Neural, Parallel & Scientific Computations 6 (1998) 337-372

A LAGRANGIAN FORMULATION OF NEURAL
NETWORKS II: CLOCKED OBJECTIVE FUNCTIONS
AND APPLICATIONS

Willard L. Miranker! and Eric Mjolsness?

!Department of Computer Science
and Neuroengineering and Neuroscience Center
Yale University New Haven CT 06520
and
Research Staff Member, Emeritus,
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

2Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive
Pasadena CA 91109-8099

ABSTRACT: In Part I of this work we showed how a tradeoff between measures
of neural net cost (of operation) and functionality (efficacity) could be used to derive
the dynamics of the net, and in particular, optimize thereby a class of objective
functions. Here we extend that methodology; a Lagrangian formulation and greedy
variation to treat more ramified problems. We introduce a notion of clocking and a
class of clocked objective functions to do this. A kind of switching dynamics occurs
which is suitable for many applications. This notational clocking calculus makes for
‘time-scaled computational techniques employing a “focus of attention” (similar to
saccading, foveation, and covert attention in biological vision). Experiments dealing
with applications are referenced.

1 INTRODUCTION

In Part I of this work [MM] (to be referred to hereafter, simply as Part I) we
introduced a Lagrangian formulation of the dynamics of a class of relaxation-based
analog neural networks. These Lagrangians incorporate a trade-off between measures
of the operational cost and the functionality (efficacy) of neural networks employed
to optimize a given objective function F. Because of the need for nonconservative or
dissipative dynamics, our Lagrangians are to be varied in a nonstandard way using

LN & (™Y Theramimie gl
/06 $02 50 © Dvaamic Publ

338 Miranker and Mjolsness

the so-called “greedy variation”. This results in dissipative analog circuit dynamics
described by first-order systems of differential equations. Within a class of candi-
date Lagrangians, we proved the near-optimality (under a suitable meta-objective
function) of a particular Lagrangian corresponding to the Hopfield/Grossberg analog
circuit dynamics. However, for efficiency, elaborate computations may require more
complex dynamics specified at a coarser scale of temporal resolution, and this is a
theme of the present work.

Here (in Part II) we proceed to consider more elaborate Lagrangians which are
capable of specifying non autonomous dynamics. For example the dynamics may
depend on which subset of the problem variables is currently being optimized, as well
as the subset next to be optimized. This kind of “switching” dynamics occurs in
many applications and requires a more general formulation of the Lagrangian which
we develop. In section 2 we introduce a time-varying or switched version of the prob-
lem objective function &, called a “clocked objective function”. We relate it to our
Lagrangian formulation of dynamics, producing so-called cyclic Lagrangians. We de-
velop suitable notation for expressing a number of existing optimization methods in
terms of such clocked objectives. Reference is made to 2 number of experiments, ap-
plication and computation, which utilize this clocking calculus. In section 3 we show
how to specialize these ideas to the case of 2 computational “focus of attention” (simi-
lar 10 saccading, foveation, and covert attention in biological vision) which iteratively

] 2 subset of the problem’s variables for optimization, and

and opportunistically selects I

optimizes them. show how to develop Lagrangians on different problem scales.
Greedy variation then leads to the dynamics relevant to each scale. The working
of the clocking or switching in the problem development and its solution is worked

out. In section 4 we derive and relate various particular focus of attention mech-

which have been tested in previously

anisms, including several

These in

ITCHING: VIRTUA]

which would require a much larger neural network if every neuron were to be

updated at all times. This situation would be analogous to the use of virtual memory
in a conventional computer, in which one has a limited amount of physical memory
(Random Access Memory) augmented by a much larger amount of secondary storage
(magnetic disks). Equally, it is analogous to the distinction between the small cache
memory associated with a central processing unit, and the larger physical memory
(RAM). In either part of the memory hierarchy a relatively small and fast memory,
in concert with a relatively large and slow memory, simulates & large fast memory
(with occasional slowdowns due to page faults or cache misses). In like manner, we
seek to design a switching mechanism for obtaining the computational power of a
large neural network with a small neural network plus a large, slow and relatively

A Lagrangian formulation of neural networks II 339

inexpensive memory. Furthermore, in some cases it will prove possible to dispense
with the slow memory entirely.

Such a system would be useful not only for making space-time tradeoffs in situa-
tions where only a limited amount of spatial resources (neurons and connections) are
available, but also for formulating search algorithms (such as binary search) which
can’t be fully parallelized due to their unpredictable total resource requirements.

What kind of cost and functionality terms would model this situation? This is
a hierarchical design problem. At a coarse time scale, we have just two kinds of
decisions to make: what the active set of neurons (the focus of attention) is to be
at any given time, and what their new values are to be after some period of active
dynamics. (In the memory hierarchy analogy, one would like to decide which part of
slow memory to bring into fast memory as some computation progresses.) At a fine
time scale we must repeatedly make circuit-implementable state changes which move
towards answering these two coarse-scale questions.

A strong constraint on the system is that, under reasonable cost metrics such as
network space-time volume, no savings will be realized unless the focus-of-attention
decision has converged to a definite answer by the time a switch of attention is to
be made (i.e. by the time that decision is to be implemented); partial answers as
to which neurons should be active would just force all the candidate meurons to
be active. (An attentive neural network which unhappily violates this constraint is
described in [Mjo87].) Of course one can contemplate dynamics in which by way of
example a linear combination of neuron values is made active, but such a system
should be designed by introducing new variables for the linear combinations and a
discrete switching circuit which still, to be physically cost-effective, makes definite
decisions about the active set of neurons.

So, our problem is to find both coarse-scale and fine-scale cost and functionality
terms to model a focus-of-attention mechanism which switches many stored neuron
values into and out of a small active network, where the neural values are updated.
We will not consider all aspects of this problem. Rather we shall show how the
Lagrangian formalisms provide a tractable framework for our approach. This is il-
lustrated through derivation of a few plausible Lagrangians in the form of clocked
objective functions. Related work appears in [Co089, Mjo87, MMO1, B3B*91].

2.1 Cyclic Lagrangians

In discussing coarse-scale cost and functionality terms, the idea of a repeating cycle
of a fixed set of dissimilar coarse-scale decisions will be fundamental. This idea
is analogous to a “loop” in programming, or to the use of cyclic clock signals to
control an electronic circuit. The idea may be expressed in terms of Lagrangians
in several different contexts which we will discuss here. In all cases we will find a
simple formulation in terms of a “clocked objective function” [MGM91]: a version of
the AE functionality term of the Lagrangian in which the structure of E is regarded
as time-dependent according to a temporal cycle corresponding to the fixed cycle of
coarse-scale decisions. The possibility of formulating a cyclic Lagrangian in terms of
a clocked objective function was introduced in section 2.1.1 of Part I, equations (17)
and (18).

As an example, consider a line-minimization algorithm for local optimization.
Repeatedly, one calculates the gradient at a current location x, does a one-dimensional
minimization of the objective function along the gradient direction, and updates x.

340 Miranker and Mjolsness

@ ChO)

Ta ’ k4

Figure 1: Two time variables 7; and 7, may increase during nonoverlapping intervals of
an underlying physical time variable, {. For example 7, = [dith () and 7y = [digh(t)
where 9 = dri/di and 1, = dn /dt are nonoverlapping clock signals. (a) The
parametric curve (73(t), 2(¢))- (b) The functions 91 (t) and o (t).

During the cycle it is necessary to store an old configuration x°¢ for use in updating
%, and to reset to zero the scalar parameter s which measures displacement in the
gradient direction.

To express these ideas we recall the clocked objective function notation IMGMO1]:
Suppose that we have a small set of objective functions {E,} which are to be partially
relaxed (ie. partially optimized) in a cycle. We define one nonoverlapping clock
function, ¥e(t) = 0 or 1 (with 2, Pa(t) < 1), for each phase o = 1,2,.. ., A of the
cycle. The clocked objective function is written as

Eclocked [X> i] = Z "!J& (Z> Ea[Xireeixgmd]’ (1)

?«V}l@i‘e _:};:2 Ta o are Suo
: h £ = 1 o = F Zfrae;gﬁxed';,ba@v;a= J RS | o
o (i.e. when a(t) = 1), Hdocked = Lalta - is to be extremized with respec
¢ while all variables in Xx8%2d are to be held fixed or clamped.
Figure 1 shows one interpretation of the nonoverlapping clock functions P (1),
For example, a simple clocked objective function for line minimization would be

t5 of variables from the entire set {;}. During phase
ct

Faocked = 1 (i)é (Hx‘ﬂd - x||* + 32> (x4, 5]x] (initialize x°¢ and s)
+1ha(t) gE [x+sVE [x"ld]]) [5]x, %] (line minimization)
+¢3(t)§(nx — x4 — sV E[xM]||?)[x]s,x"] (update x).

()
Since the @ = 1 and o = 3 phases are especially easy quadratic optimizations, one
could arrange that these terms are relaxed almost to zero during the clock phase
interval appropriate to each. Then equation (2) is a continuous-time refinement of
the coarse-scale Lagrangian’s decision cycle, which partially relaxes E in a gradient
direction and then resets the variables for the next partial relaxation. At the end of
phase 2 in each cycle, the clocked objective function takes the value of E at the new
point. So the clocked objective function may be interpreted as a refinement of the

A Lagrangian formulation of neural networks IT 341

functionality term of the coarse-scale decision-cycle Lagrangian. This interpretation
also requires that the appropriate variables be held fixed at the correct times; this
may be achieved with a cost term C, which strongly penalizes any change in the
clamped variables for the relevant clock phase.

Many variations on equation (2) are possible; the clocked objective could inter-
polate an extra cycle for the calculation of the gradient vector, and the x used to
calculate the gradient could be taken as the u = g~!(v) rather than v variables for
E, and so on.

2.1.1 Relation of Fyoceqa t0 £

So far we have only argued that clocked objective functions provide an interesting
special case of the distributed Lagrangian equation (5) in Part I; we have not shown
how they can be related to the static objective function E or the dynamic objective
function equation (4) in Part I with functionality term F' = Egpy — Eipya. Here we
will discuss three different classes of clocked objective functions, each of which can be
used to make some progress on minimizing F in every complete clock cycle so that
AE < 0 for each cycle even though the functionality term is not simply equal to AE.
In this section we refer to such a clocked objective as “valid” for objective E.

