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 The results of a numerical study of a cell-oriented model of the 

regulation of the renewable zone in biological tissue are presented. The 

shoot apical meristem (SAM) that describes in a one-dimensional setting 

a theoretical scheme for the regulatory mechanism is provided as an 

example. 
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1. Introduction. 

 Differentiated cells make up the bulk of the cells of the adult organism. Each 

differentiated cell does not divide, as a rule, being specialized to perform a 

particular function in a particular organ tissue. However, in the adult organism 

there exist cells that are undifferentiated, although perhaps “predetermined”. This 

means that their fate is, to a certain extent, predestined in the sense that they can 

become cells of a particular type or a restricted set of types There are stem cells 

that continue to divide at a definite rate. The stem cells are important for the life of 

the adult. In the animal tissue, they serve as sources of continuously renewable 

tissue (the skin, for example,) and certainly plants the stem cells of the shoot 

meristem (the growing tip of the shoot) provides the growth of the plant through its 

entire life. 

 According to current concepts “islets” of renewable tissue arise in a tissue during 

its development. The structure of such renewable zones is as follows: one or a 

number of stem cells are in the zone center, these divide to create a pool of transit 

amplifying cells. The transit amplifying cells divide faster than the stem cells and 

they create the major cell bulk for the renewal process. When transit cells leave the 

renewable zone of the tissue they differentiate into tissue cells and cease to divide. 

Such a structure of the renewable zone forms a “niche” to maintain the stem cells 

and is maintained in the tissue for a long time. The size of the renewable zone must 

be regulated, depending on the organism’s requirements. This is because the 



outflow of cells from the renewable zone depends on its size. Impairment of 

regulation, in the renewed zones of the epidermis, for example, causes malignant 

neoplasms. 

 In this work, a “cell-oriented” model for the structural-functional organization of 

the renewable zone is suggested. The shoot apical meristem (SAM) is provided as 

an example. The model is cell-oriented because its purpose is to describe the 

observed cell behavior (in the given case these are the types of the cells and the 

switching over from one type to another) within the framework of the minimal 

model [1]. The minimal model is not intended to describe real molecular-genetic 

systems that control cell behavior.  

 As indicated above, the plant retains definite groups of cells in a undifferentiated 

state through life. The group at the growing tip of the shoot, referred to as the shoot 

apical meristem (SAM), is of importance. The SAM contains stem cells that 

continuously divide, ultimately giving rise to all the cells of the plant. Although the 

cells of the SAM are undifferentiated, they are determined with respect to the 

expression of certain genes, and, on this basis, the SAM is divided into 

compartments that are specifically positioned relative to each other in space 

through the entire life of the plant [2-4]. The cells that are located around the 

vertical axis of the meristem in the radius of 2-4 cells at the uppermost layers 3-4 

(see fig.1) express, i.e. switch on-off the corresponding genes and, as a result, 

synthesize a protein called CLV3, belong to the central zone (CZ). Cells that 

express the WUS gene are located at the lower layer of the CZ cells. These cells 

are referred to the organizational center (OC), that is about 2-3 cells thick in the 



vertical direction. It is thought that the constancy of the SAM structure is required 

for the maintenance of the pool of the stem cells (2-4). The mechanisms that 

provide the constancy of the SAM structure are the subjects of both applied and 

basic in-depth studies. The SAM proved to be an appropriate candidate for 

developmental modeling (Mjolsness)… 

  The meristem structure remains unaltered in the growing plant, but the resident 

cells that make up the compartments are replaced by the other cells so that the CZ 

cells displaced downward by the horizontally dividing above lying cells, become 

the OC cells, which are, in turn, displaced downward to become the cells of the 

rib-zone. 

 

 

 

 

                                     

 

 Fig.1 Cross-section of the apical meristem shoot in  Arabidopsis T. 

 



Fig. 1 presents a cross-section of the shoot apical meristem of Arabidopsis T. 

(adopted [2]). The external layer is denoted by L1, the second by L2; L3 is 

arbitrarily called the third layer because it actually results from the cells dividing in 

all the planes, it is no longer a layer, rather an accumulation (a collection) of cells; 

CZ is the control zone, PZ is the peripheral zone, RZ is the rib-zone where cells 

start to differentiate into the cells of the vascular system. The X axis is pointed 

downwards from the shoot apex. Cells along the axis are considered as a one-

dimensional array in the proposed model. 

