Model for cooperative control of positional information in *Drosophila* by Bicoid and maternal Hunchback.

John Reinitz*, Eric Mjolsness†, and David H. Sharp‡
* Center for Medical Informatics
Yale Medical School, 333 Cedar St., New Haven, CT 06510 USA

† Department of Computer Science, Yale University
P.O. Box 2158 Yale Station, New Haven CT 06520 USA

‡ Theoretical Division, Los Alamos National Laboratory
Los Alamos, NM 87545 USA

Four figures, containing four, six, one, and one graph respectively.
Running Title: Dynamic Model of Positional Information

Send proofs to:
John Reinitz
Brookdale Center for Molecular Biology
Box 1126 Mt. Sinai School of Medicine
One Gustave L. Levy Place
New York NY 10029
email: reinitz@kruppel.molbio.mssm.edu
212-241-1952 (voice)
212-860-9279 (fax)

1Present address: Brookdale Center for Molecular Biology, Box 1126 Mt. Sinai Medical School, One Gustave L. Levy Place, New York, NY 10029. Address and author to whom reprint requests should be addressed
Abstract

The blastoderm of the fruit fly *Drosophila melanogaster* is unusually well suited for analysis of fundamental questions in animal development. One such question is how genes specify the positional information which determines the developmental pathways (fate) of cells at appropriate spatial locations. In this paper we propose a dynamical model of gene regulation which explicitly describes how positional information is used in the blastoderm. The model is applied to analyze important experimental findings on the dependence of cell fate on the concentration of the Bicoid morphogen. The model shows that positional information in the presumptive middle body is cooperatively determined by maternal products of the *bicoïd* and *hunchback* genes.
Introduction

Cells in an embryo organize themselves into appropriate structures at correct locations by interpreting positional information (Wolpert, 1969) encoded in chemical signals. The purpose of this paper is to propose a model of gene regulation which provides an explicit dynamical formulation of the notion of "interpretation of positional information". The model is developed with reference to the blastoderm of the fruit fly Drosophila melanogaster. In this system, positional information is supplied by maternal genes and interpreted by zygotic genes. On the anterior-posterior (A-P) axis, the interpretation of positional information is manifested by the expression of finer and finer spatial domains of zygotic segmentation gene expression (Ingham, 1988) under the control of three maternal organizing centers (Nusslein-Volhard et al., 1987; Nusslein-Volhard 1991). The two of these that operate in the middle body region have been shown to act by means of morphogen gradients: bicoid (bcd) in the case of the anterior system (Frohnhöfer and Nusslein-Volhard, 1986; Driever and Nusslein-Volhard, 1988a,b), and maternal hunchback (hbmat) in the abdominal system (Hulskamp et al., 1989; Irish et al., 1989; Struhl, 1989; Hulskamp et al., 1990; Struhl et al., 1992).

If positional information were specified by a single chemical gradient of morphogen, one would expect that a given morphological marker of cell fate would always be found at a given concentration of morphogen. This is not the case in Drosophila. An important series of quantitative measurements (Driever, 1988b, Fig. 6) have shown that the same cell fate can be elicited by different concentrations of Bicoid protein when the dosage of the bcd gene is altered. The model correctly predicts this effect. The model also predicts that in the absence of hbmat, a given concentration of Bicoid protein will elicit a given fate irrespective of bcd gene dosage. These results taken together show that A-P positional information is encoded jointly by the bcd and hbmat gradients. Recent experimental evidence confirms that this is the case (Simpson-Brose et al., 1994); a preliminary version of our prediction of this phenomenon was reported elsewhere (Reinitz et al., 1992b).

Materials and Methods

Gene Expression Data

bicoid concentration data was taken from photometric observations in the literature (Driever 1988a). Gap gene expression data were obtained from single and double labeling studies of wild type (Oregon R) embryos using fluorescence tagged antibodies, with fixation, staining (Frasch and Levine, 1987), and photomicroscopy (Stanoevich et al., 1989) as described. The Krüppel (Kr) antiserum was that used (Stanoevich et al., 1989), the knirps (kni) antiserum was obtained from Dr. K. Howard, and guinea pig anti-giant and mouse anti-hunchback sera were those described by Kraut and Levine (1991a). These studies result in color photomicrographs, each containing expression patterns of at most two genes at a particular stage of development. In order to be used as input to the model, these data were analyzed to obtain quantitative values for protein concentrations and relative positions of expression domains. To obtain concentrations as a function of time, embryos were classified
by developmental stage. Visual estimates of expression intensity along a line of nuclei running along the A-P axis close to the lateral midline were made from each embryo. The alignment problem was dealt with by comparing data from different embryos which have a common expression domain. Note that the late cycle 14 dataset (Fig. 1D) is truncated at the anterior end owing to the fact that we did not have adequate expression data in this region.

