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Abstract

We exhibit a systematic way to derive neural nets for vision problems. It involves formulating
a vision problem as Bayesian inference or decision on a comprehensive model of the visual domain
given by a probabilistic grammar. A key feature of this grammar is the way in which it eliminates
model information, such as object labels, as it produces an image; correspondance problems and other
noise removal tasks result. The neural nets that arise most directly are generalized assignment net-
works. Also there are transformations which naturally yield improved algorithms such as correlation
matching in scale space and the Frameville neural nets for high-level vision. Networks derived this
way generally have objective functions with spurious local minima; such minima may commonly be
avoided by dynamics that include deterministic annealing, for example recent improvements to Mean
Field Theory dynamics. The grammatical method of neural net design allows domain knowledge to
enter from all levels of the grammar, including “abstract” levels remote from the final image data,

and may permit new kinds of learning as well.
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1 INTRODUCTION

We show how to derive various optimizing neural networks, which represent quantitative visual models
and match them to data, from fundamental considerations of Bayesian reasoning. Doing so illustrates a
design methodology which starts from first principles, namely a probabilistic model of a visual domain,
and proceeds to a neural network which performs visual tasks. The key problem is to choose probability
distributions sufficiently intricate to model general visual tasks and yet tractable enough for theory. We
do this by means of probabilistic and expressive grammars which model the image-formation process,
including heterogeneous sources of noise each modelled with a grammar rule. In particular these gram-
mars include a crucial “relabelling” rule that removes the undetectable internal labels (or indices) of
detectable features and substitutes an uninformed labelling scheme used by the perceiver.

For such grammars, in which every rule has a simple Boltzmann probability distribution, it is
straightforward to generate a neural network as follows: (1) Obtain the grammar, by detailed modelling
or by automated learning from examples. (2) Compute the joint Boltzmann probability distribution
on images (or pictures) and their grammatical explanations. (3) Express desired averages under this
distribution in terms of the optimization of an objective function F. This step usually employs Mean
Field Theory approximations; the scaling properties and practicality of such approximations have been
greatly improved by (Simic, 1990b; Peterson and Soderberg, 1989; Van den Bout and Miller, III, 1990)
for matching problems similar to those we encounter. (4) Introduce optimizing neural net dynamics for
FE.

The procedure becomes more elaborate and malleable by using valid transformations (e.g. of prob-
ability distributions or objective functions) at each step to reduce network cost, improve network per-
formance or achieve network implementability in some technology. A small catalog of valid objective
function transformations for neural nets is presented in (Mjolsness and Garrett, 1990), and the present
paper illustrates several transformations of probability distributions. The entire method is sketched in
Figure 1.

This paper is organized as follows. In Section 2 we introduce an example grammar which models
a simple picture-formation process; we derive a joint probability distribution on models and images
(or pictures) and discuss various questions which could be answered by computing moments of this
distribution; we derive neural nets for doing such computations, both with and without using “match
neurons” which explicitly hypothesize correspondance between model and data objects. The network
without such neurons is interpreted as the relatively efficient algorithm of correlation matching in

scale space. In Section 3 we demonstrate such nets on an image registration problem. In Section
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Problem-modelling

Hand-design =—fp-  Grammar, I < —— | carning

(expressive, e.g. recursive)

I 4
GProbabiIity Distribution, Pr

(mathematical)

Objective Function, E
(algebraic)

Neural Network, Tij
(implementable)

Figure 1: A neural network design methodology. Solid arrows constitute the recommended procedure.
The arrow from Pr to £ may be realized by approximations from statistical physics, such as Mean Field
Theory. Circular arrows represent valid transformations, such as fixed-point preserving transformations
of objective functions.

4 we exhibit a variety of probabilistic grammars and the joint probability distributions they imply,
including a network for recognizing simple flexible objects. There we also derive the previously studied
“Frameville” neural networks for high-level vision from a simple type of grammar. It results from
“pushing” the relabelling operation back to more and more abstract levels of the grammar, thereby
breaking up a massive correspondance problem into many small correspondance and grouping problems
that interact. To put the latter result in context, it suggests a natural way to derive neural nets that are
capable of expressing abstractions usually reserved for symbolic computing, and indicates how symbolic
computing in perceptual domains could be improved by derivation from underlying physical models akin
to those used in physically-based computer graphics. In Section 5 we speculate on learning algorithms
for the types of neural nets we are discussing, illustrated with an example involving inexact graph

matching. In Section 6 we discuss the results and conclude.



Bayesian Inference on Grammars by Neural Nets 5

2 EXAMPLE: A RANDOM-DOT GRAMMAR

The first example grammar is a generative model of pictures consisting of a number of dots (e.g. a sum
of delta functions) whose relative locations are determined by one out of M stored models. But the
dots are subject to unknown independent jitter and an unknown global translation, and the identities
of the dots (their numerical labels) are hidden from the perceiver by a random permutation operation.
For example each model might represent an imaginary asterism of equally bright stars whose locations
have been corrupted by instrument noise. One useful task would be to recognize which model generated

the image data.

2.1 The Grammar

The random-dot grammar is shown below.

irtzolc(l)ecla&tlil(l)i ro. root — Instance of model o at x
Fo(x) = ghalxl’
dot 1 . .
locations rt: instance(a,x) — {dotloc(or, m, %, = x +u?,)}
Ei({xn}) = -—logl[l,,0(xn —x—1ul), where <ug >,=0
~ lim%_@#zm |Xm — x —ul|* + ¢(os)
Fol
jicl(t)Zr r?: dotloc(ar, m, X)) — dot(m, x) (1)
Ez(xm) = #H{m —Xm|2
choose random :
permutation rs: {dot(m,x,,)} — {dot(m,xn), Pm;}
Es({Pn;}) = —logPr(P), where P is a permutation
;lellzzl‘t;etls r*: {dot(m,xm), Pni} — A{imagedot(x; =" PpniXm)}
Ea({xi}) = —log[; 0(xi =3 0, PmiXm)

The operation of this grammar is illustrated in Figure 2. We will show that this grammar is equivalent
to a grammar with fewer rules:

model and

. ro. root — 1nstance of model o at x
location
Box) = gl

Jittered dot I'!: instance(a,x) — {dot(a,m,xm,)}

locations
Ei({xn}) = g 2Lp(xm —x—up)’, where <up, >p,=0 (2)
~  limg, o _2(0]2t1+0§) Yo X —x — u%|2 + c(os)
scramble .
all dots r%: {dot(m,xm,)} — {imagedot(x; = > Prmixim)}

Es({xi}) = —log[P(P)[]; 6(xi = > ,, Prmixm)]

where P is a permutation
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! 1 3
° ° ° °
[ ] EEE— —_— EEm— E—
instance o o ° ° o ° > ® *,
2 3 2 3
(unordered dots) (permuted dots)

Figure 2: Operation of random dot grammar. The first arrow illustrates dot placement; the next
shows dot jitter; the next arrow shows the pure, unlabelled feature locations; and the final arrow is the
uninformed relabelling scheme of the perceiver.

The generative process specified by this grammar is to start with nothing (the “root” of a parse tree)
and generate one instance of a model chosen randomly from a list of known models. Let the chosen
model number be a. Rule I'V also places the instance on the image plane with a Gaussian distribution
of locations x. Given such an instance, the only applicable rule is I'" which replaces it with a set of dots
whose locations x,, are Gaussian-distributed displacements of ideal locations given by x 4+ uf,. The
final rule is special: its input is the set of all dots generated by the grammar, and it replaces them with
a permuted set or “scrambled” set of image dots at the same set of locations. The permutation is not a
physical operation; it simply relabels the dots from index m to index ¢ by means of a permutation P,,;.
The permutation probability distribution Pr(P) will be specified in the next section. We will show that

it is indistinguishable from the uniform distribution on permutations.

2.2 Final Probability Distribution

The probability distribution associated with a particular rule I'" is
Pr(new terms, {new parameters}|old terms, {old parameters}) = ¢=?Fr /7, (3)

where 8 — 1. Such conditional probabilities can be repeatedly combined in the usual way:
Pr(¢, ) = Pr(z[§)Pr(£) (4)

to yield a final joint probability distribution for the entire grammar. For Grammar 1, we could mul-
tiply to get an expression for Pr(a,x,{Xm}, {xn},{Pn}, {xi}). However we are usually interested in
computing some average in this distribution, i.e. some moment of this function.

To begin with, the delta functions in rules 1 and 4 completely determine %x,, and x,,, respectively,

in terms of the other variables; so these are usually integrated out of any interesting average. That
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leaves Pr(a, x, { Py, ;},{x;}). For this reason Grammar 2 is obtained by combining Grammar 1’s rules 1
and 2 (integrating out x,,) and rules 3 and 4 (leaving in x,,). In Section 2.3 we will show that the P
variables can often be summed out without losing the answer to real problems. As an example, let us
calculate Pr(a,x, {x;}) for this grammar.

Calculating the joint probability distribution is especially easy for this grammar because the gram-
mar rules are not recursive. The grammar just consists of a sequence of three stages corresponding to

rules 0-2. After rule 0,

0 B 1 1 9 —#|X|2
Pr (Oé,X) - Z(\/ﬁa ) € T (5)

where A is the number of models to choose from. The probability after rule 1 is

Pr(a,x, {x,)) = Br'({x) o, )R, x)

1( 1 )2( 1 )2N —(#X'”Qi—thlem—x—u?nl?) (6)
= € " J .

A \2To, V2T

To finish the calculation we must consider Pr(P). This is the probability of a given relabelling from
object-generation indices m to image indices ¢. This part of the grammar models the fact that the
object-generation indices m are generally inaccessable to the perceiver, though if they were known the
perception problem would be nearly solved. One model for P is to feign ignorance of the permutation
and use the maximum entropy distribution on P, namely a uniform distribution. This model seems arti-
ficial because there is no actual uniform-probability scrambling mechanism in natural image-generation
processes.

Alternatively we could model the relabelling process as deterministically sorting the raw dot position
data x,, according to some scalar criterion f(x,,) so that low values of f are indexed by integers ¢ with
low values of some set of weights w; (e.g. w; = ), and high f’s correspond to high w’s. This sorting
is done by whatever part of the perceiver turns images into some representation of low-level symbols.
For example, f could encode the lexicographic ordering of a 2-d array of pixels given by their raster
or scan-line sequence, and the dots would be indexed in that order. Or f could order the 2-d array of
pixels according to the discretization of any space-filling curve. It is important that f does not depend
on quantities like m or a that require perception to deduce. f(x) should also be unique, i.e. fis an

invertable function. Then, Pr(P) is

PI(P) - lim eﬁsort Zmi Pry i f(Xm)w; /ZP (7)

Bsort =00
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and £ contributes

Bsort Z 'Pm,if(Xm)wi
e mzZP Hz (5()(2 — Zm PmJ'Xm)

Sqppe ) = im0 b
{ permutation }
Psort Zl f(zm Pm,ixm)wi
P| P isa Zp
{ permutation }

65sort Zz F(X)w;
{ P| P isa }
permutation

75 [ 6(xi = 32, PoniXim)
—_ 3 Bsort Zz f(xz)wz Bsort Zmz Pm,zf(xm)wz
- hmﬁsort_*OO € / Z{ P| P isa } €

permutation

[ 6(x: = 3,0 PrniXom)-

= dimp, S [T 8% = S Paniin)

= liInﬁsort — 00 Z

XZ P| P isa

{ permutation }

Here the second term enforces the constraint that x; be a permutation of x,,, and in this circumstance
the first term constrains x; to be in order according to f. Thus we may simplify the first term when it

is multiplied by the second:

3 e = 9({xi}) > Hé(xi = > PiXp), (9)
{r} { P| Pisa } ‘ "

permutation

where O({x;})is 1 if {x;} are in order according to f, and zero otherwise. In the first step of this deriva-
tion we have used a crucial property of permutation matrices: that 3} P f(xm) = f(X,, PmiXm)
because exactly one element of {P,, ;lm € {1...N}} is nonzero.