 Here, we intend to focus attention on the stable position of the OC relative to the 

upper point of the meristem in the vertical direction (position), on the possible 

mechanisms of such a stabilization where the resident cells are substituting (by the 

other cells, and on the regulation of the size of the renewable zone (the distance 

from the meristem apex to the OC). To simplify, let us consider the vertical 

column of cells on the meristem axis. Two top cells do not divide vertically and, 

beginning with the third one, they make the cells flow down along the column. 

This allows to consider the simplest version of the one-dimensional model of the 

meristem structure. 

 

The one-dimensional model for the meristem structure. 

  

There may be, in principle, two mechanisms that maintain the vertical 

compartmentalization of the meristem: first, symmetric division of the cells at the 

compartment boundaries with their determination in the morphogen fields and the 



second, asymmetric division of the cells at the boundaries [2-4]. In fact, division 

proceeds in all the planes in the L3 layer. This makes more likely the mechanism 

of the vertical structure maintenance. Furthermore, in mutants whose division 

orientation pattern is impaired at the early stages, seedlings with a normal 

structural framework are formed [5]. For this reason, a possible mechanism for cell 

determination controlled by positional information will be considered.  

 Fields of the concentrations of substances that spread over from different sources 

(for example, by diffusion) are the physical carriers of positional information. In 

the simplest case, the size of an assigned zone from the origin of coordinate axis 

may be determined by the threshold value of the concentration of the substance Y 

that diffuses from the origin (the activation zone W, for example). However, if the 

synthesis rate of the substance that “defines” the coordinate system (in the case, 

substance Y) changes, so the assigned zone area changes too. 

 In  the case when, at a rather narrow range of Y concentration, a stable source of 

W is induced, its concentration at the origin of coordinate system may serve as a 

measure of its distance from the origin. The narrow zone for the W synthesis can 

be generated by repression of the synthesis where Y is present at high 

concentrations. In such a system, the W level at the origin may be interpreted as 

the distance from the origin to its source: the weaker the signal, the further away is 

the zone where it is synthesized. If the Y synthesis rate is proportional to the 

signal, displacement of the signal at a greater distance will produce a decrease in 

the synthesis rate Y and, as a consequence, the zone where the signal is 

synthesized will approach to the coordinate origin; an increase in the signal 



strength at the origin will produce an increase in Y, thereby shifting the signal 

source away from the origin.  
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 Fig.2 represents schematically the one-dimentional model. The Y is distributed 

depending on the distance from the apical meristem and its threshold values at 

which the  C and W expression is activated (enhanced). 

  

Fig.2 shows how the origin is related to the Y synthesis zone. The distance is 

plotted along the axis X in arbitrary units which corresponds to the vertical axis 

that passes through the center of the apical shoot. The concentration of the 

morphogen Y that spread from the apical shoot (from the point O) is plotted along 

the axis Y. As a result of diffusion of Y and of its continuous destruction (decay), a 

steady-state distribution (a decreasing function from x) is established. At 

concentration above the thresholds, Y may activate gene expression in the C and 

W substances. It should be noted that the activation threshold for the C is higher 

than that for the W gene. The assumption is made that the C substance is a 



repressor of the expression of the W gene. It follows that where the C gene is 

expressed, the W gene is repressed, and the W gene is actually expressed in the 

zone that is remote from the shoot apex (the axis origin).  

 

The equations of the model. 

  

Let us consider an array of n cells between which the Y, W  substances are 

transported with the conductance being Dy and Dw, respectively. The reactions 

associated with substance synthesis may take place in the cells at a rate dependent 

on the presence of other substances: 

 

 

 where Ekj are the regulation sensitivity coefficients. They are > 0 if the substance j 

stimulates the synthesis of the substance k., and < 0 if they repress it; "k are the 

coefficients inverse to the maximum expression rate. The parameters hk like Eij 

define the threshold values of the function g(x): 

 

 The sigmoid function [6] is used to describe the reaction rates in the proposed 

model: 

 



 

 It is further assumed that the substances Y and W diffuse. Y is synthesized in cell 

1 and it diffuses into the other cells of the array. Its synthesis rate is dependent on 

the concentration of W in cell 1. Depending on the concentration of Y in the other 

cells the substance C may be synthesized, it does not diffuse, it decays. In these 

very cells, depending on the Y and C substances, the W substance may be 

synthesized. It diffuses throughout the cell array and, reaching the cell 1, it 

regulates the synthesis of the substance Y. 

