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Abstract

We exhibit a systematic way to derive neural nets for vision problems� It involves formulating

a vision problem as Bayesian inference or decision on a comprehensive model of the visual domain

given by a probabilistic grammar� A key feature of this grammar is the way in which it eliminates

model information� such as object labels� as it produces an image� correspondance problems and other

noise removal tasks result� The neural nets that arise most directly are generalized assignment net�

works� Also there are transformations which naturally yield improved algorithms such as correlation

matching in scale space and the Frameville neural nets for high�level vision� Networks derived this

way generally have objective functions with spurious local minima� such minima may commonly be

avoided by dynamics that include deterministic annealing� for example recent improvements to Mean

Field Theory dynamics� The grammatical method of neural net design allows domain knowledge to

enter from all levels of the grammar� including �abstract� levels remote from the �nal image data�

and may permit new kinds of learning as well�

�
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� INTRODUCTION

We show how to derive various optimizing neural networks� which represent quantitative visual models

and match them to data� from fundamental considerations of Bayesian reasoning� Doing so illustrates a

design methodology which starts from 
rst principles� namely a probabilistic model of a visual domain�

and proceeds to a neural network which performs visual tasks� The key problem is to choose probability

distributions su�ciently intricate to model general visual tasks and yet tractable enough for theory� We

do this by means of probabilistic and expressive grammars which model the image�formation process�

including heterogeneous sources of noise each modelled with a grammar rule� In particular these gram�

mars include a crucial �relabelling� rule that removes the undetectable internal labels �or indices� of

detectable features and substitutes an uninformed labelling scheme used by the perceiver�

For such grammars� in which every rule has a simple Boltzmann probability distribution� it is

straightforward to generate a neural network as follows� ��� Obtain the grammar� by detailed modelling

or by automated learning from examples� ��� Compute the joint Boltzmann probability distribution

on images �or pictures� and their grammatical explanations� ��� Express desired averages under this

distribution in terms of the optimization of an objective function E� This step usually employs Mean

Field Theory approximations� the scaling properties and practicality of such approximations have been

greatly improved by �Simic� �

	b� Peterson and Soderberg� �
�
� Van den Bout and Miller� III� �

	�

for matching problems similar to those we encounter� ��� Introduce optimizing neural net dynamics for

E�

The procedure becomes more elaborate and malleable by using valid transformations �e�g� of prob�

ability distributions or objective functions� at each step to reduce network cost� improve network per�

formance or achieve network implementability in some technology� A small catalog of valid objective

function transformations for neural nets is presented in �Mjolsness and Garrett� �

	�� and the present

paper illustrates several transformations of probability distributions� The entire method is sketched in

Figure ��

This paper is organized as follows� In Section � we introduce an example grammar which models

a simple picture�formation process� we derive a joint probability distribution on models and images

�or pictures� and discuss various questions which could be answered by computing moments of this

distribution� we derive neural nets for doing such computations� both with and without using �match

neurons� which explicitly hypothesize correspondance between model and data objects� The network

without such neurons is interpreted as the relatively e�cient algorithm of correlation matching in

scale space� In Section � we demonstrate such nets on an image registration problem� In Section
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(mathematical)
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Probability Distribution, Pr

Neural Network,  T ij

Figure �� A neural network design methodology� Solid arrows constitute the recommended procedure�
The arrow from Pr to E may be realized by approximations from statistical physics� such as Mean Field
Theory� Circular arrows represent valid transformations� such as 
xed�point preserving transformations
of objective functions�

� we exhibit a variety of probabilistic grammars and the joint probability distributions they imply�

including a network for recognizing simple �exible objects� There we also derive the previously studied

�Frameville� neural networks for high�level vision from a simple type of grammar� It results from

�pushing� the relabelling operation back to more and more abstract levels of the grammar� thereby

breaking up a massive correspondance problem into many small correspondance and grouping problems

that interact� To put the latter result in context� it suggests a natural way to derive neural nets that are

capable of expressing abstractions usually reserved for symbolic computing� and indicates how symbolic

computing in perceptual domains could be improved by derivation from underlying physical models akin

to those used in physically�based computer graphics� In Section � we speculate on learning algorithms

for the types of neural nets we are discussing� illustrated with an example involving inexact graph

matching� In Section � we discuss the results and conclude�
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� EXAMPLE� A RANDOM�DOT GRAMMAR

The 
rst example grammar is a generative model of pictures consisting of a number of dots �e�g� a sum

of delta functions� whose relative locations are determined by one out of M stored models� But the

dots are subject to unknown independent jitter and an unknown global translation� and the identities

of the dots �their numerical labels� are hidden from the perceiver by a random permutation operation�

For example each model might represent an imaginary asterism of equally bright stars whose locations

have been corrupted by instrument noise� One useful task would be to recognize which model generated

the image data�

��� The Grammar

The random�dot grammar is shown below�

model and
its location

�� � root � instance of model � at x

E�	x
 � �
���r

jxj�

dot
locations

�� � instance	��x
 � fdotloc	��m� �xm � x 
 u
�
m
g

E�	f�xmg
 � � log
Q

m �	�xm � x� u
�
m
� where � u

�
m �m� �

� lim����
�

���
�

P
m jxm � x� u

�
mj

� 
 c	��


dot
jitter

�� � dotloc	��m� �xm
 � dot	m�xm


E�	xm
 � �
���

jt

j�xm � xmj
�

choose random
permutation

�� � fdot	m�xm
g � fdot	m�xm
� Pm�ig

E�	fPm�ig
 � � logPr	P 
� where P is a permutation
relabel
all dots

�� � fdot	m�xm
� Pm�ig � fimagedot	xi �
P

m
Pm�ixm
g

E�	fxig
 � � log
Q

i �	xi �
P

m Pm�ixm


	�


The operation of this grammar is illustrated in Figure �� We will show that this grammar is equivalent
to a grammar with fewer rules�

model and
location

�� � root � instance of model � at x

E�	x
 � �
���r

jxj�

jittered dot
locations

�� � instance	��x
 � fdot	��m�xm
g

E�	fxmg
 � �
���

jt

P
m	xm � x � u

�
m


�� where � u
�
m �m� �

� lim����
�

����
jt
���

�
�

P
m jxm � x � u

�
mj

� 
 c	��


scramble
all dots

�� � fdot	m�xm
g � fimagedot	xi �
P

m Pm�ixm
g

E�	fxig
 � � log �Pr	P 

Q

i �	xi �
P

m
Pm�ixm
�

where P is a permutation

	�




Bayesian Inference on Grammars by Neural Nets �

1

2 3

instance

(unordered dots) (permuted dots)

1

2 3
1

3

2

Figure �� Operation of random dot grammar� The 
rst arrow illustrates dot placement� the next
shows dot jitter� the next arrow shows the pure� unlabelled feature locations� and the 
nal arrow is the
uninformed relabelling scheme of the perceiver�

