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Abstract

We present a novel optimizing network architecture with applications in vision, learning, pattern

recognition and combinatorial optimization. This architecture is constructed by combining the following

techniques: (i) deterministic annealing, (ii) self-amplification, (iii) algebraic transformations, (iv) clocked

objectives and (v) softassign. Deterministic annealing in conjunction with self-amplification avoids

poor local minima and ensures that a vertex of the hypercube is reached. Algebraic transformations

and clocked objectives help partition the relaxation into distinct phases. The problems considered

have doubly stochastic matrix constraints or minor variations thereof. We introduce a new technique,

softassign, which is used to satisfy this constraint. Experimental results on different problems are

presented and discussed.

1 Introduction

Optimizing networks have been an important part of neural computation since the seminal work of Hop-

field and Tank (Hopfield and Tank, 1985). The attractive features of these networks—intrinsic parallelism,

1
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continuous descent inside a hypercube, ease in programming and mapping onto analog VLSI—raised

tremendous hopes of finding good solutions to many “hard” combinatorial optimization problems. The

results (for both speed and accuracy) have been mixed. This can be attributed to a number of factors,

viz., slow convergence of gradient descent algorithms, inadequate problem mappings and poor constraint

satisfaction.

In contrast, we have achieved considerable success with a new optimizing network architecture for

problems in vision, learning, pattern recognition and combinatorial optimization. This architecture is

constructed by combining the following techniques: (i) deterministic annealing, (ii) self-amplification,

(iii) algebraic transformations, (iv) clocked objectives and (v) softassign. Deterministic annealing ensures

gradual progress towards a vertex of the hypercube (in combinatorial problems) and avoids poor local

minima. Self-amplification in conjunction with annealing ensures that a vertex of the hypercube is reached.

With the application of algebraic transformations and clocked objectives, the relaxation gets partitioned into

distinct phases–highly reminiscent of the Expectation-Maximization (EM) algorithm. All the problems

considered have permutation matrix constraints or minor variations thereof. The permutation matrix

constraints get modified to doubly stochastic matrix constraints with the application of deterministic

annealing. A new technique—softassign—is used to satisfy doubly stochastic matrix constraints at each

temperature setting.

First, previous work most closely related to our work is chronologically traced in Section 2. This helps

us set up the derivation of our network architecture in Section 3 carried out with graph isomorphism as

an example. The application of the network architecture to problem examples in vision, learning, pattern

recognition and combinatorial optimization is demonstrated in Section 4. The problems considered are

(i) graph isomorphism and weighted graph matching (pattern recognition), (ii) the traveling salesman

problem (combinatorial optimization) (iii) 2D and 3D point matching or pose estimation with unknown

correspondence (vision), and (iv) clustering with domain-specific distance measures (unsupervised learn-

ing).

2 Relationship to previous work

In this section, we begin with the traveling salesman problem (TSP) energy function first formulated by

(Hopfield and Tank, 1985) and then briefly, chronologically trace various developments that lead to our

formulation.
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In (Hopfield and Tank, 1985), the TSP problem was formulated as follows:

min tsp
1 1 1

1 (1)

where is the distance between city and city with a total of cities. (The notation 1 is used to

indicate that subscripts are defined modulo , i.e. 1 1 .) In (1), is a permutation matrix. (A

permutation matrix is a square zero-one matrix with rows and columns summing to one.) Permutation

matrix constraints are:

(i) 1 1 (column constraint) ,

(ii) 1 1 (row constraint), and

(iii) 0 1 (integrality constraint).

A permutation matrix naturally expresses the TSP constraints; each city is visited exactly once 1

1 and exactly one city is visited on each day of the tour 1 1 . When the integrality constraint is

relaxed, the permutation matrix constraints get modified to doubly stochastic matrix constraints. (A doubly

stochastic matrix is a square positive matrix with rows and columns summing to one.) Doubly stochastic

matrix constraints are:

(i) 1 1 (column constraint) ,

(ii) 1 1 (row constraint), and

(iii) 0 (positivity constraint).