Transient Terms For the first class of clocked objective functions, of which the
line minimization objective (2) is an example, Fyoarea i valid if one of its components
Bpg is equal to E itself, perhaps with restricted arguments, and if the other components
can each be expected to relax to near-zero values within their own phase of the cycle.
These other components will be referred to as transient terms of a clocked objective
function, since they approach zero quickly. Then progress is definitely made during
phase £, and at least no harm is done (i.e. no increase in Ej is suffered) in the
other phases a. Generally these other phases are used to ensure the suitability of the
arguments of Bg = &

Subspace Terms In the second class of valid clocked objective functions, B, is
equal to E during all clock phases, except that it is a function of different sets of
variables (or more generally, is a function on different submanifolds) during different
clock phases. We will refer to this type of term as a subspace term of a clocked
objective function. There can be no significant calculation required to decide what
subset of variables £ depends on during each phase (otherwise we’d need a further
phase to make that calculation). One simple arrangement is to partition all variables
into a few blocks A, with the variables in one block allowed to change during each
phase of the clock. Then equation (1) simplifies (since every E, is just F) o

Eclocked [X: i] = Z ¢&<t)E[X§reeIX§xed]’ (3)

This permits concise expression of blockwise coordinate descent algorithms.

It is perhaps surprising that Eoced[X,] is not numerically equal to E[x(¢)] for
all ¢ in this case, owing to the nonoverlapped clock factors 1. (t) € [0, 1] whose sum
varies between 0 (between phases) and 1 (during a clock phase). As we will see in
the next section (2.1.2), this is necessary so that the continuous-time Lagrangian will
force all variables to completely stop changing between clock phases, as they should.

We note that the second class of clocked objective functions can be used for the
discrete parallelization scheme mentioned at the beginning of section 2.3.1 of Part

342 Miranker and Mjolsness

1. There we postulated a partition of the network variables into 2 small number of
«golored” blocks, with neighboring variables in the network having different colors.
(Colors are in a correspondence with phases.) Such a partition cal be used to ensure
noninterference of discrete-time parallel update dynamics. Clearly equation (3) is the
correct clocked objective for this situation, and F would just be AFocked-

Control Terms For the third class of valid clocked ob jective functions which per-
form optimization, one constituent objective Egis again taken t0 be E with restricted
arguments (a subspace term, as in the first and second classes), and the other phases
either relax to nearly zero (being composed of transient terms as in the first class) or
serve to determine the choice of active arguments for phase § without directly chang-
ing any of the original variables x. Since this last type of objective is a sum of terms
that only involve yariables that control membership in the active set of arguments
for 3, its constituent terms will be referred to as conirol terms in 2 clocked objective
function. Clocked objective functions with control terms are the class of objective
functions most relevant to the attention mechanisms of gection 4. In that section we
will have occasion to use clocked objectives containing a variety of subspace terms,
transient 1erms and control terms.

9.1.2 Lagrangians for Clocked Objective Functions

We have seen 1 equation (17) of Part 1 how clocked objective functions may arise
from coarse-scale Lagrengians, in which the the functionality term +akes on a cyclic
sequence of different forms. Our purpose DOW is to relate such clocked objective
functions (as in (1)) to continuous-time Lagrangians.

The essential feature of a single term Ea[ﬁfg’"e\?ﬁ.’fxed] in a clocked objective func-
tion E is that it depends only on some of the variables, the rest being held constant
ot their earlier yalues. This gives 2 property expressible in terms of derivatives:

am) a8
o

.,:;er.il = Yoi - %\4}

where Xei € 1 0,1} is a constant which indicates the presence (x = 1) or absence
(x = 0) of z; in Xfree, (For fixed @, Xoi 18 30 indicatrix for X2). Consequently,
B x| X fixed] i a low-dimensional slice (restriction) of the higher-dimensional func-
tion EalXels evaluated at values of the fixed parameters which are dictated by the
state vector % ab the beginning of the o-th phase.

;From equations (3) and (4) we may now calculate BB aocked/ O%i:

‘?Eclecked §Ea
“m = }_;;%ba(f)mi-é;, (5)
which is nonzero at any given time % only if @i is in the free set of variables at that
{ime.

We can take the final continuous-time Lagrangian t0 be

_ (. aECXocked .
L= z KK{E,;, $gl + —fg}rm , (6)

where K is 2 cost-of-motion term (see section 1.1 of Part I). To see that this is

consistent with the desired pattern of fixed variables as 2 function of time, We €X
amine the resultant dynamics. As in equation (30) of Part 1, varying & and using

A Lagrangian formulation of neural networks I 343

2o YaXai € {0,1}, and defining K[w, 2] as the inverse of X [£,] ; with respect to its
first argument, the equations of motion are

o 98, 71 9Fa
I; = K[— Z wa(t)XaiEﬁ:7 .’L‘g} = Z ’l/lq(f)Xm‘K[- éc;f

,Is']- (7)

Here we have used equation (5) and K[0,2] = 0 to simplify the equations of motion.
.The factor of 14 (¢)Xa: ensures that the correct variables are clamped at the correct
times.
Equation (6) is appealing because it has the same form as the continuous-time La-
.grangian for unclocked objective functions, equation (22) of Part I. This is the desired
relationship between continuous-time Lagrangians and clocked objectives. Because
of equation (6) it will often suffice to give the clocked objective alone, omitting the
' Lagrangian, in order to specify a network’s dynamics.

2.1.3 Notation for Clocked Ob jective Functions

Equations such as (4) can be expressed in a more convenient notation for algebraic
calculations (by human or computer). From an algebraic point of view, (4) may
be regarded as the z; derivative of E,, a version of E, in which all fixed variables
z; € Afxed gre simply replaced by clamped variables {or “fixed variables”) Z; for
which

0% , . Oz;
—qf =0 despite the fact that —L =, (8)
5 I

The actual value of Z; is updated to the current value of z; only at the (otherwise
irrelevant) time intervals between the nonoverlapped clock phases, when Poa Yalt) =
0. Bquation (4) follows directly from this interpretation of E. [Fee| xfxed] ip terms

s} =xz+(1-2)7 s0 x{x}=x, x+(1-x,) % 9)

where x is a binary (zero- or one-valued) scalar (or can easily be rounded to zero
or one) and X, is just the constant aITay Xe: Which specifies with its zero-valued
entries which variables are clamped in each phase o With this notation, £, is just

Ealx{x.}), ie.
. Bo[X 7] = Ba[x{x,}. (10)

We will use E,[x{x,}] as the preferred notation. Furthermore X need not be a
constant; it can be replaced with any vector-valued expression w(£) involving variables
€. Equation (9) would still define

x{m(€)} =o(=(E) - 1/2) x+0(1/2 - n(3)) %, (11)
where N
@) ={§ i 12

© is defined componentwise on vectors. The purpose of the © function in (11) is
to round @ (&) to zero or one, with a boundary at 1/2. Note that, in agreement

gl
i

344 Miranker and Mjolsness

with equation (9) in which x is a comstant, X is clamped in equation (11). That
is because x's focus of attention cannot shift during the phase in which x is being
relaxed without incurring excessive and uncontrolled switching costs.

As a further notational refinement, we may drop the explicit ¥ (t) functions from
our notation by defining a clocked sum,

DE.=3, Va(t) Ee (13)

which may be written out term-by-term as
EL®Ey®...Ea (14)

(The “@” symbol is evocative both of a rolling “+” sign, and of an analog clock face.)
Of course the periodic functions ¥ (¢) still have to be specified before the clocked sum
is a well-defined quantity. The clocked sum is neither commutative nor associative,
but we may take it to associate over the ordinary sum:

Z@EQE@ZEG (15)

Moreover, parenthesized expressions such as B, ®(E,® E3) may be used to denote
nested loops in which for example By and Es are repeatedly relaxed in an inner loop,
within one phase of an outer loop, and E, is relaxed once during the other phase of
the outer loop. Again the timing would be controlled by external functions Pa(t),
which must still be specified separately.

Note that the use of clocked objective functions is reminiscent of time ordering
of operators in quantum physics. See also the so-called Feynman entangling calculus
[MW66].

+tant al

i 3 L e T s) -
Perhaps the most important aigeor

aic property of the
.
{

of formulating descent algorithms, is its commutation wit

This follows directly from the definition of the clocked sum. The right hand side of
equation (16) could be used as the time-dependent descent direction in a gradient-
descent algorithm.

We may conventionally expect to find the & signs outside the + signs in a clocked
objective function, and accordingly we assign @ a lower grammatical precedence
than -+ in otherwise ambiguous expressions. So by convention, Ei @ B2 + F3 means
E, & (By + E3).

With the addition of clamped variables I, conditional variables z{x}, and clocked
sums @, E,, we are able to concisely express a wide variety of clocked objective
functions. For example the line minimization objective (2) becomes

Faoaed = 8°/2+ || - %||?/2 (initialize 5, x°')
@ E[x + sVE[x]] (line minimization) (17)
@ ljx — %™ - sV E[RY)||?/2 (update x),

A Lagrangian formulation of neural networks II 345

or what may be easier to implement as a circuit,

Buoced = 8°/2+|[x" = x|*/2+ ||w — VE[R]||*/2

(initialize s, x°; find gradient w)

T : P (18)
® E[x + sW] (line minimization)
& ||x — %M - sw|*/2 (update x).

Furthermore, clocked objective functions make new algebraic transformations pos-
sible. For example, equation (11) may be implemented for x-expressions (assuming
only that we can implement it for 0/1-valued variables) by introducing new variables
7 as follows:

E[x{ﬁ’(g)}] — Z [— mi(mi(&) - 1/2) + ¢o/1(7k)] @ Elx{n}]. (19)

Here g1 is a two-sided barrier function which limits its argument to values between
zero and one.

