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ABSTRACT: We expand the mathematical apparatus for relaxation networks,
which conventionally consists of an objective function E and a dynamics given by
a system of differential equations along whose trajectories B is diminished. Instead
we (1) retain the objective function &, in 2 standard neural network form, as the
messure of the network’s computational functionality; (2) derive the dynamics from
a Lagrangian function L which depends on both B and a measure of computational
cost, and (3) tune the form of the Lagrangian according to a meta-objective M which
may involve measuring cost and functionality over many runs of the network, The key
new features are the Lagrangian, which specifies an objective function that depends
on the neural network’s state over all times (analogous to Lagrangians which play 2
similar fundamental role in physics), and its associated greedy funciional derivative
from which neural-net relaxation dynamics can be derived. It is the greedy variation
which requires the dissipation critical to optimization with neural dynamics.

With these methods we are able to analyze the approximate optimality of Hop-
field/Grossberg dynamics, the generic emergence of sub-problems involving learning
and scheduling as aspects of relaxation-based neural computation, the integration
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of relaxation-based and feed-forward neural networks, and the contrel of compu-
tational attention mechanisms using priority queues, coarse-scale blocks of neurons,
default-valued neurons, and other special-case optimization algorithms. Some of these
applications are the subject of part II of this work.

In part II of this work we show that the combination of Lagrangian and meta-
objective suffice to derive and provide an interpretation for so-called clocked objective
Jfunciions, a notation useful for the algebraic formulation and design of ramified neural
network applications. Clocked objectives thus generalize the original static objective
function E and furnish a practical neural network specification language.

1 INTRODUCTION

Optimization is a prominent way to bring mathematical methods to bear on the
design of neural networks. Often the connection is made [Hop84, Gro88, HT85] by
specifying the attractors of a neural network’s dynamics by means of a static objective
function (or objeciive) to be optimized, provided that the optimization problem can be
put in a standard neural-net form (which is not too rastrmmve a requirement [MG90]).
In this way it has proven possible to design neural networks for 2 pphmtaoﬁs in image
Drocasqm [KMY86], combinatorial optimization [DW87], cluster Lg [RGF90, BK93],
particle ¢ kmg in accelerators [’{HP%] object recognition [ re91] and other appli-
cations. It is also customary (albeit limiting) to introduce a generic ‘
dynamics to optimize or “relax” the ObJVCTJ ve, without further regard to computa-
tional constraints. The resulting equations of m@ﬁoa reaeraji} contain gradients of
the static objective, but are otherwise ad hoc and not particularly suited to elabora-
tion or refinement in response to varied computational constraints. We shall develop
a more genera appmach starting from basic principles, to formulating the dynamics

113 o))

tionality (efficacy) ofauom;}aw tion are fu Qdamﬁmai 0 its design, and in ge

t be traded off against the other in the course of optimizing that de
the “design” is all the information which directly specifies the siructure or Conﬂgura=
tion of the dynamical system that performs a computation.) In the context of neural
computations, we will ind measures of cost and functionality and combine them into
dynamical objective funciions from which one may derive the entire dynamics of a
neural network. This dynamics includes not only the (fixed point) attractors but also
the equations of motion governing convergence to an attractor, i.e. a mathematical
model or specification of the network itself.

Our dynamical objective functions can be specialized in many ways that cor-
respond to the wide variety of goals and constraints that may be imposed on a
computation. We will also relate the dynamical objective functions to a so-called
Lagrangian functional. Our Lagrangian is analogous to one which plays a similar and
fundamental role in physics. A basic constraint which we impose on our approach
is that such a dynamical objective function or Lagrangian is optimized in a special
way, by means of greedy algorithms which don’t look ahead in time. This constraint
allows our algorithms to be implemented in physical hardware, and also allows us to
derive nonconservative, irreversible dynamics which can lead to a desired fixed point.
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A Lagrangian formulation of neural networks I

We will derive these algorithms by means of a novel greedy variation apphed $0 the
Lagrangian functional.

CGenerally we will accept the limited type of optimization that results, but some-
times we can do better by introducing another level of optimization: a meta-opiimizaiion
problem in which the (analytic) form of the dynamic objective (the Lagrangian func-
tional) is itself varied so as to optimize another objective function. This latter opti-
mization may involve measuring cost and functionality over many runs of the network.
This meta-optimization problem determines the choice of the exact algebraic form of
the Lagrangian and hence of the computational dynamics for a whole class of appli-
cations. So for a meta-objective function, cost and functionality are measured over
a class of computational problems rather than over a single instance of that class as
would be the case for a Lagrangian functional. In practice the computational cost
or analytic effort required to perform the meta-optimization is to be amortized over
many problem instances. One example of this approach will be a (meta-) optimality
objective for Hopfield/Grossberg dynamics [Hop84, Gro88|, for which we provide a
proof that the associated Lagrangian is optimal in an approximate sense.

1.1 Cost and Functionality

Consider a physical system capable of nontrivial computation. More abstractly, con-
sider a discrete, continuous or mixed dynamical system which computes, in the sense
that it models a computational device or framework. Hxamples include 2 general-
te data structure imple-
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urpose computer equipped with suitable programs, a discz
nented by means G‘F such a program, an individual sili I
Such devices have detailed dynamics, often approximable as large sparselv couple
ystems of ordinary differential equations, which have been designed (or evolved in
ase of a brain) to serve some set of computational purposes at feasible cost. So
we refer to these dynamical systems as comméuzwna? systems and hypothesize very
: ; o g gned {or evolved)
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icon chip, or an animal brain.
as

[
i

- [¥5} -
B < ;"3 i

D

<i

4

=3
=

cheaply or guickly it can do it.
ign of silicon chips is largely constrained by the use of chip
me measures of cost, and the need to attain at least a min-
imal 1 of fun tionality to make the chip generally useful (e.g. to implement an
adequa.ue instruction set in a CPU chip); tradeoffs between minimization of chip area
and maximization of detailed functionality are frequent in the design process. For
another example we refer to the implementation of abstract data structures such as
priority queues, for which a functionality specification requires that a small set of op-
erations (such as adding a prioritized element to a queue and removing the element
with highest priority from the queue) must be supported, and cost is convention-
ally characterized by an asymptotic scaling rule for the time-cost of performing a
worst-case mix of these operations on a very large queue.

For a relaxation-based neural net which is programmed or demgnec to optimize a
static objective function E(x) from an arbitrary starting point Xjua, typical expres-
sions for cost C and functionality 7 might be

C = 4-Volume of the Net = Space x Time (1)

and
= E(Zgna1) — B (Finitia)- (2)

l~1.j
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The space-time product is familiar in computer science as an important measure of
cost, in whick the Space term is a volumetric measure of hardware usage such as
chip area (including on-chip wires) or memory usage, and the Time term is likewise
a computational version of physical time such as the number of clock cycles required
to complete a computation. (A specific volumetric measure of wiring cost for circuit
implementations of neural nets has been proposed in [Mjo83].) As to functicnality,
the use of an objective function E is a common way t0 measure pProgress (hence
functionality) in a wide variefy of computational problems. For example, one can fit
a piecewise-constant model to 2 9-d image given by the data {d;;}, segmenting it into
roughly constant regions, with the objective function [KMY86]

A B
fn A oY — N2 = . £ )2 _aY
B(f s" ") = 52(}33 —di;)* + 5 Z(fH-LJ fi) (1 3«;;‘)
5 , (3)
T g £.32¢1 h 0 LoV
+—.7_L(Jv,j+1” ;’3]} (i_ge >+;j“=&.(§1gd’_ U)v
Y] ij
where f;; € R is a reconstructed version of the image, and s;;’ € {0,1} T
crete decisions concerning the probable presence or absence of horizontal
£ i tion (2). This kind of

1.2  Outline

b
el

general form of a Lagrangian suitable for use in attractor dynamics for optimization

problems. The greedy functional derivative is defined and calculated for su -

grangians (sections 2.1 and 2.2). The strategy used $0 design circuit-implementable

Lagrangians is one of refinement (section 2.3), in which cost and functionality -

sures are frst defined at a coarse temporal scale and then refined for use at finer

time scales, down to the infinitesimal time

model analog circuits. The validity of the trans ormations required during
is ultimately specified by a meta-objective function which measures network perior-
mance. One circuit-implementable form of Lagrangian is introduced in sections 2.2
and 2.3, il section 3.2, and it is illustrated by the
concrete e ics for a region-segmentati
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notation of sections 2.1.2 and 2.1.3 of Part II, whose theorstical justification requires
all three levels of optimization: the objective E, the Lagrangian L, and the meta-
objective M.

Section 3 is devoted to the study of circuit-level Lagrangians with continuous time
dynamics and analog-valued neurons. Two novel possibilities for such Lagrangians are
discussed in sections 3.1.1 and 3.1.2. In section 3.2 a simple meta-optimality criterion
for a limited class of analog circuit Lagrangians is presented. Since this constrained
meta-objective function M, is a function of the fastest and slowest physical time
scales in various circuits, it is invariant with respect to monotonic, coordinatewise
reparameterizations (changes of variable) of the circuit.