In the original TSP energy function (Hopfield and Tank, 1985), the doubly stochastic matrix constraints

were enforced using soft penalties [penalty functions with fixed parameters as opposed to traditional

penalty functions (Luenberger, 1984)] and a barrier function. The energy function used can be written as

tsp cons with tsp defined as in (1) and

cons 2 2 2

2 1 (2)

where is a [somewhat non-traditional (Luenberger, 1984)] barrier function such as

max log 1 exp

log 1 log 1 (3)
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The barrier function ensures that the are confined inside the unit hypercube 0 1 and this is

tantamount to using the sigmoid nonlinearity 1
1 exp . In (Hopfield and Tank, 1985), all the

parameters were set to fixed values. A lot of theoretical and experimental work (Wilson and

Pawley, 1988; Kamgar-Parsi and Kamgar-Parsi, 1990; Aiyer et al., 1990) went into searching for valid

parameter spaces. The overall conclusion was that it was impossible to guarantee that the network

dynamics corresponding to gradient descent on the TSP energy function converged to a valid solution,

namely a permutation matrix.

Different energy functions in the same vein (soft penalties) (Mjolsness, 1987), did not change the overall

conclusions reached by (Wilson and Pawley, 1988). For example, the presence of invalid solutions was

reported in (Mjolsness, 1987) for the constraint energy function

cons 2 1
2

2 1
2

2
2 1 (4)

The energy function above (4) has explicit row and column penalty functions and a self-amplification term

2
2 . (The self-amplification term is explained in greater detail in Section 3.) While the two energy

functions (2) and (4) are very similar, they cannot be derived from one another even for special settings of

the parameters. Their similarity stems from the choice of soft penalty functions for the constraints.

The penalty functions in (4) express the row and column doubly stochastic matrix constraints (winner-

take-alls). In (Peterson and Söderberg, 1989; Van den Bout and Miller, 1989; Geiger and Yuille, 1991; Simić,

1990; Waugh and Westervelt, 1993), after noting the similarity of (2) to meanfield techniques in spin glasses

[indicated in (Hopfield and Tank, 1985)], one of the constraints was enforced as a hard constraint using

the Potts glass (Kanter and Sompolinsky, 1987):

cons 2 1
2

2
2 1 log exp (5)

with the variable playing a similar role as in (3). The column constraint has been dropped from the

energy function in (4) and a new barrier function has been added which explicitly and exactly enforces the

constraint 1 using the softmax nonlinearity exp( )
exp( ) (Bridle, 1990). Also, annealing

on the parameter (the inverse temperature) was used [again indicated in (Hopfield and Tank, 1985)].

This combination of deterministic annealing, self-amplification, softmax and a penalty term performed

significantly better than the earlier Hopfield–Tank network on problems like TSP, graph partitioning

(Peterson and Söderberg, 1989; Van den Bout and Miller, 1990) and graph isomorphism (Simić, 1991).
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The next step was taken in (Kosowsky and Yuille, 1994) to strictly enforce the row constraint 1

using a Lagrange parameter :

cons 1 2
2 1 log exp (6)

In the above energy function, the column constraint is enforced exactly using the softmax and the row

constraint is enforced strictly using a Lagrange parameter . Both the row and column constraints are

satisfied at each setting of the inverse temperature albeit in different ways. While this looks asymmetric,

that’s only apparently the case (Yuille and Kosowsky, 1994). To see this, differentiate (6) w.r.t. and set

the result to zero. We get

exp ( )
exp ( ) 0

exp ( ) exp ( )

log ( ) log exp ( ) (7)

Substituting (7) in (6), we get

cons 1 2
2 1 log log exp ( ) 1

This objective function is still not quite symmetric. However, replacing 1 log exp ( ) by ( is a

new variable replacing ) we get

cons 1 1 2
2 1 log 1 (8)

where we have set 1 . This result was first shown in (Yuille and Kosowsky, 1994). The above

constraint equation (8) combines deterministic annealing (via variation of ), self-amplification (via the

term), and constraint satisfaction (via the Lagrange parameters and ) while keeping all entries of non-

negative (via the log barrier function). It plays a crucial role in our network architecture as described

in Section 3. Note that it is also quite general—the constraint energy can be applied to any problem with

permutation matrix constraints (or minor modifications thereof) such as TSP, graph isomorphism, point

matching and graph partitioning.
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Writing down the constraint energy function is not the whole story. The actual dynamics used to

perform energy minimization and constraint satisfaction is crucial to the success of the optimizing network

in terms of speed, accuracy, parallelizability and ease of implementation. Networks arising from the

application of projected gradient descent (Yuille and Kosowsky, 1994) or subspace methods (Gee and

Prager, 1994) have the advantage of proofs of convergence to afixed point. Such networks could eventually

become viable candidates for optimization when implemented in analog VLSI, but they are typically too

slow when implemented on digital computers to be competitive with traditional algorithms.