Since O({x;}) does not depend on {x,,}, it will cancel out when we compute conditional probabilities

such as Prfinal(a, x|{x;}) (c.f. equation (13) below.) In other words, the sorting model of Pr(P) is

equivalent to the uniform-distribution model as far as Fy and hence Pr? are concerned.
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So,

os RS AR BN A
Pl x, {x;}) = A (ﬁm) (\/ﬁgﬁ) Z

{ P| P isa }
permutation

1 1
- (ElXP—I—@ Yom |Xm—X—u?“n|2)

/d{xm} H o(x; — Z P ixpm)e

Otx) <¢%a) (é%)”

N — zm@ipm,ixi—x—usnﬁ)
S 7

{ P| P isa }
permutation

(10)

and finally

na. . _ 6({XZ}) 1 ’ 1 "
Prfinel(o x {x;}) = A (ﬁm) (\/ﬂgﬁ)

X Z € it

{ P| P isa }
permutation

The inverse temperature [ just introduced must of course be set to one. But for Bayesian inference

algorithms this may be done by gradually increasing 3 from zero, a procedure called “annealing”, which
often has the effect of avoiding local minima during a computation.

In Section 2.4 we review how the Boltzmann distribution (11) and its derivatives may be approx-
imated by a neural net involving quadratic match neurons related to P, ;. In Section 2.5 we exhibit
a new way to derive even simpler, though sometimes less accurate, neural nets for such problems by
eliminating the P variables.

Equation (11) is representative of most of the grammatical probability distributions we will derive in
one important way: it is a Boltzmann distribution whose objective function is a generalized “assignment”
objective function. The “assignment problem” (Bertsekas and Tsitsiklis, 1989) is to minimize F =
> oa PoaWaqa over permutations P, for constant weights W > 0. A neural net approach to this problem
is analysed in (Kosowsky and Yuille, 1991). In equation (11) the assignment problem objective is

generalized because the weights W are now functions of real-valued parameters, as will generally be the
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case for grammatical probability distributions:

1 1 .
Eﬁnal(avpvx) = ZPm,z (W|X|2 + FQJXZ —X—= um|2) (12)
mi T J

The sum over permutations may be approximated by an optimization over near-permutations, as we

will see, and the fact that P appears only linearly in Fgna makes such optimization problems easier.

2.3 Inference and Decision Problems

We now show how to pose a variety of problems which could arise in situations modeled by the grammer
and whose solution can be expressed as sums over the P configuration space as in the previous section.
A simple recognition problem might involve looking at data {x;} and inferring the most likely model

(o) and its position (x). We must find

Pr(a,x,{xi})

argmax, y Pr(a, x|{x;}) = ATGMAX, x ~Pr 3y (Bayesian inference)
= argmax, xPr(a,x, {x;})
= argmax, x Z Pr(a,x,{ P}, {x:}). (13)
{ P| P isa }
permutation

Note that the combination of equations (13) and (4) perform Bayesian inference: they determine
Pr(model params|data) in terms of forward conditional probabilities including Pr(datajmodel params).
From equation 13, this recognition problem involves computing the function Pr(a,x, {x;}) for which we
must integrate (sum) out the P variables.

Other problems might require the computation of the average (P, ;), which still requires summing
over the P configurations. Indeed most if not all inference problems for the grammar can be formulated
in terms of such sums. A Mean Field Theory approximation to these high-dimensional sums may be
performed by a neural net (Hopfield, 1984; Peterson and Soderberg, 1989; Simic, 1990b; Yuille, 1990;
Simic, 1990a; Tresp, 1991), as we will review in Section 2.4.

An even simpler recognition problem would be to infer the most likely model a from data {x;}
without regard to its position. This is just like the previous problem except we want to integrate out
x. The integral with respect to arbitrary translations x could be done analytically, but corresponding
integrals over 2-d rotation or other Lie group distortions that could be added to the grammar (see

Section 4.1) must be approximated and we could treat translations the same way. In particular, a
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saddle point approximation to the integral over x (involved in the MFT method) requires finding the
most likely value of x but not reporting it as part of the answer.

Here are two more examples of problems posed in terms of the grammar which could be solved by
summing over all P configurations. One might want to find the single configuration of a,x, {x,,}, and
{P,,;} which is most probable given observations {x;}, i.e. the mazimum a posteriori (MAP) estimate

of all these variables. We may compute the total partition function

Z(B A\ v} n)) = T [dx [d{x.)} >
{ P| P isa } (14)

permutation

€xXp [_ﬁEﬁnal + Ao + pn-xX+ Zm Vi - Xy + Zm,i ﬂ-m,iPm,i] .

Then, average values of P and the other variables are derivatives of log Z evaluated at A, p, v, 7 = 0.
As 3 — oo, these averages approach the MAP configuration if it is unique. Note the departure from
[ — 1 which would be used for the other problems discussed in this section. In fact the argmax taken
in equation (13) could also be done by a zero-temperature limit, but that would involve a different 3
parameter than the one used in integrating out P.

A second type of problem involves deciding what to do based on Pr(a,x|{x;}). For example, each
model a might have a known interesting part whose position relative to the object center of mass is ¢®.
The problem is to set the variable y near this location (e.g. to point a telescope), under uncertainty in

the values of a and x. This could be formalized as maximizing the probable reward

— 5o (xt+e—y)?
Fly{xi}) = >, [dxe 7 Pr(a, x|{xi})
1 o 15
x >, [dx Z exp —f3 [Eﬁnal(a,P,X) - ﬁ(x—l_ ¢ —y)? (15)
{ P| P isa } Y
permutation

with respect to y. Again we use Bayesian inference to get Pr(a,x|{x;}), and again a sum over configu-
rations of P is involved. The integral over x may be done analytically or approximately, as previously
discussed.

Thus a wide variety of Bayesian inference and probabilistic decision problems may be reduced
to calculating moments of Pr(a,x,{PF,, ;},{x;}) that involve summing out the P configurations and

integrating or maximizing with respect to the other random variables.
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2.4 Neural Network with Match Variables

We review how configuration-space sums over P (along with other variables) may be approximated by

quadratic match neural nets. For example we may compute Prf(a,x|{x;}) as follows:

1 1
Prf(a,x|{x;}) = C Z exp — mevi 2|x|2 + —|xi —x—ud|?
: 2No: 20%,
{ Plzipm,izl } ma J
/\Zumyi =1

¢y H(sf«'(zpm,i,nf d{vm}Hé imBuy U0
{ P12 Pmi =1 } Z : )
exb = i Vi (gl + gl = x = wi )
T gt

where ¢%(n,m) is the Kronecker delta function on integers and é(z) is the Dirac delta function on real
numbers. Both have Gaussian representations, but we’ll use an integral representation of the Dirac

delta and the Gaussian representation 6% (n,m) = lima_ ., exp —(A/2)(n — m)?. Continuing,

Prf(a,x|{x;}) = C/_-:O d{Vi} Z jgnmexp[ (A/2) Z Zsz — ]
{ PI>  Pmi=1 }

+i00 _ . _p . 1 1
/, AU ipe™ 2oms Vi Vma=Fnd) o —ﬁZVm,z' (2]\7 2‘|X|2+—2 7% — x — up|?

400 +i00
_ . , 24 2
= 0,415%0 d{Vi} d{U,; } exp [ ﬁZVmZ (2]\7 v X[+ 5 2 |xZ x —ul | )]

— 00 —700

A/2 Z Z Vm R 1)2 - Z Um,ivm,i] Z exp Z Umﬂ'Pmﬂ'
m,t { Pl Zi S } m,t
+o0 +i00
= CJim [ d{Vii} [ d{Unitexp s x (UL {V])

— 00 —100

exp

(17)

where
Eoas(ax AULVY) = S Vins (bsz 6P+ i = x = W) o (A4/2) S5, Vi = 17
+(1/5) Z UpiVini — (1/5) Zlog (Z exp Umi) .

m,i

(18)



Bayesian Inference on Grammars by Neural Nets 13

Up to this point the expression is exact; no approximations have been made. Now we approximate both

the U and V integrals by way of the saddle points ({U*},{V*}) of the objective function E.;:

argmaX%XPrf(a, x[{x;}) = argmax, yClima_ . exp—BE.;;(a,x,{U"},{V"}) (19)
= (argmax, limg_ . exp =B L ss(a,x*, {U*},{V*}),x")

where the saddle points satisfy the neural net fixed point equations

(0FEcs¢/OU =0:) Vi, = exp Umﬂ'/ZeXp Un,j

J

1
|x |2+2—2|X¢—X—H%IZ+A(ZVn,¢—1) (20)

n

(OE;1 )0V =02) Uy = —f3 2N 2

(aEeff/axz 0 :) X = (1_|_ U]t/UT ZVMZ Xi — m)

mi

Convergent descent dynamics for such networks may be found in (Hopfield, 1984; Peterson and Soder-
berg, 1989) and many others. The maximization with respect to a can be handled by making one copy
of this neural net for each model and adding a winner-take-all circuit.

The method introduces an asymmetry between m and ¢ indices by imposing the >~; P, ; = 1 con-
straint exactly but imposing the P, ; = 1 constraint only in the limit of infinite A. This asymmetry
may be removed by changing variables before beginning the above calculation: let P, ; = >, Ry 05a
where R and S are two permutation matrices. Summing over P configurations is equivalent to sum-
ming over R and S configurations, for there is a 1-to- N'! correspondance. Then impose the >~ and >,
constraints exactly, as above, or else impose both 3", constraints exactly. Either scheme preserves i-m
symmetry. To finally reduce the products of continuous versions of the discrete R and .5 variables to

linear form, one may use the objective function transformations of (Mjolsness and Garrett, 1990), e.g.:

Z RonaSaiX - W — Z Roatim, (g —Ta)+ Z SuiXi - (04 —wy) + symmetric potential terms. (21)

mat at

The result is a symmetric neural net architecture for the same problem, posessing the same type of Mean
Field Theory derivation from a grammar as the does the previous, asymmetric network for approximately

summing over P configurations.

2.5 Approximate Neural Network without Match Variables

Short of approximating a P configuration sum via Mean Field Theory and neural nets (Section 2.4

above), there is a simpler, cheaper, less accurate approximation that we have used on matching problems
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similar to the model recognition problem (find o and x) for the dot-matching grammar. From equations

(11) and (13),

1 1
Prf(a,x|{xi}) = Z exp — %;Pm,i (2]\703 |X|2 + W|Xi —-X - U%P)

13
{ P| P isa } I
permutation

1 1 i
~ O g exp — E ' P, (2N02|X|2 n o i — % — um|2)
{ PP €{0,1,...N} } mi b 2
/\Zm,iPmyi:
P
C ( N ) [ ( 1, 1 NE
~ > [T [exp - %2+ —|x; —x — u)|
M {P|3 P=N} Pii...Pyn ) oo 2N o2 207

(since almost all the multinomials are = N !)N
= [Zmﬂ exp — (2]\}—g%|x|2 + %?JXZ - X — U%P)]
(22)
The key step is the approximation of the sum over permutation matrices with a sum over a superset,
namely all N x N nonnegative-integer-valued matrices whose entries sum to N. Among such matrices,
the vast majority have low occupancy for most rows and columns. This is an entropy argument in
favor of the approximation. There is also an energy argument: multiple assignments are allowed but

discouraged by the effective energy term (1/20%)3, . [x; — x — u,|* unless two values of x; or two

m,i
values of u,, happen to be within o;; of each other. Finally notice that the insertion of the multinomial
factor improves this approximation rather than further degrading it, since configurations with P,,; > 1,
not present in the original sum over permutation matrices, are weighted less strongly than those in

which every P element is 0 or 1.