The generative process speci
ed by this grammar is to start with nothing �the �root� of a parse tree�

and generate one instance of a model chosen randomly from a list of known models� Let the chosen

model number be �� Rule �� also places the instance on the image plane with a Gaussian distribution

of locations x� Given such an instance� the only applicable rule is �� which replaces it with a set of dots

whose locations xm are Gaussian�distributed displacements of ideal locations given by x � u�m� The


nal rule is special� its input is the set of all dots generated by the grammar� and it replaces them with

a permuted set or �scrambled� set of image dots at the same set of locations� The permutation is not a

physical operation� it simply relabels the dots from index m to index i by means of a permutation Pmi�

The permutation probability distribution Pr�P � will be speci
ed in the next section� We will show that

it is indistinguishable from the uniform distribution on permutations�

��� Final Probability Distribution

The probability distribution associated with a particular rule �r is

Pr�new terms� fnew parametersgjold terms� fold parametersg� � e��Er�Zr ���

where � � �� Such conditional probabilities can be repeatedly combined in the usual way�

Pr��� x� � Pr�xj��Pr��� ���

to yield a 
nal joint probability distribution for the entire grammar� For Grammar �� we could mul�

tiply to get an expression for Pr���x� f�xmg� fxmg� fPm�ig� fxig�� However we are usually interested in
computing some average in this distribution� i�e� some moment of this function�

To begin with� the delta functions in rules � and � completely determine �xm and xm� respectively�

in terms of the other variables� so these are usually integrated out of any interesting average� That
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leaves Pr���x� fPm�ig� fxig�� For this reason Grammar � is obtained by combining Grammar ��s rules �
and � �integrating out �xm� and rules � and � �leaving in xm�� In Section ��� we will show that the P

variables can often be summed out without losing the answer to real problems� As an example� let us

calculate Pr���x� fxig� for this grammar�
Calculating the joint probability distribution is especially easy for this grammar because the gram�

mar rules are not recursive� The grammar just consists of a sequence of three stages corresponding to

rules 	��� After rule 	�

Pr����x� �
�

A
�

�p
���r

��e
� �

���r
jxj�

���

where A is the number of models to choose from� The probability after rule � is

Pr����x� fxmg� � Pr��fxmgj��x�Pr����x�

�
�

A

�
�p
���r

��
�

�p
���jt

��N

e
�
�

�
���r

jxj�� �
���
jt

P
m
jxm�x�u�mj�

�
�

���

To 
nish the calculation we must consider Pr�P �� This is the probability of a given relabelling from

object�generation indices m to image indices i� This part of the grammar models the fact that the

object�generation indices m are generally inaccessable to the perceiver� though if they were known the

perception problem would be nearly solved� One model for P is to feign ignorance of the permutation

and use the maximum entropy distribution on P � namely a uniform distribution� This model seems arti�


cial because there is no actual uniform�probability scrambling mechanism in natural image�generation

processes�

Alternatively we could model the relabelling process as deterministically sorting the raw dot position

data xm according to some scalar criterion f�xm� so that low values of f are indexed by integers i with

low values of some set of weights wi �e�g� wi � i�� and high f �s correspond to high w�s� This sorting

is done by whatever part of the perceiver turns images into some representation of low�level symbols�

For example� f could encode the lexicographic ordering of a ��d array of pixels given by their raster

or scan�line sequence� and the dots would be indexed in that order� Or f could order the ��d array of

pixels according to the discretization of any space�
lling curve� It is important that f does not depend

on quantities like m or � that require perception to deduce� f�x� should also be unique� i�e� f is an

invertable function� Then� Pr�P � is

Pr�P � � lim
�sort��

e�sort
P

mi
Pm�if�xm�wi�ZP ���
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and E� contributes

P
fPg e�E��xi� � lim�sort��

Pn
Pj P is a

permutation

o e
�sort

P
mi

Pm�if�xm�wi

ZP

Q
i ��xi �

P
m Pm�ixm�

� lim�sort��
Pn

Pj P is a

permutation

o e
�sort

P
i
f�
P

m
Pm�ixm�wi

ZP

Q
i ��xi �

P
m Pm�ixm�

� lim�sort��
Pn

Pj P is a

permutation

o e
�sort

P
i
f�xi�wi

ZP

Q
i ��xi �

P
m Pm�ixm�

�

�
BB�lim�sort�� e�sort

P
i
f�xi�wi�

Pn
Pj P is a

permutation

o e�sortPmi
Pm�if�xm�wi

�
CCA

�Pn
Pj P is a

permutation

oQi ��xi �
P

m Pm�ixm��

���

Here the second term enforces the constraint that xi be a permutation of xm� and in this circumstance

the 
rst term constrains xi to be in order according to f � Thus we may simplify the 
rst term when it

is multiplied by the second�

X
fPg

e�E��xi� � ��fxig�
X

n P j P is a
permutation

o
Y
i

��xi �
X
m

Pm�ixm�� �
�

where ��fxig� is � if fxig are in order according to f � and zero otherwise� In the 
rst step of this deriva�
tion we have used a crucial property of permutation matrices� that

P
m Pm�if�xm� � f�

P
m Pm�ixm�

because exactly one element of fPm�ijm � f� � � �Ngg is nonzero�
Since ��fxig� does not depend on fxmg� it will cancel out when we compute conditional probabilities

such as Pr�nal���xjfxig� �c�f� equation ���� below�� In other words� the sorting model of Pr�P � is
equivalent to the uniform�distribution model as far as E� and hence Pr

� are concerned�
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So�

Pr�nal���x� fxig� �
��fxig�

A

�
�p
���r

��� �p
���jt

��N X
n

Pj P is a

permutation

o
Z
dfxmg

Y
i

��xi �
X
m

Pm�ixm�e
�
�

�
���r

jxj�� �
���
jt

P
m
jxm�x�u�mj�

�

�
��fxig�

A

�
�p
���r

��� �p
���jt

��N

�
X

n
Pj P is a

permutation

o e
�
�

�
���r

jxj�� �
���
jt

P
m
j
P

i
Pm�ixi�x�u�mj�

�
��	�

and 
nally

Pr�nal���x� fxig� �
��fxig�

A

�
�p
���r

�� � �p
���jt

��N

�
X

n
Pj P is a

permutation

o e
��
P

mi
Pm�i

�
�

�N��r
jxj�� �

���
jt

jxi�x�u�mj�
�
�

����

The inverse temperature � just introduced must of course be set to one� But for Bayesian inference

algorithms this may be done by gradually increasing � from zero� a procedure called �annealing�� which

often has the e�ect of avoiding local minima during a computation�

In Section ��� we review how the Boltzmann distribution ���� and its derivatives may be approx�

imated by a neural net involving quadratic match neurons related to Pm�i� In Section ��� we exhibit

a new way to derive even simpler� though sometimes less accurate� neural nets for such problems by

eliminating the P variables�

Equation ���� is representative of most of the grammatical probability distributions we will derive in

one important way� it is a Boltzmann distribution whose objective function is a generalized �assignment�

objective function� The �assignment problem� �Bertsekas and Tsitsiklis� �
�
� is to minimize E �P
�a P�aW�a over permutations P � for constant weights W � 	� A neural net approach to this problem

is analysed in �Kosowsky and Yuille� �

��� In equation ���� the assignment problem objective is

generalized because the weights W are now functions of real�valued parameters� as will generally be the