In this paper, we derive a discrete-time neural network architecture from the constraint energy function

(8). The discrete algorithms (resulting from the application of the architecture to specific combinatorial

optimization problems) can be easily implemented on digital computers and we demonstrate the per-

formance on several different problems: graph isomorphism and matching, TSP, point matching and

clustering with smart distance measures.

3 Deriving the network architecture

We now describe thefive techniques used in deriving the network architecture: (i) deterministic annealing,

(ii) self-amplification, (iii) algebraic transformations, (iv) clocked objectives, and (v) softassign. In the pro-

cess, we also derive the corresponding discrete-time neural network algorithms using graph isomorphism

(Mjolsness et al., 1989; Simić, 1991) as an example. The same network architecture is subsequently used in

all applications.

We formulate the graph isomorphism problem as follows: given the adjacency matrices and of two

undirected graphs and ,

min gi
1 1 1 1

2

(9)

subject to
1

1
1

1 0 1 (10)

where and are in 0 1 with a link being present (absent) between nodes and in graph if

the entry in the adjacency matrix is one (zero). A similar condition holds for the adjacency matrix

corresponding to graph . Consequently, the adjacency matrices and are symmetric, with all-zero

diagonal entries. Both graphs are assumed to have nodes. In (10), is a permutation matrix—exactly

the same requirement as in TSP—with only one “1” in each row and column indicating that each node
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1 in graph matches to one and only one node 1 in graph and

vice versa.

Following the mean-field line of development summarized in Section 2, the energy function for graph

isomorphism (expressed in the form Cost + Constraints) can be written as

gi cons

where

cons
1 1

1
1 1

1 2 1 1

2 1

1 1
log 1 (11)

As detailed in Section 2, this form of the energy function has an log barrier function and two Lagrange

parameters and enforcing the doubly stochastic matrix constraints along with a self-amplification

term with a free parameter . In the remainder of this section, we describe the corresponding network

architecture.

3.1 Deterministic annealing

The log barrier function in (11) keeps the entries in non-negative. It can also be seen to arise in a

principled manner from statistical physics (Yuille and Kosowsky, 1994) and we have already (Section 2)

briefly indicated its relationship to Potts glass (softmax) methods. The barrier function parameter is

similar to the inverse temperature in simulated and mean-field annealing methods and is varied according

to an annealing schedule. Deterministic annealing ensures gradual progress towards a vertex of the

hypercube. Varying the annealing parameter also provides some control on the non-convexity of the

objective function. At low values of , the objective function is nearly convex and easily minimized. While

we have yet to describe our descent strategies, they are deterministic and performed within the annealing

procedure.

3.2 Self-amplification

Deterministic annealing by itself cannot guarantee that the network will converge to a valid solution.

However, self-amplification (von der Malsburg, 1990) in conjunction with annealing will converge for the

constraints in (10) as shown in (Yuille and Kosowsky, 1994). A popular choice for self-amplification is the
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third term in (10) (Mjolsness, 1987; Peterson and Söderberg, 1989; Rangarajan and Mjolsness, 1994):

sa 2 1 1

2 (12)

Another closely related self-amplification term is of the form 1 (Koch et al., 1986) which is functionally

equivalent to (12) for the problems considered here.

Self-amplification in conjunction with annealing ensures that a vertex of the hypercube is found. In our

work, the self-amplification parameter is usually held fixed, but in (Gee and Prager, 1994), the authors

mention the use of annealing the self-amplification parameter which they term hysteretic annealing. In

graph isomorphism and TSP, the choice of plays an important role in governing the behavior of phase

transitions and bifurcations (local and global). Some effort has gone into analysis of bifurcation behavior in

TSP and graph partitioning in the context of self-amplification used within Potts glass (softmax) approaches

(Peterson and Söderberg, 1989; Van den Bout and Miller, 1990).