 As a result, the model suggested for the process is stated as the Cauchy problem 

for an autonomous  system of equations in the following form:  

 

 

 

The initial conditions at t=0 are: 



 

 

where yi,ci,wi  are the substance  concentrations in the i-th cell,  ay, ac, aw – are the 

distribution coefficients; Dy, Dw – denote the diffusion coefficients; the Ty…….. 

and E parameters were defined above.  

 Analysis of the steady-state solutions of the autonomous system demonstrated 

that, with a certain set of parameters, the proposed model truly describes the simple 

mechanism for gene expression; moreover, the model provides a stable position of 

the maximum concentration of the W substance in that area in space where another 

substance Y is at a certain concentration. If the given concentration of Y changes 

its position in space, the maximum concentration of W changes accordingly. It 

proved that the  position of the maximum is resistant, in a rather wide range, to 

perturbations in the steady-state concentrations of W, i.e. this means that the model 

is very robust with respect to the retention stabilization of the W zone positioning. 

 Change in the size of the assigned zone may be due to the constant that defines the 

shift of the argument in the sigmoid dependency of the  synthesis rate of  W  on Y. 

A scheme for a regulatory mechanism underlies the considered model and, 

consequently, change in the constant may be interpreted as change in the steady-

state level of an “external” regulator. 

 Further, to describe the numerical algorithms, a vector representation of the 

Couchy problem will be needed. The expression will be of the following form… 

 



 

 

 where Y, C, and W are the vectors with the ……. and 1,2,…, n, components, 

respectively, Y……. and W are the vectors of the initial conditions; Qy and Qw 

denote the three-diagonal matrices: 

 

 

  that are with diagonal elements prevailing and are, hence, well defined. The 

components of the Fy ….. and Fw vectors are sigmoid functions with the 

arguments indicated in (1)-(3) 

 

 

 

4. Steady-State (stationary) solutions. 



  Let us consider a numerical definition of the stationary solutions for the 

autonomous system (5) by directly referring to the system of nonlinear equations 

(6): 

 

 

 

  It will be recalled that in (5) the first component of the W vector. 

 As known, the strandard solution of a system of nonlinear equations relies on 

Newton’s method. However, the nonlinear problem has, as the rule, multiple 

(many) solution in the sense that the same set of parameters has a number of 

solutions. To detect this, recourse has been made to the method of  continuation of 

solution with respect to parameters (7-9). The method enables to build the 

dependency of the solutions on the parameter with allowance made for the possible 

occurrence of multiple solutions in a certain variation range of the parameter The 

continuation method also involves Newton’s iteration with the difference that, at 

each step of the continuation, the initial approximation is given algorithmically. 

This enables efficiently, after a few runs, to find the solution that correspond to the 

current value of the parameter.  

 Let us choose Ty as the parameter of the system, the rest of the parameters are all 

fixed. The specific form of the right hand side of the first vector equation of the 

system allows to take advantage of parametrization to accept W, as the system’s 

parameter and to define the corresponding value of the Ty  parameter from the 



solution. In the given case, this allows to use the non-iteration method for the 

solution of the system without invoking Newton’s method. 

 Let us consider the system (6) with the parameter p>0. Setting of p yields to the 

following equation: 

 

 

 

  Equation (6) then becomes  a system of 3 vector linear algebraic equations whose 

right-hand sides depend on the p parameter. Solutions of this system may formally 

de written as: 

 

where e1 – is the first column of the identity matrix, 

 

 

 As a result, the W (p) vector, and, hence, the first component w1(p) become 

known. Thus the value of the Ty parameter, which corresponds to the given value 

of the p parameter, are estimated from: 



 

 The graph of the wi=w1 (ty) function given parametrically as w1=w1(p). Ty=        

will be called the diagram for the steady-state solutions of the system. Once the 

diagram is built, the number of steady-state  solutions is defined be the number of 

intersections of the graph of the w1=w1(Ty) with the straight line ty=ty….where ty 

is the given parameter value. 