Bayesian Inference on Grammars by Neural Nets �	

case for grammatical probability distributions�

E�nal��� P�x� �
X
mi

Pm�i

�
�

�N��r
jxj� � �

���jt
jxi � x� u�mj�

�
����

The sum over permutations may be approximated by an optimization over near�permutations� as we

will see� and the fact that P appears only linearly in E�nal makes such optimization problems easier�

��� Inference and Decision Problems

We now show how to pose a variety of problems which could arise in situations modeled by the grammer

and whose solution can be expressed as sums over the P con
guration space as in the previous section�

A simple recognition problem might involve looking at data fxig and inferring the most likely model
��� and its position �x�� We must 
nd

argmax��xPr���xjfxig� � argmax��x
Pr���x�fxig�
Pr�fxig� �Bayesian inference�

� argmax��xPr���x� fxig�
� argmax��x

X
n P j P is a
permutation

oPr���x� fPm�ig� fxig�� ����

Note that the combination of equations ���� and ��� perform Bayesian inference� they determine

Pr�model paramsjdata� in terms of forward conditional probabilities including Pr�datajmodel params��
From equation ��� this recognition problem involves computing the function Pr���x� fxig� for which we
must integrate �sum� out the P variables�

Other problems might require the computation of the average hPm�ii� which still requires summing
over the P con
gurations� Indeed most if not all inference problems for the grammar can be formulated

in terms of such sums� A Mean Field Theory approximation to these high�dimensional sums may be

performed by a neural net �Hop
eld� �
��� Peterson and Soderberg� �
�
� Simic� �

	b� Yuille� �

	�

Simic� �

	a� Tresp� �

��� as we will review in Section ����

An even simpler recognition problem would be to infer the most likely model � from data fxig
without regard to its position� This is just like the previous problem except we want to integrate out

x� The integral with respect to arbitrary translations x could be done analytically� but corresponding

integrals over ��d rotation or other Lie group distortions that could be added to the grammar �see

Section ���� must be approximated and we could treat translations the same way� In particular� a
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saddle point approximation to the integral over x �involved in the MFT method� requires 
nding the

most likely value of x but not reporting it as part of the answer�

Here are two more examples of problems posed in terms of the grammar which could be solved by

summing over all P con
gurations� One might want to 
nd the single con
guration of ��x� fxmg� and
fPm�ig which is most probable given observations fxig� i�e� the maximum a posteriori �MAP� estimate

of all these variables� We may compute the total partition function

Z��� 	��� f�g� f�g� � P
�

R
dx
R
dfxmg

X
n P j P is a
permutation

o
exp

h
��E�nal � 	�� � � x�Pm �m � xm �

P
m�i �m�iPm�i

i
�

����

Then� average values of P and the other variables are derivatives of logZ evaluated at 	��� �� � � 	�

As � � �� these averages approach the MAP con
guration if it is unique� Note the departure from
� � � which would be used for the other problems discussed in this section� In fact the argmax taken

in equation ���� could also be done by a zero�temperature limit� but that would involve a di�erent �

parameter than the one used in integrating out P �

A second type of problem involves deciding what to do based on Pr���xjfxig�� For example� each
model � might have a known interesting part whose position relative to the object center of mass is c��

The problem is to set the variable y near this location �e�g� to point a telescope�� under uncertainty in

the values of � and x� This could be formalized as maximizing the probable reward

F �yjfxig� �
P

�

R
dxe

� �
���y

�x�c��y��
Pr���xjfxig�

� P
�

R
dx

X
n P j P is a
permutation

o exp��
�
E�nal��� P�x�� �

���y
�x� c� � y��

�
����

with respect to y� Again we use Bayesian inference to get Pr���xjfxig�� and again a sum over con
gu�
rations of P is involved� The integral over x may be done analytically or approximately� as previously

discussed�

Thus a wide variety of Bayesian inference and probabilistic decision problems may be reduced

to calculating moments of Pr���x� fPm�ig� fxig� that involve summing out the P con
gurations and

integrating or maximizing with respect to the other random variables�
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��� Neural Network with Match Variables

We review how con
guration�space sums over P �along with other variables� may be approximated by

quadratic match neural nets� For example we may compute Prf ���xjfxig� as follows�

Prf���xjfxig� � C
X

n
Pj
P

i
Pm�i � �

�
P

m
Pm�i � �

o exp�
X
mi

Pm�i

�
�

�N��r
jxj� � �

���jt
jxi � x� u�mj�

�

� C
X

n
Pj
P

i
Pm�i � �

o
Y
i

�K�
X
m

Pm�i� ��

Z ��

��
dfVmig

Y
m�i

��Vm�i � Pm�i�

exp�Pmi Vm�i

�
�

�N��r
jxj�� �

���
jt

jxi � x� u�mj�
�

����

where �K�n�m� is the Kronecker delta function on integers and ��x� is the Dirac delta function on real

numbers� Both have Gaussian representations� but we�ll use an integral representation of the Dirac

delta and the Gaussian representation �K�n�m� � limA�� exp��A����n�m��� Continuing�

Prf ���xjfxig� � C

Z ��

��
dfVmig

X
n

Pj
P

i
Pm�i � �

o limA��
exp

�
��A���

X
i

�
X
m

Pm�i � ���
�

Z �i�

�i�
dfUmige�

P
m�i

Um�i�Vm�i�Pm�i� exp��
X
mi

Vm�i

�
�

�N��r
jxj� � �

���jt
jxi � x� u�mj�
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��
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����
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Eeff���x� fUg� fVg� � P
mi Vm�i

�
�

�N��r
jxj� � �

���
jt

jxi � x� u�mj�
�
� �A���

P
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P
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������
X
m�i
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X
m
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�X
i
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�
�

����
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Up to this point the expression is exact� no approximations have been made� Now we approximate both

the U and V integrals by way of the saddle points �fU�g� fV �g� of the objective function Eeff �

argmax��xPr
f ���xjfxig� � argmax��xC limA�� exp��Eeff ���x� fU�g� fV �g�

� �argmax� limA�� exp��Eeff���x
�� fU�g� fV �g��x�� ��
�

where the saddle points satisfy the neural net 
xed point equations

�
Eeff�
U � 	 �� Vm�i � expUm�i�
X
j

expUm�j

�
Eeff�
V � 	 �� Um�i � ��
�
�

�N��r
jxj�� �

���jt
jxi � x� u�mj� � A�

X
n

Vn�i � ��
�

�
Eeff�
x � 	 �� x �
�

N�� � ��jt��r���

X
mi

Vmi�xi � u�m��

��	�

Convergent descent dynamics for such networks may be found in �Hop
eld� �
��� Peterson and Soder�

berg� �
�
� and many others� The maximization with respect to � can be handled by making one copy

of this neural net for each model and adding a winner�take�all circuit�

The method introduces an asymmetry between m and i indices by imposing the
P

i Pm�i � � con�

straint exactly but imposing the
P

m Pm�i � � constraint only in the limit of in
nite A� This asymmetry

may be removed by changing variables before beginning the above calculation� let Pm�i �
P

aRm�aSa�i

where R and S are two permutation matrices� Summing over P con
gurations is equivalent to sum�

ming over R and S con
gurations� for there is a ��to�N � correspondance� Then impose the
P

m and
P

i

constraints exactly� as above� or else impose both
P

a constraints exactly� Either scheme preserves i�m

symmetry� To 
nally reduce the products of continuous versions of the discrete R and S variables to

linear form� one may use the objective function transformations of �Mjolsness and Garrett� �

	�� e�g��

X
mai

�Rma
�Saixi �um �

X
ma

�Rmaum � ��a� �a� �
X
ai

�Saixi � ��a��a� � symmetric potential terms� ����

The result is a symmetric neural net architecture for the same problem� posessing the same type of Mean

Field Theory derivation from a grammar as the does the previous� asymmetric network for approximately

summing over P con
gurations�

��� Approximate Neural Network without Match Variables

Short of approximating a P con
guration sum via Mean Field Theory and neural nets �Section ���

above�� there is a simpler� cheaper� less accurate approximation that we have used on matching problems
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similar to the model recognition problem �
nd � and x� for the dot�matching grammar� From equations

���� and �����

Prf ���xjfxig� � C
X

n
Pj P is a

permutation

o exp�
X
mi

Pm�i

�
�

�N��r
jxj�� �

���jt
jxi � x� u�mj�

�

	 C
X

n
PjPm�i � f���� � � �Ng
�
P

m�i
Pm�i � N

o exp�
X
mi

Pm�i

�
�

�N��r
jxj� � �

���jt
jxi � x� u�mj�

�

	 C

N �

X
fP j
P

P�Ng

�
N

P�� � � �PNN

�Y
mi

�
exp�

�
�

�N��r
jxj�� �

���jt
jxi � x� u�mj�

��Pm�i

�since almost all the multinomials are � N ��

� C�

P

m�i exp�
�

�
�N��r

jxj�� �
���jt

jxi � x� u�mj�
��N

����

The key step is the approximation of the sum over permutation matrices with a sum over a superset�

namely all N �N nonnegative�integer�valued matrices whose entries sum to N � Among such matrices�

the vast majority have low occupancy for most rows and columns� This is an entropy argument in

favor of the approximation� There is also an energy argument� multiple assignments are allowed but

discouraged by the e�ective energy term ������jt�
P

m�i jxi � x � u�mj� unless two values of xi or two
values of um happen to be within �jt of each other� Finally notice that the insertion of the multinomial

factor improves this approximation rather than further degrading it� since con
gurations with Pmi � ��

not present in the original sum over permutation matrices� are weighted less strongly than those in

which every P element is 	 or ��

Under this approximation�

argmax��xPr���xjfxig� 	 argmax��x
X
m�i

exp�
�

�

�N��r
jxj� � �

���jt
jxi � x� u�mj�

�
� ����

This objective function has a simple interpretation when �r ��� it minimizes the Euclidean distance
between two Gaussian�blurred images containing the xi dots and a shifted version of the um dots
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respectively�

argmin��x
R
dz jG 
 I��z��G 
 I��z� x�j�

� argmin��x
R
dz
���G��

p
� 


P
i ��z� xi��G��

p
� 


P
m ��z� x� u�m�

����
� argmin��x

R
dz
���Pi exp

�
� �

��
jz� xij�

�
�Pm exp

�
� �

��
jz� x� u�mj�

�����
� argmin��x

h
C� � �Pmi

R
dz exp� �

��

�jz� xij� � jz� x� u�mj�
�i

� argmax��x
P

mi

R
dz exp� �

��

�jz� xij� � jz� x� u�mj�
�

� argmax��x
P

mi exp� �
���

jxi � x� u�mj�

����

Furthermore� note that multiplying the objective in ���� by a temperature factor � � ��T simply rescales

�jt� From this fact we conclude that deterministic annealing from T �� down to T � �� which is a good

strategy for 
nding global maxima in equation ����� corresponds to a coarse�to�
ne correlation matching

algorithm� the global shift x is computed by repeated local optimization while gradually decreasing the

Gaussian blurr parameter � down to �jt� The output of a coarse�scale optimization is taken as the input

to the next 
ner�scale optimization� as in deterministic annealing and other continuation methods� The

resulting coarse�to�
ne correlation matching algorithm is similar to the scale�space matching procedure

of �Witkin et al�� �
����

The approximation ���� has the e�ect of eliminating the discrete Pmi variables� rather than replacing

them with continuous versions Vmi� The same can be said for the �elastic net� method �Durbin and

Willshaw� �
���� which is a less aggressive and probably more accurate approximation in which the

sum over all permutation matrices is extended to a sum over all 	�� matrices with exactly one nonzero

element in each row but any number of nonzero entries in each column �Simic� �

	b� Yuille� �

	��

Again the sum can be performed exactly� The elastic net�s set of allowed matrices are intermediate in

generality between permutation matrices �required in the original problem� and the far larger set of

nonnegative integer matrices whose elements sum to N � used in our method� Compared to the elastic

net� the present objective function is simpler� more symmetric between rows and columns� has a nicer

interpretation in terms of known algorithms �correlation in scale space�� and is expected to be much

less accurate�

A neural net for performing the maximization of ���� with respect to x has been reported in �Mjol�

sness and Garrett� �

	�� �As mentioned in Section ���� the maximization with respect to � can be

handled by making one copy of this neural net for each model and adding a winner�take�all circuit�� �r
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was in
nite� The equations of motion were

�x � ������
P

im �im�xi � um � x�
�
im � �
im � �������Pim jxi � um � xj�
�im � exp
im�

����

A continuation from large � down to �jt was used� and it greatly reduced the network�s susceptibility

to 
nding incorrect local minima of the objective fuction�

Similar networks can be derived if the grammar includes other distortions such as dot deletion or a

global rotation �see Section ���

The networks of both this and the previous section super
cially have space complexity �cost� pro�

portional to NM where i � f� � � �Ng and m � f� � � �Mg� It may be possible to reduce one of these cost
factors� perhaps to a logarithmic term� by using more complicated architectures and approximations�
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� EXPERIMENTS IN IMAGE REGISTRATION

To demonstrate the robustness of the objective function derived in the last section� we tested it outside

its formal domain of validity� This kind of robustness is often required of vision algorithms� since their

�possibly implicit� mathematical models of the visual problem domain are hardly ever complete� Our

grammatical models are intended to make it easier to model heterogeneous noise sources in a complex

domain� but robustness would allow the grammars to remain small by modelling just the most important

visual phenomena�

Equation ���� is an objective function for recovering the global two�dimensional ��D� translation of

a model consisting of arbitrarily placed dots� to match up with similar dots with jittered positions� We

use it instead to 
nd the best �D rotation and horizontal translation� for two images which actually

di�er by a horizontal �D translation with roughly constant camera orientation� The images consist of

line segments rather than single dots� some of which are missing or extra data� In addition� there are

strong boundary e�ects due to parts of the scene being translated outside the camera�s 
eld of view�

The jitter is replaced by whatever positional inaccuracies come from an actual camera producing an

��� � ��� image �Williams and Hanson� �
��� which is then processed by a high quality line�segment

nding algorithm �Burns� �
���� Better results would be expected of objective functions derived from

grammars which explicitly model more of these noise processes� such as the grammars studied in Section