3.3 Algebraic transformations

An algebraic transformation (Mjolsness and Garrett, 1990)—essentially a Legendre transformation (Elfadel,

1995)—transforms a minimization problem into a saddle-point problem. The advantage of this operation

is two-fold: (i) it cuts network costs in terms of connections and (ii) the transformed objectives are easier

to extremize. Consider the following transformation:

2

2 max
2

2 (13)

is typically an error measure but in principle can be any expression. The right side of (13) is an objective

function to be maximized w.r.t. . The maximization is trivial; at its fixed point equals the expression

. However, the algebraic transformation makes the energy function linear in which (as we shall see)

turns out to be quite useful. Using the transformation (13), we transform the graph isomorphism objective

to

gi
1 1 1 1

1
2

2

1 1

1
2

2

1

1 1
log

1 1
1

1 1
1 (14)
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The objective becomes linear in (except for the log barrier function) following the application

of the transformation in (13) to the graph isomorphism and self-amplification terms. The algebraic

transformation has made it possible to solve for directly in (14). Two extra variables and have

been introduced which can now be separately controlled. This has come at the expense of finding a

saddle-point: minimization w.r.t. and maximization w.r.t. and .

3.4 Clocked objectives

After performing the algebraic transformations, closed-form solutions can be obtained for and by

differentiating (14) w.r.t. the appropriate variable and solving for it.

gi 0 (15)

gi 0 exp and (16)

gi 0 (17)

These closed-form solutions are to be used in an iterative scheme which cycles between the updates of the

variables and (all mutually inter-dependent).

The control structure for performing the network dynamics may be specified by a clocked objective

function (Mjolsness and Miranker, 1993):

gi ( ) ( ) (18)

where gi is a clocked objective: optimizies w.r.t. keeping fixed in phase 1 and vice versa

in phase 2. The two phases are iterated when necessary and the angle bracket notation can be nested

to indicate nested loops. ( ) indicates an analytic solution within a phase. The notation is used to

indicate that the inverse temperature is increased (according to a pre-specified annealing schedule) after

the update of .

With this notation, the clocked objective states that closed-form solutions of and are

used by the network: The network dynamics for graph isomorphism begins by setting to its closed form

solution followed by an update which contains the (as yet undetermined) Lagrange parameters and

. The exponential form of the closed-form solution for keeps all its entries positive. Positivity of each
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entry of followed by the correct setting of the Lagrange parameters ensures that a doubly stochastic

matrix is obtained at each temperature. After and the Lagrange parameters converge, is updated

and increased. Clocked objectives allow analytic solutions within each phase, highly reminiscent of

the EM algorithm (Jordan and Jacobs, 1994). We have left unspecified the manner in which the Lagrange

parameters are updated—this is the topic of the next section.

3.5 Softassign

The clocked objective in (18) contains two phases where the Lagrange parameters and corresponding

to the row and column constraints have to be set. Gradient ascent and descent on the Lagrange parameters

and on respectively in (8) may result in a very inefficient algorithm. Gradient projection methods

(Yuille and Kosowsky, 1994), subspace and orthogonal projection methods (Gee et al., 1993; Gee and

Prager, 1994) and Lagrangian relaxation methods (Rangarajan and Mjolsness, 1994) suffer from the same

problems when implemented on digital computers. The principal difficulty these methods have is the

efficient satisfaction of all three doubly stochastic matrix constraints (see Section 2). For example, in (Gee

and Prager, 1994; Wolfe et al., 1994), orthogonal projection followed by scaling or clipping is iteratively

employed to satisfy the constraints.

Fortunately, doubly stochastic matrix constraints can be satisfied in an efficient manner via a remarkable

theorem due to Sinkhorn (Sinkhorn, 1964): a doubly stochastic matrix can be obtained from any positive

square matrix by the simple process of alternating row and column normalizations. (Recall that in

the previous section on clocked objectives, the exponential form of in (16) ensures positivity.) Each

normalization is a projective scaling transformation (Strang, 1986).