2.1.4 Experiments

The clocked objective function notation has been used to derive and express a number
of experimentally validated relaxation-based neural networks, including networks for
multiscale image segmentation [T'si97], visual pose estimation [LM94], point matching
[GLR*95], and invariant learning of point-set and graph models of visual objects
[RGMO6]. In these applications, the problem variables were divided into an exhaustive
collection of subsets each of which received an exclusive clock phase. During the
clock phase for any subset of the variables, all other variables were clamped and the
optimization of the free subset was relatively easy or even analytically solvable. This
situation is described by equation (3), which may be rewritten as a clocked objective
function using (13). It occurs sufficiently often that we provide another notation for

it

Bl xiee i) = (@ BXFO P = 5 g (O BATF| AT (20)
a o

2.1.5 Clocked Circuits

Clocked objective functions can also be used to specify circuits at the analog level.
The simplest way to do this is to assign to each clock phase the dynamics of an
analog neural network in which some variables have been clamped. The clamping is
under the control of the clock signals and/or other variables. That is the effect of
equation (6), either under the original definition of clocked objective (5) or under the
more powerful and convenient notation defined in equations (8), (11), and (13); it is
also a basic idea behind the design of clocked pipelines of combinatorial logic in the
data paths of simple CPU chips [MC80] where clamping is determined only by the
clock signals. We take it as clear, then, that such clocked objective functions can be
implemented as analog circuits provided that each phase can be so implemented, and
provided that the objective includes Z expressions (cf. (3)) but does not include z{y}
expressions (cf. (8)). For example, the line minimization clocked objective of equation
(18) can be implemented this way, as can the multiscale optimization objective found
in [MGM91].

346 Miranker and Mjolsness

Tn the next subsection we show another such example: a clocked objective func-
tion which incorporates one Or more general feed-forward neural networks inside a
relaxation-based neural net, in a hybrid that may be of use for combining relatively
efficient learning algorithms (from feed-forward nets) with expressive pOWer (from
relaxation nets). .

Later, we will discuss a set of applications that require the more powerful z{y} no-
tation, without speculating on t+he hidden circuit-level implementation of the switch-
ing mechanism. Thus the problem of eliminating z{y} expressions in favor of T expres-
sions remains for future work; it is related to the “neural network routing problem”
discussed in [MG90], section 2.6. A further open problem is to replace global clock
signals in a Lagrangian circuit formulation with a system of self-timed subcircuits in
which the ¥, control functions are replaced by relatively local variables with indepen-
dent dynamics. Solutions to analogous problems are implicit in the design of many
distributed computer systems but not within a circuit-level Lagrangian framework.
The z{y} notation represents a substantial escalation in expressive pOwer, and section
4 is devoted to some of its uses in designing computational attention mechanisms.

2.1.6 Feed-Forward Networks as Constraint Projection

4 feed-forward network inside of a relaxation network can be regarded as a set of
constraints on the relaxation network:

) v i I el A-1 1Y

Errjretax %] = Braax|%] + », FEV, T, 1, (21)
1 (layers)

where FF is the functional dependency constraint of a layer’s output neurons on its

input neurons (here taken to be in the previous layer, though neurons in any previous

1 thrn). Various

may be inputs

without causing problems for the following algori

y

methods are availanle 10 1
[PB87, MG90, PS89], but the feed-forward network constraints have a T2
ing determined by the feed-forward pattern of connections. 50 in this special-case 7
can use a nonlinear projection method to enforce all the constraints. As mentioned
in section 2.3.1 of Part I, related algorithms are discussed in [B

™ N R e o
T eniorcing o

}]

under the name of “gradient projection algorithms” or “scaled gradient projection
algorithms”.

Any incremental relaxation of the objective Freax 18 followed by a series of projec-
tions which reestablish the feed-forward constraints, layer by layer (i.e. from earlier to
later neurons in the feed-forward neuron order), in preparation for further relaxation.

The clocked objective is

EFF—projection[Xv V] = % {Z { - ({}5 Zizjﬁ;‘_l + ¢z<yi)}} D Erelax{xl~ (22)
J

1 (layers) i

Note the especially simple form of each layer’s objective:

J

> {_@5 3T+ (w)

Every neuron v} in layer { is independent of every other in this objective, and the
minimization of this objective is best achieved just by assigning values t0 all layer-1

A Lagrangian formulation of neural networks II 347

variables in parallel:

vl = (S Thot™), where g74(0) = gi(v). 2
J

This is the projection operation which immediately enforces the layer-l constraints.
Later layers’ projection operations do not disrupt earlier ones. So, at the beginning of
the relaxation phase of every cycle, all the FF constraints will have been consistently
satisfied.

3 FOCUS OF ATTENTION THEORY

A particular kind of clocked objective function formalizes the idea of a computa-
tional focus of attention. We will derive this clocked ob jective by first considering the
functionality and cost terms of a coarse-scale greedy Lagrangian, and then developing
the associated fine-scale greedy Lagrangian which specifies circuit-level dynamics.
3.1 Formulation of the Lagrangian at the Coarse Scale

Let x be a set of discrete-valued variables which determine, directly or indirectly,
which components of the neuron vector v are actively updated at any given time. In
other words, x determines a characteristic function 7, (x) for the focus of attention
or active set of v;’s. Thus

i) 1 if v; is active, i.e. in the focus of attention, (25)
iy = .
i\ 0 otherwise,
with
T?F-‘/’V\) - ("7(4\\
PRV & B IS Ay
7

For example, we could have as many components of x as of v and set m;(x) = x;. Or
instead, we could imtroduce a partition of the components of v into blocks indexed
by a, with a 0/1 partition matrix B;,; this is a form of aggregation applied to x.
(For now we will take n to be constant, though a variable 7 is sometimes useful.)
Then we would have one component of x to switch each block of the partition, and
Ti(X) = 24 BiaXa- (That is, a variable v; is in the focus of attention if and only if its
course-scale block a is in the focus of attention as determined by Xa-) Usually m;(x)
can be made linear in y.

Regardless of the actual formula for 7;(x), there will be some sparseness constraint
on X to ensure that only a small fraction of the neurons v are in the focus of attention
at any one time. For example one might impose ¥, mi(x) = n, where n is the optimal
size of the focus of attention (and n < N = the total number of neurons v;). In the
case of a partition matrix B with blocks of roughly equal size b (so 3; By, ~ b), the
sparseness constraint would become 3, x, = n/b.

Whatever the sparseness constraint on y is, we will express it as a summand @(X)
in an objective function. & may be a penalty function, a barrier function, a Lagrange
multiplier times the constraint, or some combination of these possibilities. Thus, we
could choose from a variety of “k-winner” objective functions (% winners allowed in a

348 Miranker and Mjolsness

competitive group). Assuming B(x) = ®(e) wheree = 3, mi(x) — n, we can enforce
or at least favor satisfaction of the constraint e < 0 with

(¢/2)e? (a penalty term), or
Xe + coe — (¢/2)0* (Lagrange multiplier + effective penalty [MG90],
with ¢ an appropriate auxiliary variable), or
®(e) = cf¢ g(z)dz g monotonic and odd (a barrier term), or
€0 — [Gin g 9 N(@)dz, (effective barrier, linear in e),

(27)

Stricter sparseness terms are also permissible, such as a sum of many k-winner terms

on different sets of variables. And for a variable-size focus of attention, in which n is
variable, one would also need a cost term for n.

All components of v will be assumed to take continuous values, even if they are

ultimately supposed to converge 0 discrete values. Then the coarse-time-scale update
rule implied by the action 5 will be of the form

For example

where G is the cumulative effect determined by Y ,
active-v clock phase. This update rule is to be derived from the greedy variation of
a multiphase dynamical objective of the form

s= Y = Y ¥ wOlcp+rel G0

where 1, is defined as in section 2.1. The principle feature of equation (80) 1s 1
it has two clock phases, one during which the v variables are free to move and the X
variables are clamped, and one in which the roles are reversed. During the active-x
phase the focus of attention is determined for the next active-v phase of th ycle.

Notice also that we have assumed a simple stopping criterion, 3 o L, < 0, which
means that the coarse-scale dynamics continues only as long as its benefits (decrease
in F) outweigh the costs (given by C), and this decision is made at the end of each
complete cycle. We must now find suitable functions Ceoarse—v, Feoarse—vs Ceoarse—x
and Fcoarse—x~

D
(@]
<

3.2 Coarse-Scale F

To find the F terms, we must decompose Fiym = AE into a sum of coarse-scale
causal terms. We would like Fioamse t0 measure the improvement in & due to choosing
a configuration x and then updating v accordingly:

F(t) = Froarse—v + Feoarse—x = ElV'(v,x)] — E[v]+®(x). (31)

How can we decompose this combined effect of v and into separate F' terms for each
coarse-scale decision? As previously mentioned, the difficulty is that the coarse-scale

w

90],

A Lagrangian formulation of neural networks II 349

decision step which chooses values for x cannot be made simultaneously with the
decision of v values whose presence in the focus of attention is determined by that
particular x. One obvious way to accomplish this is to stage alternating coarse-scale
decision phases, updating the two sets of variables, each based on the most recent

value of the other:)

X = x'(xv)
VI — .vi(v, X,)- (32)

Then, to decompose Fy + Fy = E[v'] — E[v], we may interpose some especially low

cost estimate v of v/ which could even be computed analytically given any candidate
7

X:

Fcoarse x' [XI,V] E[{’(V’ X,)] - E[V] + ®(X) 33

Frosew VIV, 3] = B[] = Bl#(v, v, %])

The optima of these two expressions with respect to their free arguments then deter-

mine the functions in equation (32). Note that Fusamse v [v'] ..] is independent of ¥,
though the constant E[¥(v, x')] is subtracted off to satisfy equation (31).

The F functions of equation (33) may be understood in the terminology of section
2.1.1 as a control term (AE)e[x|v] = E[V(v, x')] - E[v], a transient term ®(x), and
a subspace term E[v'|x’|. However, the subspace term is carefully normalized by
subtracting the constant E[¥(v,x’)] in order to apportion credit for a given AE
(equation (31)) between the x and v phases of the dynamics. By equations (9) and
(25), the subspace term E[v'|x’] may be written as Ev'{m(x)}]. So the objective
function of equation (33) is equivalent to the clocked objective function

Basien = (AB)est[xV] + @(x) @ Elv{n(x)}]. (34)

It remains to specify the parameterization 7(x) of the focus of a‘ttention, the cost
®(x) for a given focus of attention, and the estimation formula for the AE that

iy

would accrue from a given focus of attention n()). Bach can be specified in & variety
of ways. @()) may be a k-winner constraint. Also the estimation formula (AE) e
may be meta-optimized to provide more accurate estimations as judged by their effect
on the performance of the attention algorithm.