In sections 3.2.1, 3.2.2, and 3.2.3 we prove Theorem 1, which asserts that the
Lagrangian L corresponding to Hopfield/Grossberg dynamics yields a value of M, [L]
which is within a factor of two of the optimal value of M,. This means, roughly,
that the worst-case time constant for this Lagrangian L is at most twice that of the
*, whatever that is. The proof exploits a sharp global optimality
erg dynamics (Lemma 1 of section 3.2.2). Unlike M, the
emma 1 does depend on the coordmana systemn chosen. A
m 1 are discussed. The resulting Lagrangian for analog
cked objective functions, as discussed in section 2.1.5
i1 movzdes an instructive example: 2 cxockeﬂ ob;
eed-forward neural ne

ble) inside a gener

optmz al Lagrangian L*,
result for Hopﬁeld/@w

f which can either “jump” or “roll” to a mew location (section 4.3 of Part II
i ely active network including all neurons which don’t
have prescribed default values and hence do require storage space (section 4.4 of Part
' et ned as the Cartesian product of several simpler
foci of attention (section 4.5 of ‘Pa@; 11 ). The designs presented in section 2 of Part 11
ivated but may need to be revised in the light of subsequent
experlmemamom wmch is beyond the scope of the present paper.
Finally, a brief summary of our work is given in the concluding section 4.

(section 4.2 of Part II ); a set of rectangular windows in & two-dimensional network,
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2 DYNAMICAL OBJECTIVE FUNCTIONS AND LAGRANGIANS

ax 1tally, 2 computing system is designed by trading
off two competing utilities: its cost of operation and its functionality. We may speciiy
a fixed allowable cost and seek to obtain maximal functionality, or we may specify a
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fixed functionality and seek to obtain a minimal cost, or we may seek a specified trade-
off between cost and functionality. We may specify further dynamical consiraints
required for implementability. With Lagrange multipliers and/or penalty terms we
may reduce all these cases t0 extremizing

S= ACcost + B 7 functionality » (4)

where the system is more functional for lower values of F', and where any dynamical
constraints have been sbsorbed into the Ceos teTM. Now the designer’s problem is to
find functions C and F (perhaps based on equations (1) and (2)) which depend on
the trajectory of some vector of state variables x(¢) over time, such that the global
optimization of S can be reduced to 2 collection of local decisions about how to change
the individual components of the state vector x at a given small time step from time
; — At to time t. (A local decision could be viewed as the choice of the value of a
variable (e.g. a control variable).) These decisions must however be made by very
simple physical devices such as transistor circuits containing only a few transistors.
Such local decisions will prove to be analogous, in & physical system, to a differential
or difference equation formulation of dynamics that follows from the principle of least
action for the same system.

For example, it would be advantageous if C and F were each sums (or integrals)
over a collection of decisions spread oub over space and time. To express this sum-
mation, let us index the components of the state vector X by an index s. Since §
indexes all the variables present at a fixed time, those variables could be viewed as
being embedded in one fixed-time slice of a space-time volume, in which ca
also be viewed as indexing spatial locations in the system. So we refer to s a8 the
and £ as the temporal indez; the entire trajectory of a computation is

i)}. Then the sum over decisions would be
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decisions(s,t) decisions(s,t)

m

where each function C,; Or iy MY depend on only a few of its argument
2d hence on only a small part of the trajectory near (s,1). In equation (5) we may
introduce a continuous time axis by replacing the temporal sums by integrals; we can
do this by integrating over ¢ and summing over s. Following the analogy with physics,
S is referred to as the “action”. The decomposition (5) would be a useful first step
towards enforcing spatial and temporal locality on the dynamics of our computation,
since the decomposition distributes S over a sum of terms which pertain to particular
spatial and temporal locations. Unlike space, time has an intrinsic directionality, and
we will also need to enforce causality in the optimization of 5. Before seeking specific
forms for C,; and Fy, we will discuss locality and especially causality.

A pattern of communication is implicit in the dependence of Cy; and Fy; on
z(s', ). It Cy; and Fy; were each a function only of z,,, rather than a functional of
the entire state vector x(t') at many different times ¢, then every decision term could
be optimized independently, and the associated computation would proceed without
any communication. This is 2 trivial case, however, and generally we will have quite
a bit of interaction (via specific C and I terms) between variables defined at different
times and places. (For 2 non-trivial example see the region-segmentation Lagrangian
ttern of commurication is defined by a communication graph

w
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whose nodes are space-time sites (s, t) and whose links record the presence or absence
of functional dependencies of C,; or F,; on trajectory variables z defined at other
space-time sites (s’,¢'). We want to keep this implicit pattern of communication
relatively local, and we insist that it be causal.

The effect of causality on the communication pattern is twofold. (i) Causality
favors the adoption of a conveniion in which interactions between variables indexed
by different times are entirely incorporated in the C and F' terms indexed by the later

of the two times, and do not enter into the C and F terms defined at the earlier of
the two times. That way, every C; or F} term depends only on variables indexed by
times ¢’ < ¢. This is called the reiarded interaction form of S. (ii) If we introduce
computational dynamics by sequential optimization, at successive time steps # of
sets of variables indexed by #, then causality denies a computation the possibility
of optimizing all terms of 5 with respect to any one variable z(s',t'). Instead, each
variable z(s',¢') can only be varied under an objective involving those terms of S
all of whose variables z(s",1") are optimized at the same time as z(s',t') or earlier.
The values of all other variables (those indexed by ¢ > #') are as yet undetermined.
Which terms of 5 are eligible to participate in the variation of z(s',#)? Any C; or
F; term for which ¢ > ' depends on variables (such as z(s,t)) which have unknown
values at time step ¢ and are not being varied at Lzat time step. Such a term is is
; 50 Wwe are IQSLI"CLEd o those terms of S indexed by time ¢ < ¢,

+ jﬁ a

< 1" are mesﬂy irrelevant to the
" terms do not contain the
terms of S to determine z(s,¢').
hieve a better value for 5’ by being less
present Ct + ﬁt terms to decrease future omes by a greater
ue

'y

bove causality y forces our a’ynamzcu io be greedy. In other

a partial o 03%2‘?7%’2@*“071 of 5,

T

or greedy dynamics will
decompositions of £ an
We shall define the

rr?maW derzvaa ive of "f,

w‘ﬁlc’t-‘LgFi =——) 44{7?-*'5? = — JA\/,I_}_BF] (5
beals,7) 2 )= ol gy A0+ BR) = o (A0 + BF). (6)

How can we find functions C(x{z"}) and F'(x{¢'}) that specify (via optimization
of 5) an entire computational task and yet break up into a sum over easily computed
decisions? This is & statement of the pr inem of algorithm design, for which there
is no general answer, but we can still invent some fairly general techniques. The
cost function can be regarded as some kind of space-time volume to be minimized
(e.g. circuit size times the duration of its use) and can be decomposed into a sum of
space-time volumes for the many elementary decisions or state changes, at individual
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locations and times, that comprise the associated computation:

C=Vol=7Y_ &§Voly;. (7

3,%

Also the functionality 7 (x{¢'}) is often measured by some definite objective function
E(x), such as total tour length in a traveling salesman problem [HT85], and this can
be decomposed over time as (cf. equation (2))

o~
co
o

. t
F(%gna) = B (%ana) — B (Xinitial) = Z &EL_M,
For example, a standard form for analog neural networks’ objectives E is [MG90]:

1 E-—
Bv)=—2 3“\71 KUV U — 5;2 Tyjviv; — > havi + ) di(vi), (9)

zg;c ij i H

which encompasses many network designs including equation (3). Here v takes the
place of z, and the indices 1, J, and k take the place of s. In equation (9), v; is the
output value of neuron #; Tj; and T, are f’mﬁemon wewghta between two and three
neurons, respectively; f; is a bias i mpa- to neuron 7; and ¢(v;) is the potential function

i

cor neuron i and determines the transfer function g; (e.g. a sigmoid function) through

F

ity

[

vi=gi(u) and u=¢'(v:). (10)
Often equation (9) is further specialized by setting Tiy = 0.
As a complete example of a dynamical objective function we present, in the fol-
quatloﬁ 11), a dynamical objective for the Hopfield /Gross‘oa dy ﬁamlrs of
i A e

tive will be deri 2.1

AS a
lowin ng

ed in sections 2.1 and 3

here K[0,v] is a cost-of-movement term to be derive ed in section 3 (see Theorem 1).
¥i]

w
Varying with respect to 9; and making use of the form of E given by equation (9),

we will ind analog neural-net equations of motion as expected:

Tg?:!:i = ZT‘ijk”jyk -+ ZT@;"U_?' + hi and V; = g(uz—) . (12)

ik
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o
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Here 7y is 2 time constant. The dynamical objective function 5 of equation (11
be recognized as an instance of (5) by identifying the neuron index ¢ with the s
index (i.e. component index) s and the time integral [ dt with the temporal sum };
also Cy — K[05(t), v;(t)] and Fy, — (OE[v(¢)]/0v:)vi(t)-

There is a close analogy between equation (5) and standard ideas and terminology
in physics. The action, S, can be decomposed into the temporal sum (in physics, an

o
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integral) of a Lagrangian L(¢) which in turn is a spatial sum of a Lagrangian density
Liyg=Cop+ Fyp

- 'l fl 13
Lo, ({x()}) = T(Cos + F) (13)
(3,2) (5,8)

(Note that the sum over time may become an integral when we consider time steps
of infinitesimal duration, since the extra factor of A¢ required to get an integral is
just a constant that doesn’t affect the solution to an optimization problem.) For
our neural network design purposes the Lagrangian L is generally the most useful
of these alternative notatioms, particularly for algebraic manipulation, because the
temporal sum has the same algebraic form from one problem to the next (and hence
is uninformative), but the spatial sum does not.