Least Squares Fits to Data

Least squares fits were done by the method of simulated annealing (Metropolis et al., '53; Kirkpatrick et al., '83) using the Lam algorithm (Lam and Delosme, '88ab) as a cooling schedule. In the present application, evaluation of the cost function requires integration of equation (1) for each trial set of T^{ab}, R^n, etc. to obtain $v^a_{model}(t)$. Eq (1) was integrated with 1.33 minute time steps using the Euler method (Press et al., '88). Experiments with finer timesteps confirmed the accuracy of the solution. Annealing moves for each parameter were selected from an exponential distribution and given random sign. The mean of this distribution was separately altered for each parameter so as to ensure an effective sampling of search space. The search space for parameters is limited as follows. We restrict the synthesis rate $R_g(u)$ to be no more than 99.9% of its maximum value. We have used two strategies for annealing on R and λ. In the first, λ was fixed at a value corresponding to a protein half life of 20 minutes, and R was allowed to range from 0.25 minute$^{-1}$ to 2.5 minute$^{-1}$. In the second, λ assumed values corresponding to half lives ranging from 8 to 24 minutes, and R ranged from 0.25 minute$^{-1}$ to 0.75 minute$^{-1}$. The latter search space gave scores about 10% better than the former.

In each of the two search spaces, multiple annealing runs were done and those with scores within 15% of the lowest score in each set were examined in detail. Lam’s parameter which determines the overall cooling rate (Lam and Delosme '88b) was set to 10^{-4}. Slower cooling did not improve the results.

We have tested the accuracy of this solution algorithm in the following way. Starting with an arbitrarily chosen set of parameters T^{ab}, R^n etc. one solves equation (1) to obtain a set of concentrations $v^a_i(t)$. These concentrations are regarded as the “experimental” input data. The simulated annealing procedure is then carried out to determine the set of parameters determined by this input data. If these parameters agree with those initially chosen, the solution is accurate. This test was carried out for a number of systems; for a two gene system it was found that the initial and final values of the parameters agreed to within 1%.

Dosage Studies

Throughout this analysis changes in the dosage of bed were represented numerically as multiples of the wild type bed gradient. In Figure 4, the solid curve was obtained from the formula $y_0 = A(n/2) \exp(-ax_0(n))$, where $y_0 = 2.35$ is the fixed Bicoid protein concentration at the posterior margin of the Kr domain for $n = 2$, n is the dosage of bed.

4
(interpreted as a continuous variable), and $x_0(n)$ the location of the anterior edge of the Kr domain as a function of dosage. $A = 9.51$ is the relative concentration of Bicoid at nucleus 0 for $n = 2$, $a = .05$ the decay constant of the bed gradient. When used as a marker of positional information, the anterior edge of the Kr domain was taken to be the position at half maximal amplitude. Occasionally a fit lost or gained expression domains at 1 or 3 doses; these were not used to make dose response curves.

Results

Formulation of the Model

Our model incorporates certain fundamental experimental observations on the development of *Drosophila melanogaster*. Until the onset of gastrulation, the *Drosophila* embryo has two unusual features. One is the absence of cells: the syncytial character of the blastoderm permits spatial interactions to be treated by the diffusive exchange of gene products, and explicit cell-cell interactions are not present (Campos-Ortega and Hartenstein, '85). Second is the observation that although mutation of a segmentation gene alters the expression patterns of other segmentation genes (Jackle et al., '86; Mohler et al., '89; Pankratz et al., '89; Reinitz and Levine, '90; Kraut and Levine, '91a,b; Eldon and Pirrotta, '91), it does not produce an alteration in the morphology of the embryo until some time after gastrulation (Lehmann and Nusslein-Volhard, '87; Wieschaus et al., '84; Petschek et al., '87; Strecker et al., '88). These observations show that segmentation genes are dynamically coupled to each other, but are isolated from other developmental processes until after gastrulation. Between fertilization and gastrulation 13 synchronous nuclear divisions occur, but no zygotic genes are expressed until after the tenth division (cleavage cycle 11) (Edgar and Schubiger, '86). In this paper we focus on a particular class of segmentation genes known as gap genes (Nusslein-Volhard and Wieschaus, '80). These genes are the major targets of maternal morphogens and themselves regulate a cascade of pair-rule and segment polarity genes which generate a segmental pattern that is visible at the molecular level by the time of gastrulation (Ingham, '88) and at the morphological level by the time of germ band elongation (Campos-Ortega and Hartenstein, '85).