Under this approximation,

1 1
argmax,, , Pr(a, x|{x;}) ~ argmax, x Zexp — (2]\702 Ix|? + Fp{i - X— ufn|2) ) (23)
r 7t

m,i

This objective function has a simple interpretation when o, — oo: it minimizes the Euclidean distance

between two Gaussian-blurred images containing the x; dots and a shifted version of the u,, dots
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respectively:

argmin, y [ dz |G x [1(z) — G * I(z — x)[?
= argmin, y [ dz ‘Gg/ﬁ ¥ 0z —xi) =G mxd, 0(z—x— u%)‘2

. 2
= argmin, y [ dz ‘ZZ exp (—U%|Z — xi|2) — >, exp (—U%|Z - X— u%|2)‘ (24)
= argmin, x [Cl —-25 . [dz exp—c%2 [lz — x| + ]z —x — ufn|2]]
— argmax, 5 Sy f dzexp— 2 [l — xif? 4 |z x — 3|2

2
— argma, x Y exp — ks [ — x — u|

Furthermore, note that multiplying the objective in (23) by a temperature factor § = 1/7 simply rescales
0j;. From this fact we conclude that deterministic annealing from 7" = oc down to 7" = 1, which is a good
strategy for finding global maxima in equation (23), corresponds to a coarse-to-fine correlation matching
algorithm: the global shift x is computed by repeated local optimization while gradually decreasing the
Gaussian blurr parameter o down to ;. The output of a coarse-scale optimization is taken as the input
to the next finer-scale optimization, as in deterministic annealing and other continuation methods. The
resulting coarse-to-fine correlation matching algorithm is similar to the scale-space matching procedure
of (Witkin et al., 1987).

The approximation (22) has the effect of eliminating the discrete P,,; variables, rather than replacing
them with continuous versions V,,;. The same can be said for the “elastic net” method (Durbin and
Willshaw, 1987), which is a less aggressive and probably more accurate approximation in which the
sum over all permutation matrices is extended to a sum over all 0/1 matrices with exactly one nonzero
element in each row but any number of nonzero entries in each column (Simic, 1990b; Yuille, 1990).
Again the sum can be performed exactly. The elastic net’s set of allowed matrices are intermediate in
generality between permutation matrices (required in the original problem) and the far larger set of
nonnegative integer matrices whose elements sum to NV, used in our method. Compared to the elastic
net, the present objective function is simpler, more symmetric between rows and columns, has a nicer
interpretation in terms of known algorithms (correlation in scale space), and is expected to be much
less accurate.

A neural net for performing the maximization of (23) with respect to x has been reported in (Mjol-
sness and Garrett, 1990). (As mentioned in Section 2.4, the maximization with respect to a can be

handled by making one copy of this neural net for each model and adding a winner-take-all circuit.) o,
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was infinite. The equations of motion were

x = (1/0%) X, Tim(Xi — 0y — X)
Oim = —wim — (1/20%)3°. |xi — u,, — x)? (25)
Tim = €XPWim-

A continuation from large o down to o;; was used, and it greatly reduced the network’s susceptibility
to finding incorrect local minima of the objective fuction.

Similar networks can be derived if the grammar includes other distortions such as dot deletion or a
global rotation (see Section 4).

The networks of both this and the previous section superficially have space complexity (cost) pro-
portional to NM where ¢ € {1...N}and m € {1...M}. It may be possible to reduce one of these cost

factors, perhaps to a logarithmic term, by using more complicated architectures and approximations.
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3 EXPERIMENTS IN IMAGE REGISTRATION

To demonstrate the robustness of the objective function derived in the last section, we tested it outside
its formal domain of validity. This kind of robustness is often required of vision algorithms, since their
(possibly implicit) mathematical models of the visual problem domain are hardly ever complete. Our
grammatical models are intended to make it easier to model heterogeneous noise sources in a complex
domain, but robustness would allow the grammars to remain small by modelling just the most important
visual phenomena.

Equation (23) is an objective function for recovering the global two-dimensional (2D) translation of
a model consisting of arbitrarily placed dots, to match up with similar dots with jittered positions. We
use it instead to find the best 2D rotation and horizontal translation, for two images which actually
differ by a horizontal 3D translation with roughly constant camera orientation. The images consist of
line segments rather than single dots, some of which are missing or extra data. In addition, there are
strong boundary effects due to parts of the scene being translated outside the camera’s field of view.
The jitter is replaced by whatever positional inaccuracies come from an actual camera producing an
128 x 128 image (Williams and Hanson, 1988) which is then processed by a high quality line-segment
finding algorithm (Burns, 1986). Better results would be expected of objective functions derived from
grammars which explicitly model more of these noise processes, such as the grammars studied in Section
4.

Since the data to be matched are not dots but line segments, one could alter the grammar and
rederive the various objective functions including (23). However one could also consider a line segment
to be a dense set of dots (admittedly not jittered randomly) and replace the sum over dot pairs in
(23) with a sum over line segment pairs, each of which is an integral over dot pairs. For line-line
or line-dot matches the integrals can be done exactly (lines are unbounded in both directions). For

segment-segment (or segment-dot) matches the integrals can be approximated. First note that

. 1 if t>0
o) = { 0 otherwise (26)
< 1(c;—1t)?

where by numerical minimization of the Euclidean distance between these two functions of ¢, the pa-
rameters may be chosen as A1 = Az = 0.800673, Ay = 1.09862, 04 = o3 = 0.0929032, 05 = 0.237033,

c1 = 1 —c¢3 = 0.116807, and ¢z = 0.5. Using this approximation, the objective function becomes a
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double integral along the two line segments:

[ ey oo - oo - vy

+oo  ptoo 1(¢; — t)2 1 (C], _ u)z 1(q+tr— us)2
z;AiAj/_oo /_Oo eXp—§TQ eXp_507]2 eXP—§Tdtdu, (28)

Each of these nine Gaussian integrals can be done exactly. Defining
Vij =4+ & — ¢S (29)

we have a term of the form

2

23: oA 2rwio;o; 1 szw2 + (vij x v)?0f + (vij ¥ 5)2‘7]2‘
JA exp ——
ij=1 ' \/(w2 +riof)(w? 4 s20?) — ofoi(r - s)? 2 (w? + r’of)(w® + s*07) — ofoi(r - 5)?
(30)
added to the objective for each pair of line segments, as was calculated by Charles Garrett (Garrett,
1990).

We experimented with minimizing this objective function with respect to unknown global transla-
tions and (sometimes) rotations, using the continuation method and sets of line segments derived from
real images. The optimization method used at each scale o was (a) for recovering translation alone, the
Conjugate Gradient method with line search; and (b) for recovering translation and rotation, coordinate
relaxation by repeated line searches along the z,y, and @ directions, cyclically. The results are shown

in Figures 3, 4 and 5.
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Figure 3: A simple image registration problem. (a) Stair image.(b) Long line segments derived from stair
image. (¢) Two unregistered line segment images derived from two images taken from two horizontally
translated viewpoints in three dimensions. The images are a pair of successive frames in an image
sequence. (d) Registered viersions of same data: superposed long line segments extracted from two
stair images (taken from viewpoints differing by a small horizontal translation in three dimensions) that
have been optimally registered in two dimensions.
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Figure 4: Continuation method (deterministic annealing). (a) Objective function at o = .0863. (b)
Objective function at o = .300. (c) Objective function at ¢ = .105. (d) Objective function at o = .0364.
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Figure 5: Image sequence displacement recovery. Frame 2 is matched to frames 3-8 in the stair image
sequence. Horizontal displacements are recovered. Other starting frames yield similar results except
for frame 1, which was much worse. (a) Horizontal displacement recovered, assuming no 2-d rotation.
Recovered dispacement as a function of frame number is monotonic. (b) Horizontal displacement recov-
ered, along with 2-d rotation which is found to be small except for the final frame. Displacements are in
qualitative agreement with (a), more so for small displacements. (c¢) Objective function before and after
displacement is recovered (upper and lower curves) without rotation. Note gradual decrease in AF with
frame number (and hence with displacement). (d) Objective function before and after displacement is
recovered (upper and lower curves) with rotation.
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4 MORE GRAMMARS

To illustrate the generality of the grammatical method for posing vision problems in a form from which
neural networks can be derived, we exhibit several grammars of increasing complexity. In Section 4.1
we add rotation and dot deletion as new sources of noise for the random-dot grammar considered in
Section 2. Section 4.2 introduces a two-level hierarchy, in which models are sets of clusters of dots.
Section 4.3 introduces a grammar for multiple curves in a single image, each of which is represented in
the image as a set of dots that may be hard to group into their original curves. This grammar illustrates
how flexible objects can be handled in our formalism.

We approach a modest plateau of generality with the grammar of Section 4.4 which again describes
hierarchical dot patterns but adds multiple objects in a single scene. This degree of complexity is
sufficient to introduce many interesting questions of knowledge representation in high-level vision, such
as multiple instances of a model in a scene, as well as requiring segmentation and grouping as part of the
recognition process. We prove that the grammatical approach can yield neural networks nearly identical
to the “Frameville” neural networks we have previously studied as a means of mixing simple Artificial
Intelligence frame systems (or semantic networks) with optimization-based neural networks. What
is more, the transformation leading to Frameville is very natural. It simply pushes the permutation
matrix as far back into the grammar as possible. This transformation should perhaps be done as a
matter of course if one is looking for a modular decomposition of a large vision problem into smaller,

more homogeneous pieces to which special methods such as scale-space correlation are most likely to

apply.

4.1 A Grammar with 2-D Rotation and Dot Deletion

We can easily add two-dimensional rotations to the previous grammar (and similarly, other parameter-
ized group distortions as well). The grammar, which also adds a dot deletion rule which changes the

constraints on Fj,,, is shown below.
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model

locations ro: root — instance of model «a at x
o) = phlxP
rotated, 1
jittered dot rt: instance(or,x) —  {predot(a, m,x)}
locations Fi({x.}) = # > Ixm —x—R(#) -u%|?,  where <u?, >p,=0
dot 9 ]dot(m,xm) if wy, =1; (31)

deletion = predot(a, m, xm)  — { nothing if wy =0.

E2(Wm) =  HmWm
s;ﬁagit;lse rs: {dot(m,x,,)} — {imagedot(x; =) PmiXm)}

Es({x:}) = —log[]é(xi=>_ Pumixm)
where Y. Ppi=wm A > Pni=1

The corresponding probability distribution is

9 2N
Prf(a,{xi}) = %( Q;Ur) (\/%Uﬁ) Z
{ Pl > Pmi <1 }

andz Pni=1

_Zmi Pm,i( No 2|X|2 2 lxi—x-R(6 )u(rln|2+MM)
€ .

]t

(32)

This is closely related to the objective function recommended for rigid body feature matching in (Yuille,
1990).
Asin Section 2.4 one may approximate the maximization of the integrated probability Pr?(a, x, 8]{x;})

with respect to «, x, and 6 via a neural net objective function

Eopslax 0 ULV = S Vins (b sl == RO) i) 4+ (4/2) (5 Vo = 1

+(1/5) Z UpiVini — (1/3) Zlog (Z exp Umi).

(33)
Alternatively, as in Section 2.5 one could use an objective function without match variables:
FEeppla,x,0) Zexp ! x| + ! |x; — x — R(6) - u® |? (34)
os 11 2N o2 202, ml )
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4.2 A Two-Level Random Dot Grammar

24

A fundamental capability gained by using a grammar is the ability to describe complex objects and

scenes. As a first step in this direction, consider an object with a hierarchical decomposition into parts,

with internal degrees of freedom describing the relative positions of the parts. For random dot features,

the resulting images will generally be clusters of dots with unpredictable jitter of both the dot and the

cluster positions. A careful model of such an object is given by this grammar:

lor(Izlz;)tCilSLS ro: root — instance of model «a at x
Eo(x) = glx”
l(f(lzziit(f;s rt: instance(ar,x) — {clusterloc(er, ¢, x, = x + u?)}
Ei({x.}) = —log]].0(x. —x—uf), where <uf>.=0
leiliiteir %:  clusterloc(a, c,x.) — cluster(a,c,x,)
Fay(x:) = ﬁb{c—f{cp
dot 3 A o
locations r: cluster(er, ¢, x.) — {dotloc(a, ¢, m, Xem = X +ul,,)}
Es({xcm}) = —logll,, 6(Xem —x—ul), where <ul, 6 >,,=0
jicl(t)Zr I*: dotloc(a, e, m, Xem) —  dot(c, m, Xem)
E4(§<cm) = ﬁb‘cm - &cm|2
s;ﬁagit;lse I’ {dot(e,m,xcpm)} — {imagedot(x; =", Pem,iXem)}
Es({xi}) = —logPr(P)[6(xi = PemiXem)
where ). P:,“' =1 /fmzm Ppi=1

which is equivalent, by integrating out x.

and X, to a simpler grammar:

lor(Izlz:)tCil(is ro: root — instance of model «a at x
Bolx) = gl
jittleorsjticsizter rt: instance(or,x) —  {cluster(e, e, x.)}
Ei({x.}) = ﬁ S, |xe —x—u?]?, where <u®>,=0
jilt(gi;et?oist r%:  cluster(e,c,x.) — {dot(c,m,xcm)}
Ey({xem}) = ﬁ S [ Xem —xc —u® |*,  where <u?, >,=0
s;ﬁagit;lse 3: {dot(c,m,%xcm)} — {imagedot(x; = Y em Pem,iXem)}
Ey({xi}) = —log[[o(xi =D Pemixem)
where ZZZ P c:ml N Y Pri=1
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1 1,1 1,2 1’1 1’2
[ I ] o © o ©
) 13 o ¢ 14 13 o4 14 °e
° > > - >
instance o *. ° 0. ° . °
[} ° [ ] °
2 3 ¢ ° ¢ . . .
2% 3*
(unordered dots)

Figure 6: Operation of two-level random dot grammar. The first arrow illustrates cluster placement
and cluster jitter; the next shows dot placement; the next shows dot jitter; and the final arrow is the
scrambling or relabelling operation.