��

Since the data to be matched are not dots but line segments� one could alter the grammar and

rederive the various objective functions including ����� However one could also consider a line segment

to be a dense set of dots �admittedly not jittered randomly� and replace the sum over dot pairs in

���� with a sum over line segment pairs� each of which is an integral over dot pairs� For line�line

or line�dot matches the integrals can be done exactly �lines are unbounded in both directions�� For

segment�segment �or segment�dot� matches the integrals can be approximated� First note that

��t� �
�
� if t � 	
	 otherwise

����

��t����� t� 	
�X

i��

Ai exp��
�

�ci � t��

��i
����

where by numerical minimization of the Euclidean distance between these two functions of t� the pa�

rameters may be chosen as A� � A� � 	��		���� A� � ��	
���� �� � �� � 	�	
�
	��� �� � 	����	���

c� � � � c� � 	�����	�� and c� � 	��� Using this approximation� the objective function becomes a
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double integral along the two line segments�

Z ��

��

Z ��

��
exp��

�

�q� tr� us��

w�
��t����� t���u����� u� dt du

	
X
i�j

AiAj

Z ��

��

Z ��

��
exp��

�

�ci � t��

��i
exp��

�

�cj � u��

��j
exp��

�

�q� tr� us��

w�
dt du� ����

Each of these nine Gaussian integrals can be done exactly� De
ning

vij � q� cir� cjs ��
�

we have a term of the form

�X
i�j��

AiAj
��w��i�jq

�w� � r���i ��w
� � s���j �� ��i �

�
j �r � s��

exp��
�

v�ijw
� � �vij � r����i � �vij � s����j

�w� � r���i ��w
� � s���j �� ��i �

�
j �r � s��

��	�

added to the objective for each pair of line segments� as was calculated by Charles Garrett �Garrett�

�

	��

We experimented with minimizing this objective function with respect to unknown global transla�

tions and �sometimes� rotations� using the continuation method and sets of line segments derived from

real images� The optimization method used at each scale � was �a� for recovering translation alone� the

Conjugate Gradient method with line search� and �b� for recovering translation and rotation� coordinate

relaxation by repeated line searches along the x� y� and � directions� cyclically� The results are shown

in Figures �� � and ��
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Figure �� A simple image registration problem� �a� Stair image��b� Long line segments derived from stair
image� �c� Two unregistered line segment images derived from two images taken from two horizontally
translated viewpoints in three dimensions� The images are a pair of successive frames in an image
sequence� �d� Registered viersions of same data� superposed long line segments extracted from two
stair images �taken from viewpoints di�ering by a small horizontal translation in three dimensions� that
have been optimally registered in two dimensions�
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Figure �� Continuation method �deterministic annealing�� �a� Objective function at � � �	���� �b�
Objective function at � � ��		� �c� Objective function at � � ��	�� �d� Objective function at � � �	����
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Figure �� Image sequence displacement recovery� Frame � is matched to frames ��� in the stair image
sequence� Horizontal displacements are recovered� Other starting frames yield similar results except
for frame �� which was much worse� �a� Horizontal displacement recovered� assuming no ��d rotation�
Recovered dispacement as a function of frame number is monotonic� �b� Horizontal displacement recov�
ered� along with ��d rotation which is found to be small except for the 
nal frame� Displacements are in
qualitative agreement with �a�� more so for small displacements� �c� Objective function before and after
displacement is recovered �upper and lower curves� without rotation� Note gradual decrease in  E with
frame number �and hence with displacement�� �d� Objective function before and after displacement is
recovered �upper and lower curves� with rotation�
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� MORE GRAMMARS

To illustrate the generality of the grammatical method for posing vision problems in a form from which

neural networks can be derived� we exhibit several grammars of increasing complexity� In Section ���

we add rotation and dot deletion as new sources of noise for the random�dot grammar considered in

Section �� Section ��� introduces a two�level hierarchy� in which models are sets of clusters of dots�

Section ��� introduces a grammar for multiple curves in a single image� each of which is represented in

the image as a set of dots that may be hard to group into their original curves� This grammar illustrates

how �exible objects can be handled in our formalism�

We approach a modest plateau of generality with the grammar of Section ��� which again describes

hierarchical dot patterns but adds multiple objects in a single scene� This degree of complexity is

su�cient to introduce many interesting questions of knowledge representation in high�level vision� such

as multiple instances of a model in a scene� as well as requiring segmentation and grouping as part of the

recognition process� We prove that the grammatical approach can yield neural networks nearly identical

to the �Frameville� neural networks we have previously studied as a means of mixing simple Arti
cial

Intelligence frame systems �or semantic networks� with optimization�based neural networks� What

is more� the transformation leading to Frameville is very natural� It simply pushes the permutation

matrix as far back into the grammar as possible� This transformation should perhaps be done as a

matter of course if one is looking for a modular decomposition of a large vision problem into smaller�

more homogeneous pieces to which special methods such as scale�space correlation are most likely to

apply�

��� A Grammar with ��D Rotation and Dot Deletion

We can easily add two�dimensional rotations to the previous grammar �and similarly� other parameter�

ized group distortions as well�� The grammar� which also adds a dot deletion rule which changes the

constraints on Pim� is shown below�
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model
locations

�� � root � instance of model � at x

E�	x
 � �
���r

jxj�

rotated�
jittered dot

�� � instance	��x
 � fpredot	��m�xm
g

locations E�	fxcg
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���

jt

P
c jxm � x� R	�
 � u�mj

�� where � u
�
m �m� �

dot
deletion

�� � predot	��m�xm
 �

�
dot	m�xm
 if �m � ��
nothing if �m � ��

E�	�m
 � 	m�m
scramble
all dots

�� � fdot	m�xm
g � fimagedot	xi �
P

m Pm�ixm
g

E�	fxig
 � � log
Y
i

�	xi �
X
m

Pm�ixm


where
P

i Pm�i � �m �
P

m Pm�i � �

	��


The corresponding probability distribution is

Prf ��� fxig� � �
A

�
�p
���r

���
�p

���jt

��N X
n

Pj
P

i
Pm�i � �

and
P

m
Pm�i � �

o

e
�
P

mi
Pm�i

�
�

�N��r
jxj�� �

���
jt

jxi�x�R����u�mj���m
�
�

����

This is closely related to the objective function recommended for rigid body feature matching in �Yuille�

�

	��

As in Section ��� one may approximate the maximization of the integrated probability Pr����x� �jfxig�
with respect to �� x� and � via a neural net objective function

Eeff���x� �� fUg� fV g� � P
m�i Vm�i

�
�

�N��r
jxj�� �

���
jt

jxi � x� R��� � u�mj�
�
� �A���

P
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P

m Vm�i � ���

������
X
m�i

Um�iVm�i � �����
X
m

log

�X
i

expUm�i

�
�

����

Alternatively� as in Section ��� one could use an objective function without match variables�

Eeff���x� �� �
X
mi

exp�
�

�

�N��r
jxj� � �

���jt
jxi � x� R��� � u�mj�

�
� ����
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��� A Two�Level Random Dot Grammar