In summary, once we are given the function ¥(v,x’) and the cost terms Cy,
there is a Lagrangian (the sum of cost and functionality terms) and an associated
optimization principle (6L = 0, as in section 2.2 of Part I) that determines the
discrete-time dynamics of v and). The action is given by (30) for S and (33) for F.

3.2.1 Criteria for Estimating the Effects of a Focus

It remains to find suitable expressions or dynamics for ¥(v, x'). These have the
function of estimating the influence of alternative x vectors (hence of different foci
of attention) on v without actually performing the minimization of Feoarse vi [V'|V, X'].
This problem is closely analogous to the meta-optimization problem posed in section
3.2 of Part I . There we sought a functional form K (v, v) for the kinetic energy which
resulted in the “optimal” dynamical system, where optimality was defined to depend
on behavior in many different trials of the network. Likewise we must first define
meta-optimality and then seek it, in the determination of a formula for ¥ which will
be used in many different trials of the network. '

350 Miranker and Mjolsness

For any such functional ¥, the required network computation must be very n-
ezpensive compared to that of v' for this Teason: the cost of optimizing Froarse x 18
expected to be some large number of fine-scale iterations times the cost of finding ¥
and is to be added to (and therefore balanced with) the cost of finding v

As always we must weigh functionality against cost. What makes an estimator
(v, x') effective? For a single neural network trajectory, the obvious choice is to
consider the ¥ function effective to the extent that the resulting v(t) trajectory min-
imizes the action S in (30). After all, the Lagrangian already contains the correct
balance of cost and benefit terms for judging the v dynamics, complete with a stop-
ping criterion. The only remaining question is how to aggregate over many trials
of the network which share the same formula for ¥, i.e. many starting points, in-
puts, and possibly connection matrices. One could attempt a worst-case analysis as
in the determination of K (¥,v), but we have not succeeded in that. Alternatively
we consider an average case Imeasure of action, averaged just over some probability
distribution on starting points. h

VWe have already proposed 2 meta-objective, (35), for this type of problem. Here
we are averaging over starting points (and perhaps also over inputs h and connection
matrices T):

~ 7o L s 1i T I / A4 [
M =)= T LO), ®FL 2 Litv,(0) = Mp[#], (39)
il -

(£)>0 ' Y p=14|L{) 20

[

where {v,(0)} are P starting points sampled from the same random distribution over
initial conditions.

(ieperally, predictive accuracy in ¥ is rewarded by this objective because of the
term E[v'|x'] in (33): ' is optimized for BE[¥(v,x)] and then used as a constraint in

The sampling procedure COL : i
mizable quantity M, at the expense of introducing a learning and general]
problem. Asin theoretical approaches to learning [Vap82, BHB89|, we must ensure &
sample size sufficient not only to approximate t+he infinite sum, but to continue to do
so even after the sampled objective has been optimized (by tuning 7) to that partic-
ular sample (so that it is no longer a random sample of the infinite sum). In this way,
a nontrivial predictive learning problem enters into the design of the switched neural
network dynamics.

M., may also be regarded as an average over all configurations along a trajec-
tory, rather than just over the starting points, since every decision point along the
trajectory contributes t0 t+he summed action. But to do this we must define a suitable
probability distribution of configurations, and the distribution itself is a function of
%. This may limit its usefulness for simplifying the objective.

The connection between the optimization of ¥ and a learning problem demon-
strates one advantage of the derivation in section 3.2 of Part I of optimal kinetic
energy terms from a worst-case meta-objective (equation (60) in Part 1) rather than
an average-case meta-objective (equation (35)): by this means analysis could be sub-
stituted for a large and (in general) recurring training computation.

A Lagrangian formulation of neural networks IT 351

3.2.2 Candidate v Estimators

We now present several possible forms for #(v, x), which are to be optimized and
evaluated according to the criteria of the previous section. In the simplest form, ¥
is to be computed by hypothesizing a small, constant time Af between course scale
decisions, during which ¥ and therefore E[v] change according to Taylor's formula:

dﬂi

U = v; + At
! ’ dty

(36)

(cf. (29)) where 7, = [¢y (¢)dt as in Figure 2.1.

We may also introduce, for each variable v;, a hypothetical time axis 7; which
increases linearly with real time ¢ when neuron v; is in the focus of attention (equiva-
lently, when () = 1 and x allows v; to be actively updated, i.e. when Y (O)mi(x) =
1) and stays constant otherwise. So

7i(t) = f di (t)mi(x), and dr;/dry = 7(). (37)
Then e d
av; dT;
=u; + At —_—
= dr; dry (38)
and)) ~)
E:oarse~>{’ [Xiv} = E[V(V’ }:1)] - E[V} -+ GE”\X) (39)
~ (AB)esi[x|v] + @(x),
where 3
, OF d’Ui dTi
(AB)est[x|v] = éﬁi? (EJ-EEE> [V(tbeginning of v phase) | X]. (40)
We introduce the useful quantity
24V = ——, 4
=5 (41)
which for Hopfield/Grossberg dynamics becomes (cf. equation (30) of Part I
(8B’ \
Bafvl = ~g(e7) 5, | = ~eltw)(B,)" (42)

first proposed as an objective function for driving a focus of attention in [Mjo87].
With these definitions, (AF)es; becomes

(ABE)est[x|v] = ﬁafz () Eslv] + @(x), (43)

and the associated ¥ becomes, from (38),
T-Ji = v; + Atﬂ'l(x)'b‘z, (44)

where now ¥; = dv;/dr; and 9; will take bounded values determined by the v-phase
:Lagrangian.

The optimizing parameter here (for the prediction objective M) is At, which will

also enter into the coarse-scale cost term, since the cost of switching can be amortized

352 Miranker and Mjolsness

only over the time Af. Note that the variables ¥, are still discrete, and the cost of
partly or completely minimizing Fioamse ¢ depends on the relation between m;(x) and
Xa t0 be specified.

Naturally the partial relaxation cost associated with m;(x) will only increase if
we take the natural step of expanding ¥ and F to second order in Az. One good
reason for doing this second-order expansion is that the optimal Af will not be small
if switching costs are sufficiently high, so a second order approximation may be more
accurate. The second-order expansion proceeds as before:

6,‘ = -+ Aiﬂ'i(X)’i).g + %Wﬁ(%)'ﬁi (45)
and
(AB)asxlv] = At 3 m(x) Balv] + %— 2 m 007500 Byglv] + 200, (46)

where F; has been defined in equation (43) and where E;[v| is the quadratic form
given by

O*F
Byl = 35—
]

- 6’25 Cg?}i d‘l}j e oF iﬁgg’ﬂg (47)

Ov;v; dr; dr; T ov; dri
= E}gj@gflj + 5@5’3@3@

For example under Hopfield/Grossberg dynamics, E;; can be calculated as

32,

T4 Byilv] = g'(w)g () B E 5B 3 + 6339 (us) B ;{Z g'(ue) B +
\"%

Because m;(x)? = m(x), any diagonal terms in the quadratic form) Eaymi(x)mi(x)
(cf. (46)), in particular all those terms with §;; factors as in (48), can be absorbed
into the m-linear part of Figarse - FOT example, in & quadratic neural net objective
El] = —(1/2) 2y Tijviv; — i hivi + >, ¢(v;), the coefficient of the quadratic form
for % could be taken as

Byjlv] = —Tijg'(ui) g (w;) B E.5. (49)
In this case the m-quadratic part of (46) becomes

(AE) estimate-quadratic = — »_, Ti(X)®;(x)g'(vs)g' (uj) B B ;Ti5, (50)
i

and a corresponding connection matrix would have the opposite sign.

The essential new feature of objective (46) is that it involves quadratic interac-
tions between the y expressions corresponding to different neurons. This introduces
2 nontrivial scheduling problem as part of the determination of the next focus of at-
tention: separate neurons must not only be capable of making progress individually,
but also those neurons likely to cooperate should be scheduled into the same focus of
attention. This point will be elaborated in section 4.2.

A Lagrangian formulation of neural networks I 353

3.2.3 Cost Terms

At the coarse scale, the cost of one cycle of computation is the cost of running the
v network for time Aiy, plus the cost of switching to the X network, plus the cost
of running the X network for a period Aty plus the cost of switching back to the v
network to start the next cycle.

These considerations may be expressed in the following cost terms for a coarse-
scale clocked Lagrangian:

Ceoarsev = switeh + V1 (H)Aiv + Cla‘mp(AX> {A@z'{m(X)=0}) (51)

and
Ccoa.tse-x = Cswiten -+ Nz(ﬂ)&t% + Clamp(év), (52)

where “Clamp” is a penalty or barrier function which enforces the constancy of v or
X as needed. Both of the cost terms here are constant if we regard n, Aty, and Aty
as constant within a run, although in that case the constant values of the n and the
At’s probably should be chosen by a meta-optimization procedure using the same
action, averaged over many trials, as the meta-objective.

Such a meta-optimization procedure could also be generalized to produce a sim-
ple rule, rather than a constant value, for each At and for n; when such a rule Dro-
duces the result Af, = Aty = 0, the computation stops. In that way the common
problem of choosing a stopping criterion, as well as the more specialized problem of
switching between optimization of v and of y, fall naturally in the purview of meta-
optimization. Of course such a rule could be given in the form of a Lagrangian for
At,, or equivalently for 4,, but we will not pursue this case here.

3.3 L at the Fine Scale

Since the v are analog variables, finding fine-scale C' and F terms which act to
minimize the coarse-scale ones is now easy. We proceed as in sections 2.1.2 of Part I
and 3 of Part I, except that the Lagrangian functional of equation (22) in Part I is
generalized to integrate each variable v; according to its own internal time variable
7 = [y (t)mi(x)(t)dt as in Figure 1:

oft) Qdﬂ. K@i 14 6_3% [

Sty %jj’ (v+ 5) (53)
We may convert this into an integral of a single Lagrangian over a single time

variable by using the formula for 7; and the fact that () and 7;(x)(¢) are each

354 Miranker and Mjolsness

approximately zerc or one almost all the time:

Shuev = jfﬁﬁ K i]J’gij::)
+ Jup (s i)
- Jumaonm (R BRG],
e

(using K[0,v] = 0 and dr;/d¢ = 0 or 1)
r dv; O0F dv;
[aointe) (S5 0+ S 2).