The corresponding probability distribution is:

, 9 2N
Pré(a,x, {x.}, {x;}) = %<\/%UT) (\/%Ucd) O(\/Q_%Uﬂ) P|§:isa }

permutation

(37)

1 c 1
= i Pem i (21\702 X+ 5 [Xe—x—ug P+ 25 |xi—xc—u§m|2)
e r cd Jt

where C' is the number of clusters and N/C is the number of dots in each cluster. As in Section 2.4

one may approximate the maximization of the integrated probability Prf(a,x, {x.}|{x;}) with respect

to a, x and x. via a neural net objective function

1 (e}
Fogplon {x}. (U} (V) = Zyvcm,i( )Pt —C ey

— 2No? QNUZd F]Zt
—I_(A/Q) Z(Z ch,i - 1)2 + (1/ﬁ) Z Ucm,ivcm,i

7

—(1/8) Zlog (Z exp Ucm,i) .

T u?mIZ)

cm,t
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Alternatively, as in Section 2.5 one could use an objective function without match variables:

1
2No?

Intermediate designs result from changing variables by separately considering the cluster and the

Peni = PLP2,

ctt mi

C

x|* + .
2No?,

)= exp-

cmi

1
Eepp(a,x, {x.} —x—ull’ + 5g7 IXi — Xe — u?mIQ)- (39)
0%

member to which a data item is assigned: Then P! could be turned into analog match

variables and P? could be approximately integrated out, assuming that o, is small with respect to the

[}

& within a cluster, and supposing that o.4 is not small with respect

variance of model dot locations u

[}

to the variance of cluster locations u?.

4.3 Multiple Curves

This problem involves perceptual organization: one must extract multiple curves from a random-dot
pattern. The grammar generates such a pattern by sequentially generating a number of curves that
start with random locations and directions. Then, for each curve, the grammar sequentially generates
new dot locations and curve directions according to a Markov process which favors continuity. The
final picture consists of all the dots generated. This grammar is “tail-recursive”, that is, a rule in the

grammar can replace a term by just one term of the same type.

erl,il;eriiz ro: root — curveset(0)
Ey = 0 No alternatives = certainty.
extend . curveset(c) — {cur\./eset(c + 1), curve(c+1,s = 1,x,0)} ¥f we =1;
curve set nothing if w. =0.
Bix) = pnt gl
extend curve 9 {curve(e,s + 1,x',60"),dot(c, s, x,6)} if we, =1;
by one dot %2 curve(e,s,x,0) — { dot(e, s,x,0)} if w,, =0.
FEa(x,0,%",0") = wvwes+ea(x—x",0—0"), where
e2(Ax,Af) = 5= (arctan (i“) AH) + 525 (JAx]? - 12)2 + (A0)?
8 T en
s;ﬁag(l)‘t;ie 3: {dot(e,s,x.5)} — {imagedot(x; = Y oes PesjiXes)}
Es({x;}) = —log > PY[]6(xi = Pesixes)
P| Zz Pcs,i = A g s
and >, Pesi=1

This grammar may be compared to the somewhat different curve grammars of (Milios, 1989).

In (Mjolsness et al., 1991a) we show that this grammar has the joint probability distribution

PI‘(XZ', 02', Pcs,iv C? (ch c= 17 X

C)IN) =

(1

Z

(4

) [M]C [%]Nexm—w({fﬂ},{xz»},{ei}» (41)
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Table 1: Syntactical Constraints for Multiple Curves

Syntactical Constraints Expressions

Total number of curves= C | C =N — 3%, Z] 1 nexty;

No-loop constraint 25\71 next;;mbr; = mbr; — 1

Start-element constraint ZstartC] =1- Z —; nexty;

FEnd-element constraint Zé\le next;; <1

Presence-absence constraint | {next;;}, {start,;} € {0,1} and
{mbr;} € {1,..,N}

where Z; and Z, are normalization constants and

N N N C S.—1
E({P}, {x},{6:}) = (Z Pe, ) Ey(xi)+> > (Z > PCS,Z»PC(HI)J) Ey(x;—x;,0:,0;—0;) (42)

=1 \c=1 i=1j=1 \c=1 s=1

The notation is as follows: ¢ = 1,..,(C is the curve index, s = 1,..,5. is the dot index along a curve,
S. is the number of dots in curve ¢. The image dot locations and orientations are {x;} and {6;}. Also
¢ = exp(p), g2 = exp(v), C is the number of curves, P ; is the permutation matrix introduced in Rule
3 of the grammar and N is the number of perceived image dots. The distribution function contains the
free parameter 3 corresponding to the inverse of a temperature. 8 may by varied in a deterministic
annealing process.

The energy function in equation (42) can be further simplified by a suitable change of variables.

Consider the following transformations.

C Sc—1 C S
next;; = Z Z Pcs,iPc(s-H),ja starty; = ey, mbr; = ZZSPCSvi (43)
c=1 s=1 c=1s=1

The choice of the new variables is not arbitrary. {next;;} tracks the membership of the data elements i
and j in the same curve with the constraint that j follows ¢ as the next member in the chain. {start.;}
turns on, i.e. start,; = 1, if i is the starting element of curve ¢. {mbr;} reindexes the data element ¢ in
terms of its membership number (mbr) in a curve. The membership number of the starting element in
any curve ¢ is one and for the last element in the chain, it is 5,.

The constraints needed to adequately characterize the problem undergo a transformation as well.

They are given in Table 1.
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In terms of the new variables, the joint probability distribution becomes

1 N N

Pr({6;}, {mexti; }, {starte;}, {mbri}|{x;}, N) = — Jexp | ¢ N — >3 Tnextyj ¢ log G — BE({next;}, {xi}, {6:})
i=1 j=1
where G = %;—3;1 and
0
N N N N
E({nextij}, {Xi}, {02}) = Z 1 - Znextﬁ El(Xi) + ZZHGX’EZ’]‘EQ(X]‘ - x;,0;, 0]‘ — 02) (44)
=1 7=1 i=175=1

This objective function may be transformed to a neural network as in Section 2.4, resulting in a
network analogous the the Traveling Salesman network of (Hopfield and Tank, 1985) which, because of
the change of variables, has the advantage that a curve can change “phase” (s-numbering as specified
by {mbr}) gradually and locally as the network runs, without changing the curve’s connectedness (as

specified by {next}).

4.4 Frameville from a Grammar

Most neural net architectures appear inadequate for high-level vision problems because they lack the
ability to express, much less use or learn, sufficiently abstract knowledge: knowledge of parameterized
classes of shape, or of geometric relationships between objects, or of similarity in topology, shape or
function. Just as “perceptrons” were originally intended to be minimal models of percepts, related by
parameterized interconnections, one might try to invent a more abstract computational unit to model
small concepts. Such a “conceptron” could only result from the combined action of many perceptrons
or artificial neurons, and in this way would be a collective, large-scale phenomenon in a neural network.
A conceptron would more readily map to the intuitive idea of the “concept” of an object if it: (a) could
be instantiated many times in one scene or computation, with different parameters such as position
and internal degrees of freedom; (b) could collect feedback from such dynamically allocated instances
for use in learning; (c) could express the expected or allowed range of variation from a prototype
model; (d) could enter into part-whole hierarchies with other conceptrons; (e) could enter into geometric
relationships with other conceptrons; (f) could enter into generalization and specialization relationships
with other conceptrons; and so forth.

The goal of the “Frameville” type of neural network architecture (Mjolsness et al., 1989; Anandan
et al., 1989) is to satisfy such constraints in much the way they can be satisfied within a frame system

as used in Artificial Intelligence programming (Fahlman, 1979), while exhibiting a neural substrate
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or implementation which provides the kind of inexact matching abilities that objective-function based
neural nets are capable of. The Frameville objective function was based on inexact graph-matching

applied to a part-whole relationship denoted INA,g € {0,1}:

E= ZZINAaginaiijMﬁjHaﬁ(Fi, F,) (45)

ofB ij
subject to constraints including

Yo INAGsMy; = Y sinaiiMg;  (a)

Zﬁ INAagMg]‘ = ZZ inaijMozi (b) (46)

(See figure 7.) Here o or 3 index the “frame”, which could also be called the “object model”, “prototype
object”, or “conceptron”, and 7 or j index an instance tied to o through M,; € [0,1]. INA,g is assumed
to be a tree in this paper (so ), INA,3 < 1) but may be a directed graph in general Frameville. F; are
the parameters of the instance, and H*? is a distance or parameter-fit function specific to the part-whole
relationship INA,g3.

A typical use of F;, F; and H%% would be for F to hold environment-centered coordinates of
the object ¢ and of its part j, along with deduced object-centered coordinates such as translations
and orientation angles of each part, and for H to perform coordinate transformations to deduce such
coordinates and to check consistency between the deduced and expected object-centered coordinates of
an object’s parts. In this and a number of other important respects, the Frameville networks resemble
the TRAFFIC system of (Zemel, 1989). Other networks are related to Frameville by virtue of the
use of graph-matching or arrays of match neurons for visual object recognition (von der Malsburg
and Bienenstock, 1986; von der Malsburg, 1988; Cooper, 1989; Feldman et al., 1988; Bienenstock and
Doursat, 1991) or using objective functions for high-level knowledge representation (Derthick, 1988;
Stolcke, 1989).

4.4.1 The Grammar

It can now be shown that the Frameville objective function and syntax constraints, as outlined above,
can be derived from a random-dot grammar with multiple instances of two-level objects. We use multiple
index notation § < (a,sg) (i.e. model § may occupy the sy’th “slot” of model o, if INA,3 = 1 = INA, 5,)
and v < (a, sg,s3) (i.e. model ¥ may occupy the s3’th slot of model (asy), if INAg, = 1 = INA,,, s, ).