 Note that the sweeping method is the most powerful tool for the solution f systems 

of linear algebraic equations with the Qy and Qw matrices.  

 The stability of the steady-state solutions is defined numerically by integrating the 

Couchy problem (5) with the initial data in the form of the perturbed steady-state 

solution. 

 

The Semi-implicit method of integration. 

   

To integrate the autonomous system with each constant step #, the simplest semi-

implicit scheme for the order accuracy # will be exploited. Let us introduce the 

following designations  

 

 

 

 



The autonomous system can be expressed approximately in the form of difference 

equations 

 

 

 

Where… 

 

 

This yields the Cauchy problem for the following system of difference equations 

 

 

where I is the identity matrix . 

As follows from the form of difference equations (9); the Y…….. and W.. values 

at i>or = 1 are estimated from the solution of the system of linear algebraic 

equations with the ……, and….. matrices, respectively, i.e. 



 

 

Note that the [1+..] and […] $%&'(')* (+',$-'&.-/0 123$%&'('-+30, for this 

reason the sweeping method can be used to solve the first and third systems of 

linear algebraic equations.  

 

6. Calculations of the steady-state solutions: examples. 

  

Calculations for the following parameter values with n – being the number of cells 

are as follows: 

 

 

Fig.3 presents a diagram for the steady-state solutions. It follows that at Ty=1 the 

system (6) defines 3 steady-state solutions. 

 

 



 

                                 Fig.3 Diagram for steady-state solutions.  

 

 

 

                                   Fig.4 First steady-state solution at Ty=1. 

 

 

                             Fig.5 Second steady-state solution at Ty=1. 



 

 

Fig.6 Third steady-state solution at Ty=1. 

 

 

 

Fig. 7 Stability loss for the second steady-state solution 

 



 

Fig. 8 The third steady state solution 

 

 

 

Fig 9 Loss of stability for the third steady-state solution 

 

Fig. 4, 5, and 6 show how the substance concentrations are distributed in cells 

numbered from 1-3; fig. 4 – solution 1, fig.5 – solution 2; fig.6 – solution 3. 

 Stability analysis demonstrated that solutions 1 and 3 are asymptotically stable, 

while solution 2 is unstable. Having lost its stability, solution 2 tends to solution 1, 

and solution 4 to 5. After loss of its stability, solution 3 (fig. 8) passes to stable 

self-oscillations (fig. 9).  



 

 

Fig.10   The fifth steady-state solution 

 

 

7. Model for continuous distribution of substances. 

  

The system (1)-(3) can be formally considered as the result of the discretization of 

the following system of equations that describe the continuous distribution of the 

the y(t,r), c(t,r), and w(t,r) and  substances: 

 

 The   parameters have the same sense as in the model (1)-(3). The 

R value is quite large. The y expression, defined by the w(t,0) value, is given by 

the boundary condition at the left end of the segment along r : 

 



The condition is laid down at the right end of the segment along (1$) r: 

 

The boundary conditions for eq. 14 are: 

 

(here ‘12+’ means ‘at’, and ‘+’ means ‘and’; T.B.) 

Analysis of the transitional processes requires in addition to the boundary 

conditions, the setting of the initial data the y,c, and w distribution at t=0.  

 Let us consider the boundary task on the [0,R] segment that describes the y,c, and 

w distribution at t=0. 

 Let us consider the boundary problem on the [0,R] segment that describes the 

steady-state distribution of substances in the form of graphs of the y(r), c(r), and 

w(r) functions: 

 

 

 

where 



 

 

Further use of the same designations for substance concentrations as in (1)-(3) will 

not cause misunderstanding. 

 As above, in compliance with the idea of parameterization we will accept that in 

equation: 

 

p is predefined parameter. 