Extremization of such functions (or functionals) provides a foundation for the
study of many dynamical systems including quantum field theories. 7 and C might
with lower confidence be identified as classical kinetic energy and potential energy
terms respectively, but as we will see, many details are different. These differences
prevent a literal-minded mapping of our ideas ’md constructs onto the formalism of
physics. In particular, causﬂlv} is not built into physical theories by means of the

partial optimization of 5, but in a completely different way that is inconvenenient
for treating irreversible dynamics such as our computations; therefore neither the
dynamics nor the Lagrangians of physics can be called “gready” in Ehe sense we use
the term.

There are a number of other ways to derive dissipative dynamics from Lagrangians,
as summarized in [VJ89]. Allowing explicit time desel_dence such as an Gveraﬂ 7act01
of ¥

ol
,in a conventional I lagfaﬂgzaﬁ permits phy

of variations, and T , L
or appro ximate the solutio of the differential equation. Our strategy and methods
differ, since the Lagrangians are obtained from cost and functionality considerations

and hence are known before the differential equations are known. Moreover these
Lagrangians require an unconventional variational principle (the greedy variation) to
produce acceptable differential equations. Nevertheless there may exist some deeper
relationships between our greedy Lagrangians and previous approaches discussed in
789

2.1 Cost and Functionality Terms

s

EFJ

guation (8) for F' is particularly appropriate for a net whose dynamics is intended
to converge to fixed points that encode the answer *0 a static optimization problem,
such as the standard neural network form of (9). Equation (8) represents a substantial
specialization from the general set of functions F;({z (s’,t”)}) = 3, Fo:({z(s, )}
that appears in (5). For in equation (8), F; depends on ¢ only through its arguments

and not through its subscript, so that the algebraic form of 7} is independent of time
(i.e. F; is autonomous):

F({a(s', )l < 1)) = Blx(t)] - Bx(t - A8)] (14)
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In the simplest case of static special-purpose neural circuitry the computational
cost is just a constant N, reflecting the hardware committed (neurons and connec-
tions), times the length of time it is used:

C = ANttotal (15)

for fixed hardware, or the more general

Cc=A4A j dN(t) (16)
if the amount of hardware devoted to the network can vary over time (a possibility
we will consider in detail in section 2 of Part II. Once N is allowed to vary with
time, it becomes relevant to consider the details 6f how much node and wire volume
is required to implement dynamically a given pattern of connections.

Equations (14) and (15) go part of the way towards defining a computational
system, but they are not yet detailed enough to specify a parallel algorithm or analog
circuit that optimizes E. Our main line of development will be from these equations
towards an analog circuit. But first we note an alternative strategy for generating
parallel algoritbras which will be developed in sections 2.1 and 2 of Part IL

s ] , on for S in (5) all the way to the
form in (14), if some other way to minimize the original action in (4) can be found.
Most alternative sets of F' functions would pertain only to one particular objective
function F, but there are also systematic methods for deriving F, from E in which
F, benefits from retaining an explicit time dependence. For example, F; might take
the form of AE,) for one of p possible objectives E,, where the choice of objective

canction of time (given by a(t) € {1,2,...p}) Is made in a cyclic fashion. Then

=
&5

(18)

Here we assumed that # takes only the values 1,7 — At and %9 where ¢ — At is the
previous time step in the current & phase of the cycle and 91d ig the final time step of
the previous phase o — 1 in the cycle. Because of its explicit dependence on a cyclic
clock signal a(t), By is called a clocked objective function. It must be fundamentally
connected to the original objective function E' if the resulting cyclic Lagrangian is to
have the correct functionality, but there are several ways of making such a connection.
This possibility is explored further in section 2.1 of Part II and applied extensively
in section 2 of Part IL

It is troubling that there exists a wide variety of different local and causal La-

grangians (cf. (5)) each of whose dynamics will partially optimize the original dy-
namical objective function or action given by (4). How do we choose one over another,
and what are the minimal criteria ior 0 be acceptable? In other words, what are
the rules of the game for proposing distributed cost and functionality terms in (5)7
The answers must ultimately be related to algorithmic performance in minimizing
the action itself (see (4)). We begin our work on these questions in section 2.3.2.

)
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o
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2.1.2 Refinement to Continuous Dynamics

For the moment, let us assume that (14) and (15) describe an acceptable Lagrangian,
which is a decomposition of (1) and (2) to finite-sized time steps, and try to further
refine them to a dynamics with infinitesimal time steps, i.e. continuous time and
continuous-valued (i.e. analog) variables.

A standard form for analog neural networks’ objectives F is given in (9). The
corresponding functionality term ' may be derived with a series of three design trans-
formations. Start with an objective function E[v] of continuous variables v ... Um
and discrete 0/1-valued variables vpmy1...v,, With ¢;(v;) = 0 for the latter (where
¢ is defined in (9)). The first transformation is to reformulate the discrete variables
as continuous variables each with the comsirainis that 0 < v; < 1. This step may
introduce new local minima at the intermediate values of v;; if this possibility can be
analyzed away, or designed away by adding a “bump term” such as the penalty term
v (1 — v;) to F, then we have a valid transformation. The second tlachOxma-
tion is to replace the constraints with penalty or barrier terms ¢;(v;) added to &
unconstrained, continuous-valued optimization. Steps 1 and 2 together may some-
times be remacad by the one-step Mean Field Theory derivation of continuous-valued
ob;eawes for discrete-valued variables (first discussed in [Hop84] and extended by
others including [Sim90, PS89, GY91]) with improved control over local minima. But

li we *WN have occasion to %e@mam the two steps.

in section 2 of Par

F e = X"‘;?'7 ~ Q‘:’ % ~E,i@'f = Qiﬁ:ﬁne[”\f] (20)

- gE 1 = T 4 . i | P
B = =75 Li’ijk?]jvh - Z_inj’i)j —hi+¢ (’Ug‘)? (41)
JY; 2y "qﬁ
i j
and v is a vector of variables comprised of all the f, I°, and [* variables of (19). This
third trans :" ormation step does not yet specify the associated transformations of the

fine-scale cost term Clne[{v,:}] which we will work out in section 3. The result will
be of the form Cape[V] = ;F[z ;] (¢f. (117) of section 3.2). Together with (20),
this gives us the Lagrangian

l‘J

LFanel[¥,v] = ) i}{[@é»@i] + 87‘-%} (22)
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and the action fanctional
= [ dtLane. (23)

This action is in agreement with equation (11). For the region segmentation example,
85 /8v; is given by (21).

In summary, we have {ransformed the problem three times along the way to the
circuit-level functionality term in (20) and an associated Lagrangian. The transfor-
mations are intended to preserve (approximately) the fixed points of the equations of
motion, while making the dynamics progressively more implementable as an analog
neural network. Both the transformations’ validity (as measured by the functionality
term of the original coarse-scale action (4)) and their efficiency (as measured by the
cost term of (4)) must still be demonstrated, since the finer-scale versions of this
action functional are only partially optimized. The three transformations used tor
obtain equation (20) were: (1) discrete variables — continuous variables, constrained
to intervals; (2) constraints — penalty or barrier terms in unconstrained, continous
optimization; and (3) temporal refinement: F; = AE =~ [dtE. (The refinement of
¢ must still be worked out before we have a derivation of the fine-scale Lagrangian.
See section 3.)

ireedy Functional D

Based on the foregoing work, we seek to derive continuous-time dynamics from suit-

"
- PR, Thia « iroa Ta+s 4+ o . artiratit £Aar RERN
able Lagrangians. This requires formulating the greedy derivative of (6) for use with

o1 f
O \
continuous-time dynamics, hence formulating it as a functional derivative.
Following equation (5), we argued that the local cost and functionality terms F,;
1 4 L1
A il

x(z) by differentiating to fin

that way we ensure that ¢ < ¢ (retarded interaction form) and

which # = ¢ are actually optimized at time %, as required.
This procedure for finding the continuous-time dynamics for a Lagrangian in di

ferential form (24) may be formalized by means of the greedy functional derwative

introduced in [MG90, MM91]. Here we provide a new formal derivation of the reedy
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So N serves to replace time derivatives by temporal difference expressions for which
# < t, which we can differentiate with respect to z(Z). In other words, it suffices to
put a Lagrangian L into retarded interaction form, so that a greedy variation can
be taken while preserving its value in the A¢ — 0 limit. (& is known in numerical
analysis as the “backward divided difference operator”.) Then the greedy functional
derivative may be defined, even on Lagrangians I not yet in retarded inmteraction
form, so as to agree with (6): For any small A¢ > 0,

J&(0),. ) == NL(z(d), (1), .

fdiét—z}
5 8x(t)
= %Nz(x(t),z'(t), ) (asin (6))

8
- ii}" (@ —Az)
= 5 L{z(t), Z;

(26)

). Coniinning,

)

where At is infinitesimal. Again, the conventional functional derivatives are inde-
pendent of one another (they are par‘tlal functional derivatives). Needless to say, the
highest powers of {1/A¢) will dominate a1l others in the limit At — 0. For example
if I depends on v and ¥, but not on higher time derivatives, then the greedy func-
tional derivative will be (1/A%)6/6v. This will generally be the case for our circuit
Lagrangians.