The multiple-instance grammar is shown below.
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Instancei
Model o
M o
plane O o| F;
./ O
INA ina
Wing\ C Fj
Model B M .
Instance |

0
(o)

Figure 7: Frameville neural network. (a) The objective function, ' = 37,55, INAgina;; M.; Mpg;

x H*P(F;,F;). Circles are neurons, ovals are models (or frames) and triangles are model (frame)
instances containing analog parameters (internal circles). (b) The constraints, >, INA,gM,; =
Z]‘ ina;; Mg; and Zﬁ INA,gMg; = 3 ;ina;;M,;. Since INA,g is a tree, the two constraint diagrams
are not symmetric.
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N;l&l:cl;)swn re: root — {object(a)la € {l,...N}}
Eo(X) = 0
Ziségi;lfiil: It object(a) — instance(a, a,x,4)
to objects Fi(a,xq) = %|xa|2
Jlttleorsjticsizter re: instance(a, o, x,) — {cluster(a, a, s9,%Xas,)|[INAG 5, = 1}
EZ({Xa82}) = # 252 INA&,Sz |Xa82 — Xg — U?Q |2
cd
= 252 INAQ752H(QS2)(XG’XGS2)
Jittered dot 3
locations re: cluster(a, o, 9, Xqs,) — {predot(a, s2, 53, Xas,s, )| INAas, 55 = 1}
E3({Xa5283}) = 20% 283 INAQS2,53|XGS283 — Xasy — u?gSg 2
= Zsa INAQS2,53H(QS253)(XaszaXaszsa)
dot 4. dot(a, &, $2, 53, Xgs,s,) if Waas,ss = 15
delotion I'*: predot(a, o, s2, 53, Xasyss) — { nothing o 20
E4(Waoz5253) = INAQ,SQINAQSQ,Sgﬂa5253 Za(l - Caozwaoz5253)
scramble 5 {imagedot(x; = Zaa5253 Prosyss,iXassss ) |wr = 1}
all dots, [P {dot(a, @, 5258, Xasss )} — U{imagedot(xy)|wr = 0}
and add
noise dots E5({Xk}) = _log [ H 6(Xk - Z Paastg,anasta)
klwr=1 aassss
- log 6(22 Wk — Zaa5253 Aaa5253)
+plextra Zl(l - Wk)
where Zz Paoz5253,k = Aaoz5253 and Zaa5253 Paoz5253,k = Wk
(#7)
We have introduced the “aliveness variables” A" € {0,1}:
Aaa5253 = CaOzINAOz,SQINAOzSQ,SgwaOzSQSg (48)

which is required in the expression for Es. Here C,, records the choice of model made in rule I'' by
object(a); thus 3~ Cuo = O(a — 1)O(N —a) and 3°,, Con = 1. Ayqns,s, records which combinations of
indices survive the whole grammar to account for some data dot.

In this grammar, I'° is the essential new ingredient. I'! and the “noise” dots of I'® are just extra
types of noise that can be handled. The following restrictions on Frameville apply for this grammar:
INA is a tree; ISA is absent; sibling relationships (hence graph-matching on these relationships) are
absent. Also it will turn out that the instance indices k and j are preassigned to either level 3, 2, or 1
of a hierarchy (corresponding to models indexed by «, § and 7 respectively) which is not true of the

original Frameville objective (45); this however is a much less substantive restriction.
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Figure 8: Change of variables, and the corresponding change in objective function, from global permu-
tation variables P to local correspondance variables M and grouping variables ina. Note that analog
parameters move from the models (where they must be present in multiple copies) to the instances.
Left of arrow: objective of equation (50). Right of arrow: objective of equation (45) or (92).

One useful moment of the joint model-image probability distribution is

Prf({xaoz}v{XaMz}v{Caa}HXk}) = %Z{ P| Y, P, <1 A D P, k<1}
awsg §3,K = asg 83 — AQS283 K —

A Paa5253,k = P(IOZ5253JCC(IOZINAOZ,SQINAOZ52753
exp —BE({Xaa}s {Xaasy }> 1Caafy {Xk})

(49)
where {3 is the inverse temperature (to be taken to 1) and
E( : ) = Z Z Paa5253,k [Ha5253 (Xaa527xk) — Mextra — Ha5253]
ek as roota (50)
+ Z CaozH 2(Xaoz7 Xaoz52) + Z CaozH (Xaoz)-
aosy ao

This objective is illustrated in figure 8(a).

4.4.2 Changing Variables

To get the Frameville objective and constraints, we must reparameterize Pt/ and E by changing variables.

Generally we do this by pushing the permutations, P, farther back into the grammar. A computational
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advantage is that P’s replacements will have fewer indices and hence be less costly. To begin with,
for a data item indexed by k we could separately specify its correspondance to s3 and to (a,a,sz).
Unfortunately F needs to know more than sz in order to apply the correct H term, so we instead

consistently specify «, s9, s3 and «a, a, s9 for each k:

Paa5253,k = Moz5253,kinaaoz52,k (51)

where

Moz5253,k = Z Paa5253,k and inaaa@,k = Z Paa5253,k- (52)
a

53

The constraints on P are consistently translated into new constraints on M and ina by Lemma 1.

Lemma 1. The following two conjunctions (@ — e and a’ — ¢') are equivalent for 0/1 variables P,

M, and ina:

(a) Mosysa .k = 2oq Pacsysa k (a") Pacsyssk = Maosyon £iNGags, k

() A iNGaassk = Do, Pacissse (V) AN Yy Masysok = g iNlacisy i

(¢) N Xp Pacspss e <1 () AN Sp Masyss kinGans, x < 1

(d) N Paasyss Paasysak <1 (d) N Xasyss Masyssp <1 (53)

(e) A D aorss iﬁaaas,bk <1

(6) A Paa5253,k = Paoz5253,kcaaINAa,SQINAaSQ,sg (f/) A iﬁaaa@,k = iﬁaaOZSQ,kCaOZINAa,SQ

(gl) A Moz5253,k = Ma5253,kINAa52753

L. Puasysak = (Paasyssi)? (since P € {0,1}) < (X, Paasyso ik (s, Pacsssak) = Masysy kinaas, k
(by (a,b)).

2. Yasy Paasssa ke < Paasysy Pacsyss ke <1 (by (d)).

3. Lase Mossss kiNaasy b = Sy Loars, Parasss b Pacsysy i (DY (€,8)) = (Zasy Pacsyss k)
= Y ass Pacsysa ke (bY (2)).
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4 Y wsnssh [ Pacsyss b — Masyss kinacsy k] = Y ausysok(Masyss kintas, k — Paasyss k) (by (1)) =0
(by (3)).

Thus Pagsyss k = Masyss kiMacsy k-
(V) gy Masyss b = Sasy Paasyss b (bY (a)) = Tg intaas, & (by (b))
(¢) 2 Tk Masy 5, ki00acsy k = 2o Pacsyss e (by (¢/)) <1 (by (c)).
(d') 2 Yasyss Masysg bk = Daasysy Lacsysa ke (by (@) <1 (by (d)).
(¢): Laas, MMlanss b = Laasysy Pacsass b (by (0)) <1 (by (d)).

() ingas, b = Xy Pacsysa b (BY (0)) = CaalNAq s, 35, INAws, 5 Paisyss ke (BY (€))
= (Caa) (INA 5,)2 35, INAvrs, 50 Pacisyso b = CaadNAa sy 3o, Pacsyso e (by (€)) = CaalNAg sy inans, b
(by (b)).

(') : Masysa ko = 2 Paasysak (by (8)) = INAns, 50 >0 Paassyss ke (bY (€)) = Mas, s, kINAGs, 50 (bY (D).

“<:

(@) 2 Yo Pacsysa ke = Masyss ke Xa taasy ke (DY (') = Masyo 5(3gr Mgyt i) (by (V) = Masys
(since Yy Myg,e 1 < 1 by (d)).

(0) + Yu, Pacispsa sk = iMaasy i 35 Masyss sk (BY (0))) = inaas, k Y gr iNgras, k (by (V) = intags, k
(by ().
)t Yk Pacsasak = 2ok Masyss kiNaas, 1 (by (') < 1 (by ().
d) Y gasnss Pacsasok = Lasy(Dsy Masyse b )(Da ibaas, k) (by (a)) = Fop (g, Masyse k)? (by
= D asess Masyse i (by (d)) <1 (by (d')).
€) t Pavsysy e = Mosysy kiNaas, k (by (0/) = Masye, 1INAGs, 6, 10000s, kCaaINAG s, (by (f',9))

= Paoz5253,kcaaINAa,SQINAaSQ,Sg (by (a/))'
QED.

This change of variables is one-to-one, so F could simply be rewritten in terms of M and ina. But
we can do better. ina has many similarities to P with one index removed, so one could try to change
variables again to remove another index. This doesn’t quite work because iﬁaaas,bk relates coarse-scale
models to fine-scale data and therefore the constraints on ina are tighter than the constraints on P. So

before attempting a hierarchical induction step, we factor ina into a grouping term na;j that constructs
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a data hierarchy, and a coarse-scale matching matrix Pyqs, ;:

iﬁaaa@,k = Z inajkPaOZSQ g (54)
J

The resulting change of variables is illustrated in figure 8. When augmented by the constraints stated in
Lemma 2 below, this change of variables has the effect of pushing the P matrix back one level into the
grammar, leaving behind Frameville variables M and ina at the bottom level (the finest scale). This
entire process can be repeated inductively, as we will see.

To state the new constraints it is necessary to account for the redundancy inherent in the assignment
of j indices to groupings of data indexed by k (i.e. the freedom to permute j in ina;;). To this end,
we will define a fixed mapping R,qs, ; (consistent with C,,) from possible copies of high level models
(i.e. tuples (a,a,s3)) to high level frame instances (j), then permute the j’s with a matrix @ in order
to get P,us, k. For example R could be chosen as follows. The number of nonzero Cy,INA,;, entries is
Zaasz) CaoINA,,. Lexicographically order these, and let Ryq,,; =1 <= j indexes (aas;), for which
CuaINA,ys, = 1; otherwise R = 0. Then

(Tl) Z] RaozSQ,j = CaaINAoz,SQ

(TQ) Z(IOZSQ RaozSQ,j < 1 (55)
(TS) RaozSQ,j = RaozSQ,jCaaINAa,SQ-

Note that (r3) can actually be refined as follows: due to the lexicographical ordering of (aasz) by

R, mapping such tuples to index j, we have

1 if1<j<a®(C,INA)
0 otherwise (56)
O(j — DO(n(C, INA) - j)

ZG,OZSQ RaozSQ,j =

where as before @(z) = 1if z > 0 and ©(z) = 0if = < 0. Also n(?)(C, INA) is the number of allowed

tuples, namely

n(CINA) = 3 Ruasyj = Y. CuadNAyy,. (57)

acs2j ansy

For this function R(C, INA) we can now prove



Bayesian Inference on Grammars by Neural Nets 36

Lemma 2. There is a 0/1-valued function R,qs, ;(CaalNA, s, ) for which the following two conjunc-

tions (¢ — g and @’ — h') are equivalent for 0/1 variables ina, Q, P, ina, and M:

(a) Poosyj = 2 Rawsy i1 @it (a') Mgy k = 25 10k Poas,

(b) AN @ is an embedded permutation, i.e. : (b >ojinajy <1

(1) N Q5 <1
(b2) A Z]’ Q]'] = ZG,OZSQ Ra01527j(§ 1)
(b3) A Z]’] Q]’] = Zaas2 CaaINAa,SQ

(C) A 7’na]k = ZGOZSQ inaaaSQ,kPaaSQ,j (Cl) A Zna]k = 7’na]k Z(IOZSQ Pa0527j

() A Y, Pavsyj = CaalNAos,

(d) A ZGOZSQ iﬁaaasmk S 1 (6/) A Z(IOZSQ PaozSQ,j S 1

(6) A iﬁaaa@,k = iﬁaaOZSQ,kCaOZINAOZSQ (f/) A PaozSQ,j = PaozSQ,jCaaINAozSQ

(f) A Zk Ma5253,ki7%aaa52,k S 1 (gl) A Zk Moz5253,k Z] inajkPaaSQ,j S 1
(g) A Za iﬁaaasmk = 253 Ma52537k (h/) A Zj inajk Za Paa52,j = 253 Ma52537k

(58)
Proof: Suppose (a — e <= a — f'). Then (f — g) and (¢ — h') are the same pair of addi-
tional constraints expressed in terms of ina and (P,ina), respectively, using a’. So it suffices to prove

(a—e <= d - f).

=

(d') 2325 Pacisyj = 2ot Raasy,r 225 @ (by (@) = 3250 Rasy,j Datarsy, Rararsy jr (BY (02)) = 3250 Ragisy g
(by (rg)) = CoaINAy s, (by (r1)).

(€') : Yaasy Pacssi = 2jr Yacsy Raasyir@ijr (by (@) < 325 @y (by (r2)) < 1 (by (by)).

(a') 2 325 inaje Paasy j = 325 Yarars, nagrargy kPararst i1 Pacsy.jr (DY (€))
= 35 Ywrarst, Ngrarst kaarbaarbsyst Pacsyi (DY (€)) = intaas, kCaalNAa,s, (by (d')) = indaas, x (by
(€))-

(0) 2 325 ik = Fonsy Maciss k(X5 Paciss.j) (DY (€)) < T, iMaass i (by (d)) <1 (by (d)).