]

But this is not quite the whole fine-scale Lagrangian for the active-v clock phase;
because of the coarse cost terms of equation (51). The “Clamp” terms may be refined
by adding appropriate cost-of-movement terms K[z, z] (where X is minimal at ¢ = 0)
for each of the clamped variables:

f dtthy (t) { > Klz,

“all non-v variables z

i] N\ T dvi [
o+ - mGEIS). (59)

Adding S and 5® together, we get the part of the action that pertains to the
active-v phase:

, _
Stine-v =] dirhy (2) { > Klgal+ Zﬂ’(}()%g

Comparing this action to the Lagrangian in equation (8), we see that the fine-scale
dynamics is that of a clocked objective function governed the focus of attention

characteristic function m;(x).
Note that, as far as the Lagrangian is concerned, this refinement amounts to an

algebraic substitution

Uy (8) [Cv + FV]] — %bv(f?)(> K[iaﬁ]‘?'zfs(k’_)%:@n (57)

all variables = 7

o

which is justified since at the end of a coarse-scale step, F' is just a constant starting
value plus a coarse-scale change Agoarse /', and the coarse-scale change is equal to a sum
of fine-scale changes [dt 7_;(0F/0v;)v;. Also, the K terms for the clamped variables
(some v; and all other variables) serve as penalty terms which, in the absence of other
% terms, enforce £ = 0 when ¢, = 1 and thereby refine the “Clamp” terms of (.
The hard part of refining a focus-of-attention Lagrangian is to find fine-scale &
and & terms for the variable-y phase, because our coarse-scale terms assume discrete-
valued x variables and the previous refinement techniques don’t apply to that case.
Indeed, a general, N variable, discrete-valued optimization may be the goal of the
entire neural computation (at the coarsest time scale of all) so we surely can’t as-
sume that much capability at the fine time scale. On the other hand we have already

DTS

1 Mjolsness

A Lagrangian formulation of neural networks II 355

accepted an approximation in Fisame, on the grounds that it is not global conver-
gence but merely the order of neural updates that is at stake. Additional simplifying
approximations may also be acceptable if optimized through training and verified
through testing.

Unless Feoarse-y is linear in x,, (for example by being linear in A¢ with m;() linear
in x), this F'is a nonlinear objective which will require many steps of analog relaxation
dynamics, implying an uncertain time to convergence to a nearly discrete-valued .
Since we only have an intermediate, fixed time At available for relaxation, some
additional mechanism will be required to find discrete values for x after a possibly
incomplete analog optimization of F[¢], where &, are continuous-valued versions of

Xa-

3.3.1 Two Phases of Switching

The computational savings we seek accrues through the actual switching from one
active set of neurons to the next. For switching to occur, however, we need a “digital
restoration phase” in which the x variables are restored to definite 0 /1 values. This
phase could be left implicit in our modeling, as part of the unspecified switching
hardware, but then we would be unable to analyze possible failures of the mechanism
such as too little time to converge to discrete values, or too many 7m;(x) = 1. By
contrast it is easy to leave purely digital circuit switching details unspecified, since
accumulated experience makes it relatively easy to engineer such circuit mechanisms
outside of our methodology. We will however explicitly model a third phase, in which
analog variables ¥, are restored to nearly discrete values Xe, @8 close to 0 or 1 as any
physical circuit quantity ever gets.

Then we will have a global cycle through one phase that relaxes the analog v
variables and two phases that optimize the discrete 0 /1 x variables by first optimizing
analog variables £ and then restoring them to nearly discrete values & which can
substitute for actual discrete values 5 in any circuit implementation. Of course in
a digital implementation medium (such as a general-purpose software environment)
which exists as an abstraction of some analog physical system, one should instead
move directly from € to .

These considerations can be formalized as a slight modification of the Lagrangian
transformation point of view used in section 2.1 of Part I to derive a fine-scale La-
grangian for v. Now we are required to pertially optimize an objective Froarsex [X] 7],
while guaranteeing the discreteness of . We will adapt the same three transforma-
tions as before. First we switch from discrete to constrained continuous optimization,
accomplished in two successive phases using clocked objective function notation (2.1):

#0)|Ox+ P+ 8T w00 =)| = w0 | 5 Kla,o)+ Fle)+ 8T mte) -)
| T Kel+ a6 -0).
variables z a

(58)
where §; € [0,1], %; € [0,1], 6 is a threshold, and @ is a sparseness term such as those
of equation (27). Second, replace all constraints with penalty functions added to the

objectives:
F [g] By-optl€] = Fl€] + &(Ti m(8) — n) + T, 8(&a), (59)

ZaXal&e = Brestore[X] = Tg Xa(&a — 0) + Zo P(Xa)

Here the threshold @ is usually taken to be 1/2, but other values may be used if
the analog j dynamics would thereby be sped up without losing accuracy. Also
£(1) = mi(&), as in equation (25). Note that the objective FEresiore[X] 18 especially
well-behaved among those we have considered, since the only way a large condition
number or delay can arise is through the potential terms. The third transformation
is to refine these coarse-scale objectives, and the usual volumetric cost terms, into
fine-scale Lagrangians (cf. (57)): '

Ce+FIEl+28l&) — 3 Klb,a+ Vg[Flg] + &L m(8) —n) + 3 6(6)]

all variables z

g+ Takalba=O) + Tadl%e) — > Kloal+ Vg [T ules - 0) + T k)] - &

all variables z
(60)
These two Lagrangians, along with the usual one for v, must be reassembled into
a full three-phase Lagrangian by multiplying by nonoverlapping clocks t,(¢) and
summing over « as in section 2.1; that is the only way to express the action as a sum
over algorithm time ¢ (some [-d¢ or some ¥, -) rather than over the intra-phase time
variables 7,.

3.3.2 Complete Multiphase Dynamics

We now have a 3-phase dynamics: First, choose the focus of atiention using analog
X variables so as to optimize their estimated effect on AE subject to resource limita-
tions. Second, discretize 3. Third, relax E[v|x], using the chosen focus of attention.
The analog x phase includes a global k-winner constraint for 7(x). We will assem-
ble the previously derived fine-scale cost and functionality terms for this net into an
action functional and an associated clocked objective function.

il Lagranciang of eovations (E7) and (60) o oot o conlion o oo
! Lagrangians of equations (57) and (60), we get a preliminary

2 B T - . T 6}3 - l
Ligne = Z wa(wj L K[ZC,(L’] + L nvaxq . (61)
phases o all veriables z a-variables, %o OXe J

This Lagrangian presents a problem for times ¢ between a-phases, when 3__ ¥, (t) = 0,
because at such times no dynamics is specified. The desired dynamics between phases
is that all variables should be clamped. This can be ensured by adding a penalty term
for movement of any variable between phases, in the form of a kinetic energy term

K.
Lextra = (1 - Z wcz(t)) Z K[Sf, 33} (62)
a all variables &
Note that in physics, a Lagrangian consisting only of a kinetic energy term corresponds
to a particle moving along a geodesic such as a straight line (£ = 0), whereas here it
corresponds to a variable clamped to a particular value.

Mjolsness

A Lagrangian formulation of neural networks II 357

With this addition the fine-scale Lagrangian becomes
. 0F, .
Lfine = Z K[$7 :L‘] + z l/)&(t) E E;‘Ka . (63}
all variables z phases o a-variables, Xo @ .

which, as we showed with equation (6), is exactly the Lagrangian corresponding to a
clocked objective function

Eﬁne = Z wa(t)Ea{xa}] = @ Ea [Xm iﬁ#&]' (64)

More particularly (substituting from equations (57) and (60)) we get the clocked
objective function for three-phase attentive dynamics:

B3 phase = Z €] Eu[v] + @ (Z (&) — n) + > ¢o1(é) (control terms)

B

& = xalla-0)+ > b0y (xa) (transient terms)
& Elv{=(x)}]. (subspace term)
(65)

This clocked objective function for a focus of attention is a more elaborated version
of equation (34). Note that, from equation (57), we have

OE[v{m(x)}] JOF . OE)
— 2 = () = m(x) =—, 66
Y (x) B, i) £ (66)

which is the essential feature of a clocked objective function, as derived in (5).
Various special case expressions for m;(x) will be explored in the next section.

In the resulting networks we will often omit the digital resetting phase for a simple

kWTA network, on the understanding that it should be restored as part of an analog

circuit design.
4 APPLICATIONS TO COMPUTATIONAL ATTENTION

Here we present several possible applications of the forgoing computational at-
tention mechanisms and notation. The first two (sections 4.1 and 4.2) have been
employed to good effect in [Tsi97] where substantial savings in computational cost
are documented. The rest of the applications below may be considered as design
examples.

4.1 Priority Queue Attention

The simplest possible expression for m;(x) is the identity function, in which each
variable v; has its own attention indicator y;:

mi(x) = x: € {0,1}, where) x;=n < N. (67)
We have previously reported on this case in [MM91]. The objective function for X

would be transformed into a clocked objective, as in (30) (again using the notation
of section 2.1.3):

Biv] - (WWTAGG) + L x:Bl]) ® Blv{x}] (68)

e

358 Miranker and Mjolsness

This representation of m;(x) looks expensive, since any savings obtained by leaving
most v;'s out of the focus of attention could be lost by updating all the x; variables
cach iteration. From equation (65) this update would also require computing E;; for
every 4, in the focus or not. But in fact B is unchanged unless v; is in the focus of
attention, or has a network neighbor in the focus; so for efficiency we can store this
gradient information in a variable w; which is only updated in those circumstances.
Also, the n-winner circuit can be implemented digitally as an incremental priority
queue of w; values. So the clocked objective function becomes

Egeve = > (w,-{start +xi + _ Nbr; Xj} - E;i[‘fr])z /2 (transient terms)
i J

® start?/2+ > xii + @ (Z Xi — ﬂ) + 3 ¢op(x:) (trensient + control terms)
® Elv{x} (subspace terms)
(69)
Here “start” is initialized to unity and almost immediately changed to zero (in the
second phase of the first clock cycle), and Nbr;; is a constant 0/1 matrix recording
whether neurons v; and v; are adjacent in the network or not:

o*E
0 if max|z— -[v]| =0,
Nbr.s = v 5UZLAJ] {_7%)
Y 1 ie. if maxy(|¢f(v)]) + [Tyl + Zg [Tige] = 0; s
| 1 otherwise.