The dependent on p function y(r), c(r), and p are defined from sequential solution 

of the linear boundary problems (16)-(17). Solution of the linear boundary with 

respect to y(r, p) is of the form: 

 

 

Therefore, it follows that: 

 

Solution of the linear boundary problems with respect to w(r) can be represented in 

integral form using the expression of the Green function  

 



 

 Let us introduce the following designations for convenience  

 

 In so doing, the solution takes the form 

 

 

 

Therefore, we get: 

 

 Thus, the parameter value Ty(p) calculated by the following formula corresponds 

to the given parameter value p: 

 

By doing so, the solution of the nonlinear boundary problem (16)-(17) is found at 

Ty=Ty(p). 

 It will be noted that, at R45, the solution of the boundary problem (16)-(17) is 

defined by formulas (18)-(22), where: 

 



 

Let us consider a discrete counterpart (analog) of the boundary problem (16)-(17). 

For this purpose, let us introduce an even division of the [0,R] segment into n-1 

parts with the knots at r_i: 

 

Let us denote the approximate grid values of    as 

63*$7-/3 ….. values ….. respectively. 

 Using the approximate differences, instead of the accurate derivatives with r: 

 

 

we get the equation of the discrete model of the type (6): 

 

where Y,…….. and Fw are the vectors with the same components as in (6); 8y and 

8w are the threediagonal matrices dependent on the a……, and q parameters: 

 



 

 Thus, the steady-state solution of the considered model formally agrees with (and 

actually) are solutions of the system (23) of the cell is of length h=1. It follows 

that, at an appropriate choice of model parameters, which a sufficiently large 

number of cells, the concentration distribution in the cells y,c, and w, will be close 

to the respective 63*$7-/0 concentration values obtained by solving the boundary 

problem (16)-(17). As an example, let us consider the solution of the boundary 

problem (16)-(17) with the parameters (11) where the given R=0 instead of n Fig. 

1 represents a diagram of the steady-state solution. It follows that the boundary 

problem has 3 solutions at Ty=1. The diagrams in fig.3 and 11 are different. This is 

because the system (6), formally representing a discrete model of the boundary 

problem does not sufficiently approximate it. However, this has no real 

consequence since the process itself is modeled by solutions of the system (6).  

 

Fig. 11 Diagram of steady-state solutions. 

 



 

Fig.12   The third steady-state solution 

                 Fig.12 gives solution 3.  

Comparison of this fig. with fig.6 makes it evident that substance concentration in 

the its cell is defined by the 63*$7-/3 values of the boundary problem in the i-th 

node of the 63*9+, when the segment is even subdivided [0,30]into 30 parts by (1$) 

r. The graphs represented in fig.11-12 will remain virtually the same, if the 

solution of the boundary problem is made on a longer segment R>30. In this case, 

the substance concentration will be defined by the 63*$7-. values of the solution of 

the boundary problem in the i-th node At R>30 the concentration of the substances 

monotonously tends to 0. 

8. Conclusion. 

  

The considered model demonstrates that the regulatory mechanism of the 

determination of the spatially distributed cells may provide a stable spatial 

localization of all the zone of the simulated cell ensemble. This manifests in 

perturbations introduced in the spatial distribution of the Y…… and W substances, 

which in turn, perhaps the “correct” distribution of the perturbations in the cell 



ensemble. The proposed mechanism produces a “correction” of these perturbations 

and thereby, a stabilization of the spatial localization of the zone. This is in 

agreement with the fact that the size and disposition of the compartments of the 

shoot apical meristem remains stable through the life of the plant despite the 

continuous perturbation caused by the environment and the other parts of the plant. 

 Here, emphasis is on analysis of the regulated stabilization of the size of the 

renewable zone. However, depending on the situations, the living organism 

happens to encounter, there may arise the need to retain the different sizes of the 

renewable zone in a particular tissue, if far no other reason than that the renewal 

rate of tissue depends on the size of the zone. The regulation of the zone size is 

possible within the framework of the model. 

 Change in the size of the assigned zone may by due to change in the constant that 

determine the shift in the argument in the sigmoid dependency of the synthesis rate 

W on Y. Since the considered model is a “theoretical scheme” of the regulatory 

mechanism, change in the constant may be interpreted as change in the steady-state 

level of a regulator “external” with respect to the proposed model :9&)7+:? by 

incorporating it into the model equation. 

 Thanks to N.A. Omelyanchuk, N.L. Podkolodny, V.V. Mironov for inspiring 

discussions. 
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