We can derive analog, continuous-time network dynamics by applying the greedy
functional derivative to the continous-time Lagrangian (22). Since the highest time-
derivative in the Lagrangian is 9; for each variable v;, the greedy functional derivativ
is proportional to §/6v. Then the equations of motion become

]

65 . oF
5 = Kﬂ-,["ui, 'Ug] -+ £ =0. (29)
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For K[o,v] = (1/ 2)av? /g (g7 (v:)), the circuit-level cost term which will be derived
in section 3.2.3, and for an objective function F given by equations (9) and (10), the
greedy variation equations become Hopfield/Grossberg dynamics:

Tals + U = Z T«;jé’i}j% —+ Zﬂj@j + hy and v; = g’\?.i2> (30)
ik J

This type of dynamical system describes an analog neural network, and we will make

no distinction between such a dynamical system and the neural network itself.

As an example, we may work out the dynamics for the region segmentation La-
grangian given by (22) and (19). Specializing the dynamics of (30) to the region
segmentation objective (19), we can expand the first term of the objective to find
a potential term (4/2) fE for the fj variables. Then we find the standard Hop-
field/Grossberg equations of motion for this analog network, which are

1=1%), Jy = (1/A)ess
o= glEy),
R { 2.A Y
I = glks)
(51

This approach may be thought of as a symbolic search procedure to be carried
out by human designers, wh ect the likely transformation sequences, with machine
assistance in evaluating them and perhaps also performing them. On occasion 1t may

the (meta-) optimality of a

n
by proving
his will be possible in most cases.
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3. constraints — penalty or ba
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We comment on each of these transformations.

T1 and T3 are required to achieve a circuit implementation, but more generally
they serve the purpose of making a parallel algorithm. Discrete-time update schemes
may be introduced instead, but some care is required so that the updates of indepen-
dent variables done in parallel don’t have the joint effect of increasing rather than
decreasing &. For example, for some networks it is possible to “color” the variables
with a small number of colors so that no two connected variables (z; and z; such
that Tj; # 0) have the same color; then different colors can be updated at different
times in a clocked objective function, and all the variables of the same color can be
updated at once (even by discrete jumps) without interference in E. (Interference
would mean that several variables would each, if updated alone, diminish E, but if
the same updates were done together then E could increase.) Such (fairly standard)
parallel update schemes are not so important for continous-time and analog-valued
networks, whose descent dynamics are explicitly parallel.

Transformations like T2, which incorporate static constraints into the static opti-
mization problem, may change the nature of the optimization problem significantly.
Penalty and barrier terms on constraints that involve many variables destroy locality,
unless they are ‘fmt’ner transformed to a local form by methods such as those de-
scribed in [MG90]. In this case a minimization problem is replaced by a saddle-point
problem. N*r T:lat?’l—“'ij one can introduce L g m 13tzpi ,bu? that also changes

rob P

oo
B8&7].

addle point pr ither way, the dynamics

.
gz

.

: with the Lag?aagiaa functional L: .,s obvzoub convergence @rocer‘rlu
(because fumit cycles arcund a saddle point become passib e), and it may be ne
sary to engage in meta-optimizaiion of some kind in order to secure convergence for
a local circuit implementation. Another alternative, which requires clocked objective
functions but does ot explicitly in t?oduce saddle DOlﬂ‘tD, is to use an alzromthm simi-
or

P

15 ‘!1‘(1

OT.

h order to acheive demgn
redi,co T attaining an piemema Die form while preserving
the functionality (th etwork. Likewise, in this
paper we will lmroducc a number of traamor t;ons iz’om one Lagrangian to another
that satisfy design constraints while preserving or improving the functionality of &
computation.

A fundamental aspect of (5) is that, due to its linearity, it naturally supports
the hierarchical decomposition of computational dynamics into large state changes
(or decisions), each achieved through many smaller state changes or decisions. This
is in analogy to multiscale or multigrid algorithms from numerical analysis, or to
renormalization group ideas in statistical physics, or to the idea of stepwise refinement
in the design of computer programs. As in (5), the action S can be decomposed into
a sum over state-change decisions. But if each of these decisions is in turn made by a
dynamical system consisting of a sequence of sub-decisions at a finer time scale (which
may also involve a finer spatial sca 1 ), then we can relate the two time scales (“big”
decisions and “sub-decisions”) and reexpress the action in terms of the fine-scale
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decisions alone (“small” decisions):

s=A ¥ Cu{xeWM+B X Fi({=()1)
big decisions(3,f) big decisions(é,%)
-4 T Y Cullx®)))
big decisions(d,¢) sub—decisions(s,) (‘22\
)

> > R
big decisions(3,i) { sub—decisions(s,?) ]
4 T Ay ¢ BT RO

small decisions(s,?) small decisions(s,?)

Notice that the step from equation (4) t0 equation (5), or more specifically to (7)
and (8), can be given a similar hierarchical interpretation: we are expressing 2 single
quantity, optimized over the entire circuit comvergence time, as a sum of gquantities to
be optimized more locally in time or space. The further reﬁmemem to infinitesimal
time steps, (23), is another exam mple. Then equation (32) subsumes all these examples
of hierarchical design

23,2 Meta-Optimi:

We have discussed the necessity for som erion or figure of it by which to
i i i give rise.
transform

An bvans vay to do that is by means of a retrospective
But opiimizing with Iespec‘z ~

of the original objective S of (4).
etrospective evalnation of Soarse Se8MS out of the question,
repeate d tests of the neural network dynamics with different s 7a,1ues of the parameters

-y
@
el
©
w
o

that specify the (t*'ans ormed) Lagrangian and 1 therefore far more expensive than
one relaxation run of the network. (The parameterization of L may involve real-valu
parameters or may simply be the discrete choice of a sequence 0 i
derive L from Seoorse-)

Fortunately the cost of optimizing S,0erse 88 2 function of the form of L (ie
the cost of meta-optimization) may by amortized over many inputs h {cf. (9 )
one network, drawn according to some probability distribution, or even ove aa_y
network connection matrices T drawn according to another probability dzs‘armu
Optimizing M may be very expensive but the expense is amortized by usin
resulting dynamics to improve the per rformance of many H ifferent computation
apparent obstacle is that different h vectors and 7 matrices will in genera 1
unrelated meta-objectives M, so amortization may be dlmf"dt ‘to accomplish.

Such amortization may still be achieved if the meta- objective function M|

Uq C‘i—

U)
I

E
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altered to become an average-case measure of S,up 0!

M{L]‘ =< Scosfse[ ] >aT (33)

Just as in neural network learning procedures, the distribution average would be
sampled by a finite sum over a iraining sef; this sum would be optimized, and then
a further sampling could be made to test genmeralization from the training set to a
testing set. If such generalization is to be expected, either on experimental evidence or
according to theoretical criteria such as the Vapnik-Chervonenkis dimension [Vap82,
BHB9|, then amortization will be possible. For the cost of computing (hence of
optimizing) M(L] is multiplied by the size of the training set, but that large initial
cost is then effectively divided by the number of times that L is used subsequently,
which may be far larger than the training set. This gives the desired amortization.

Alternatively, one could amortize the cost of optimizing A by taking M to be
a worst-case measure of S;qrse Which can be optimized analytically. The worst case
performance is very hard to evaluate experimentally, but it may be more easily subject
t0 analysis than the average-case performance, at least if we are allowed to alter the
form of Seperse somewhat. That will be our approach in section 3.2.

3.1 Refinement to a Circuit
Upon refinement, the Lagrangian L = O + ecomes

a first-order expansion of AF(AL) yields a Lagrangian proportional
= [;f(s’:’ + j‘E Zi B i[v]os), Whiz:‘ cannot be optimized with respect
il

exy 's domain of validity. To avoid this

t be i"L’GL b a small ceas"r,aat, but that would make the entire

cost term C iJ‘J At constant and therefore irrelevant to the dynamic optimiza-
tion problem. More seriously, partial optimization can onl y affect v which appears
linearly in this Lagrangian; ¢; = £oo will be the optimum, which would not only

invalidate the expansion of Z(¢) again, but would violate ph' sical limits on circuits
as well. A somewhat more physical dynamics would result if we arbitrarily followed
the analogy from the Lagrangians of physics and changed the cost term to a kinetic
energy (1/2) 3; 97, but we have no computational justification for doing so.