We make two hypotheses about the way that segmentation genes interact. Hypothesis (a) is that the state of the blastoderm can be described by the concentrations of gene products, and (b) is that the synthesis rate of a given gene is a monotonic, saturating ("sigmoidal") function of the regulating gene products.

Hypothesis (a) is based on the idea that precise binding states of regulator proteins are not required for a description of the regulative state of a gene. Although the regulative state is in some sense a consequence of ligand binding, these binding configurations are highly redundant and thus do not provide a useful way of specifying the regulative state of the gene. A consequence of this picture is that the action of one gene on another can be described simply in terms of its effect on concentrations, and hence by a single real number.

Hypothesis (b) is supported by some in vivo data (Han et al., '89), but decisive
experimental information on the form of this function must await a faithful in vitro assay for RNA polymerase II regulation that can be performed with purified transcription factors.

We formulate these basic ideas as a mathematical model in the following way. Concentrations of regulatory molecules change in response to existing concentrations of regulators, exchange of regulatory molecules between nuclei (by diffusion), and decay. These effects are described in the model by a system of coupled nonlinear differential equations. The system of differential equations holds at almost all times, but when mitosis occurs the state of the system is considered to change discontinuously. Such discrete events are governed in our model by a rule which specifies how a given nucleus is replaced by its progeny. This rule is part of a grammar in the sense of Lindenmayer (’68; Mjolsness et al., ’91). We have designed our model to take into account the fact that gene expression takes place only during interphase, and that each nuclear division is symmetric and lasts about four minutes. Because the timing of mitoses in the blastoderm is under maternal control, we impose a fixed schedule of mitoses on the model (Foe and Alberts, ’83).

We consider the four gap genes Kr, kni, giant (gl), and hunchback (hb) under the control of bed and focus on that portion of the blastoderm which gives rise to the segmented germ band. In this region, the level of expression of gap genes is approximately a function only of the position along the A-P axis. Moreover the genes affecting the A-P and dorsal-ventral (D-V) axes are uncoupled, because mutations in D-V genes do not affect the expression of A-P genes and vice versa. These observations suggest that the system can be well represented by a linear array of nuclei running along the A-P axis. The position of a nucleus is indexed by i. During interphase the dynamical equation for v_i^a, the concentration of the ath gene product in nucleus i, is given by (Mjolsness et al., ’91; Reinitz et al., ’92a)

$$\frac{dv_i^a}{dt} = Ra_g\left(\sum_{b=1}^{N} T_{i}^{ab}v_i^b + m_i^a v_i^{bcd} + h^a\right) + D^n(a)\left(\left(v_{i-1}^a - v_i^a\right) + \left(v_{i+1}^a - v_i^a\right)\right) - \lambda_a v_i^a,$$ \hspace{1cm} (1)

where N is the number of zygotic genes.

In (1), T_{i}^{ab} is the matrix of genetic regulatory coefficients; the elements of T_{i}^{ab} characterize the regulatory effect of gene b on gene a. This matrix does not depend on i, a reflection of the fundamental fact that the cell nuclei of a multicellular organism contain identical genetic material. The bed input is given by $m_i^a v_i^{bcd}$, where v_i^{bcd} is the concentration of Bicoid protein in nucleus i and m_i^a is the regulatory coefficient of bed acting on zygotic gene a. g_a is a monotonically saturating function of the form

$$g_a(a^a) = (1/2)\left(\frac{a^a}{\sqrt{(u^a)^2 + 1}} + 1\right),$$

where $u^a = \sum_{b=1}^{N} T_{i}^{ab}v_i^b + m_i^a v_i^{bcd} + h^a$. Ra is the maximum rate of synthesis from gene a, h^a is a threshold that controls the constitutive activity of gene a. The diffusion parameter $D^n(a)$ depends on the number n of cell divisions that have taken place, and varies inversely with the square of the distance between nuclei. In this paper, we take $D^n(a)$ to be the same for each species of protein, and invariant with respect to n. We assume that the distance between adjacent nuclei is halved after a nuclear division. λ_a is the decay rate of the product of gene a.