Note that at the end of the first phase, w; = —E,;[¥]. That’s because (a) in the first
cycle, start; = 1, and every variable w; is initialized to —E; and (b) in subsequent
cycles, either w; is again set to the proper value, or else x; = 0 and 3o Nbry;x; = 0.

I) e . . L : -
In the latter case we know that w; is unchanged from the previous cycle (since it i
k)

e
: phase of any cycle), and also that £; is unchanged from the
previous cycle because it is unchanged by the dynamics of & [v{x}]'s relaxation:

D w

4r| = |2(Ek-5w)
= |(j %%%)(K—%K,M) %%%gw (71)
2 dvs R i) oo
< (; %é% X E%) K—%K,w + Xi j—if ng@
= 0 (since x;+ » Nbryx; =0).
J
So throughout the second phase when x is being determined, w; = —EB,|¥].

Also note that in accordance with the definition in equation (11), the expression
that controls the clamping of a variable such as w; is implicitly held constant and
need not be explicitly clamped. Only the second phase of equation (69) above has
O(N) variables, and it can be replaced by a priority queue data structure with update
cost O(nlog® N +cN), where k depends on digital hardware details and where ¢ < 1

A Lagrangian formulation of neura] networks IT 359

reflects the cost of storing w; in inactive memory for future use, presumed to be
relatively small.

Equation (69) assumes that 7 is constant, This assumption may be removed, if
the coarse-scale cost of each n is modeled explicitly as mentioned in section 3.2.3. To
a first approximation we may take the cost of 4 focus of attention to be proportional
to its size, n, and ignore the effects of various different border shapes on the actual
cost (these effects would tend to favor a focus with a small-boundary.) But what
should the proportionality factor be between cost and benefit (AFE) terms? To get
sensible results we’ll answer this question in an ad hoc way, not (yet) derived from
fundamental considerations. Suppose that the cost of updating a neuron is dominated,
not by space and time costs, but by the AE benefit foregone by not saving those
same space-time resources to update some other neuron in the following iteration.
To estimate that cost, per focal neuron, we multiply the average available AE per
neuron by a constant f which must be meta-optimized. Then we have the following
functionality expression.

Optimizing this F may be achieved by (a) sorting i according to E;, for example
incrementally with 3 priority queue data structure, and (b) turning on all y; for
which |Ey|/(N™' T |E4[%]]) > 7. The focus of attention then consists of neurons
whose single-neuron estimated contribution to AE is more than J times the average;
it can range from none to all of the neurons. ‘The potential function ®o/1(n/N) can
also be chosen so that the minimum focus size is one, rather than none, of the neurons.

The focus of attention equation (67) provides maximal flexibility, since any subset
of n out of N neurons in the network can be in the focus at one time. However,
efficiency requires a hidden priority queue representation of @(x), so that % can be
represented with only 2 marginal increment of space to encode this focus over that
required by the n actual neurons in the focus at any time.

Generally such a representation is based on the binary addressing capabilities of
a general-purpose computer. In fact the number of bits required in y to specify such

Y -
a focus is log, (‘;) For large N and n <« IV , this is approximately nlog, NV bits.

We can easily encode X with this many bits, for example using the binary addresses
of the n neurons in the unrestricted focus of attention. (Other efficient addressing
schemes, such as Gray codes, would work too.) In radix (e.g. binary) notation for

which ¢ =4, .. .4

!
x(@) =3 T 6% (xas — i) (73)
o p=1
(where . are binary-valued and 6% is the Kronecker delta), or equivalently,
X&) = 37 T1 Xabiy, with 3 xgp, = L. (74)
¢ p=1 ib

If such a representation is substituted directly into a neural network objective
function, rather than used in a hidden digital implementation of a stereotyped objec-
tive function such as the priority queue, then we get relatively intractable high-order

360 Miranker and Mjolsness

objectives for x (see [MG90] for an example of a sorting network using a similar
high-order representation). Until this problem is solved by expressing some special-
or general-purpose addressing and communication algorithms with simple clocked
objective functions, we must appeal to non-neural switching circuits as necessary,
taking care to estimate their costs. The clocked objective with brace notation v{x}
still specifies the use we make of such switching hardware, and would remain a useful
notation even if we knew how to eliminate it in terms of clocked objectives without

brace notation.

4.2 Multiscale Attention

The m;(x) = x; representation of a focus of attention has the disadvantages of requir-
ing a hidden, digital implementation (e.g. a priority queue) in order to be efficient,
and of allowing foci without any coherent structure that might decrease the number
of border neurons that are outside the focus but involved in the computational de-
cision to move the focus. Both of these problems may be eliminated by restricting
the focus of attention to a choice of one or several blocks of neurons, from a fixed
partition of all the neurons into equal-sized blocks with low connectivity between the
blocks. An example of such a partition would be the division of the 2-d grid of the
region-segmentation network (equation (19) in Part I) into A < N uniform rectan-
gular sub-grids. Any such partition can be tepresented by a sparse, non-square 0 /1
matrix B for which ¥, B;, = 1. Given such a partition, only one focus indication
neuron ¥, is needed for each block a € {1,..., A <« N}, rather than one per neuron
index i € {1,..., N}. In return for increased efficiency in the attention mechanism
as compared with the previous case, one gives up flexibility in the shape of the focus
of attention. Some of that flexibility can be reacquired by generalizing the partition
scheme described below to many levels in a recursive algorithm.

T foale Taval AF re T T o rmatimar] et A LIS AR
For 2 single level of partitioning, in which neurons v; are grouped into fixed blocks

e
o which emter or leave the focus together according to indicator neurons x,,
7@'(}() = Z BioXa, (75)
a

where B is the constant partition matrix.

We could just substitute this expression for x; {or m;{x)) into equation (69) (or
(65)), in which case the most active blocks of the partition B would be the focus
of attention. Attention would be a very affordable computation, a k-winner-take-all
(kWTA) network. One clocked objective is simply

Eblock = Z Xe Z BiaE;é[?] =+ @ (Z Xe — ?’L(A/N)) -+ Z ¢0/1 (Xa)
@ E[V{Z B-;GXQ}]:

(76)

which can again be improved by storing E; as w;, to be recalculated only as necessary,
and which can be further improved by storing w, = >; Bisw;.

But here we will push the method a little farther, by choosing the & blocks not
only based on their internal gradients but also on their predicted synergies with each
other. The synergy is predicted by using the second order expansion for £, equation

Miolsness

A Lagrangian formulation of neural networks I 361

(46), which may be affordable now that we have only A4 focus-control neurons:

B = 8B + S EE) () (mn)

Then the clocked objective analogous to (69) is
Eblock = z (wi{start + Z Biaxa + Z Nbri’bXb} - E;i[‘—"]) 2/2 »
i a D
+ Z (ws-j{sta.rt + 2 (Bia + Bja)xa + 2 (Nbr, + Nbréc)Xc} - By [‘7’])2/2
3}5 a €
& 3 (wa{start+x,+ 5 Nbrayxs} — 37 Bi;)’/2
> .

a

i
4+ 2 (w@{stazt + Xz + X+ Z(Nbrac -+ Nbrbc)Xc} - Z Bgaijii_)gj)g/Q
ab ¢ ij
_ A ~ .
@ start’/2 4 g&;wa - —.gi %&Ebw@ + @ (z £ — n(A/N)} + 3 o lta)

/
© - Tt e(La-n4m)+ Sin
& =2 Xl =0+ dop(xa)
@ E{V{Z B&’;Gxé}})

(78)
where we have introduced constant sparse matrices
Nbry = ©(3 BjsNbry; — 1 /2) (79)
J
and o .
T‘Jﬁim = @(;i_; SmB}@fIbiq] - 1/2} (80)

ij

In (78), as in its prototype (46), the main departure from other clocked ob jective
functions for attention is the quadratic objective function for £ which expresses a
nontrivial scheduling problem: which % neuron-blocks should be active simultaneously
in order to maximize the expected sum of single-block and block-pair contributions
to [AE|? This quadratic optimization could be as hard as the original optimization
problem E, were it not for the fact that it involves far fewer variables £,. So it is
crucial to have a separate restoration phase for x in case the & analog scheduling
optimization does not finish within its clock phase. In fact if the convergence time of
the scheduling network isn’t known well enough, we may need two restoration phases:
one which restores £ to an analog kKWTA solution 7, and a subsequent phase to ensure
discrete 0/1 values for the attention control variables. This conservative approach
to restoration is incorporated in equation (78).

The scheduling network is a kind of auxiliary, coarse-scale network which controls
attention at the level of blocks. Its connection matrix is surprisingly similar to part
of a previously studied multiscale optimization neural network [MGM91], which also
had an auxiliary coarse-scale network at the level of blocks of neurons. In that case
the coarse-scale network was not for the purpose of control, but rather to accelerate
the convergence of the much more expensive fine-scale network (which was simulated

162 Miranker and Mjolsness

ithout any attention mechanism). In this regard the coarse-scale attention-control
copnection matrix Wep MAY ’qe tg.ken (as discussed in section 3.2.2) to be the negative
of equation (50) afte;r substltumpg (75) for m;i(x); then it becomes identical to the
coarse»scale acceleration connection matrix from [MGM91],

Top = Z Bmijg'(“i)g’(“j)E,z’E, iTij- (81)
i

4.3 Jumping and Rolling Windows of Attention

attentive neural network algorithm of equation (78) is equipped with a
ation that jumps from one block or combination of blocks to another in
quccessive clock cycles. These jumps are rather expensive, since they involve storing
the values of whole blocks of neurons which used to be in the focus of attention but no
longer are, and retrieving from static memory the blocks of neurons which are newly
romoted 0 the focus. A more gradual migration of neurons to and from the focus
of attention is studied in this section, for networks with such a regular topology that
the focus of attention can roll (i.e. move incrementally) from one regicn to another
as well as jump-
A rolling focus of attention is one which moves incrementally, keeping most of

itg neurons assigned to0 the same implementation hardware. For example, consider a
two-dimensional mesh of neurons with local connectivity, as occurs for ;:x;;mple in the
gegion—segmﬁﬂtaﬁon objective function (19) of Part I. A small piece of such a mesh

could be implem :

The block-
focus of atte

ented by a two-dimensional V LSI chip in which a fraction of the chip
devoted 0 end-around connections, giving the circuit the topology of a tarzﬂ
with some form of secondary storage for the many neuron values which a;e;
clamped and stored ofi-chip. The torus can roll in any direction. The situation is
illustrated 1o figure 2. Consider also the assignment of physical (chip-implemented)
eurons to the much la:.fg?r set of virfual neurons comprising the neurél network.