A fundamental capability gained by using a grammar is the ability to describe complex objects and

scenes� As a 
rst step in this direction� consider an object with a hierarchical decomposition into parts�

with internal degrees of freedom describing the relative positions of the parts� For random dot features�

the resulting images will generally be clusters of dots with unpredictable jitter of both the dot and the

cluster positions� A careful model of such an object is given by this grammar�

model
locations

�� � root � instance of model � at x

E�	x
 � �
���r

jxj�

cluster
locations

�� � instance	��x
 � fclusterloc	�� c� �xc � x 
 u
�
c 
g

E�	f�xcg
 � � log
Q

c �	�xc � x � u
�
c 
� where � u

�
c �c� �

cluster
jitter

�� � clusterloc	�� c� �xc
 � cluster	�� c�xc


E�	xc
 � �
���

cd

jxc � �xcj
�

dot
locations

�� � cluster	�� c�xc
 � fdotloc	�� c�m� �xcm � xc 
 u
�
cm
g

E�	f�xcmg
 � � log
Q

m �	�xcm � x � u
�
cm
� where � u

�
cm �m� �

dot
jitter

�� � dotloc	�� c�m� �xcm
 � dot	c�m�xcm


E�	�xcm
 � �
���

jt

jxcm � �xcmj
�

scramble
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�� � fdot	c�m�xcm
g � fimagedot	xi �
P

cm Pcm�ixcm
g

E�	fxig
 � � logPr	P 

Y
i

�	xi �
X
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Pcm�ixcm


where
P

i Pm�i � � �
P

m Pm�i � �

	��


which is equivalent� by integrating out �xc and �xcm� to a simpler grammar�
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locations

�� � root � instance of model � at x

E�	x
 � �
���r

jxj�

jittered cluster
locations

�� � instance	��x
 � fcluster	�� c�xc
g

E�	fxcg
 � �
���

cd

P
c jxc � x� u

�
c j
�� where � u

�
c �c� �

jittered dot
locations

�� � cluster	�� c�xc
 � fdot	c�m�xcm
g

E�	fxcmg
 � �
���

jt

P
m jxcm � xc � u

�
cmj

�� where � u
�
cm �m� �

scramble
all dots

�� � fdot	c�m�xcm
g � fimagedot	xi �
P

cm Pcm�ixcm
g

E�	fxig
 � � log
Y
i

�	xi �
X
cm

Pcm�ixcm


where
P

i Pm�i � � �
P

m Pm�i � �

	��




Bayesian Inference on Grammars by Neural Nets ��

instance

1

2 3

1,1 1,2

1,3 1,4

1,1 1,2

1,3 1,4
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Figure �� Operation of two�level random dot grammar� The 
rst arrow illustrates cluster placement
and cluster jitter� the next shows dot placement� the next shows dot jitter� and the 
nal arrow is the
scrambling or relabelling operation�

The corresponding probability distribution is�

Pr����x� fxcg� fxig� �
�

A

�
�p
���r

��� �p
���cd

��C
�

�p
���jt

��N X
n

Pj P is a

permutation

o

e
�
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�
�

�N��r
jxj�� C

�N��
cd

jxc�x�u�c j�� �
���
jt

jxi�xc�u�cmj�
� ����

where C is the number of clusters and N�C is the number of dots in each cluster� As in Section ���

one may approximate the maximization of the integrated probability Prf���x� fxcgjfxig� with respect
to �� x and xc via a neural net objective function

Eeff���x� fxcg� fUg� fVg� �
X
cm�i

Vcm�i

�
�

�N��r
jxj� � C

�N��cd
jxc � x� u�c j� �

�

���jt
jxi � xc � u�cmj�

�

��A���
X
i

�
X
cm

Vcm�i � ��� � �����
X
cm�i

Ucm�iVcm�i

������
X
cm

log

�X
i

expUcm�i

�
�

����
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Alternatively� as in Section ��� one could use an objective function without match variables�

Eeff���x� fxcg� �
X
cmi

exp�
�

�

�N��r
jxj� � C

�N��cd
jxc � x� u�c j� �

�

���jt
jxi � xc � u�cmj�

�
� ��
�

Intermediate designs result from changing variables by separately considering the cluster and the

member to which a data item is assigned� Pcm�i � P �
ciP

�
mi� Then P

� could be turned into analog match

variables and P � could be approximately integrated out� assuming that �jt is small with respect to the

variance of model dot locations u�cm within a cluster� and supposing that �cd is not small with respect

to the variance of cluster locations u�c �

��� Multiple Curves

This problem involves perceptual organization� one must extract multiple curves from a random�dot

pattern� The grammar generates such a pattern by sequentially generating a number of curves that

start with random locations and directions� Then� for each curve� the grammar sequentially generates

new dot locations and curve directions according to a Markov process which favors continuity� The


nal picture consists of all the dots generated� This grammar is �tail�recursive�� that is� a rule in the

grammar can replace a term by just one term of the same type�

make set
of curves

�� � root � curveset	�


E� � � No alternatives � certainty�
extend
curve set

�� � curveset	c
 �

�
fcurveset	c
 �
� curve	c 
 �� s � ��x� �
g if �c � ��
nothing if �c � ��

E�	x
 � 	�c 

�
���

�

jxj�

extend curve
by one dot

�� � curve	c� s�x� �
 �

�
fcurve	c� s
 ��x�� ��
� dot	c� s�x� �
g if �cs � ��
dot	c� s�x� �
g if �cs � ��

E�	x� ��x�� ��
 � 
�cs 
 e�	x� x
�� � � ��
� where

e�	�x���
 � �
���

�

�
arctan

�
	x�
	x�

�
���

��

 �

���r

�
j�xj� � l�

��

 �

���
bend

	��
�

scramble
all dots

�� � fdot	c� s�xcs
g � fimagedot	xi �
P

csPcs�ixcs
g

E�	fxig
 � � log
X

n
P j

P
i Pcs�i � Acs

and
P

cs Pcs�i � �

oPr	P 

Y
i

�	xi �
X
cs

Pcs�ixcs


	��


This grammar may be compared to the somewhat di�erent curve grammars of �Milios� �
�
��

In �Mjolsness et al�� �

�a� we show that this grammar has the joint probability distribution

Pr�xi� �i� Pcs�i� C� �Sc� c � �� ��� C�jN� � ��� q��



q���� q��

Z�

�C 
 q�
Z�

�N
exp���E�fPg� fxig� f�ig�� ����
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Table �� Syntactical Constraints for Multiple Curves
Syntactical Constraints Expressions

Total number of curves� C C � N �PN
i��

PN
j�� nextij

No�loop constraint
PN

i�� nextijmbri � mbrj � �
Start�element constraint

CX
c��

startcj � ��PN
i�� nextij

End�element constraint
PN

j�� nextij � �
Presence�absence constraint fnextijg� fstartcig � f	� �g and

fmbrig � f�� ��� Ng

where Z� and Z� are normalization constants and

E�fPg� fxig� f�ig� �
NX
i��

�
CX
c��

Pc��i

�
E��xi��

NX
i��

NX
j��

�
CX
c��

Sc��X
s��

Pcs�iPc�s����j

�
E��xj�xi� �i� �j��i� ����

The notation is as follows� c � �� ��� C is the curve index� s � �� ��� Sc is the dot index along a curve�

Sc is the number of dots in curve c� The image dot locations and orientations are fxig and f�ig� Also
q� � exp���� q� � exp���� C is the number of curves� Pcs�i is the permutation matrix introduced in Rule

� of the grammar and N is the number of perceived image dots� The distribution function contains the

free parameter � corresponding to the inverse of a temperature� � may by varied in a deterministic

annealing process�

The energy function in equation ���� can be further simpli
ed by a suitable change of variables�

Consider the following transformations�

nextij �
CX
c��

Sc��X
s��

Pcs�iPc�s����j � startci � Pc��i� mbri �
CX
c��

ScX
s��

sPcs�i ����

The choice of the new variables is not arbitrary� fnextijg tracks the membership of the data elements i
and j in the same curve with the constraint that j follows i as the next member in the chain� fstartcig
turns on� i�e� startci � �� if i is the starting element of curve c� fmbrig reindexes the data element i in
terms of its membership number �mbr� in a curve� The membership number of the starting element in

any curve c is one and for the last element in the chain� it is Sc�

The constraints needed to adequately characterize the problem undergo a transformation as well�

They are given in Table ��
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In terms of the new variables� the joint probability distribution becomes

Pr	f�ig� fnextijg� fstartcig� fmbrigjfxig� N 
 �
�

Z

	

exp

�
�
��
�N �

NX
i
�

NX
j
�

nextij

��
� logG� �E	fnextijg� fxig� f�ig


�
A
�
�

where G � q����q��
�������

and

E�fnextijg� fxig� f�ig� �
NX
i��

�
��� NX

j��

nextji

�
AE��xi� �

NX
i��

NX
j��

nextijE��xj � xi� �i� �j � �i�� ����

This objective function may be transformed to a neural network as in Section ���� resulting in a

network analogous the the Traveling Salesman network of �Hop
eld and Tank� �
��� which� because of

the change of variables� has the advantage that a curve can change �phase� �s�numbering as speci
ed

by fmbrg� gradually and locally as the network runs� without changing the curve�s connectedness �as
speci
ed by fnextg��

��� Frameville from a Grammar

Most neural net architectures appear inadequate for high�level vision problems because they lack the

ability to express� much less use or learn� su�ciently abstract knowledge� knowledge of parameterized

classes of shape� or of geometric relationships between objects� or of similarity in topology� shape or

function� Just as �perceptrons� were originally intended to be minimal models of percepts� related by

parameterized interconnections� one might try to invent a more abstract computational unit to model

small concepts� Such a �conceptron� could only result from the combined action of many perceptrons

or arti
cial neurons� and in this way would be a collective� large�scale phenomenon in a neural network�

A conceptron would more readily map to the intuitive idea of the �concept� of an object if it� �a� could

be instantiated many times in one scene or computation� with di�erent parameters such as position

and internal degrees of freedom� �b� could collect feedback from such dynamically allocated instances

for use in learning� �c� could express the expected or allowed range of variation from a prototype

model� �d� could enter into part�whole hierarchies with other conceptrons� �e� could enter into geometric

relationships with other conceptrons� �f� could enter into generalization and specialization relationships

with other conceptrons� and so forth�

The goal of the �Frameville� type of neural network architecture �Mjolsness et al�� �
�
� Anandan

et al�� �
�
� is to satisfy such constraints in much the way they can be satis
ed within a frame system

as used in Arti
cial Intelligence programming �Fahlman� �
�
�� while exhibiting a neural substrate
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or implementation which provides the kind of inexact matching abilities that objective�function based

neural nets are capable of� The Frameville objective function was based on inexact graph�matching

applied to a part�whole relationship denoted INA�� � f	� �g�

E �
X
��

X
ij

INA��inaijM�iM�jH
���Fi�Fj� ����

subject to constraints including

P
� INA��M�i �

P
j inaijM�j �a�P

� INA��M�j �
P

i inaijM�i �b��
����

�See 
gure ��� Here � or � index the �frame�� which could also be called the �object model�� �prototype

object�� or �conceptron�� and i or j index an instance tied to � throughM�i � !	� �"� INA�� is assumed

to be a tree in this paper �so
P

� INA�� � �� but may be a directed graph in general Frameville� Fi are

the parameters of the instance� andH�� is a distance or parameter�
t function speci
c to the part�whole

relationship INA���

A typical use of Fi� Fj and H�� would be for F to hold environment�centered coordinates of

the object i and of its part j� along with deduced object�centered coordinates such as translations

and orientation angles of each part� and for H to perform coordinate transformations to deduce such

coordinates and to check consistency between the deduced and expected object�centered coordinates of

an object�s parts� In this and a number of other important respects� the Frameville networks resemble

the TRAFFIC system of �Zemel� �
�
�� Other networks are related to Frameville by virtue of the

use of graph�matching or arrays of match neurons for visual object recognition �von der Malsburg

and Bienenstock� �
��� von der Malsburg� �
��� Cooper� �
�
� Feldman et al�� �
��� Bienenstock and

Doursat� �

�� or using objective functions for high�level knowledge representation �Derthick� �
���

Stolcke� �
�
��

�
�
� The Grammar

It can now be shown that the Frameville objective function and syntax constraints� as outlined above�

can be derived from a random�dot grammar with multiple instances of two�level objects� We use multiple

index notation � � ��� s�� �i�e� model � may occupy the s��th �slot� of model �� if INA�� � � � INA��s��

and � � ��� s�� s�� �i�e� model � may occupy the s��th slot of model ��s��� if INA�	 � � � INA�s��s���

The multiple�instance grammar is shown below�



Bayesian Inference on Grammars by Neural Nets �	

Instance i

plane

wing

M

M

ina

Instance j

INA

Model  α

Model  β

F i

F j

Figure �� Frameville neural network� �a� The objective function� E �
P

��

P
ij INA��inaijM�iM�j

�H���Fi�Fj�� Circles are neurons� ovals are models �or frames� and triangles are model �frame�
instances containing analog parameters �internal circles�� �b� The constraints�

P
� INA��M�i �P

j inaijM�j and
P

� INA��M�j �
P

i inaijM�i� Since INA�� is a tree� the two constraint diagrams
are not symmetric�
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N unknown
objects