hb^{mat} protein concentration is incorporated into the model as an initial value (that is at cleavage cycle 11) for the concentration of hb product. This is a mathematical
expression of the fact that the observed concentration of \(hb \) protein consists of both maternal and zygotic components. Initial values of the other, purely zygotic, gene products are taken to be zero at cleavage cycle 11.

How the Model is Used

The first step in using the model is to employ experimental data on levels of gene expression to determine the parameters in equation (1). Note that this is an inverse procedure; it is not that we are starting with the values of \(T^a_b \) and other parameters to determine \(v^a(t) \), but rather we are using the experimentally observed values of \(v^a(t) \) to define the parameters. This procedure is carried out in two steps. One must first analyze the experimental data on levels of gene expression to obtain quantitative values for the protein concentrations as a function of time, and secondly one must use this data to fit the parameters by a least squares procedure which is solved by the method of simulated annealing (Metropolis et al., '53; Kirkpatrick et al., '83).

Experimental data derived from single and double labeling studies on wild type embryos using fluorescence tagged antibodies were used to construct the dataset shown in Figure 1. The figure displays concentrations of the products of \(hb, Kr, kni \), and \(gt \) in early, middle, and late cleavage cycle 14, as well as the concentration profile of \(bed \) product, which is not a function of time. The concentration of \(hb^{mat} \), together with the other initial conditions of the model, are shown in Figure 2.

To use the data in Figure 1 to determine the parameters in equation (1), we form the sum of squared differences (the "cost function") between the observed protein concentrations and those given by the model. The sum extends over each protein, nucleus, and time for which data exists. This quantity is then minimized by adjusting the values of the parameters. This defines a least squares problem which is solved using Lam's adaptive simulated annealing algorithm (Lam and Delosme, '88a,b).

This procedure led to the results shown in Figure 2. Comparison of Figure 1 and Figure 2 shows that the relative spacing and overlaps of expression domains is correct for the \(Kr \) and \(kni \) domains, for the anterior and posterior \(hb \) domains, and for the posterior portion of the anterior domain of \(gt \) and the anterior border of the posterior \(gt \) domain. These points of agreement are the basis for our claim that the model is correct in most of the region of the blastoderm under consideration. In the anterior and posterior end regions, the model gives results that are variable over different simulated annealing runs and partially incorrect. This is not unexpected, because genes which are known to have an important regulatory effect in these regions have not yet been included in the model (Dalton et al., '89; Weigel et al., '90; Finkelstein and Perrimon, '90; Cohen and Jurgens, '90). For example, in cleavage cycle 12, there was an unbiologically large transient in \(kni \) expression in the posterior region. This spurious early \(kni \) transient activates the posterior \(hb \) domain and represses the posterior \(gt \) domain, regulatory actions that are characteristic of the gap gene \textit{tailless} (Reinitz and Levine, '90), which is expressed in this region (Pignoni et al., '90). This shows that the model can indicate to the investigator not only that there
is a missing component in the system, but also what that component does.

The importance of including all relevant genes was further illustrated by performing fits in the absence of bcd product (Fig. 3). This experiment tests whether the model will give a good fit to a dataset known to be missing a critical component. As can be seen by comparing Figures 2 and 3, the fit without bcd contains major qualitative errors, notably the loss of the anterior border of the anterior gt domain as well as spurious domains of Kr, kni, and hb expression posteriorly. This pattern is quite different from what would be seen in a bcd mutant, where anterior domains of expression would be altered (Frohnhöfer and Nusslein-Volhard, '86). We asked the model to make bcd+ gap gene patterns in the absence of Bicoid protein, and it was unable to do so. This result supports the model, and illustrates the important point that the model does not give a good result when it should not: A good fit is obtained only when the proper gene products are included.

