches, we do not
assume that the point-set is structured (e.g. curve in 2D
or surface in 3D). Consequently, the non-rigid problem is
set up to solve for the spline parameters and the correspon-
dences between the point-sets [3, 7]. Next, we show that un-
der certain circumstances, the non-rigid matching problem
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can be reduced to a pure correspondence problem, by elim-
inating the spline parameters as a function of the correspon-
dences [26, 27]. Once this is done, it is easy to show that
the resulting correspondence problem can be interpreted as
WGM with one of the graphs being directly related to the
spline kernel. We have shown that weighted graph match-
ing emerges from a spline parameterized non-rigid match-
ing problem. This relationship is exciting because it opens
the door to a cross-fertilization between these two seem-
ingly disparate sub-fields. With this connection established,
it should be possible to flesh out deeper relationships and
perhaps even create a new super-framework with spline-
based models and weighted graphs as its proper subsets.

2 Review

The present work closely follows the development in [27].
However, the concerns in [27] are different and unrelated to
WGM. Since previous work relating spline-based deforma-
tions to weighted graphs is rare, we instead focus on previ-
ous work in each of the above sub-fields that is relevant to
our synthesis.

First, it should be mentioned that there is an enormous
literature on intensity-based non-rigid matching [5] which
is unrelated to our synthesis objective. We mention in pass-
ing that intensity-based methods avoid the correspondence
problem (but typically require brightness constancy) and
hence are not related to graph matching methods.

We have already mentioned approaches that match point-
sets [16, 11, 9, 7, 3]. Non-rigid matching methods run the
gamut of also matching lines [4], curves [15, 20] and sur-
faces [21, 13, 22]. Non-rigid matching using graphs are less
common [12, 2] except for the recent resurgence in using
medial axis graph representations in matching [18, 14].

Insofar as we restrict focus to feature-based methods,
the concerns are common. Whether splines or graphs are
used, feature-based methods have to deal with some/all of
the issues of i) rigid pose, ii) correspondence, iii) non-rigid
spatial deformation and iv) object parameterization. Spline-
based methods are more concerned with issues i) and one of
iii) or iv). Graph-based methods are more concerned with
issues ii) and iv). In the rest of this work, we attempt to
relate these two approaches in the context of issues i) - iv).

3 Deriving the relationship

We begin with a non-rigid spline-based feature matching
setup. Assume that we have two sets of unlabeled features�

and � in 2D or in 3D. As mentioned at the end of Sec-
tion 2, there are four important issues in non-rigid matching.
In the feature matching problem considered here, we focus
mainly on the issues of pose, correspondence and non-rigid

spatial deformation. While the fourth issue of object pa-
rameterization is obviously important, it turns out that it
is easier to show the intimate relationship between spline-
based deformable models and weighted graphs by only con-
sidering these three issues. In establishing the relationship,
we show that spline-based spatial deformations give way to
graph-based object representations which is an interesting
duality.

Given the feature point-sets
�

and � , the non-rigid de-
formation is obtained by minimizing the following objective
function:������� 	 
������������ � ����� �

��� ��� � � � � �� "! �#� $ � �%� �'& (1)

In (1), we seek to recover the non-rigid mapping function�
. The first term in (1) is a least-squares distance between

corresponding points in
�

and � . Note that each
� �

and � �
consists of the point coordinates in 2D or in 3D. The oper-
ator $ in the second term of (1) is a regularization operator.
Different choices of $ result in different choices of splines.
For instance, if $ is the Laplacian operator (in 2D or in 3D),
the result is the familiar thin-plate spline (TPS) [6, 23]. If$ consists of a certain infinite series of derivative opera-
tors, then it can be shown to correspond to the Gaussian
radial basis function spline [27]. Irrespective of the chosen
operator, the second term imposes a smoothness constraint
on the entire space as opposed to the first term which is a
least-squares error term on the points alone. The parameter!

is a regularization parameter. Also noteworthy is that
�

comprises not only the non-rigid spatial deformation but the
rigid pose parameters as well since the spline in (1) is not
supplemented by a separate rigid pose parameterization.