(f') : Pacisyj = 20 Raasy,j7@ijr (by () = CaaINAg 5, 375 Raas, i1 Qjjr (BY (73)) = Paasy jCaalNAa,s,
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(by (a)).
(Cl) : 7’na]k Z(IOZSQ acsz,j Z(IOZSQ Z 'als) 7:Tzaaloﬂsl kPa/oz'S' jPa01527j (by (C))

= Z(IOZSQ Za’a’sé ina lalsh, kéaa/éaa'65252 aasy,j (by ( )) = ’L'na]‘7k (by (C))
<: We exhibited R(C', INA) obeying (71) — (r3). Define

Qis = D PaassjRacsy - (59)
4G9
a) : 3 Raasy, ' @jjr = Yarars) Lararsy i 2t Ratarsy jrBacsy,jr (bY (59)) = Paasy,j 250 Raasy (DY
= Paasy,jCaalNAays, (by (1)) = Faas,.j (by (f)).
b1) Z Q]]/ = ZaOzSQ PaaSQ,j Z]‘/ RaaSQ,j' (by (59)) = ZaaSQ PaOzS27jCaOZINAOZ,S2 (by (7‘1))
aorsy Paasy i (by () <1 (by (€')).
ba) 305 Qi = PYawsy (325 Lacss,j) Raasy i (BY (59)) = Yaas, Raass,j/CaalNAa s, (by (d))
acesy Raasy i (by (r3)) <1 (by (r2)).
(b3) + X5 Qijr = Laasy (X Paass i) (g Raasyjr) (BY (59)) = Yons, (CaalNAa 5,)? (by (r1,d"))
=Y aasy CaalNAG s,
(€) t Yuasy 1Nlacisy k Pacssj = 321 NGk Y quvsy Pacsy,jPacss,yr (Y (@) = 50 inajie Y aus, Pacsy.ibjsr
(by (d') = ina;1 Y g5, Paasyj = inaji (by (d')).
(d) : Caas, Nasy b = 225 103K Y g0, Pacssj (by (@) = X inagy, (by () < 1 (by (b)).
(e): iﬁaaas,bk =2 ik Pags, j (by (@) = CaadNAg 5, 37, 10k Pags, 5 (by (f'))
= Ngnsy kCaaINAy s, -
QED

(
(72))

(
)
(
)

Of the constraints (58a’ — f’), most can be regarded as constraining the variables M and ina rather
than P,,s, ;. That is not true for d’ — f’ which, however, are analogous to the original constraints
on Pyosyse kb, namely (53¢ —e). Aside from dropping an index, the only change between constraints
on Pyosyen ke and Puys, ; is that 3, Poas,s, k < 1 becomes Z]« Pos,; = CaadNA,s, since the grammar
generates extra (spurious) dots but not extra higher-level objects. Because of this close analogy, we can
iterate the entire process once to drop the sy index from P, and then again to finally eliminate P and
(' in favor of high-level M and ina variables. What are the resulting constraints on M and ina? The

answer is provided by Theorem 1.
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Theorem 1. For configurations of 0/1 variables P,qs,s, 1 and Cy,, satisfying the constraints

Zk Paa5253,k
'A : Zaa5253 Pa0152537k
Paa5253,k

A IA

along with auxiliary variables Q2

>Q% < 1, (a2) Qi <1
B: Y Q4 = 0mA(C)-)HO(i-1), (12) and T.QL = O(n

L,

1, (a) and ZCaazl, (b) (60)

P(IOZSQ 53,kcaaINAa752 INAa52,53 P

and Q' satisfying

(for certain integer-valued functions n{?)(C)) there is a one-to-one correspondance with constrained

configurations of 0/1 variables M3, M% M', ina®,ina?,ina'. The correspondance is given by

_ 3 3 ,
Poasysa e = MG, 205 1005, Paas, (3)

C: Poosyj = MC%SQ,J‘ 2o m“?jpaa,z’ (2) (62)
Paa7i = Molmlnaél (1)
and inversely by

M25253,k = Za Pa052537k (613) M252,j = Za Paasmi (612)

Zna?k = Zaslsg (ng Pa052537k) Paa52,j (b3) Znaz?j = Zaa (ZSQ Paas%]) Paa7i (b2)

b Pusi = SR, (CHRY (c3) Pui = SuRLUCHQL ()
My, = ¥, Pui (al)
inay, = 3, Paayi (1)

(63)

for 0/1 variables P, ; and P,,,; and certain functions R(C'). The constraints on M and ina are

&
ZO{SQSS MSSQSg,k S 1 (03) Z] inaik S 1 (b3)
ZOZSQ Mzsg,j < 1 (02) ilna?,j < 1 (b2)
YoMy, < 1 (al) ainag; < 1 (b1)
Z] ina?,kMzsg,j = 253 INAOZS2753 M25253,k (63) Zk Zna?,kM25253,k < INAOZS2753 Mzsg 2] (d3)
> ina?7chly7Z» = > INAa,Srch%sQ,j (2) >, inaf]Mzsz)’] = INA%SZ)M;’Z» (d2)
Za inaé iMI‘OOOt,a = Zoz INATOOEOfMolz 3 (Cl) 3 inaé zMolz i = CGOZ < 1 (dl)
inas, < 2
Z-naﬁk = ZaSQ ]\14&527] (63) M3 . INAas s M . (f3)
mar . < Z M- . (@2) 5253, 2,53 " arsp 83,
i S Zea Mo 2 = [NAg.,M?2 (f2)
ZZ Zna; : = 1 (61) a852,7 &, 52 «s2,]
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Notes. (1) The proof is given at a very detailed level, and could perhaps be shortened considerably
by the invention of new notation. (2) In M, ina space, £(d1) has the effect of defining C' in the change of

variables back to P,C' space. (3) The theorem asserts the existence of functions n"?(C') and R(C'). We

have already specified n(2) = > CaalNA, s, and R; they also depend on the constants INA, ,. n()

aosy

is analogous to n(?): n(1) = Y aa Caa X (INAroot,a = 1). (4) The constants INAyooto = 1 and Mfoow =1
(in &) are introduced for uniformity of notation across levels 1, 2, and 3. In particular INA;go0 = 1
for the possible models types that may appear in a scene, but INA, ,, = 1 and INA,,, s, = 1 for the

expected subparts of an object.

Proof of Theorem 1: The goal is to prove ANBAD <= C A&, in which each labelled proposition
(equations (60)-(64) above) is itself a conjunction. It will be helpful to use the phrase “... in the context
of ...” technically: “XY <= )Y in the context of Z” means Y A Z <= Y A Z.

Step 1. Assumptions A(a) A B(2) AD(3), along with the definition (53b), are equivalent by Lemmas
1 and 2 to (53a’) A (53d’) A (53g") A (58a’ — I'). Note that B(b2) has been refined from (b2) in Lemma
2, according to equation (56), which is valid since Lemma 2 was proved for a particular R(C, INA)
satisfying equation (56). Upon eliminating ina by (58a’), this conjunction may be rewritten as the

conjunction of

Paosysa e = Mo, o 1201003 Pogs, j (= C(3) from (53a”))
Za5253 M25253,k < 1 (E 5(03) from (53d/))
f : M252537k = INAO‘52753 M252537k (E g(f3) from (539/))
Y jinal, <1 (= £(b3) from (58b'))
Y inat Yy Pansyy = g MOy ok (<= &(e3)in context of D(a2);from (58h'))
(65)
and
G- , . ina;’k = ina;’k Y aosy Pacsyj (@) (from 58(0’/)) (66)
>k M3, ok > inaj Poas, j <01 (b) (from 58(g"))
and
> Paasyi = CualNAy s, (from 58(d'))
H: Yaos, Paassy <01 (from 58(¢€’)) (67)
Piosyi = Paasy,jCaaINA, 5, (from 58(f))

Thus A(a) A B(2) A D(3) is equivalent to F A G AH.



Bayesian Inference on Grammars by Neural Nets 40

Step 2. F has already been “translated” into parts of C A £. We must now translate G and H.
Let us first work on H, which is analogous to A(a) except for the modification to 3, P. There are
corresponding versions of Lemmas 1 and 2, modified only by loss of an index and as follows from
20 Paasyj = CaalNAy 5y (53c), (53¢’) = (58f), and (58¢') are all equal to €y INA, s, rather than
bounded by unity. Note that for INA, ,, factors the loss of the s, index results in INA,q0t,» = 1 which
can be omitted from products in which it occurs. This affects (53e, f') and (58e,d’, f').

Thus H A B(1) A D(2), along with the definition ina,, ; = > s, Pawss.j» are equivalent by analogs of

Lemmas 1 and 2 to the conjunction of

Pa3527] = oz52 N Z ma”Paa i (E 6(2))
ZOZSQ MozSQ,j < 1 (E E(QQ))
A 252,j = INAa 52M252 N (E g(fQ)) (68)
Yiinaf <1 (= £(b2))
Yo inag >, POLcy Po= 2, M2, (<= &(¢2)in context of D(al))
and
ina?j = ina? g Paayi (a) (69)
M2 2 ma”Pacy i = CWINA%S,Z (b)
and
Zi Paoz,i = Caoz (a)
IC : Zaa Paa7i S 1 (b) (70)
Paoz,i = Paa,icaa (C)

Note that P,o; = Pua,iCan is actually redundant since Py, ;Coa = Poayi D i Paayit = Pacy-
Thus H A B(1) A D(2) is equivalent to Z A J AK.

Step 3. At this point we know enough to rewrite G in terms of C and £. In the context of FAZATAK,
i.e. (by step 2) in the context of F A'H A B(1) A D(2), G is equivalent to the conjunction of

I Zna?k < ZozSQ oz52,] (a) (E 5(63)) (71)
Zk M25253,k7’na?k < Mzsg ]INAOZS2 83 (b) (E g(d3))

as we OW prove.
Gla) = L(a): inaly, = ina, Y405 Paos, i = inaly Y., M2, o (by D(a2)) < 3, M2, ; since
ina?k < 1.
La) = G(a): inal), <30, M2, o = (ina})? < inaly Y., M2, 5 = inal), < ina?, Y, M2, o <

ina}, (since ina?, = (ina},)? and 3, M2, - <1 by I) = ina}y, = inal, 3., M2

os2,] as2,J°
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’C(b) ( ) Zk oz5253 klna]k < Mzsg ]INAOZS2 53 = Zk oz5253 k Z Zna?kpaa%vj
< Z a52] aoz52 ]INAOASQ,S;:, = Z] a52]2 Znaz]PaOz ZINAOZSQ 83 (by I) - CaozINAoz 182 AO(SQ,S;’, (by

J(b)) < L.
G = L(b): It suffices to deduce

Z M25253,kina?kMa52 N < Mzsg ]INAOZS2 53 (72)
k
because this is £(b) if M2, . = 1 and otherwise M7, . =0 = Py, ; = 0 (by Z(a)) = ina?k =0

(by D(3), which follows from F A G AH and step 1) = > M7, . yinal, =0 = L(b). To derive (72),
multiply G(b) by >, Paas,,j = M2, . (using D(2)) and use F(c) to introduce INA:

52,7

a/7 Z oz5253 k Zlna ’kPa fasy,g! ZPG,OZSQ 2 < Mzsg ]INAOZS% (73)
k

7!

Now H = Y, Puas,,; € {0,1}. Case 1: There is a unique a for which P,,;, ; = 1. Let @’ be that a.
Then

Pa’ozSQ,j’ZPaasz,j = ZPaaSQ,j’PaaSQ,j- (74)

Case 0: P,us,,; = 0Va = (74) for any «'. Either way the inequality (73) becomes

ZMoz5253 k Z Zna 7'k ZPU«0152 ]/Pa0152 "J < Mzs ]INAOZS2 83 (75)
k J'

But H = 3 Paasyj S 1= Paasy i Paasyj = 07jPaasy,i = 2oq Pacsyjr Pacsyj = 6515 M, a52] (by D(2))
and (75) implies (72), as desired.