The method used to obtain the data (Fig. 1) gives good information about the relative overlap of expression domains. However, potentially serious uncertainties in the estimated values of protein concentrations are present for several reasons: The levels of expression were derived by visual inspection, the relation between observed intensity and concentration may not be linear, and the intensity-concentration relationship may be different for each gene. We emphasize that there is reason to believe that many key biological properties of this system are closely related to the overlap of expression domains, and are relatively insensitive to uncertainties in absolute concentrations. For example, the ordered set of gap gene expression domain overlaps appears experimentally to specify the location of pair-rule stripes, and theoretical analysis (Kauffman and Goodwin, '90) indicates that this set of overlaps lay out a periodic set of positional cues for segmentation. Absolute concentrations of gap gene products cannot be critical, since reducing the concentration of a gap gene product by a factor of two in a heterozygote merely changes the relative spacing of the overlaps (Warrior and Levine, '90), without an effect on viability (Nusslein-Volhard and Wieschaus, '80). Elimination of an overlap (as in a null gap mutant) has lethal results and eliminates certain fates from the fate map. Alterations in the positions of overlaps as is observed in bcd dosage studies may change the fates of many blastoderm nuclei, but no fates are eliminated and the embryo survives (Driever and Nusslein-Volhard, '88b).

Analysis of bcd Dosage Studies

Dosage experiments which change the number of copies of the bcd gene provide a way of determining the dependence of positional information on the chemical gradient of bcd product. This is accomplished by observing the response of suitable markers to changes in the concentration of Bicoid protein. Published photometric results (Driever and Nusslein-Volhard, '88b) indicate that the gradient remains close to exponential for 1, 2, or 3 doses of bcd, and that the absolute scale of the gradient is roughly a linear multiple of the copy number in the part of the embryo under consideration here. In this study, the parameters of the model are fit on wild type data only, with the normal dosage of two copies of bcd. We can model the effect of alterations in the bcd dose without redetermining
the model parameters simply by multiplying the *bed* gradient used by an appropriate scale factor.

If A-P positional information were autonomously specified by the concentration of *bed*, one would expect that a given landmark used to assay positional information would always be found at the same concentration of *bed* product. Previous investigations of the dependence of cell fate on Bicoid concentration made use of the cephalic furrow and the first *even-skipped* (*eve*) stripe as such markers (Driever and Nusslein-Volhard, ’88b). Although these markers changed position with changes in the *bed* dose, they did not remain at the same *bed* concentrations (Fig. 4, curve d), indicating that *bed* does not autonomously specify positional information.

Our model correctly predicts this behavior. Because neither pair-rule genes nor gastrulation was included in the model, we have used the anterior edge of the *Kr* domain at the onset of gastrulation as a positional information marker. This is a suitable marker because at it is invariant with respect to the fate map for the range of genotypes considered. The anterior margin of the *Kr* domain demarcates the posterior boundary of the second *eve* stripe (Stanojевич, ’89). Figure 4 shows that the model predicts the same relationship between *bed* concentration and positional information as described by the slightly more anterior markers used in (Driever and Nusslein-Volhardt, ’88b).

To determine the contribution of *hh*_{mat} to the specification of positional information, we also fit the model to a dataset that did not include *hh*_{mat}, using data otherwise identical to that used for the fit shown in Figure 2. As shown in Figure 4 the results demonstrate that in the absence of *hh*_{mat} positional information is determined solely by the *bed* concentration. This, together with the dose response in wild type, implies that in wild type embryos positional information in the presumptive thoracic and anterior abdominal region of the blastoderm is determined cooperatively by both *bed* and *hh*_{mat}.

A possible objection to the preceding analysis is that it should have been based on expression patterns in embryos without *hh*_{mat}; nevertheless we believe our conclusions to be valid for the following reasons. Embryos lacking *hh*_{mat} survive to become viable larvae (Lehmann and Nusslein-Volhardt, ’87), and experimental data (Hulskamp et al., ’90; Struhl et al., ’92) supports the idea that gap gene expression in such embryos will contain the same sequence of gap expression domains and their overlaps as wild type. Because our conclusions about positional information in the absence of *hh*_{mat} are drawn purely from the changes in the positioning of the domains of the four gap genes considered, rather than their absolute positions, we believe that our analysis is not sensitive to distortions in the gap pattern introduced by the absence of *hh*_{mat}.