On the other hand, not expanding AF(At) at all leaves a fine-scale optimization
problem which is equivalent to optimizing the full coarse-scale objective & in much less
time. This is simply not possible. And even a second-order finite Taylor expansion
of AE(At) is problematic, since the optimized values of A¢ and v are likely to lie
outside the expansion’s small domain of suitability as an aproximation.
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The essential problem here is that each fine-scale optimization, to be imple-
mentable as 2 circuit, must be more constrained than the coarse-scale optimization.
We must stay within the domain of convergence of a Taylor expansion of AE(At), and
we must not violate physical speed limits (e.g. for physical implementability we must
prevent circuit time constants from becoming too small), and so on. Such constraints
are either (a) direct physical limits on circuit implementations, or (b) computational
limits on what can be achieved with a small amount of physical computing (computa-
tion which occurs in a physical medium) in time A¢. These constraints are generally
00 complex to state exactly in a simple Lagrangian.

We identify two general approaches to formulating such circuit constraints and
the corresponding fine-scale Lagrangians. In the “underconstrained” approach, we
impose simplified, loose versions of the physical and computational constraints on the
optimization of Leoarse, 1 the hopes that the resulting dynamics will be constrained
enough for a genuine physical implementation (perhaps at an even finer time scale).
These loose constraints can be tightened up for analytic or computational convenience,
and then expressed as penalty or barrier functions which are added to L to form Lage,
the fine-scale Lagrangian. By contrast, the “overconstrained” approach stays within

e w

second) or
limitation. S0 we must optimize

= ANAt + BAE[AV] (35)
subject to
|[¥1]eo = max|is} < 5 (36)
(where v & Av/At) and
1av]le < r{v), (37)

where r(v) is chosen to ensure that a first {or second) order expansion of AE[AvV] is
sufficiently accurate. Also, there are two approaches to varying At. If we let At be
optimized (subject to At > 0), the cost term in the Lagrangian will keep it sz
not necessarily drive it to the continuum limit At — 0. Or, we can let At = 7, where
x € {0,1} is a discrete dynamical variable which “stops” the neural network when x
is optimized to zero, and where 7 is a small constant which we can analytically drive
towards zero to extract continuum dynamics.

In the latter case, ||Av]||s = y7||¥lls < x7+/ns is more restrictive in the limit

b
5
=
o
o
=



A Lagrangian formulation of neural networks I 315

both constraints become irrelevant. So we can drop constraint (37). If we express
constraint (36) as a barrier function 3; ¢41(v;/5), the fine-scale Lagrangian becomes
unconstrained:

j:'ﬁne V X Z P11 \%/3) + XT{AN + B Z (38\'

Except for the new y variable, this is the same form of Lagrangian for neural networks
that we have proposed in [MG90, Mjo87]. The corresponding dynamics are (varying
v, cf. (28))

b = —sg41(Ey), (39)
and varying x to get the stopping criterion, we find the optimal values of ¥ occur
only at the boundames of the allowed domain of x:

X = @[S z E,ggil(i‘j’i) — AP‘/’]. (40)

i

Here ©(z) is the Heaviside function (1 for z > 0; 0 for z < 0).

o~
o
()
Nt

) 7)). Optimizing L{v, At] o t 1o A, which occurs lin-
arly in (35), as constrained by (41) just satur = (1/s)2; |Avy.
The remaining con raaned opnzmlzam is with respect to Av. Using barrier

2 /1j7 [— . AR
Liavl = == 3 |dul+ 3 Babvi+ 3 ¢ur (52), (43)
, 227y ~
or
2 T J_N’:’:('U\) = JAXTIN
LiLv| = > E;Av; 4 ~ % g : (44
[ ] ;f ) e B % ¢ + /9/ {\7:<’2)>} \ )
ihere ¢, jo/-(2) = ¢+a1(z) + |z|. Also
[ -1 if E;,—AN/s>0
Av;/F(v) = 0 if BE;,—AN/s<0Qand B;;,+AN/s>0 (45)
(+1 i E;+AN/s<0

A number of calculations of bounding expressicns 7(v) are possible, but we will
not pursue this approach further here.
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2.8

1]

1.3

8.8

<1 8.3 9.5 1

Figure 1: Potential ¢, /o/—(z) incorporates automatic stopping criterion. When other
terms fail to alter the ordering among ¢(—1), ¢(0), and ¢(1), then Av = 0 is favored
and neuron v; stops.

3.1.3 Stopping Criterion

Lagrangians (38) and (43) each have intrinsic stopping criteria which compare the ex-
pected improvement in functionality AF with a cost of movement, and allow move-
ment only when it is sufficiently beneficial. But & may not always be the right
function for this purpose. A monotonic function b(E) may be used in place of B

in (8) and may likewise be decomposed i wéu a sum of Ab ter The latter would
alter the tradeoff with the cost term for incomplete optimizations and therefore the
stopping criterion (the point at which a further decrease in F' is smaller than the

expected cost of obtaining it).

One major drawback @"“ using & monotonic funciion
grangian is that if 5 is h@ sv:andard neural netw
sum of local term neural i

In the resulting gradient dynamics, only the one variable o requires com :s:L ation of the
objective function E. Unfortunately this transiormation replaces a static minimiza-
tion objective with 2 static saddle-point objective, since some of the new variables are
to maximize rather than minimize the transformed objective. To find 2 Lagrangian
which always converges, rather than cycling around the saddle point, may then re-
quire an appeal to meta-optimization (e.g. either experiment or deeper analysis) of
the saddle-point-seeking Lagrangian.

3.2 Overconstrained Refinement: Meta-Optimization of X

4"»

A second, more systematic way to overcome the problems with refining the Lagrangian
through expansion of E(A¢) is to define a class of Lagrangians which are known to be
physically implementable and mathematically tractable, though they are not the only
physically implementable expressions for a circuit-level Lagrangian, and to pick the
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best member of the class based on a meta-optimization criterion. So we overconstrain
the set of allowed Lagrangians and optimize. We will be able to do this theoretically
for a meta-objective that measures worst-case performance of 2 Lagrangian for min-
imizing an especially simple class of neural network objective functions.

The allowable class of objective functions will be those of the form E[v] =
—(1/2) 4 Tivivs — 2; havs + 2, ¢(v;), in which the matrix T is negative semi-definite
and has eigenvalues whose absolute values are bounded above by some number ¢max
An example of such an objective function is the hysteresis-free version of the common
winner-take-all network objective [HT85] B = (A/2)(T; v — 1) = 5, hyvi + 3 0(v:).
There is a straightforward generalization to the case in which different neurons v; have
different potential functions ¢;(v;), but we won’t work that out here. The negative-
definite restriction on T is severe because it means that & must be unimodal (since
each ¢; is unimodal too). Unimodal objectives have some computational uses, such as
in the winner-take-all network or the “invisible hand” algorithm for matching [K'Y91],
but our meta-optimization results will not be widely applicable until they are gener-
alized to multimodal objective functions. Nevertheless we can present the unimodal
analysis as an example of the meta-optimization of 2 circuit-level I Lagrangian.

W haL maﬁemaiha conditions would make a Lagrangian physically implementable,

30 the ciated dynamics can be implemented with a cir CLit, and also result in good
pertormance? The essential limiting factors for circuit sp d are the iime constanis
(such as iF pacitance ;wdu:bs in s ) ; t}

proach to any stable state of any one- or two-element subcircuit. Thess é lme constants
must be larger than some physical lower bound, say 7r.,. We also want the stable

b
fixed points to be minima of some neua.l ne LWOIE ObJPCIIVe E. Subject to these
for sbe f‘uﬁ circuit (Wlnich

where the objective takes the form

1 — —
el — ny.mr . N2 . A0
Blv] = 5 3 Tyuw; — 3 hovs + 3 ¢(vs), (48)
] [
and h includes the input to the network. Note that the cost term in (d7) is a sum over
kinetic-energy terms aae:h pertaining to only one neuron; this is a form of locality.
1

Also the equivalence of st table fixed points and local minima of F can be ensured
by simple constraints on z{ {47) together with the time Pon&am constraints and &
constraints to be introduced specify the class of Lagr ans that we will call “circuit-
implementable”. This class is parameterized by Lh° kinetic-energy function K from
%2 to ®, suitably constrained.
One important property of equation (47) is that it retains its form under compo-
nentwise reparameterizations v; = f;(z;), where f; is monotonically increasing, differ-
entiable, and its inverse is differentiable. (Note that such reparameterizations form




w
i
(=]

Mjolsness and Miranker

a continuous group under composition.) That is, under such a reparameterization
the dE/d¢ term is invariant, and the X term, while not invariant, becomes another
func‘hon K [£;, z;] of the corresponding new variables. So the problem of optimizing
with respect to X can be solved equivalently in any such parameterization we choose,
if only the objective and constraints are also chosen to be parameterization-invariant
in this sense. We will insure that condition by deriving them from physical circuit
time-constants for exponential convergence to fixed points.