So, in the context of F AZ AT AK, G is equivalent to £. We calculate A(a) A B(1,2) A D(2,3)
=[A(a) NB2)ANDB)AB(1)AD(2) <= FAGANHAB(1)AD(2) (by Step 1) <= D(a2)AFAGA
HAB)AD(2) <= D(@2)ANFANGANIANT AK (by Step 2) <= D(a2)ANFANINT AKAL (by Step
3sofar) <= CB)NEB)ANI AT ANK AD(a2) (by definitions of F and £, plus use of context D(a2)
for £(¢3).)

So, A(a) AN B(1,2) AD(2,3) <= CB)NEB)ANIANT ANKAND(a2)

Step 4. T has already been translated into the notation of C A £; it remains to translate J and K.

In this step we work on K. The analog of Lemma 2 breaks down here because we are at the top of the
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hierarchy. Instead, observe that X(b) A D(1) is directly equivalent to the conjunction

Paw = M} inal, (a) (=C(1))

M: S M = >, mal Sl (b) (=¢&(la,b,c)),

(76)

as we OW prove.

= M1 ; = (32 Proi )22 Papi) > (Puai)* = Paai. On the other hand 1 > > s Pop,i (by
K(b)) > 3 Poayi + 2 Papii = Paci = Paci+ 1> 34 Poai + 25 Papi = (Paci +1)° > (3 Poayi +
Y5 Pagi)® = (X Poai = X5 Pupi)® = 434 Pooi)(3 5 Pap,i); therefore M jinal; = (32 Pra i)(Zﬁ Pos.i)
= [(3Z4 Pooi) (g Pap.i)) < [(Paci + 1)*/4] = Paai (since Poai € {0,1}). Thus My jinag; = Paoi, ie.
we have M(a). Wesee >, M}, =3 Poni =3, inal, directly from D(1), and 3, Pua, < 1is K(b);
this establishes M(b).

<: ) g Paayi = Molz,i >q inag; (by M(a)) = Molz,i 25 Mé,i (by M(b)) = Molz,i (by M(b)). Likewise
Yo Paayi = inal;, so we have D(1). From this we calculate 3, Pao,i = >, My ; < 1 (by M(D)).

So K(b) A D(1) is equivalent to M. In the context of M, K(a) is equivalent (by straightforward

translation) to

whence, in the context of M, A(b) is equivalent to

1

O - I = Zi(ZaMl )Zna

(> inal Dinal, =3 inal, (= E(el)), (78)

As previously noted, K(¢) is redundant in the context of K(a) and K(b).
Therefore, A(b) A D(1) A K is equivalent to M AN A O, ie. toC(1)AE(D).

Step 5. Here we translate J to provide the missing pieces of C A €. In the context of C(1) A D(1) A
DR2)NE)ANIANK AL, T is equivalent to the conjunction of

ina 22] Zoz Molz,i (a) (E 5(62)) (79)
E oz52 ] a22] Molz,iINAOh% (b) (E g(dQ))

A

Furthermore, the implication P = 7 doesn’t require the entire context; it follows from D(1)AE(al)AK
alone. We now prove these assertions.

J(a) = P(a): ina?, = ma (3, Pai) = ina? 2 a M ( D(al), which is part of the context)

]

<32, M (since ina?; € {0,1}).
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Pla) = J(a): ina; < Za M} = (inaf;)? < ina -, M 5 = ina; < inaf; 3", M) ; < inaf; (since
inaj; = (inaj;)* and 3o, M} . <1 by E(al)) = inaf; = ina? Z = inaf; Y. Paci (by D(al)).
P(b) ( ) Z a52 ] J 2 = Molz,iINAOML% = Z] a52 N Z lna”Paa i = (Z U«Ol Z)INAOZ 52

= (32, M ;M sinal;)INA, 5, (by M which follows from context K(b) A D(1) by the first half of Step 4)

= CuoINA, 5, (by N which follows from context K(a) A M ie. K(a)AK(b) AD(1)).
J(b) = P(b): It suffices to deduce

ZMC%S“ma M ;= M ;INA, s, (80)

because this is P(b) if M}, = 1 and otherwise M ; = 0 = Py = 0 (by D(1)) = inaf; = 0 (by D(2))
=3, M2, sina?; =0 = P(b). To derive (80), multiply J(b) by 3°, Paa,i = M, ; (again using D(1))

OZSQ ]

a, Z M2, ; Z ina; Poaiy  Paai = My ;Coro INAG . (81)
J ! a

Now K = >, Py, € {0,1}.
Case 1: There is a unique a for which P,,; = 1. Let a’ be that a. Then

Pa’oz,i’ Z Paoz,i = Z Paoz,i’Paoz,i- (82)

and Cyao = Y5 Py (by K(a)) =1 (since P, ; = 1) implies we can drop Cy, from the right hand side
of (81).

Case 0: P, ; = 0, Va. Case 3, Cypy > 0: pick @’ so that Cy,, = 1. Then we can drop C,, from
the right hand side of (82), and Pha,; = 0 Va = (82). Case )., Cpo = 0: MY, =3 Pusyi (by D(al))
< wiPuai =24 Care (by K(a)) = 0. This directly implies equation (80) since both sides are zero.

So, without loss of generality we may assume equation (82) and drop C,, = 1 from the right hand

side of equation (81). As in the proof of step 3, these suffice to prove (80): (81) becomes

Z M2, Z inag; Z Prgit Pacyi = M} [ INA, s, (83)
j a

but K = Zz Paoz,i <l= Paa,i’Paai = 6i’iPaa,i = Za Paa,i’Paa,i = 6i’iMolz7i (by D(l)) and (83) lmphes
(80), as desired.
So, in the context of C(L)AD(L)AD(2)AE(L)ANIAK AL, T is equivalent to P which is just £(d2, e2).
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Step 6. Here we prove that AABAD = C A E, which is half of Theorem 1. Step 7 will establish
the converse.

First note that AANBAD <= [A(a) A B(1,2) A D(2,3)] NA(D)AD(1)AD(a2) <= C(3)NEBININT
AN Ab)AD(L)] AD(a2) (by Step 3) < C(1,3)ANE(L,3)ANL AT AD(a2) (by Step 4). This will

be useful in Step 7 as well:

ANBAD <= C(1,3)ANE(L,3)AT AT AD(a2). (84)

Next, £(3) = L (by definition) and C(1) A £(1) = K (Step 4), so we can augment (84): AANBAD
= C(LHYNEL)ADL2) NIANKALANT = C(1,3)ANE,3)AD(L,2) ALAKALATP (by Step 5)
=>C(L3)ANELB) AZAD)AP = C(1,3)ANE(L,3)AC(2) A E(2) (by definition of Z,P).

Thus ANBAD = CAE.

Step 7. 1t remains to prove C AE = AAB A D, using the previous steps. By (84) it suffices to prove
CANE=C(L,3)NE,B)ANLT ANT AD(a2), which would be implied by CA & = Z A J AD(a2). So that’s
what we will prove.

By Step 4, C(1)AE(1) = MANAO = D(1)AK. From the definitions of Z and P, C(2)AE(2)AD(1) =
IAP. ThusCAE = D(L)ANE(L)ANIAK AP. By Step 5, in the context D(1) A E(al) AK (which has just
been established), P = J. Thus CAE = I A J AD(1). We needed to prove CAE =T AT AD(a2),
so it now suffices to show C A £ AD(1) = D(a2).

Assuming C A E A D(l), we calculate Y2, Pugs,j = M2, ;3 ima; 32, Paai (by C(2))
= M252 ] Z Znal] (by (al)) - 0(52 ] Z INAO[ SéMzs ] (by 5(62)) OZSQ ] Z Ma527] (by
£(f2)). But 1 > Y, dnaf; (by £(b2)) > 32, inaf, M}, (since M), < 1) = > Mzslj (by &(¢2) and
’ 2
£(f2)). So Xy Mzsw < 1 which implies M2 >, Mas2,] = M2, ., as usual. Thus 37, Pios,; =

M2, . which is D(a2), as desired.

sz,
Thus CAE = ANBAD.
Together, Steps 6 and 7 show that
ANBAD <= CAE. (85)

Q.E.D.
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Equation (64) is to be compared with the Frameville constraints, which include (46). Those con-
straints are represented at three levels of hierarchical organization by £(¢,d). In addition, constraints
&(a,b) are conventional, appearing for example as penalty terms in “Rule 1, 2, and 3” of (Utans et al.,
1989). The static constraints of £(f) are usually taken to be obvious: only models present in the model
base may have match variables. This leaves £(e) as the only constraint not clearly accounted for in
previous Frameville research. Conversely previous work has relied mostly on the constraints found here,
including &(¢, d); for example (Utans et al., 1989) includes &(c, d) as “Rules 5 and 67, leaving only the
constraint of “Rule 4”7 to differ from &£(e). (Rules 7-9 of that source just encoded the graph-matching
objective function.) Thus, the constraints of Theorem 1 agree with those of Frameville, with a few
minor differences (namely £(e) and the specialization of every M and ina variable to some hierarchical

level) which may be improvements on previous Frameville neural networks.

4.4.3 The Objective Function

Proposition £ in Theorem 1 establishes the Frameville syntax constraints, including the subtle con-
straints of equation (46), as a consequence of the grammar. We must now derive the Frameville ob-
jective function, equation (45), from equation (50) which is the objective derived from the grammar.
This involves changing variables from P to ina and M as in Theorem 1, and also from analog model
variables X,45, and x,q, which were redundantly present in multiple copies for every model, to analog

instance variables x; and x; which determine the original variables by

Xaasy, = ZPaaszj and Xg, = ZPaa,iXi- (86)
J ;
Now translating (50) is a matter of substituting new variables for old in each term and adding an
entropy term that arises from integrating out @), i.e. the redundancy of M and ina with respect to P.
The first term of (50) is F3 = 3", 0 2ok Paososs b [H 2% (Xaasy» Xk) = flextra — #%2%]. With-
out loss of generality we can absorb the p’s into H, and omit them from the algebra. Substitut-
ing Puasysa b = Masysa k2o 105k Paas,,; and using (86), E3 = > iusyss 2ok Masyss k > ik Paasy g
XH 2252 (50 Pagsy X0, Xk ). But HE2% (3050 Paasy j1%1, Xk ) = 3050 Paoisy o H 2% (X1, X ). Since
Poosy jPacsyjr = 6551 Paasy s We find Ez = 57 0 0 3% Masysy k2 0k (32, Paasy,j) X HO2% (x5, X).

We can also evaluate Y, Paneyj = Masy ;Y0 inasj (by (53a')) = My, > sy Mos,,; (by (58¢g)) =
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Mys,.; (by E(a2)). Also Mysys, b = Meysysy kINAqs, 5o (by E(f3)). Then

By = Z ZMa52537kMa527jINAa52753inaijM?S?’(Xj,xk). (87)

aszs3 gk

The second term of (50) is Fy = 3=, ., Caall “**(Xaa, Xaosy) = 2 uas, Caal 2 (32 Paw X, > Pros, iX;)

= Za52 Zi]‘(za CaozPaoz,iPaozSQ,j)Has2 (Xi7 Xj)- But Za CaOZPaOZ7iPaOZ527j - Za Paa,iPaaSQ,j (by (58]“))
= Za PaOéJMOéSmj Zi’ inai’jpaoz,i’ = MozSQ,j Zi' inai’j Za Paa,iPaa,i’ = MozSQ,j Zi/ inai’jéi,i’ Za Paoz,i =
My, jina;; Mo ; (by D(al)). Also Mys, ; = Mys, ;INA, 5, (by £(f2)). Thus

=Y > Moy j Mo INAy sy inag H™ (%, %;). (88)
asy g
The third term of (50) is F1 = 3., Caa H™ *(Xaa) = Y ga Caa HOV (X PawiXi)
- Zaaz CGOZPU«OZ ZHrOOta( ) Zaaz Paa ZHrOOta( ) (by IC( )) Zaaz Ml Znal Hrootoz( ) (by C( ))
Thus
=Y Z M Mo o INAvoot,ainag H™ % (x;) (89)
(since M2

root,a

= 1 and INAyoot,o = 1), which is in the desired form. But since ), Pho; = Mclm» (by
D(al)), this special case could be more simply written as Ey = 3, M, H™*(x;).