We note that our model leads to the experimental prediction that if the *bed* dosage is varied between 1 and 3 in embryos lacking *hh*_{mat}, the same gap gene expression domains will occur at the same concentration of *bed*. We emphasize that this prediction depends on the assumption that the *torso* system, which has not yet been included in our model, does not play an important role in this phenomenon. This assumption is based on the fact that the landmark used in Figure 4 is at the border of the regions organized by the anterior and abdominal maternal systems, and hence is distant from known sites of *torso* action.
Discussion

We have presented results which support the idea that a model based on a simple picture of gene regulation can successfully describe important features of gene expression in the blastoderm of *Drosophila*. We have applied this model to elucidate an important aspect of the control of positional information, and to predict the results of further experiments. Recent experimental results confirm essential features of the model of cooperative control of positional information presented here (Simpson-Brose et al., '94).

The inclusion of more genes in the model will bring many more phenomena within its framework. We have identified uncertainties in the determination of the model parameters resulting from the semiquantitative nature of data obtained by visual inspection of antibody stains. These can be reduced substantially if data are collected using charge coupled device (CCD) or confocal techniques. This more quantitative data will also permit modeling of many experiments on single and double null mutants.

Acknowledgements

JR acknowledges support from National Institutes of Health grants LM 07056 and RR 07801, and from Sun Microsystems Inc.; EM from the US Air Force Office of Scientific Research grant 88-0240, and DHS from National Institutes of Health grant RR 07801 and from the US Department of Energy. JR thanks Michael Levine and members of his laboratory for stimulating discussions, and Daniel Greening for advice on simulated annealing. We thank K. Harding and G. Zina for valuable comments on the manuscript.
Literature Cited

Legends

Fig. 1. Dataset used to fit the model. A. Gradient of maternal Bicoid protein in cycle 14. This curve is proportional to \(\exp(-0.05x) \), where \(x \) is the nucleus number. The Bicoid concentration was kept constant in time. B, C, and D. Zygotic expression data from early, middle, and late cleavage cycle 14. Each shows a line of nuclei along the lateral midline, with anterior to the left. The same region of 64 nuclei is shown in each graph. Concentration is plotted vertically: currently available data only permit the determination of relative concentrations. Domains are labeled in C; + signs denote \(hb \), the x signs \(kni \), the diamonds \(Kr \), and the open squares \(gt \).

Fig. 2. Behavior of the model. The figure shows the behavior of the model from cleavage cycle 11 to the onset of gastrulation. Symbols and axes are as in Figure 1, except for altered horizontal scales in A through C. A shows initial conditions in cycle 11. Note that all gene products are at zero concentration, except that of \(hb \); \(hb \) product in cycle 11 was expressed from the maternal genome. The concentration profile of \(hb^{mat} \) was taken directly from data; no other expression was seen at this time. B, C, D, E, and F show the behavior of the model at cleavage cycles 12, 13, early, middle, and late cycle 14 respectively. This fit was the best obtained from the data in Figure 1, with a root mean square (r.m.s.) deviation of 1.24 intensity units. The fit gave the following parameters: \(T^{Kr-hb} = 0.997 \), \(T^{Kr-gt} = -0.826 \), \(T^{Kr-kni} = -1.71 \), \(T^{hb-Kr} = -1.93 \), \(T^{hb-hb} = 0.442 \), \(T^{hb-gt} = 0.998 \), \(T^{gt-hb} = 1.06 \), \(T^{gt-kni} = 0.398 \), \(T^{gt-Kr} = 0.938 \), \(T^{gt-gt} = -3.58 \), \(T^{gt-kni} = -0.298 \), \(T^{gt-gt} = 0.190 \), \(T^{gt-kr} = 0.284 \), \(T^{kni-Kr} = -0.081 \), \(T^{Kni-hb} = -1.05 \), \(T^{kni-gt} = -1.51 \), \(T^{kni-kni} = 0.258 \), \(h^{Kr} = 0.791 \), \(h^{hb} = -6.72 \), \(h^{gt} = -1.16 \), \(h^{kni} = 2.66 \), \(t^{K} = 24.0 \) minutes, \(t^{hb} = 16.1 \) minutes, \(t^{gt} = 11.0 \) minutes, \(t^{kni} = 10.5 \) minutes, \(R^{Kr} = 0.298 \) minute\(^{-1} \), \(R^{hb} = 0.511 \) minute\(^{-1} \), \(R^{gt} = 0.700 \) minute\(^{-1} \), \(R^{kni} = 0.749 \) minute\(^{-1} \), \(m^{Kr} = 1.59 \), \(m^{hb} = 0.029 \), \(m^{gt} = 1.19 \), \(m^{kni} = -1.55 \), \(D(13) = 0.087 \) minute\(^{-1} \).