The greedy functional derivative was derived ih section 2.2. We use that result
to find the greedy optimum of the action [d¢L with respect to the trajectory v(i).
The dynamical system that results from calculating the greedy variation of L with
respect to v (Le. the regular variation with respect to v) and setting it to zero is

v; = K[_E,i: v, (49)

.i‘ 4

where K(w,v] is the inverse of K[,v]; on its first argument. This forces us to

e

constrain X to be monotonic in its first argument. Here we introduce the notation

il NS y 2 7 =0
'LUQ[V] = “f;'/g = L L4505+ Ny — ¢ (’Ua) (bai
J
For stable fixed points to correspond to local minima of B (for which w = 0), it

{51)
=y
(52)
Now we are in K that result
from Lob.qu g the ti ‘ : vy A= (A;). We want
the circuit ele ent their « ions 1 ysi implementable, so we’ll
constrain one- aad ] 2) to be slower
than 7pe. We do t 1 4;; (for a one-
element subcircu Alt) {f:l » Aijy Aji, Ajs} (for a two-element subcircuit), to get 2 1 x 1
or 2 x 2 matrix A(7) or A( i,7). Furthermore, we may arbitrarily pick the subcircuit’s
fixed point v* by adjusting the input vector h u, ths does not alter any element of
Aor A In that case K|w;,v;] = 0, and the linearized dynamics (52) f‘onvarg,eu
expo menmaﬂ y to v with a time constant dctplﬁ‘lﬁed by the largest eigenvalue {As} of
the matrix A, i.e. by its matrix norm [|Al]5. So the physical constraint would be
maXHAHz < 1/ T (54)

where A C A means that A is varied over all 1 x 1 and 2 x 2 submatrices of A and
over all state vectors v.
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The constraint (54) is parameterization-invariant. Invariance follows for any A by
applying Taylor’s theorem at a fixed point v* of v, to get the linearized dynamics in a
new coordinate system {z; = f;(v;)}. The new matrix 4 is just a similarity transform
JAJ! of A, where J is the (nonsingular) Jacobian of the change of coordinates.
Therefore A and A have the same eigenvalues (cf. [Ner70], Theorem 5.2 or 5.3) and
|||z is parameterization-invariant as long as the Jacobian J is not singular (which
ours never are). Furthermore, the identity of the 1 x 1 and 2 x 2 submatrices of
A are invariant under our coordinate-wise reparameterizations {z; = f; we)} So
the whole constraint (54) is parameterization-invariant. This invariance confirms the
intuition that exponential convergence to a fixed point in one coordinate system {v;}
(ie. v —v* = cexp—At) does not change its comvergence exponent A in another
coordinate system {z; = f;(v;)}.

Note that because each f; is assumed to be monotonic, differentiable, and to have
a differentiable inverse, constraints (51) are also parameterization-invariant. That’s
because each w; = ——Eﬁ; is multiplied by f;(v;) in reparameterization {z; = f;(v;)},
where 0 < ;g (v;

Fonotz& nt

cﬂ\_/e

a { L C :
class 7" in the formmuls A, and over all state vectors v for each connection matrix:
M2 max max Al < 1/ 7 (58)
Aca

As previously mentioned, we take 7 to be the set of negative-semidefinite connection
such that the absolute values of the 7's eigenvalues (i. 1
values) are bounded above by £4,,. Constraint (58) is parameterization-invariant but
not as analytically tractable as the alternative,

Max max max [Ai (v, T)] £ 1/ 7o (59)

which will enter into the following analysis even though it is not parameterization-
invariant.
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The invariance of constraint (58) is one reason to prefer the time-constant con-
straint (58) over the “speed limit” imposed in sections (3.1.1) and (3.1.2), which
«plicitly depends on the choice of variables. On the other hand the speed-limit con-
straints take into account the entirety of each trajectory, rather than just the behavior
near (all possible) fixed points.

Next we must formulate the objective function, which will be a worst-case estimate
of the much slower time constant for convergence of the full circuit (as opposed to 2
% 2 subcircuits). We want to minimize Tsiow, where

Tslow — mva,}c%:teagimzaxl/l)\g(&(v,f)ﬂ

= m&x%l?%{m?K]Aé(A‘l(V,T))l (60)

-1
maxmax ||A7 (v, T)|]s.
e max |47 (v, Tl
Bquivalently we want to maximize

in]| A" (v, T (1)

/

B

min
v TeT

.l

b

Again, the objective (60) will be parameterization-invariant because the time-constants
are invariant under similarity transformations.
he optimization of (60) with respect to K[v, v] subjec
ant under reparameterizations z; = f;(v;), we may change vari:
calculate A for the linearized v variables, restate the optimization probl
F. T

T
1 Lony 3 o he 3 ariahie -
The functions ¢ are the single-variable pote

D

-

- 110
Decaus

D

«
¢
=

«press the dynamics by means of the Lagrangian

‘ oF 1 0k ~
YT T T T ) Bus (64)

which enables us to define
Klwi,w) = ﬁ'ff;;l[wz‘gi(%i), g (65)

and reexpress the u; dynamics as
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Then the linearized dynamics is

where 4;; = OK [w, u;]/Ouy, ie.
- Aéj = K,w{wiy 'U*;] (Ta;gi(uz) + 5;3) - fiu[wi, ﬂi]éﬁij. (\68)
(We have defined T = —T.) )
So our optimization problem is to find X which solves the following optimization
problem:

Maximize

0 = min [|47 (D)5’

w,w, €T

¢ =
where
and o1(7) is the largest singular value
eigenvalue of 7.
By introducing new notation

and translating the constraints appror
functions except for the constraint on the mix

(69) is equivalent to the following optimi

O = min_[|4"Y(u, D)5

u,w, 7T
worb (u,v),
subject to
¢ = ( max_max ||Al]y < 1/ 7t
u,w,T€ET ACA
and p, =—-v, and x>0 and »[0,u] = G)

(71)
e mext section we will establish an approximate solution to this optimization
roblem: a (u,v) pair that satisfies all the constraints and comes within a factor of 2

"o Bg,
E;
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P

of the globally optimal value of O. Here we simply make several observations about
the optimization problem (71).
mrst one of the most important questions about this problem, and our solution

to 1%, is whether the restriction to positive semi-definite T's can be removed. Con-
ne tﬁon matrices appearing in real applications can have bounded singular values,
but rarely are all the eigenvalues of the same sign. Second, we note the close re-
lation of this problem to a worst-case minimization of the condition number of A,

k(A) = ||Al]2||47Y]|2. Since maxy; |ai;| < ||A|lz and u and v can easily be rescaled
by a constant while preserving their constraints, the two problems look quite similar
Indeed, maximizing x(A) over all u, w, T e T subject to the p and v constra,mta
WOIﬂd yield an upper bound of Teast Smax lOI‘ Omax. But our problem is more difficult

because the extremization over u,w,T € T is performed separately for the constraint
and the cbjective.

Maximize

Unlike the origina
exactly.
m
1o sol
the following proof strategy. Given objective O and constrainis £, we will ma
imize some lower bound osrcx ve
tightened constraints C_ such that C_[p,v] = Cly,v]. In this way
max(G_ C_) < max(O|C). szemsa we will maximize some

tive O, such that Oy, v] < Ou[u,v], subject to loosened constraints €, such that
Clu,v] = Cilu,v); ‘hzs combination ensures that max(O|C) < max(O,|C,). Having
803‘»/'-’3@ both constrained coptimizations, we will see that both give the same value for
the objective:
max(O. 10, ) = max(O_|C_) (73)
which implies that all the extremal values are the same:
max(O|C) = max(O_|C_) = max(O,|C.). (74)

Furthermore, the extremal values p* and v¥ of max(O_(u, v||C_[u, v]) all satisfy con-
straints C (smce they satisfy C_) and thus constitute cx’f:femei values of max(O[y, v])
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8]
o]
W

as well. Thus we will have solved the original constrained optimization problem of
maximizing O with respect to C, by finding the maximal value and arguments u*, v*)
at which the maximum is attained.

In the next section we will use this proof strategy to solve the auxiliary optimiza-
tion problem (72). A variant of the same argument can then be used to conclude that
the (4, v) pair for the ¢ = 2 auxiliary problem comes within a factor of two of solving
the original optimization problem (71).