1
1 ;

1
1 (19)

The row and column constraints are satisfied by iterating (19). At first, Sinkhorn’s theorem may appear

to be unrelated to the constraint energy function in (11). However, this is not the case. Iterated row and

column normalization can be directly related to solving for the Lagrange parameters and in (11). To

see this, examine the solution for above in the clocked objective:

exp exp [ ( )] (20)
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where
def (21)

The solution contains the two (still undetermined) Lagrange parameters and . The clocked objective

in (18) contains a phase where relaxation proceeds on the pair and then on . Assume an

odd-even sequence of updating where the 1 th update of the Lagrange parameter is associated with

the 2 1 th update of and the th update of the Lagrange parameter is associated with the 2 th

update of . Now,

2 1 exp 1 and (22)

2 exp (23)

Taking ratios, we get
2

2 1 exp 1 (24)

Setting the derivative of the energy function in (14) w.r.t. to zero gi 0 , we solve for the row

constraint:
gi 0 2 1 1 exp 1 exp (25)

From (23), (24), and (25), we get

2 1
2

2 (26)

We have shown that the clocked phase can be replaced by row normalization of . A similar

relationship obtains for the phase and column normalization. Note that remains constant during

the row and column normalizations. We have demonstrated a straightforward connection between our

constraint energy function in (11) and Sinkhorn’s theorem: solving for the Lagrange parameters in (14) is

identical to iterated row and column normalization. Henceforth, we refer to this important procedure as

iterative projective scaling since essentially a projective scaling operation (19) is iterated until convergence

is achieved.

Iterative projective scaling coupled with the exponential form of satisfies all three doubly stochastic

matrix constraints. The log barrier function and the Lagrange parameters and in the constraint
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energy function (11) have been translated into an operation that first makes all entries in positive

(exponential form of ) followed by iterated row and column normalization. Due to the importance of

both these factors—positivity and iterative projective scaling—and due to the similarity to the softmax

nonlinearity (which enforces either the row or the column constraint but not both), this operation is termed

softassign. The simplest optimization problem with two-way row and column permutation matrix con-

straints is the assignment problem (Luenberger, 1984). Softassign satisfies two-way assignment constraints

as opposed to softmax which merely satisfies one-way winner-take-all constraints. Softassign is depicted

in Figure 1(a). The graph isomorphism algorithm is summarized in Figure 1(b) and in the form of a

pseudo-code below.

Pseudo-code for graph isomorphism

Initialize to 0, to 1 , to

Begin A: Do A until

Begin B: Do B until all converge or number of iterations 0

1 1

1 1

exp ( )

Begin C: Do C until all converge or number of iterations 1

Update by normalizing the rows:

1

Update by normalizing the columns:

1

End C

End B

End A
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Definitions of additional symbols used can be found in Table 1.

In (Kosowsky and Yuille, 1994), softassign is used within deterministic annealing to find the global

minimum in the assignment problem. And as we shall demonstrate, softassign is invaluable as a tool

for constraint satisfaction in more difficult problems like parametric assignment (point matching) and

quadratic assignment (graph isomorphism and TSP) problems.

Softassign

exit   upon
convergence

! =GM-Mg

"  � #
$ 

TT g! !+ + "%Q = G-

Mai

i

Mai

Mai&

Row Normalization

Mai
Mai

Mai&
a

 Col. Normalization

Two-way constraints

Mai $exp(  Q  )ai=
Positivity

Softassign

(a) (b)

Figure 1: (a) Softassign. Given any square matrix , softassign returns a doubly stochastic matrix. (b)

The network architecture for graph isomorphism. The pseudo-code for the graph ismorphism algorithm

explains the algorithm in greater detail.

To summarize, deterministic annealing creates a sequence of objective functions which approaches the

original objective function (as is increased). Self-amplification in conjunction with annealing ensures that

a vertex of the hypercube is reached (for proper choices of the parameter). Algebraic transformations

in conjunction with clocked objectives help partition the relaxation into separate phases within which

analytic solutions can be found. Doubly stochastic matrix constraints are satisfied by softassign. With the

clocked objectives, analytic solutions and softassign in place, we have our network architecture. Figure 1

depicts the network architecture for graph isomorphism. Note that by adopting closed-form solutions and

the softassign within our clocked objectives and by eschewing gradient descent methods (with associated
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0 initial value of

rate of increase of

final value of

random number uniform in 0 1

0 maximum number of iterations at each

1 maximum number of iterations for softassign

Table 1: Definitions of additional symbols used in the graph isomorphism algorithm

line searches and/or gradient projections), we obtain discrete-time, parallel updating neural networks.