-olling motion aﬂawsﬁ 7:3??118 assignment to remain unchanged everywhere except at
ne boundaries of the chip, o SQUIV : : :
his minimizes the need for off-chip communication and on-chip analog shifting cir-
cuitry everywhere in the chip, at the expense of requiring dynamic boun?iary circuitry
(probably digital) throughout the chip. An alternative would be to allow the focus of
sttention t0 ugjide” around the neural net instead, in which case the dynamic bound-
ary circuitry may be eliminated in favor of the analog shifting circuit;y. QOur clocked

objective function can be implemented either way. For clarity we will discuss the’

rolling case.)
To describe the focus of attention mathematically, we just need w(x). We want

+0 use a set of blocks of neurons as in section 4.2, 50 that they can jump under the
control of {xa}, except that the blocks also roll (or slide) around the mesh. Each
block’s position ¢ be characterized by its center. Block a has center ¢, + %, in
which ¢, is @ home position for block a defined by a fixed coarse-scale g*fiil‘ an?f: b4
is a dynamical displacement variable. The reason for including the home g';ositioni
is to allow unused blocks to stay near their home positions, providing ceverag'e o}
the alternative locations that the focus of attention can jump to. (This capability
would not be necessary if blocks were only allowed to roll, but that would introduce
ocal minima into the attention mechanism, for example when a rolliﬁg

area is
together

=]

=

Gea AF thie [A £ 4 L3
ries of the focus of attention.

h_
= g

)

spurious 1

a

A Lagrangian formulation of neural networks II 363

Figure 2: A rolling window of attention.

window encounters its own or another window's path.) Then w(x) is as in section
4.2, with By, = b;(c, + x,): '

mi(%) = > bi(Ca + %) xa. (82)

We may scale our two-dimensional coordinates so that a block is 2 unit sguare,
and we may assign addresses c; in this coordinate system to each neuron ¢. We take

¢, and %, to be measured in this coordinate system also. Then the window boundary
function b; becomes

bi(co + %) = b(cs + %, —), (83)
where
b(x) = [©(1/2 - |z.]). (84)
a=1

We will also have occasion to use a soft (differentiable) version of this window bound-
ary function,

bi(cq + %,) = b(cg + %, — i), (85)
where
b(x) =[] ©(1/2 - |za)) (86)
a=1
and
0, z< —w/2
O(z) = z/w+1/2, ~w/2<z<w/2 (87)
1, z<w/2

Then a clocked objective function for the rolling and jumping window of attention

A At

364 Miranker and Mjolsness

is

Ej & I{V, é, X] = E: (wi{start -+ Z 5;'(% + XQ)XQ + z Nbrébxb} - E;é["])2/2
& b

k3

(compute the gradients)
® 3 [- na(stars + %o + 3 Nbras%s — 1/2) + doj1(70)]
a(clamp unaffected Win(;OWS)
> (walma} = 2o bilea + xa);) /2
(;.ggregate the 1gradients)
start?/24+ > [H(Ea{m}) + Z Nbrajgj(xa{m})wj]
@ J

(roll unclamped windows)
& Y xo[H(Z) + 3 bilca+ %,)1;] + KWTA(x, nA/N)
o J

(select k best windows & jump there),
@ E{v{ > Xabi(ca + 3{@)}] (descent within windows),

&

&b

(88)
where as before
\a /

A crucial ingredient is the spring potential function A which allows a block a to
move freely away from its home position until it is more than halfway into another
block's territory, then to hand off the rolling window to a neighboring block b by
turning off x, and turning on X3, and then to return to the home position x, = 0 to
compute its expected AE and compete for another chance in the focus of attention.

AWTAGOH) = @ (Txe - k) + 3 dalice) (89)
G

A spring ion that makes this possible is illustrated in figure 3. An explicit
expression for H is
dimx
H(x)=) H(z.), (90)
o=1
where)
B(z) = elal + caplle] = 1/2) + daal 7= 75) (91)
and where)
RPN 0, <0
o) = [Ola)da = { s, (92)

4.4 Sparse Networks and Spreading Activation

The attention mechanisms of the previous sections are designed to limit the number of
active variables at any time, including both problem variables v and attention-control
variables 5. However there is no attempt to limit the number of inactive variables
whose values must still be stored and which therefore still occupy some hardware at
all times. By imposing such a limit, we may be able to achieve far greater efficiency
for optimization problems whose solutions are constrained to be sparse. What is
required is that most of the variables outside the focus of attention should take on

A Lagrangian formulation of neural networks II 365

5.8
Figure 3: Spring function H(z) = e|lz|+cip(z] - 1/2) +¢i1($), solid curve. First
term restores |z| to zero when block is out of the focus of attention. Second term
favors hand-off to a neighboring block (neighboring block spring functions shown in
dotted curves.) The third term is a barrier term, limiting the number of blocks that
can be attracted to an attractive focal region of the network.

default values, such as zero, which need not be stored at all. The strategy is to enforce
sparseness of v at every phase in every cycle, not just at the end of the computation.
To achieve this we will allow mild expansions in the number of active neurons at
some phases within a cycle, and enforce counterbalancing contractions in the number
of active neurons at other phases in the cycle.

Suppose v is a set of IV variables, consirained to be sparse in the sense that all
but n < N of them take (possibly identical) default values default(i) at any valid
configuration. The default values may be zero or any number easily computed from
the index 4 alone, without the use of a large table of values (whick would have to
be stored). Let E{(v) be an objective which includes penalty terms for sufficient
sparseness constraints on at least some of the variables v, and which has the property
that at any sparse configuration in which cn variables are unclamped in 2 focus of
attention, all but n of the variables must approximate their default values at any
local minimum. (Here ¢ > 1 is a constant.) Also suppose it is possible to initialize
the network so that the focus of attention contains all non-default variables (of which
there are < n) and also all neighbors of such variables (of which there are < cn).

Then at the beginning of a relaxation phase for E[v{x}], all < n non-default
variables and all their < cn neighbors are included in the focus of attention. At the
end of the relaxation phase, some new set of < n variables have non-default values;
the test have near default values which can be reset to their default values without
introducing much error, and which therefore do not need to be stored explicitly. In
this way a limited front of activation relaxation, will propagate through the network
of possible neurons which we shall refer to as latent neurons. The dynamics is reminis-
cent spreading activation or “marker propagation” algorithms in artificial intelligence
[Fah79, Tou86|, and could perhaps be developed in that direction by using objective
functions proposed in [MGAS9]. Latent neurons are to be distinguished from the
virtual neurons of previous sections (e.g. section 4.1), the latter requiring storage
even when out of the focus of attention.

A suitable clocked objective function for such a spreading activation network, with

366 Miranker and Mjolsness

many latent neurons, is

Eopread = z xilxit + z e ara))
=2 xslsi+ Nbryjs;}t + E oy (xi{si + Nbrijs;})

K
Elv{x};m €
S e (5 — default(i))? /€ = 1)+ 2 donn ()
t 1
(T sl —) 1 s el Bl
1 3
o —(1/2) S (wslxlss — 1)} — defaute(@) + T dos(vslxilo = D1
] k]
(93)
Here the first phase serves simply to find all nonzero x’s and to set their values
to zero. The second phase sets the focus of attention to include all non-default v;’s
(for which s; = 1) and their neighbors in the network topology. The third phase
relaxes the network within the focus of attention, which we assume produces a new
set of < n variables v;'s which are not close to their default values. The fourth phase
finds these variables and updates s; t0 record them. Optionally, we can set v > 0
to ensure what is already supposed to be guaranteed by E, that s = 1 for nonzero
gradients and that 3; 8 < n. The fifth phase truncates near default values to exact
default values, because neurons taking their defanlt values do not need to be stored.
(Soin an implementation the fifth phase would not physically perform a fruncation;
it would simply de-allocate the hardware used to support the affected neurons.) The
five phases together constitute one iteration of sparsity-preserving dynamics.
As an example of a suitable objective function E, we discuss a simple network for
finding Toots of a continuous function f(z) of one variable z € [0,1], by the bisection
etwork dy ically constructs a tree of at most n nonzero indicator

\Gnitely large tree of latent neurons. The network seeks

oD @

£f Y 2Than la H o . i T Tt o
flz +¢), and then bisects the interval [z, z + ¢ Using

large negative of flz

multiple index notation i = f1%2 .-, the search tree consisis of all the latent 0/1
neurons. a;,..;, Which take a value close to one if the search currently includes that
node of the tree; also each node has a census NeUron i, . € [0,n) which counts the
aumber of neurons (including a’s and m's) active at Or below that node in the tree.
These sets of variables would include the [= 0 versions, & and m without any indices,
which are associated with the root of the search tree. The bisection search interval
boundaries are Tg = 0,71 = 1, Too = 0,%01 = T10 = 5,z = 1, and in general,
Tip..ind = Z;:l 3'92'_? -+ b2t

Then a sparse objective function for this problem is

co
Etree = Z Z ail.‘.i,_lﬁél...iz.‘gi(le(551...11;0)](’(@1;1...2';1))

=1 i1...4=0,1
[e.e]

+(4/2)> > (Giea T G (Mg i) F My i0 T Miait = Mayiy)
1=047...4=0,1 o o

+(A/2)(m/n — D2+ > bop (i) + > > ¢0/1(mi1...i;/n)7

1=0 i1..4=0,1 1=0 i1..1=0,1

(94)
where g is an odd monotonic function with slow asymptotic growth, e.g. logarithmic
growth. The network could be initialized with all @, m and variables taking near-zero

Tinleness

A Lagrangian formulation of neural networks II 367

(O(e) < 1) values, except at the root where s = 1. At initialization all the non-zero
gradients of £ (which arise from the k-winner-take-all terms) are concentrated at the
root and its immediate children i =0 and ; =].

A noteworthy property of the objective (94) is that the sparseness constraints are
not global, but rather distributed over the topology of the network in such a way
that an actual neuron g is involved in every term of the sparseness constraint. This
prevents many census variables m from being given non-zero values in an effort to
find one non-zero @ variable. Instead, only as many census variables will be activated
as needed. The a; + §1;(m;) summand in the k-winner term serves to include both
a; and m; in the count of activated variables: gx1(m) is a sigmoid with values ~ m
form < 1, and ~ 1 for m > 1. The J+1(m) expression could be replaced by another
0/1-valued neuron whose sole connection is to m.