The objective function in (1) is only valid when the
feature point-sets are labeled and correspondences known.
We now augment the objective by including the correspon-
dences as unknown variables.��(*),+�-�./�0�21,34�5�6�� � ��� � �2798

�%: � ��� � � � � �; <! �%� $ � �#� � (2)

In (2),
3

is an unknown permutation which is required to
bring the point-sets

�
and � into correspondence. An

equivalent way of writing the objective in (2) is

��(*)=+>-�.?���21A@5��� ��B� � ��� �DC�E ��� @
� E � �

��� ��� � E � � ��GF � B� � ��� � C�E ��� @
� E  <! �%� $ � �%� �H& (3)

In (3),
@

is a zero-one matrix with the property that featureI
in
�

is matched to feature J in � if and only if
@ � E �LK

.
Since, one-to-one correspondence is desirable, we have the
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constraints � � B� �D� @ � E�� K
and � � CE ��� @ � E�� K

[10]. The pa-
rameter

F
��� controls the number of null feature matches

and is a robustness parameter. We prefer the formulation in
(3) over the one in (2) because it is more amenable to alge-
braic manipulation. In summary, the objective function in
(3) includes pose (via

�
), correspondence (via

@
) and non-

rigid spatial deformations (via
�

) and does not impose any
object model (since the point-sets are unstructured).

3.1 Moving to the kernel representation

A well known relationship exists between the regulariza-
tion operator $ and its corresponding spline kernel [23].
We briefly describe this relationship. Since the regular-
ization operator is deemed to act on the entire space ( �	�
or 
�� ), it is straightforward to switch from the operator-
space representation to the kernel representation. This is
accomplished by solving the Euler-Lagrange equations for
(1) with no forcing data term. The solution to the Euler-
Lagrange equation—called the Green’s function—allows us
to write

�
in terms of the corresponding spline kernel � .

����9��� �� � ��� �
�
� �� � 

� � &
(4)

A few clarifications are required for (4). In (4),


is any
spatial location (in 2D or in 3D) and


�

is a point in � .
The coefficients � are unknown and require the data

�
in

order to be specified. The scalar kernel function � ��� �
is

obtained from the Green’s function of (1). For more details,
please see [23]. Once the Green’s function (and therefore
the kernel as well) are specified, we may transition from the
operator representation to the kernel representation.

��(*),+�-�./� � 1A@���� � B� � ��� � C�E ��� @
� E � �

��� �
� ��� � � �  E

�
 � � � � � � � !

trace
� ��� � � � � F �*B� � �D� ��C�E ��� @

� E & (5)

In the first term of (5), it should be understood that a sepa-
rate spline is required for each dimension of

�
(2D or 3D).

Note that the second term of (5) is purely a relational term
on � and not on the entire space: the

� J 1�� � th entry of matrix� is � E � � � � �  E
�
 � � � .We now make a technical simplification that facilitates

the demonstration of the relationship between splines and
weighted graphs. When the one-to-one correspondence
constraints were added in (3), we allowed for outliers in
both feature point-sets. Instead, we modify the constraint� �*B� ��� @ � E � K

to � �*B� ��� @ � E � K
. This has the effect of

demanding that every point in � has to have a counterpart
in
�

but not vice versa. If the task were object recognition,

then a way to understand this constraint is to think of � as
a template which is being deformed and

�
as data. In this

case,
�

may have many noise points that have no counter-
parts in � but each point in � has a corresponding point in�

. In other words, we do not allow model occlusion but we
do allow noisy “extra” data features.

After this simplification, we may algebraically modify
the objective function in (5) to� (*)=+>-�. � � 1A@5��� � C�E �D� � � B� � ��� @

� E � � � � C�
� ��� � � �  E

�
 � � � � � � � � B� � ��� � � C�E �D� @

� E � � �
�
� �
� � C�E ��� � � B� � ��� @

� E � � � � !
trace

� � � � � � & (6)

The objective function in (6) makes explicit the fact that the
counterpart of � E is � � C� ��� @ � E � � . This is valid only when
“all of � ” is present in

�
. We now switch to matrix notation

and rewrite (6).��(*)=+>-0./� � 1 @��5� �%� @ � �
�
� � �%� ��  <!

trace
� ��� � � � 

trace � � � � diag
� � C�E ��� @

� E � � @�@ � � ��� & (7)

In (7),
�

is � ��� � , � is � � � � � , @ is � ��� � � , and �
is � � � � where � is the dimensionality of the point-sets
(usually 2 or 3 but may be augmented when using homo-
geneous coordinates). The first term uses a Frobenius norm
but is equivalent to the vector norms used earlier in (6).