While at present, we do not have proofs of convergence to fixed points (or limit cycles) for these networks,

we report wide ranging success in using them to solve problems in vision, unsupervised learning, pattern

recognition and combinatorial optimization.

4 Problem examples

We now apply the same methodology used in deriving the discrete-time graph isomorphism network

to several problems in vision, learning pattern recognition and combinatorial optimization. None of the

networks used penalty functions, gradient descent with line search parameters or packaged constraint

solvers. The relevant free parameters in all the problems are (i) the annealing schedule for , (ii) choice

of the self-amplification parameter (when applicable), (iii) convergence criterion at each temperature,

(iv) convergence criterion for softassign and (v) overall convergence of the network. In all experiments,

Silicon Graphics workstations with R4000 and R4400 processors were used.

4.1 Graph isomorphism and matching

We have already examined the graph isomorphism problem and derived the corresponding network

(Figure 1).

To test graph isomorphism, 100 node graphs were generated with varying connectivities (1%, 3%,

5%, and 10% to 50% in steps of 10). Figure 2(a) depicts graph isomorphism for 100 nodes with 1000 test

instances at each connectivity. Each isomorphism instance takes about 80 seconds. The figure shows the

percentage of correct isomorphisms obtained for different connectivities. The network essentially performs
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perfectly for connectivities of 5% or more. In contrast, Simić’s deterministic annealing network (Simić,

1991) could not reliably find isomorphisms for all connectivities less than 30% in 75 node random graphs.

The major difference between the two networks is our use of softassign versus Simić’s use of softmax

and a penalty function for the doubly stochastic matrix constraints. A second difference is our use of a

discrete-time network versus Simić’s use of gradient descent. Elsewhere, we have reported closely related

(slower but more accurate) Lagrangian relaxation networks (employing gradient descent) for 100 node

graph isomorphism and matching (Rangarajan and Mjolsness, 1994) and these also compare favorably

with Simić’s results.
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Figure 2: Left: (a) 100 node graph isomorphism at connectivities of 1%, 3%, 5% and 10–50% in steps of 10.

Right: (b) 50 and 100 node graph matching

In addition to graph isomorphism, we also tested graph matching (von der Malsburg, 1988) for the

restricted case of equal numbers of nodes and links in the two graphs. The network used for isomorphism

is also applicable to matching. To test graph matching, 100 node graphs were generated with link weights

in 0 1 . The distorted graph was generated by randomly permuting the nodes and adding uniform

noise (at several different standard deviations) to the links. Figure 2(b) depicts graph matching for 100

and 50 nodes (no missing and extra nodes) with 200 and 1000 test instances respectively at each standard

deviation. The 50 node and 100 node graph matching optimizations take about 10 seconds and 80 seconds

respectively. The results are markedly superior to three non-neural methods of graph matching reported

in the literature, namely, linear programming (Almohamad and Duffuaa, 1993) polynomial transform

(Almohamad, 1991) and eigendecomposition (Umeyama, 1988) methods. The same architecture performs

very well on inexact graph matching and graph partitioning problems and this is reported along with
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favorable comparisons to relaxation labeling and softmax respectively in (Gold and Rangarajan, 1996a;

Gold and Rangarajan, 1996b).

4.2 TSP

We have already described the TSP objective in (1) and listed some of the problems in the original Hopfield–

Tank network (Hopfield and Tank, 1985) and in its successors. In our work, we begin with the combination

of the TSP objective and the constraint energy of (8). The self-amplification term in (8) is important for

obtaining a permutation matrix and for controlling chaos. As usual, softassign is used to satisfy the doubly

stochastic matrix constraints. The resulting clocked objective

tsp ( ) ( )

with 1 1 1 , is somewhat akin to the one used in (Peterson and

Söderberg, 1989) with the crucial difference being the use of softassign instead of softmax (and a penalty

term) for the doubly stochastic matrix constraints. The resulting algorithm is very easy to implement:

iteratively set followed by softassign at each temperature.