In fact, using (56), we see that the ¢ = 1 version of (72) is a upper bound for (71)
and the c = 2 version is an lower bound. In other words,

max(O|C(c = 2)) < max(O|C) < max(O|C(e = 1)). (78)

Furthermore, C(c = 2) implies C so that the extremal (u*, v*) for max(O|C(c = 2)) are
in the constraint set for max(O|C). As it will turn out, max{0|C(c)) is proportional
to 1/¢, s0 O(u*,v*) = O(u*, v*) is proven to be within a factor of two of its optimal

value, max(0|C). In other words,

2

Oy, v") = max(O|C{c = 2)) < max(O|C) = 2max(0|C(c = 2)) (76)

)= 0 (77)
and (p*,v7) is an approximate solution (satisfying the conmstraints and optimizing
the objective to within a factor of two) of the meta-~optimization problem (71) or

111 be to obtain upper bound:
connection matrices T, and to compare these upper bounds with lower bounds ¢
follow from matrix theory. In some cases, we will find it useful to repeat the above

™
L
5 Q
&
o
[©]
8‘3
=
=
[m
g
g
;‘21
&
et
Q
=iy
ot
|
<4
>4
o~
;@
|
&
i
{
W
I3
(a9
B
]
sl
FB
+
R
E
S

the upper bound max(O.|C,)
&

o
e )
By simply restricting the class 7 in problem (72) to the subset 7, of

which are also diagonal, we simultaneously increase the value of Olu, v] (since it’s a
e

minimum over a proper subset of 7 € 7) and loosen the constraint C [4,v]. So on

B
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lower bound optimization problem is:

Maximize.-
Op =  min_ |47 u, T3

u,w,Pef,

Cp = { max_ mazx |A;{(u, ] T < 1/7ast
uwT:’F’ 3

and By = —Vy and u> 0 and L’[G, u} = f))

where -
T ={T|Tis chagonal and 61 (T) < tmax and T is positive semi- definite}, and

‘Au #[*Uaa V5 (Tﬁgg (343> + 5@3) + z/[w,, ua] ij
(78)
This will not be the sought-after O, and C., but it moves in the right direction since
O< 0 andC=Cyy.

If T is diagonal then so is A. For a diagonal matrix 4 = di gla), JA7Y|t =
a;]. So we can calculate more detailed bounds:

= max;

min; |a;] and max;; [A4;;

O.; = min

@
®
=N
m
)\" v

= mig
u,TeTy
= min
u,TeT,
= min 79)
E,TE?“_). <79}
1, WAETE
5 I T |
Cov =  max max|w{Tug + 1)+
w,w, TET, i
> max max | u(Tugl + 1) + v
wter, i : w=0
= max max |u(Tag! +1)]_ (since #[0, ] = 0)
wTely ¢ w=0
7 I
= max maxm(i g+ 1) a0
uwTeTy w=0 \ov)
= maxmax pg{{ma}: [T g 4 1){ (since p > 0 and g > 0)
VTeT, w=0
i 7 = .
= maxmax/ 2[0, ui{ tmaxg'(us) + 1) (since maxspes |Til = tmax)

= max }3*"[0: u] ‘«.{tmaxgi(u) + 1\
C+ [;U‘) '1/}

il
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So the upper bound optimization problem becomes

Maximize

O+ = minp0,y]

(1, ), ,

subject to (81)

Cy = (mf,x [0, u] (rimaxg"(u) + 1) <1/ Thast

and p, = —~v, and x>0 and v[0,u]=0)
To this optimization problem we propose the solution (uf, vi):
/“Lit’w) u] = 1/Tfa.st($maxg0 -+ 1) (82)

vilwu] = 0,

where gop = max, g'(u). These values for y and v are consiani, i.e. independent of w
and u, so the mixed partial derivative constr aizwt of problem (81) is trivially satisified.
; 0 [0,u] = O are satisfied. The C+ < 1/7p constraint can

Clearly also

3 * # o9

Colus v, (83)
So (14, v}) satsifies the desired constraints. The objective is Oy [y}, v%] = min, 3 [0, 4] =
1/ 7past (Broax ‘ ee this value is also an upper bound
for O, p, v

i/

which implies O, 9o+ 1). So (3, v}) in (82) solves problem (81).

Nc ”{t we use m ory to find and solve a constrained optimization problem
max (U JL wmd an serve a

/e as a lower bound for ma:’(0|b)
To bound & below (in problem (72)), we must simplify
notation, ||A7Y|;! is just o, (4), the smallest singuler valu
the matrix expression

<

1A~

i
of A. Also A is given by

x—a»a'\

A = diag(p)(Tdiag(g') + 1) + diag(v). (85)

The smallest singular value o,(M + ) of a sum of matrices &/ and IV is bounded
below by o,(M) — ¢1(IN), as shown for example in [GL83] (Cor. 8.3-2, p.286). We
will take A = M + N with N = diag(v) and use o;(diag(v)) = max; |1] to find a
lower bound O_ for O:

©>0_= min {ﬁn(diag(y)(i”dlag(g’) 1)) — max |v,|] (886)
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We can also bound the main constraint of C, which is that £ < 1/7ng. We will
use the fact that 1(M + N) < 01(M) + ¢1(N), which is also shown in [GL83] (Cor.
8.2-2, 0.286). The bound is as follows:

Clp,v] = max max|A
[}L ] uw'I‘ET i I z]r
< ax_||A|]2
8, T€
(standard matrix norm bounds, e.g. [GL&3], 2.2-10, p. 15) -
= max_o;(A) (87)
2w, TeT - .
<  max_ [51 (diag(y)(Tdiag(g’ )+ 1)) v ]
u}w,TeT
= C_ [y,
So the lower bound optimization problem becomes
Maximize )
O_ = min_ ;«iTn (diag(y}(?diag(g;) + 1)) — max zzl]
ww,T€T :
w.rb. (g, v), .
subject to (88)
c. = | max [-:fl i’d;ag(g)(fdzag(gi) +1))+ - max lv; ] < 1/ 7rs
\ w,w,T€T * /
and p,=—v, and £ >0 and »[0,u] = L\é‘
7
Consider the related optimization problem

Maximize

( by removing the paztiai derivative constraint that relates
ve solve this problem and find a solution that aiso obeys the partial
n we will have solved the original problem. That is wi
i riher simplified by observing
: iden‘zieaﬂy zero; otherwise, an optimal (u* ., v* ; #
he objective than (u*_,,0) which equally well satis
constraint f—+1, ,hat wouid contradict the assumed optimality of (u* ,,v:_1
So to solve max(O_|C_), i.e. problem (88), it suffices to (a) solve OTODleW\ (89)
assuming v = 0, i.e. {0 solve:

Mazximize
O_, = min_o, (dzaﬂ(; 1) (Tdiag(g") + ]
2w, T€T
wrt (z,v), 7
subject to (90)
Cor = ( max, oy (diag(u)(Tding(g') + 1)) < 1/ris
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S t=)

and then (b) verify that the mixed derivative constraint u, = —v (= 0) is satisfied
by the solution (42, 0) to (90). Furthermore, the optimizing values (u*, »* ) will just

be (u2,,0).
We will solve max(O
constructing an upper bound

Tet =

-+|C—) using the same strategy as for max(©|C) itself: by

problems by restricting to diagonal connection matrices

7 N {diagonal matrices}, and a lower bound problem using more matrix

theory, and showing that they have a common solution.
The upper bound for O_ is calculated as follows:

O+

min o,
u,w, 7T

2 w,TE

uw’j’éi’ é

mm mm J25
v Tel, !

min yfw, u]

- max, a’l diag

Il

max min wlws,

zzg%ux plw, u)(z,

'ﬂ

b

(diag(u)(Tdiag(g") +

min_ o, (dlag( )(Tdiag(g') + 1)
#,

pi(Tisgh + 1);

min min i min [Filg! + 1
i ¢ '?GT_:-

minmin gfw;, u
uw 4

1)
)

+1)

(1islg;

)

1
J

~7

(e

So the upper bound optimization problem becomes similar to problem (81):

Maximize
O_,.
b (1, v),

SLbjem to
Covt

AN

To this optimization problem

r’ -H—l” u]*]/Tzast tmaxgo +

= min pfw, u|
W

(
\

u,w (‘/m&l{ﬁ

and g > O).

max plw, u]

we again propose the solution (cf. equation (82))

), (04)
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where go = max, ¢'(u). The proof for this solution is the same as that of the solution
of problem (81) by equation (82), except that now w must be optimized everywhere
u is. This establishes the solution of problem (93) by equation (94).

We must now find a lower bound max(O_,_|C_;_) for max(O_,|C_;), and to do
so, we require another matrix theory result: that for positive semi-definite matrices
M and N, oo(M + N) > 0n(M) + 0a(M) [Sg590].

(Note on the proof so far: We could not use this result earlier since diag(v) was
not positive semi-definite. Also the use of this result and equation (92) are the only
places in the proof that depend on the assumpticn that T is positive semi-definite.)