At this juncture, we feel that a capsule summary of the
derivation of the relationship is in order. We began with a
non-rigid feature matching problem using a spline parame-
terized spatial deformation model. Since the point-to-point
correspondences are unknown, they were also included in
the objective function. After some simplifications and al-
gebraic manipulations, we have an objective function de-
fined w.r.t. the spline coefficients � and the correspondences@

. The actual choice of spline is buried in the kernel � .
The next step involves eliminating the spline coefficients �
from the objective function in (7) which is straightforward
since (7) is a standard least-squares cost function w.r.t. �
but not on

@
since the latter is binary-valued. After � is

eliminated, we interpret the resulting objective function as
a WGM problem. The definitions of the weighted graphs
follows naturally from the interpretation.

Eliminating the spline coefficients from (7) is straight-
forward. We differentiate (7) w.r.t. � and use the first-order
Karush-Kuhn-Tucker conditions. This is valid provided �
is a positive definite matrix� �

� � � � � � �0@ � � �
� � �  <! � � � �

� � � � �  "!! �#"�� @ � � & (8)

3



Having obtained a closed-form solution for � (which is the
optimal solution), we substitute it in (7) and eliminate � .
After some algebraic manipulation, we get��������	 �/��@�� � !

trace
��@ � � � � � �  "!! � "�� @ � �� � !

trace � @G� �  <!  � " � @ � � � � � � � � &(9)

In the remainder of this section, we interpret (9) as a WGM
problem with the adjacency matrix of one graph being! � �  "!! � "��

and that of the other being

� � � � .

3.2 Weighted graph matching

As mentioned previously, weighted graph matching is usu-
ally associated with rigid matching [8]. This is mainly due
to the rigid invariants encoded in the weighted graphs. For
example, the set of inter-point Euclidean distances is invari-
ant to the overall rotation and translation of the point-set.
And the set of angles culled from point triples is invari-
ant to similarity transformations of the point-set. Unfor-
tunately, invariants come at a price. Solving for vertex per-
mutations in WGM is usually a much harder problem (NP-
complete) [10] than the bipartite matching problem in (3)
which has several polynomial-time solutions [7]. Recently,
there has been some interest in using graph matching ap-
proaches in non-rigid matching situations [18, 14]. While
these approaches are restricted to using medial representa-
tions of the underlying data, there is no a priori reason for
such a limitation. Regardless of the origin of the weighted
graphs, a WGM problem can be written as [10]�����A( ��@���� � �� E
	 � ��

�
	 ���E � @ � E @ 	 � � �

trace � @ ��� @ � �� � &
(10)

In (10),
� �

and
� �

are the adjacency matrices formed from� and
�

respectively. The usual simplex constraints apply
to
@

in this case as well. Weighted graph matching is a spe-
cial case of the quadratic assignment problem (QAP) [26].
Once the link between spline-based deformable models and
WGM is established, other equivalent forms of WGM (or to
QAP) can be used if appropriate.

Examine (9) and (10). It should be straightforward to
associate

� �
with

! � �  !  � "��
and

� �
with

� � � � . The
asymmetry between the adjacency matrices

� �
and

� �
is

due to the fact that � is being deformed whereas
�

is held
fixed. Graph

� �
is also dependent on the regularization

parameter
!

. When
!

is small,
� ��� ! � "��

and at large
!

,� � �  
. In contrast, the adjacency matrix of point-set

�
is unaffected by

!
. Finally, the choice of the spline affects

the kernel � which in turn affects the adjacency matrix of
point-set � .

We have shown that a weighted graph matching emerges
from a spline parameterized non-rigid matching problem
when the spline coefficients are eliminated from the latter.

A pure correspondence problem results which has been in-
terpreted as WGM. Note that the smoothness constraint im-
posed by the spline (in the form of the operator $ ) forces
nearby points to behave cohesively. When the spline coeffi-
cients are eliminated, the spline nevertheless leaves its im-
print on the problem in the form of a weighted graph

� �
.