There are also entropy terms that arise from integrating out Q! and @2, i.e. the redundancy
of M and ina with respect to P. Let N? > n?(C) be the maximum number of level 2 instances,

i.e. the range of j, and N! > n!(C) be the same for level 1. Then the entropy term (from B) is

log(( N ) 1) —|—10g(( ]Zf ) n'1) = log((N!) — log((V? — n2)1) + log(N'1) — log((N'" — n')!) L.e.

S =log(N?!) — log((N Z inal; ML INA, 5,)1) + log(N'1) — log((N! Z:maM]\/[clY I (90)

aozsy aat

There is a further entropy term associated with integrating out unused analog model variables such
as Xqas,, but it may be absorbed into chemical potentials (x terms in £') and hence into H terms.

Thus the final Frameville objective function is

E(M7 ina7$) = Za5253 Z]k M25253,kM252 ]INAO‘52753ina]kHa5253 (X]7Xk)
—I_ ZozSQ 22] oz52 ]Ml INAOZ 52’”1(12 Hesz (Xi? X])
+ 20 i My M aINAroot,amal HTo0t (%) (91)
—|—1/ﬂ[10g(N2') 10g((N2 Zaasy Znal Ml INAOZ 52) )

Flog(N1) — log((N! — 50,07 inal, M2,)1)]
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where as before M° = INA;oot,o = 1. This is a stratified or layered version of the original Frameville

root,a
objective, as can be seen by rewriting it in terms of model indices a, 3, ... that range over all three
levels, and similar modified instance indices i, 7, ..., and using the fact that in this paper INA is a tree:

E(M, ina, $) _ Zaﬁ Z” Mlevel )Mée;el(ﬁ)INAa inalevel(ﬁ)I{ozﬁ(xi7 X])

—|—1/ﬁ[log(N2') log((N? = 3" 5i; inal, M2, o ;ML INA, 5)!) (92)

root,.

+log(N') —log((N' =3 inal; MY o M )]

root, it o1

This is to be compared with equation (45). The graph-matching terms differ just by the new level
superscripts on M and ina, which preallocate instance indices 1, j, k to specific levels of abstraction.
Such specialization of instance function could probably be removed at the cost of further entropy
terms. The entropy terms are new, and easily implementable with analog neural networks by Stirling’s
approximation and algebraic transformations of the resulting X log X forms (Mjolsness and Garrett,
1990).

Thus we have translated the probability distribution of the Frameville grammar, specified by the
objective and the constraints, into the standard Frameville variables, recovering the standard objective
function terms and constraints along with a few new ones. This may be regarded as a transformation
at the level of the probability distribution, before Mean Field Theory is applied and hence before any
approximations are made. It may also be possible to express this derivation as a transformation at the
level of the grammar, in which the permutation operation is applied in a limited form at each stage

rather than globally at the final stage of the grammar.

4.4.4 Frameville and High-Level Vision

As mentioned earlier, with the Frameville grammar we approach a modest plateau of generality. From
the generalized assignment problem of equation (50) we have derived a network which explicitly has
problems of recognition (find M,;), segmentation or grouping (find ina;;), correspondance between data
and the expected parts of an object (find My, s, 1), multiple instances of a model (find x; rather than,
say, X4 ), at multiple levels of abstraction (levels 3, 2, and 1 in the hierarchical grammar). These processes
arise from Bayesian inference on a constrained Boltzmann probability distribution which, we proved,
is equivalent to the distribution generated by a simple grammar. The transformation to Frameville is
natural: it simply pushes the permutation matrix as far back into the grammar as is possible, so that
each grammar rule can be regarded as having its own relabelling processes even at abstract levels.
The resulting Frameville objective is different from the original generalized assignment objective in

several important ways. Where the assignment objective is linear in its binary-valued match variables,
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the Frameville objective is cubic in far fewer variables. (The linear or cubic terms are multiplied
by analog parameter-check objectives H(x,x) in both cases.) This increase in polynomial order may
create more local minima in a smaller net. It is not clear whether this is a net gain or loss for practical
optimization. On the other hand, further simplifying transformations such as the correlation method of
Section 2.5, which have special conditions of applicability, are far more likely to apply to small, single-
object correspondance problems (e.g. find Ms,s, 1 given My, ;) that can arise in Frameville than to
the original monolithic assignment problem.

Thus the Frameville formulation suggests a modular decomposition of a large vision problem into
smaller, more homogeneous pieces to which special methods are most likely to apply. The decomposition
follows the lines indicated by the hierarchical and heterogeneous grammar.

One important aspect of model-based vision, and of the original Frameville networks, is still missing;:
the use of an indexing scheme such as a discrimination tree or graph composed of ISA-links to organize
the set of models into a data base. Another efficient indexing scheme, not used in the Frameville
networks, would be geometric hashing (Lamdan et al., 1988). Either form of indexing could possibly be

added as a learned computational shortcut. Learning is briefly discussed in the next section.
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5 LEARNING

Three possible methods for learning a grammar are suggested here. They all assume that learning the
grammar can be expressed as tuning its parameters, as is the case for unstructured neural networks.
First, the kind of grammar we have been studying could be augmented with an initial set of “meta-
grammar” rules, which randomly choose the parameters of the permanent models and then generate
many images by the usual grammar. The task of inferring the permanent models’ parameters is just
another Bayesian inference problem, stretched out over many images. Second, one could minimize the
Kullback information between the probability distributions of an unknown grammar, images from which
the perceiver sees, and a parameterized grammar. This algorithm would be similar to the “Boltzmann
machine” for neural network learning (Hinton and Sejnowski, 1986). Finally one could look for clusters
in model space by defining a distance “metric” D between images and mathematically projecting it
back though the grammar.

The latter alternative can be explained by an analogy with the forward-going composition law for

probabilities (and hence objectives)
e Bn+1(Xnt1) o Pr(x,44) = /danr(xn+1|xn)Pr(Xn) x /anPr(Xn+1|xn)e_ﬁE"(X"), (93)

which uses only those probabilities Pr(x,,41|x,) directly provided by the grammar. One could define a

backward-going composition law for ﬁn(xn, v.) by, for example,
e—BDn(Xn,¥n) o /an+1 /d}’n+1P1“(Xn+1|Xn)P1“(Yn+1|yn)€_ﬁD"+1(X"+1’y"+1)- (94)

Here the proposed distance D is related to D by ﬁ(x,y) = f(D(x,y)) where f is any monotonic,

strictly increasing function such as the identity plus a constant, D =D +e¢, or the squaring function,
D = D2

This expression for D has the advantage that § can be varied as in deterministic annealing, and also
that if Pr(x,41]x,) is an invariant measure on a group G (e.g. translations, rotations or permutations
with uniform probability) and D, 41 respects G (i.e. if Pr(x,41|x,) = [dgé(x41— 9 -%x,,) and D,41(g-
2,y) = Dpy1(x,g71 - y)) then the large-8 limit of (94) is

Dn(xn7Yn) = f_l (_(1/ﬁ) 1Og maXg, g,eG €XPp _ﬁf (Dn-l-l(gl *Xn,g2 - yn)))

minghgzeG Dn-l-l(gl *Xny g2 yn) (95)
minghngG Dn-l-l(gz_lgl *Xn, yﬂ)

= mingec Dpt1(9 - Xn, ¥n)
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which actually preserves all the properties of a distance metric including the triangle inequality. That
is, if D,41 is a distance metric then D, is also.

Expressions similar to (94) could define distances between objects at earlier and later stages in the
grammar, for example between an image and a model; in this way data can be clustered in the model
parameter space. In fact if d is such an asymmetric “distance” and Pr(x,4+1|x,) is an invariant measure

on a group G respected by d, then the large-3 limit of

i) o /dxn+1P1“(Xn+1|Xn)€_ﬁd"+1(xn+1’ym)- (96)
is again
dn(xn7YM) = min dn-l—l(g 'Xn7Ym) (97)
geG

where m > n.

5.1 Graph Matching Objectives

For example, we can use (95) with D= f(D) = D? to define the distance between two graphs, G and
g, by adding permutation invariance to the Euclidean distance D1((, ¢) between the 0/1 connection
matrices (/o3 and g¢;;. Fuclidean distance between matrices respects the adjoint representation of the
group of permutations, i.e. permutations that act by permuting the nodes of a graph and hence both

indices of a matrix:

[Do(GLg)? = [min permutations » D1(G, P o g)]°

min permutations P |G — P - g - PT||?

min permutations P |G - P — P - g||? (98)
= 100 Permutations P [[[G]1? + [|g]1* — 2trace (G- PgT - PT)]

= [IGI* + lgl]* = 2 min permutations P Y oupij GopPsigi; Poi

which is the standard neural network objective function for inexact graph matching (von der Malsburg
and Bienenstock, 1986; Hopfield and Tank, 1986), up to an additive constant. It is also a standard cost
metric for missing model links and extra data links in pure graph matching for computer vision (Ballard

and Brown, 1982), restricted to the case of permutation correspondances:

E(P) = missing model graph links 4 extra data graph links
= Xapmax (0, Gap = 2ij gijPaiPﬁj) + 2 max (0, 22ij 9ij Lai g — Gaﬁ) (99)
2
= 2ap (Gaﬁ — 2 giJ‘PaiPﬁj)
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since G and g are 0/1 matrices and P is a permutation matrix. This is the same expression as that
minimized to produce Dg above, though it has the interpretation of a distance (squared) between model
and data rather than between two models.

These objectives for graph-matching have proven useful in neural networks devoid of learning, but
they may also be useful in the approach to learning a structured neural network through abstract

clustering at a high level in a visual grammar.
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6 DISCUSSION

Figure 1 is a diagram of the method used in this paper to derive neural networks from visual grammars
via Bayesian inference. Given a grammar of suitable form, one can calculate a joint probability distri-
bution on images and their explanations. This distribution may be transformed, by changing variables,
as we showed in the multiple curve grouping and Frameville networks. By using the Mean Field Theory
approximation, a Bayesian inference problem on this distribution is transformed into an optimization
problem with an algebraic objective function. This function can be further transformed, for example
using the techniques of (Mjolsness and Garrett, 1990), to reduce its cost or increase its circuit-level
implementability; then a neural network follows from descent dynamics.

We studied grammars that model visual phenomena such as missing and extra data, group invari-
ances, hierarchical objects, multiple instances of an object in a scene, and flexible spline-like objects.
The rudiments of a frame system for knowledge representation emerged naturally from one such gram-
mar, by pushing the matching process from low levels to high levels in a hierarchical, multiple-instance
grammar. Nevertheless the full representational capacities of such grammars were hardly used: it re-
mains to design networks from grammars that generate trees recursively, or are context-dependent, or
include discrimination or inheritance trees on the set of object models. A somewhat more general view
of grammars whose rules posess connectionist models (similar to the objective functions attached to
rules in this paper) is presented in (Mjolsness et al., 1991b), where such grammars are proposed for
modelling the development of biological organisms. A different way to translate a class of grammars into
neural network objective functions is presented in (Miller et al., 1991); it currently applies to “regular”
languages and has been demonstrated in a low-level vision problem. Other directions for generalization
of the parallel grammar occur in the extensive literature on L-systems (Rozenberg and Salomaa, 1980)
and graph grammars (Ehrig et al., 1983).

The grammars examined in this paper do not yet produced realistic images, and one could consider
adding new rules to move from the “pictures” we studied to gray-level images. This would allow the
preprocessing of images to produce pictures composed of image features, necessary in Section 3, to be
replaced with more neural network computation. At another extreme, the idea of relating optimization
to Bayesian inference on a probabilistic grammar is in principle not restricted to vision at all, and could
perhaps be adapted to other problems to which neural network optimization has been applied.

The complexity of the visual world will certainly demand many grammars of increasing size for
success in computer vision by our approach. We have not yet discussed how to obtain such grammars,

though Figure 1 suggests hand-design and learning should be directed at producing grammars rather
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than the subsequent stages. Hand design takes a lot of human labor. Fortunately the large amount of
research in computer graphics is a source of generative models for images, some of which are mathe-
matically simple enough to be put in the form of a probabilistic grammar or are already close to that
form (e.g. (Smith, 1984; Prusinkiewicz, 1990)). In addition we speculated on possible algorithms for

learning the grammars, or at least aspects of them, by using visual experience.
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