Fig. 3. Requirement for \textit{bicoid}. This figure shows the results of fitting the model to the data in Figure 1 with the Bicoid gradient set to zero. Late cleavage cycle 14 is shown; symbols and axes are as in Figure 1, and expression domains are labeled. The results are qualitatively incorrect in several respects; compare Figs 1D and 2F and in this figure note the ectopic expression of \(Kr \), \(kni \), and \(hb \) in the posterior region. This fit was the best obtained without \textit{bcd}. It had an r.m.s. deviation of 1.54 intensity units, parameters not shown.

Fig. 4. The \textit{bicoid} dose response. This figure shows that the model correctly predicts the observed \textit{bcd} dose response curve and also gives the predicted dose response curve in the absence of \(hb^{mat} \). Gene dosage is plotted on the vertical axis in terms of the number of copies of the wild type \textit{bcd} gene that are present. The horizontal axis is in the same units as Figures 1 through 3; note that one nucleus is approximately 1\% of egg length. Five curves are shown. The solid curve a shows the location of a fixed concentration of Bicoid protein at different doses of the \textit{bcd} gene as given by an amplitude scaling of the exponential formula (Fig. 1) for the \textit{bcd} concentration. This curve is to be compared to curve e (hollow squares) which shows the variation in position of the anterior...
margin of the Kr domain as a function of bed dosage when hb^{mat} was not included in the model. There was no significant variation in this curve among all the fits examined. Curves b (diamonds) and c (+ symbols) show the variation in position of the anterior margin of the Kr domain as a function of bed dosage when both bed and hb^{mat} are included in our model (with parameters for curve b given in Figure 2; parameters for curve c not shown. Curve c is included to indicate the range of variability of our results.). Curves b and c are to be compared to curve d (x symbols), which represents the published experimental data (Driever and Nusslein-Volhardt, '88b) on the dose response. Curves b and c show some variation in dose response, but have generally the same shape and orientation as curve d. Note that curve d uses the first eve stripe as a landmark, so that curves b and c are expected to be horizontally displaced from d. Curve e was obtained by fitting to data identical to that shown in Figure 1, except that the initial hb concentration was set equal to zero. The fit had an r.m.s. deviation of 1.24 intensity units and the parameters were $T^{Kr\rightarrow Kr} = 1.76$, $T^{Kr\rightarrow hb} = -1.00$, $T^{Kr\rightarrow gt} = 1.31$, $T^{Kr\rightarrow kni} = -0.585$, $T^{hb\rightarrow Kr} = -0.204$, $T^{hb\rightarrow hb} = 0.922$, $T^{hb\rightarrow gt} = -0.249$, $T^{hb\rightarrow kni} = -0.285$, $T^{gt\rightarrow Kr} = -3.84$, $T^{gt\rightarrow hb} = -0.136$, $T^{gt\rightarrow gt} = -0.045$, $T^{gt\rightarrow kni} = -0.825$, $T^{kni\rightarrow Kr} = -0.452$, $T^{kni\rightarrow hb} = -0.416$, $T^{kni\rightarrow gt} = -2.149$, $T^{kni\rightarrow kni} = 0.299$, $h^{Kr} = -7.10$, $h^{hb} = -1.64$, $h^{gt} = 1.29$, $h^{kni} = 3.04$, $t^{Kr}_{1/2} = 21.1$ minutes, $t^{hb}_{1/2} = 11.4$ minutes, $t^{gt}_{1/2} = 12.0$ minutes, $t^{kni}_{1/2} = 14.2$ minutes, $R^{Kr} = 0.416$ minute$^{-1}$, $R^{hb} = 0.711$ minute$^{-1}$, $R^{gt} = 0.706$ minute$^{-1}$, $R^{kni} = 0.614$ minute$^{-1}$, $m^{Kr} = 0.459$, $m^{hb} = 0.493$, $m^{gt} = 0.592$, $m^{kni} = 0.033$, $D(13) = 0.032$ minute$^{-1}$.
A Bicoid Gradient

C Middle Cleavage Cycle 14 Dataset

B Early Cleavage Cycle 14 Dataset

D Late Cleavage Cycle 14 Dataset