The links in
� �

are directly related to the spline kernel.
Spatial smoothness of the deformation (emphasized by the
spline representation) gives way to point correlation (em-
phasized by the graph representation). We examine these
issues in greater, quantitative detail, for a particular spline—
the thin-plate spline (TPS).

4 Visualizing spline graphs

The TPS kernel � ��� � ��� ������� �
in 2D and is not positive

definite. Wahba [23] explains the notion of conditional pos-
itive definiteness and carries out the analysis for the TPS.
Essentially, the TPS kernel becomes positive definite when
confined to a non-affine subspace. In the operator formu-
lation, the TPS energy is the square of the Laplacian inte-
grated over the entire space. The Laplacian operator an-
nihilates constants and linear functions of spatial coordi-
nates. In 1D, the TPS results in the familiar cubic spline.
In 2D, the TPS results in the

� ������� �
kernel as noted above.

And in 2D, constants and affine terms are annihilated by the
TPS energy. Positive definiteness is achieved by restrict-
ing the TPS to a non-affine subspace. A QR decomposi-
tion is used to represent the point coordinate vectors in its
affine and non-affine subspace. The non-affine portion of
the decomposition is culled and the kernel projected into
that subspace. For more details, please see [23]. There
are no complications resulting from the correspondence
variable because we have already taken care to not have
outliers in both point-sets. The WGM objective now has� � � !�� � � � �� � �"!$# � �  "!! � "�� � �� with

� � � � � � � .
In the above, � � � � � � � � �&% with � written in the homo-
geneous coordinate notation. The dimensions of

� � and
� �

are � � � 
 and � � � � � � � 
 � respectively. Since affine sub-
spaces are removed from � , we also remove the centroid of�

prior to computing
� �

.
In Figure 1, we show both

� �
and

� �
. The graph

� �

is visualized after removing its center of mass since that
leaves the problem unchanged. The graph

� �
is shown

for decreasing values of
!

. Please note that
� �

and
� �

are topologically similar only at large values of
!

. As
!

is
decreased, the TPS graph switches from emphasizing long
range connections to nearest neighbor connections. This is
true for both templates—the Chinese character and the fish
pattern. The graph

� � � emphasizes long range connec-
tions over short range connections because the link weights
are larger for long range connections. When

!
is large,� � � � � � �� which is an affine invariant [23]. We have no-
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ticed that
� � � � � � � �  � � � � � � �  � � � � � � � "�� � �

also emphasizes long range connections, thereby explaining
its similarity to

� �
. To show that this phenomenon is not

isolated, we depict the graphs for a number of hand-drawn
characters in Figure 2. All these graphs are shown at a small
value of

!
. Note the absence of long range connections in

virtually all the graphs.
The fact that point-set warping does not appreciably

change the topology (at least for small warps) is shown in
Figure 3. We created a point-set and show its

� �
in Fig-

ure 3. Then, we warped the point-set using progressively
larger TPS warps. For each new point-set, we display its� �

graph. Visual inspection reveals that the graph topolo-
gies are not appreciably different. More work is required to
understand the ways these graphs change under warping.

5 Discussion

The equivalence between a spline spatial transformation
model $ � and weighted graph object models

� � 1 � �
is

the main contribution of this paper. We have empirically
observed that the graph

� �
starts becoming significantly

different from
� �

as
!

is decreased. Short range near-
est neighbor relations are preferred over long range con-
nections in

� �
as

!
is lowered. This suggests a certain

action on the algorithmic front. If this analysis holds, it
makes more sense to computationally warp the point-set �
and “reset” the problem rather than stay with the original
point-sets. After a certain correspondence is obtained, a
new point-set � can be obtained using a heavily regular-
ized TPS. In this way, we keep

� �
and

� �
similar (at least

for small warps). And
!

is always rather large since the
point-set � is being continuously regenerated rather than
held fixed. We speculate that this strategy could improve
the performance of recent approaches such as [3, 7].

We have devoted much space in covering the transition
from spline-based deformable models to weighted graphs.
What about the opposite direction? Is it possible to for-
mulate WGM objectives and show equivalence to a cor-
responding spline. We think that this reverse direction is
very difficult to establish. However, there is one intrigu-
ing possibility which is available to us. Our analysis of the
difference between short range and long range connections
and their impact on

� �
and

� �
suggests the possibility of

a new formulation. The graph
� �

is a very simple graph
because the spline-based deformable model does not oper-
ate on the point-set

�
at all. Only the point-set � is af-

fected by the spline. Consequently, the connectivity pattern
in
�

is quite basic resulting from the outer product
� � � .