Thus,

O_, = min_o,(diag(u)Tdiag(g)) + diag(n))
u,w, TET .
>  min, [G‘n (diag(y)?diag(g’)) + %(diag(,u))]
2w, T€T .
> min_[on(disg())on(T)oa(disg(e)) + on(dizg()]
waw, €7
(since ||[MN||; < ||M]|2|| V]2, [GL83] p.16) (95
= min [ou(disg(w) (min 0w(T))on(ding(s)) + on(dizg(w)]
= minmin plw;, 1)
%W k3 -
(since ming 4 o,(T) = 0)
= minufw,ul
= O_._[4]
Likewise,
A —
< max[oy(ding(w)o(

2w, T€T

(since [|MN||2 (96)
= &;%wl(diag(;dﬁ({ggej
N /1 7/
= ﬁi}a}(ma“ plws, wi) izmw_(mé&}; g'(u;
(since maxpes 01(T) = tmax)
= C_ [ul
We can assemble these bounds into the constrained optimization problem
Maximize
O_._ = minplw,y
%W
wrt. (g,v),
subject to (97)
, /, 3
Cowo = a’\ngax&(m?x g,g[wz-,ui})x\imm(méazx:g’(ui) +1) <1/ Tast
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To this optimization problem we once again propose the constant solution {cf. equa-

tion (82))
B [w,u] = 1/ Tast (bmaxgo + 1), (98)

where go = max, g'(u). Clearly the constraint p*,_ > 0 is satisfied. The (_,_ <
1/7eq: constraint can also be verified:

max, (tmaxg’(u) + 1)

e, f = maxut Jw, ]t "w)y+1) = = 1/Teaes.
-l Wi Ft { Kmng( ) ) Tiast (fmaxgo + 1) [
(99)
So u” . _ satsifies the desired constraints. The objective is @_+_Iﬂ_?_] miny, , p* . _[w,u] =

1/Tsast (max@o + 1). But, once again, from the constraints we know this value is also
an upper bound for O_, _[u]:

1/ Tst > €~+ {#]
maxcw»,,uw L (zﬂmg (1) 41)

I

(min, , J[w u}) (maﬁw o (tmaxg'(v) + 1}/) (100)

O_ _-[}u, ] Lma‘:\gﬂ i 1)7

v

I

which implies O_, < 1/7st(fmaxge + 1). So equation p* 4+ in (98) solves problem

We have previously solved problem u* , , in (93) with equation (94). The resulting
maximal values of O are the same for the two problems (97) and (93) (max(0_, iC_,_ =
max(O_ 4 |C_yy) = 1/Toasi(tmaxgo + 1)), and they are attained by the same p*
constant functions. Since these were lower and upper bounds for max(O__|C_ ), we
conclude that the same p* and maximal value of @ also solve proble”n (90) namely
the calculation of Iﬁa}'(@ +C_4). BLI in %b@

T

i oan
Y

the solumea f 1) (an upper bound & N

max(O_|C_) = max(O|C) = ma&((@]é’fg =1/

attained at (u*,v") = (u2, %) = (p},v1), ie
plw, ] = 1/Tes(fmaxgo + 1) .
v w,ul = 0 (101)

a4

is shown to be a solution of (72) for ¢ = 1. Other values of ¢ may be absorbed into

the definition of 75,..;. So we have established Lemma 1:
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Lemma 1. The optimization problem

Maximize .
© = min_||[47(u, D)7
uw, T€T
W.T.t (;U'7 §/’>’
subject to
C(c) = ( max ”mai{lAz;;\L T){ < 1/Tfast
- 0, TCT 27 -

and fy = —Vuw and x>0 and v[0,u] = O)

where
T = {T|o1(T) < tmax and Tis posmve semi-definite}, and
—Aij = .‘u’[wi} @s]( i5g (uz) + 5-3} -+ V[wza uz]5ag
(102)
has as one solution w4l ( ’
pw,u] = 1/(cTst(tmaxgo + 1)) o
3/’*['11],21,] = 0. (1\}?})

1t remains only to translate this solution for ufw, ] and v{w, u] back into a func-
tion K (as called for in ’:‘:9)) d thence to the desired “kinetic energy” or “cost of

movement” function K[u,u] or its equivalent, K, v

3.2.3 Approximate Solution of the ] ta-Optimization Probler
;From equation (77), we can apply Lemma 1 with ¢ = 2 to find a {(u*, ¥*) pair which
comes within a factor of 2 of solving the meta-optimization probler {(71) or quwa=
lently (69). (Note that (77) was derived assuming that max G]C/c) is pzop rtional
o 1/c, which has now been established in Lemma 1 .} Changing back to K notation,
where

TH = 27’{»%‘(%%:@0 +1) (105)
is a constant. (The factor of 2 comes from ¢ ) The general solution of these partial
differential equations is K|w,u| = w/7z +c1, bu? from the statement of problem (69)

we must take K[0,u] =¢; = 0. Then

Klw,u] = w/7a. (106)
Using (65),
ol ol = L 1 — Iy
K ai,u] = KM d, ulg'(u) = taig(u u). (107)
This has the solution K[i, u] = (7z/2)12¢ (u)+cz(u). But the term cp(u) has no effect
on the dynamics, since its greedy derivative is zero, an nd without loss of gpaﬂr&‘i ty we

can take ¢p(u) = 0. Then

This is the sought-after kinetic energy or cost term for v, and the associated equation
of motion is (from equation (63))

T R — s )
U; = \ZEJ@J "%‘f@g—dglh <109)

v; = glu).
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This K may also be translated back to a Lagrangian expressed directly in terms
of 9;, using K[, v] = K[i(v), u(v)):

Ko, ] = F9%/g'(g7 (0)) (110)

or equivalently
-
Ko} = Zitgo) (111)

If g(u) is linear (i.e. if ¢(v) is quadratic), this kinetic energy expression is proportional
to the conventional (m/2)v? expression encountered in physics, but for nonlinear g
this expression is different from a kinetic energy in physics. (110) is the circuit cost-
of-movement (or kinetic energy) term used elsewhere in this paper, and a greedy
variation of the associated action functional yields equations of motion equivalent to
the Hopfield/Grossberg dynamics of (109).

Assembling Lemma 1 and (47), (48), (52), (58), (61), (77), (105), and (111), we
have demonstrated the following theorem:

Theorem 1. The linearized dynamics determined by a greedy variation of the
Lagrangian

Liv] = T Ko, v+ % B0, with
1 — o« / N
Ev] = -3 2ij Tigvivy — Xy hiv + 35 ¢(w;), and {112)

2
¢'(v) = g7} (v) and g = max, |g'(v)|

and if we impose th

(a)  maxy maxper max; , HAll2 < 1/Tts,

(where A runs over 1 x 1 and 2 x 2 submatrices o
(b) K is continuous in its first and second derivatives, (
¢ K[0,v] =0, and
(@) K, <0,

T=siy
N
p—"
o
B
[

et
oot
<

~Io

o~
RN

then the function
Klv,v] = (72/2)9%¢"(v) where (117)
THE = ZTfast(imax§0 -+ 1) o
satisfies the constraints and comes within a factor of two of the globally maximal
value of M(K) subject to these constraints. Furthermore, the objective A, and the
constraints (a) — (d) in (116), with definitions of A, & and w as in (113) are invariant
with respect to coordinatewise reparameterizations z; = fi(v;) in which each f; is
monotonically increasing, differentiable, and has a differentiable inverse.
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3.2.4 Notes on the Solution

If ¢ differs from one neuron %0 the next, and is indexed by ¢ as ¢;, then the optimal
K term will still have the above form if it too is allowed to depend on ¢. The proof
in section 3.2.2 can easily be altered to establish this generalization of the result.

Note that (105) relates the fastest physical time scale Tgpg in a circuit to an
optzmai value of the neural time scale 7z appearing in Hopfield’s version of the analog
neural network [Hop&4], and the two are not the same. The best value for the neural
time constant is the slowest time constant in the system. The ratio of the latter to
the fastest time constant is roughly the product of the neural gain gy and largest
eigenvalue of T.

We note a change of variable which simplifies the k_netlc energy term in the above
dynamics, for use in the next section:

o8
L[ ]—w_ﬂ A + 20 5 Wi
5’35/ {(8) =0= 1;+0E/0w; =0, ie. (118)
= —9E /0w,
which is supposed to be identical to w; = —8E/0v;, v; = g(u;) (cf. (12)). This can
be arranged by choosing w:
o dwy _ dvi/duy 1 on
= Eu—; T dw;/dvy !\11“)
. dwy oy
= G = /g (w)
1.8
o e \ [ / \ \
w; = 7[ duy/g'(u) and v; = | dw/¢' (u(w)). (120)

We introduced a Lafziazg an formulation of the relaxation dynamics of neural
networks which compute by tmmzwg an objective fun“"'@ﬁ in a standard neural
network form. This optimization involves a trading-off ¢ d functionality in the
formulation of optimization prob ie s. The Lagrangian ?fOi 1 ion makes novel use
of a greedy functional derwa tive, which we defined and bgﬁ_pu”d With these tools we
demonstrated the use of three ievel of optimization in the design of relaxation neural
network dynamics: the original objective ¥, the Lagrangian L, and a meta-objective
M which measures cost and functionality over many irials of the network.

Applications of the Lagrangian formulation were divided into two broad
analog circuit Lagrangians, and Lagrangians that require a hidden switchin
anism to implement as a circuit. tnc circuit level, we showed that a limited
meta-optimality criterion is ﬂeariy optimized (within a factor of two of the global
optimum) by a Lagrangian correspondiﬁg to the conventio cd Hopfield-Grossberg
continuous-time analog neural network dynamics; we also provided s e:ra,l alterna-
tive Lagrangians which might be preferable az_:d er less analytically ¢ ac‘cabl meta-
optimality criteria. In par is work we shall m‘cromuce a generalization of
such relaxation Lagrangians angians with clocked objective functions,

(@]

g-arr
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which have a simple circuit implemeniation involvii
present suitable algebraic notation including a clock

use the notation concisely to express neural netwe

minimization and for relaxation networks that coni
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