We speculate that it may be possible to give a similar treatment of the conventional
objective functions for inexact graph matching, such as [HT86]

Braen[M] = -3 Gijgas Mio My, + (A/2) Z(Z M, — 1) + (4/2) >0 My, —1)?
ijab i a a 3

+B Z Mo (1 = M;,) + z Gos1(My,).
(95)

However it is again necessary to localize the winner-take-all constraints, for example
by embedding them in spanning trees for both ¢ and g, in which each variable M;,
enters into each WTA constraint at its own location in the spanning tree. An addi-
tional attraction of such a sparse graph-matching network is that the E-relaxation
phase of the clocked objective could actually be a nested loop which performs deter-
ministic annealing in order to avoid local minima. Since successive cycles would have
different foci of attention, the successive annealing procedures would be different -
emperature part of an annealing relaxation would not erase the progress
in the focus of attention. A related technique for acceler-

the convergence of matching networks by exploiting their sparseness was used

4.5 Orthogonal Windows

As suggested in [Mjo87], we can take advantage of the fact that some or all of the
neurons in many hand-designed neural nets fall into natural cross-products, e.g. v; =
Uiy iy AD example is the graph-matching objective function of equation (95). In such
Cases we can greatly decrease the cost term by decomposing x and hope to retain
functionality since it is only X, 0ot v, whose information content is thereby reduced.
An obvious decomposition to try is:

mi(x) = (96)

ie.
w(x) = x¥ o x?, (97)

where
T\fg

Ny
2ol = (2 xN T K2) < (98)

i f1=1 ig=1

368 Miranker and Mjolsness

The last may be ensured by constraining

‘Z X <my (be{1,2} and myng < m). (99)

31“'1

For more than two terms in the cross product, all this generalizes to

m(0) = Iy, (100)
b

where

z X% < mny and Zm(z =] n < n. (101)
sg,—l b
Following equation (68), we can use the clocked objective function

Bornos = By, 7] @ Ev{x" ® x*}, (102)

where

Ex, ¥ = gﬁ,xﬁf)xﬁz)ﬂ]+ @ szl =) + 83 XD —)

i (103)

+ > donl Xgl))+ Z 450/1(){52
i1 i2

A major problem with this scheme is that all the E,;[¥] derivatives must be calculated,
even though we want a small window of attention. A simple solution is to window
the control variables % also, and only calculate the few that are necessary. There
may be only O(N; + N;) of those, rather than O(V). One possibility is the disjoint
union focus of attention 7(x) = (M), 7¥) for . We will apply transformation (68)
twice: first to v, substituting m(x) = }{(i\}(g) for i, and then to 7 itself, using a
traightforward focus of attention:

g
s

=

&

=z

=

N
(!

1
=l
o
I
=
le3)

3

A
[}
3

o

o
fomt
o
3>,

e

(1 =1 T (1 7 - 1 /s (2 = A
B [, 7] = Bl xS = =g (07 N (o 2 Balw] + .- (105)
i2
and
gl) pnl o7 2 J 7 [o
B [x, ¥) = Byl 15 = —al (g5 N xP Bl +) (106)

Then the doubly attentive clocked objective function becomes
Bothog = Es; (%, 7] + B[,] + @(Z v = om) + (1) — ema)
T)+ Z 5,07 B

@ LX (1) + X”)}Xg){y(z) + X:z VE,[9)
v e (DA + 287 =)+ 2(E 2’{% + 52} - m)
+ Z%n le (1) + X:)})+ Z%/l X@g 2 4 X(z)})

@ E[v{x‘” ® xV}].

(107)

A Lagrangian formulation of neural networks II 369

The first phase may be traded in as before for 3 priority queue implementation;
but the space cost of the default circuit implementation is already so small (O(n;+n;)
for the kWTA network) that the priority queue is not necessary. In the second phase
at most (c + 1)’n® gradients E; must be calculated. As in previous networks, one
could make the efficient calculation of all gradients explicit by adding extra phases
and variables.

The focus of attention introduced in this section applies when the neuron index i
takes values in some domain which is a cross product of other domains, domain(s) =
domain(i;) xdomain(és). This is of interest for building complex network architectures
by composing simpler elements. Another natural operation on index domains is the
disjoint union 4 = (b,4;). The B, example above showed how to compose a focus of
attention for this case as well (see equation (104), with 2pcny < the number 7 of
active neurons allowed), though that case is much simpler than for the cross product.

5 DISCUSSION AND CONCLUSIONS

In part I of this work we introduced a Lagrangian formulation of the relaxation
dynamics of neural networks which compute by optimizing an objective function in
a standard neural network form. The Lagrangian formulation makes novel use of a
greedy functional derivative, which we defined and computed. With these tools we
demonstrated the use of three levels of optimization in the design of relaxation neural
network dynamics: the original objective E, the Lagrangian I, and a meta-objective
M which measures cost and functionality over many trials of the network.

In part IT here we deal with a second group of more ramified applications. - For
these we introduced a clocked objective function and an associated notation. These

1 xr 4 . . 2

+x oo NoAT i ki

o Ao Ty M e
depending on the

] ¢ tual processors in digital computers,

h computational attention mechanisms have a focus of attention quality which
can take a variety of forms. These include a priority queue, a set of coarse-scale
blocks of neurons which could be scheduled according to their expected synergies in
optimization, a set of jumping and rolling rectangular windows in a two-dimensional
network, a sparse set of active neurons for which the excluded latent neurons require
no memory, and the cartesian product of several simpler foci of attention. Each
of these cases was concisely expresse using simple analytic notation with clocked
objective functions. Reference was made to a number of experiments, application
and computation, which employ the greedy variational and clocking calculus which
we have introduced here.

Acknowledgements

4

i
hal

We wish to acknowledge Charles Garrett and K. Srinivas for unpublished simulations;
also discussions with Roger Smith, Chien-Ping Lu, Anand Rangarajan, Paul Cooper,
Stan Eisenstat and Alain Martin; also the hospitality of the Institute for Theoretical
Physics at Santa Barbara. This research was supported in part by AFOSR grant
AFOSR-88-0240 and by ONR grant N00014-92-J-4048.

370 Miranker and Mjolsness

References

[BH89] Eric B. Baum and David Haussler. What size net gives valid generaliza-
tion? Neural Computation, 1(1):151-160, Spring 1989.

[BSB*91] Bernhard E. Boser, Eduard Sackinger, Jane Bromley, Yann LeCun
Richard E. Howard, and Larry D. Jackel. An analog neural network pro-
cessor and its application to high-speed character recongnition. In Interna-
tional Joint Conference on Neural Networks, pages I-415 to I-421. IEEE,
July 1991.

[BT89] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Com-
putation, chapter 3, pages 210-217. Prentice Hall, 1989.

[Co089] Paul R. Cooper. Parallel Object Recognition from Structure (The Tinker-
toy Project). PhD thesis, University of Rochester Department of Computer
Science, July 1989. Technical Report 301.

[Fah79] S. E. Fahlman. NETL: A System for Representing and Using Real- World
Knowledge. MIT Press, 1979.

[GLR"95] Steven Gold, Chien-Ping Lu, Anand Rangarajan, Suguna Pappu, and Eric
Mjolsness. New algorithms for 2d and 3d point matching: Pose estimation
and correspondence. In G. Tesauro, D. Touretzky, and T. Leen, editors,
Advances in Neural Information Processing Systems 7. MIT Press, 1995.

[HT86] J. J. Hopfield and D. W. Tank. Collective computation with continuous
variable es. In Dasm’riweﬁ Systems and Biological Organizaiion, pages 155—
170. Spri

[LM94] Chie Bric Mjolsness. Two-dimensional object localization
by coars orrelation matching. In J. Cowan, G. Tesauro, and
J. Alspector, edhovs Advances in Neural Information Processing Systems
6. Mozgan—i{aufmanz 1994.

[MC80] Carver Mead and Lynn Conway. Iniroduction to VLSI Systems. Addison-
Wesley, 1980.

[MG90] Eric Mjolsness and Charles Garrett. Algebraic transformations of objective
functions. Neural Networks, 3:651-669, 1990.

[MGAB89] Eric Mjolsness, Gene Gindi, and P. Anandan. Optimization in model
matching and perceptual organization. Neural Computation, 1, 1989,

[MGM91] Eric Mjolsness, Charles D. Garrett, and Willard L. Miranker. Multiscale
optimization in neural nets. JEEE Transactions on Neural Networks, 2(2),
March 1991.

[Mjo87] Eric Mjolsness. Control of attention in neural networks. In Proc. of First

irs
International Conference on Neural Networks, volume vol. 11, pages 567
574. IEEE, 1987.

A Lagrangian formulation of neural networks II 371

[MW66]

[PB87]

[PS89]

Eric Mjolsness and Willard L. Miranker. A Lagrangian formulation of
neural networks I: Theory and analog dynamics. Part I of this paper.

Eric Mjolsness and Willard L. Miranker. A Lagrangian approach to fixed
points. In Richard P. Lippmann, John E. Moody, and David S. Touret-
zky, editors, Neural Information Processing Systems 8. Morgan Kaufmann,
1991.

W.L. Miranker and B. Weiss. The Feynman operator calculus. SIAM
Review, 8:224-232, 1966.

John C. Platt and Alan H. Barr. Constrained differential optimization. In
Dana Z. Anderson, editor, Neural Information Processing Systems. Amer-
ican Institute of Physics, 1987.

C. Peterson and B. Soderberg. A new method for mapping optimization
problems onto neural networks. International Journal of Newral Systems,
1(3), 1989.

Anand Rangarajan, Steven Gold, and Eric Mjolsness. A novel optimizing
network architecture with applications. Newral Computation, 8(5), 1996.

-
[}

: . he Mathematics of Tnheritames Coctorm e Do
David 8 Touretzky. The Mathematics oj Inheritance Systems. Morgan

Kaufmann Pulishers, 1986,

b

Dimitris loannis Tsioutsias. Muliiscale Attention as a Gloabally Conver-
gent Framework for Large-Scale Nonlinear Optimization. PhD thesis, Yale

University Computer Science Department, May 1997. See chapters 3 and