A way to directly involve the inter-relationships between
the points in both point-sets can be achieved by formulating
the warping in a link space and not in the point space. As-
sume that we have two graphs with adjacency matrix entries

� �
�
	 � � �

�*�
� 	 � and

� �E � � �  E
�
 � � . Note that the two

graphs are invariant to rigid transformations of the point-
sets � and

�
but are not invariant under scale transforma-

tions. Also, assume that � is deformed as before but under
the action of a new transformation.

���E � ��� 1�� ��� � �  E  �� E � �  �
�
� � � (11)

where
�

is a global scale parameter and
�

is a local “graph
flow” displacement field. After setting up the two graph
representations and displacement field transformation, con-
sider the following objective function:� ����)A��. �/)����?�0@�1�� 1�� ��� �E � � 	 @ E

� @ � 	 � ��
�
	

�
���E � �	� 1 � � � � (12)

with the double simplex constraints on
@

as before. Equa-
tion (12) relates the two graphs using a correspondence ma-
trix and also through a new displacement field

�
. From

an algorithmic standpoint, when
�	� 1�� �

are held fixed, we
have a WGM problem on

@
and when

@
is held fixed, we

have a standard least-squares problem on
�	� 1
� �

. Our new
objective function also affords the possibility of correlated
outlier treatment. Rather than continue having different
sized point-sets leading to different sized graphs, the op-
timization on (12) could find optimal point locations in one
point-set corresponding to the outliers in the other and vice-
versa. Once again, this could be set up in a standard least-
squares framework but with the crucial difference being that
the point-sets and the graphs would be of equal size � . In
point-set

� �
, it would be understood that the first � � points

are the actual points and the remaining �
�
� � points are

new point locations in search of outlier counterparts in
�

.
And

�
would have its first � � points be identical to the ac-

tual points and the remaining �
�
� � points be new point

locations in search of outlier counterparts in � . The size
of � is an unresolved issue but far simpler than having to
estimate outlier parameters such as

F
.

The principal difficulty with objective functions such
as (12) lies in designing suitable optimization algorithms.
Solving WGM problems during each phase of an alternat-
ing algorithm is expensive (and fraught with local minima
issues) and smells wrong. However, approximate reduc-
tions of WGM to linear assignment (for the correspondence
phase) as explored in [10, 3] are obviously possible. Since
initial conditions are readily available from the previous en-
try into the WGM phase of the alternation, this approach is
viable. We think that such an approach has not been pre-
viously considered due to the perception (somewhat widely
held) that it would be impractical. We wish to point out
that practical alternatives are available and worth consider-
ing. Finally, all four aspects of non-rigid warping—object
models

� � � 1 � � �
, pose

����
, warps

��� �
and correspondence��@��

—are contained in (12).
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6 Conclusion

We have shown the emergence of weighted graph matching
from a spline-based non-rigid matching problem. In par-
ticular, the spatial deformation spline model was shown to
be equivalent to a graph object model in weighted graph
matching. This connection is exciting because it relates two
sub-fields and we are not aware of other work drawing at-
tention to this connection. We hope that the demonstration
of this relationship will result in new computational and al-
gorithmic insights stemming from a cross-fertilization of
hitherto unrelated sub-fields.
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Figure 1: Two graph representations. First Row: the graphs of the fish pattern. Leftmost:

� � � � graph. The entries with
relatively large absolute values are shown as links. From second left to rightmost: TPS graph with gradually reduced values
of
!

. Second Row: the graphs of a warped fish pattern. Third Row: the graphs of a Chinese character. Fourth Row: the
graphs of a warped Chinese character.
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Figure 2: More TPS graphs. All the graphs shown here are TPS graphs at a small value of ���

Figure 3: On the top an original point-set is shown along with its graph depicted for a certain threshold. Below, we show four
different thin-plate warped point-sets and their associated graphs. The warping increases as you go from left to right. Note
the increased distortion in the topology going from left to right. The same threshold was used for all the graphs.
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