6 8 10 12 14 16 18 20 22 240

200

400

600

tour length

Figure 3: Histogram plot of tour lengths in the 100 city Euclidean TSP problem

We ran 2000 100-city TSPs with points uniformly generated in the 2D unit square. The asymptotic

expected length of an optimal tour for cities distributed in the unit square is given by where

is the number of cities and 0 765 0 765 4 (Golden and Stewart, 1985). This gives us the
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interval 7 65 8 05 for the 100 city TSP. A histogram of the tour lengths is displayed in Figure 3. From

the histogram, we observe that 98% of the tour lengths fall in the interval 8 11 . No heuristics were used

in either pre- or post-processing. A typical 100 node TSP run takes about 3 minutes. These results still

do not compete with conventional TSP algorithms (and the elastic net) but they provide an improvement

over the Hopfield–Tank and Potts glass (softmax) neural network approaches to TSP in terms of constraint

satisfaction, number of free parameters, speed of convergence, convergence to valid solutions and accuracy

of solution. More details on the TSP formulation and experiments can be found in (Gold and Rangarajan,

1996b).

4.3 Point matching

The point matching problem arises in the field of computer vision as pose estimation with unknown

correspondence (Mjolsness and Garrett, 1990; Gold et al., 1995; Gee et al., 1993). The problem is formulated

as the minimization of a distance measurew.r.t. the unknown spatial transformation relating the two point

sets and the unknown point-to-point correspondences:

min def
pm

1 1

2 (27)

subject to 1 1 and 0 1 (28)

where and are two 2-D or 3-D point sets of size and respectively and is a set of analog

variables (rotation, translation, scale, shear). is a regularization of the parameters in . is a binary

match matrix indicating the correspondence between points in the two point-sets—similar to the matrix

in graph isomorphism which indicates corresponding nodes. Unlike graph isomorphism however,

the two point-sets are of unequal sizes ( and ) resulting in outliers—points in either set that have no

corresponding points in the other set. The term 0 biases the objective away from null matches.

Since the objective is linear in , no algebraic transformations are necessary. With held fixed we

solve for . With held fixed, we employ softassign for the doubly stochastic matrix constraints.

The softassign operation is modified slightly to account for the inequality constraints of (28). The resulting

clocked objective is

pm ( ) ( ) (29)

More details on the point matching formulation and experiments can be found in (Gold et al., 1995).
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4.4 Clustering with smart distances

The point matching objective of (27) can be used as a distance measure inside an unsupervised learning

objective function. The goal is to obtain point set prototypes and the cluster memberships of each input

point set. Point sets with identical cluster memberships can differ by unknown spatial transformations

and noise. Clustering with smart distances is formulated as

min cl
1 1

subject to
1

1 and 0 1 (30)

is the point matching distance measure of (27). Here 1 are the

input point sets, 1 are the prototype point sets (cluster centers), and is the cluster

membership matrix. and are the unknown correspondence and spatial transformation

parameters between input point set and prototype point set . The clocked objective function analogous

to (18) and (29) is

cl ( ) ( ) ( ) (31)

where is a Lagrange parameter associated with the clustering constraint (30). More details on the

clustering formulation and experiments can be found in (Gold et al., 1996).

5 Conclusions

We have constructed an optimizing network architecture that generates discrete-time neural networks.

These networks perform well on a variety of problems in vision, learning, pattern recognition and com-

binatorial optimization. In the problems considered, we have repeatedly encountered a set of variables

arranged as a matrix with permutation matrix constraints (or minor variations thereof). This is no accident.

The softassign is designed to handle just this kind of constraint and is mainly responsible for the speed

and accuracy of the resulting optimizing networks. While softassign has been previously used to solve

the assignment problem (Kosowsky and Yuille, 1994), its effectiveness in parametric (point matching)

and quadratic assignment problems (graph matching, TSP) has not been demonstrated, until now. In
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point matching, an efficient algorithm is obtained by solving in closed form for the spatial transforma-

tion parameters followed by softassign at each temperature. Likewise, in quadratic assignment (graph

isomorphism and TSP), softassign eliminates the need for penalty functions, and gradient or orthogo-

nal projection methods. Other important elements of the architecture are algebraic transformations and

clocked objectives which partition the relaxation into separate phases—reminiscent of the EM algorithm.

Remaining elements of the architecture are deterministic annealing and self-amplification which provide

control on convexity and achieve convergence at moderately low temperatures respectively. The network

architecture has been used to construct networks for large scale (million variable) nonlinear optimization

problems [see (Gold et al., 1996)]. We believe that this work renews the promise of optimizing neural

networks.
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