�� � root � fobject	a
ja � f�� � � �Ng g

E�	x
 � �
assign models
and locations

�� � object	a
 � instance	a� ��xa


to objects E�	��xa
 � �
���r

jxaj
�

jittered cluster
locations

�� � instance	a� ��xa
 � fcluster	a� �� s��xas�
jINA��s� � �g

E�	fxas�g
 � �
���

cd

P
s�
INA��s� jxas� � xa � u

�
s�
j�

�
P

s�
INA��s�H

��s��	xa�xas�


jittered dot
locations

�� � cluster	a� �� s��xas�
 � fpredot	a� s�� s��xas�s�
jINA�s��s� � �g

E�	fxas�s�g
 � �
���

jt

P
s�
INA�s��s� jxas�s� � xas� � u

�
s�s�

j�

�
P

s�
INA�s��s�H

��s�s��	xas� �xas�s�


dot
deletion

�� � predot	a� �� s�� s��xas�s�
 �

�
dot	a� �� s�� s��xas�s�
 if �a�s�s� � ��
nothing if �a�s�s� � ��

E�	�a�s�s�
 � INA��s�INA�s��s�	�s�s�
P

a	�� Ca��a�s�s�


scramble
all dots�

�� � fdot	a� �� s�s��xas�s�
g �
fimagedot	xk �

P
a�s�s�

Pa�s�s��ixas�s�
j�k � �g
�fimagedot	xk
j�k � �g

and add
noise dots

E�	fxkg
 � � log
h Y
kj�k
�

�	xk �
X

a�s�s�

Pa�s�s��kxa�s�s�

i

� log �	
P

i �k �
P

a�s�s�
Aa�s�s�



	extra
P

i	�� �k

where

P
i Pa�s�s��k � Aa�s�s� and

P
a�s�s�

Pa�s�s��k � �k

	��


We have introduced the �aliveness variables� Ar
��� � f	� �g�

Aa�s�s� � Ca�INA��s�INA�s��s�
a�s�s� ����

which is required in the expression for E	� Here Ca� records the choice of model made in rule �
� by

object�a�� thus
P

�Ca� � ��a� ����N � a� and
P

a�Ca� � �� Aa�s�s� records which combinations of

indices survive the whole grammar to account for some data dot�

In this grammar� �� is the essential new ingredient� �
 and the �noise� dots of �	 are just extra

types of noise that can be handled� The following restrictions on Frameville apply for this grammar�

INA is a tree� ISA is absent� sibling relationships �hence graph�matching on these relationships� are

absent� Also it will turn out that the instance indices k and j are preassigned to either level �� �� or �

of a hierarchy �corresponding to models indexed by �� � and � respectively� which is not true of the

original Frameville objective ����� this however is a much less substantive restriction�
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P
α s2 s3

INA

INA

INA

inaINA

root

α

α s2 s3

α s2

k

j

i

a

M

M

M

M

ina

ina

INA

INA

α s2

α

root

Figure �� Change of variables� and the corresponding change in objective function� from global permu�
tation variables P to local correspondance variables M and grouping variables ina� Note that analog
parameters move from the models �where they must be present in multiple copies� to the instances�
Left of arrow� objective of equation ��	�� Right of arrow� objective of equation ���� or �
���

One useful moment of the joint model�image probability distribution is

Prf �fxa�g� fxa�s�g� fCa�gjfxkg� � �
Z

P�
P j Pk Pa�s�s��k � � 
 P

a�s�s� Pa�s�s��k � �

 Pa�s�s��k � Pa�s�s��kCa�INA��s�INA�s��s�

�

exp���E�fxa�g� fxa�s�g� fCa�g� fxkg�
��
�

where �� is the inverse temperature �to be taken to �� and

E�� � �� �
X

a�s�s�

X
k

Pa�s�s��k !H
�s�s��xa�s��xk�� �extra � ��s�s� "

�
X
a�s�

Ca�H
�s��xa��xa�s�� �

X
a�

Ca�H
root��xa���

��	�

This objective is illustrated in 
gure ��a��

�
�
� Changing Variables

To get the Frameville objective and constraints� we must reparameterize Prf and E by changing variables�

Generally we do this by pushing the permutations� P � farther back into the grammar� A computational
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advantage is that P �s replacements will have fewer indices and hence be less costly� To begin with�

for a data item indexed by k we could separately specify its correspondance to s� and to �a� �� s���

Unfortunately E needs to know more than s� in order to apply the correct H term� so we instead

consistently specify �� s�� s� and a� �� s� for each k�

Pa�s�s��k �M�s�s��k
�inaa�s��k ����

where

M�s�s��k �
X
a

Pa�s�s��k and �inaa�s��k �
X
s�

Pa�s�s��k� ����

The constraints on P are consistently translated into new constraints on M and �ina by Lemma ��

Lemma �
 The following two conjunctions �a � e and a� � g�� are equivalent for 	�� variables P �

M � and �ina�

�a� M�s�s��k �
P

a Pa�s�s��k �a�� Pa�s�s��k �M�s�s��k
�inaa�s��k

�b� 
 �inaa�s��k �
P

s�
Pa�s�s��k �b�� 
 P

s�
M�s�s� �k �

P
a
�inaa�s��k

�c� 
 P
k Pa�s�s� �k � � �c�� 
 P

kM�s�s��k
�inaa�s��k � �

�d� 
 P
a�s�s� Pa�s�s��k � � �d�� 
 P

�s�s� M�s�s� �k � �

�e�� 
 P
a�s�

�inaa�s��k � �

�e� 
 Pa�s�s��k � Pa�s�s��kCa�INA��s�INA�s��s� �f �� 
 �inaa�s��k � �inaa�s��kCa�INA��s�

�g�� 
 M�s�s��k �M�s�s��kINA�s��s�

����

Proof�

��
�a�� �

�� Pa�s�s��k � �Pa�s�s��k�
� �since P � f	� �g� � �Pa Pa�s�s��k��

P
s�
Pa�s�s��k� � M�s�s� �k

�inaa�s��k

�by �a� b���

��
P

as�
Pa�s�s��k �

P
a�s�s�

Pa�s�s� �k � � �by �d���
��
P

as� M�s�s��k
�inaa�s��k �

P
as�

P
a�s��

Pa��s�s��kPa�s�s���k �by �a� b�� � �
P

as� Pa�s�s��k�
�

�
P

as� Pa�s�s��k �by �����



Bayesian Inference on Grammars by Neural Nets ��

��
P

a�s�s�k jPa�s�s��k �M�s�s��k
�inaa�s��kj �

P
a�s�s�k�M�s�s��k

�inaa�s��k � Pa�s�s��k� �by ���� � 	

�by �����

Thus Pa�s�s� �k �M�s�s��k
�inaa�s��k �

�b�� �
P

s� M�s�s� �k �
P

as� Pa�s�s� �k �by �a�� �
P

a
�inaa�s��k �by �b���

�c�� �
P

kM�s�s��k
�inaa�s��k �

P
k Pa�s�s� �k �by �a

��� � � �by �c���
�d�� �

P
as�s� M�s�s��k �

P
a�s�s� Pa�s�s��k �by �a�� � � �by �d���

�e�� �
P

a�s�
�inaa�s��k �

P
a�s�s�

Pa�s�s��k �by �b�� � � �by �d���
�f �� � �inaa�s��k �

P
s� Pa�s�s��k �by �b�� � Ca�INA��s�

P
s� INA�s��s�Pa�s�s��k �by �e��

� �Ca����INA��s��
�P

s�
INA�s��s�Pa�s�s��k � Ca�INA��s�

P
s�
Pa�s�s��k �by �e�� � Ca�INA��s�

�inaa�s��k

�by �b���

�g�� �M�s�s��k �
P

a Pa�s�s��k �by �b�� � INA�s��s�

P
a Pa�s�s��k �by �e�� �M�s�s��kINA�s��s� �by �b���

��
�a� �

P
a Pa�s�s� �k � M�s�s��k

P
a
�inaa�s��k �by �a

��� � M�s�s��k�
P

s��
M�s�s

�

��k
� �by �b��� � M�s�s��k

�since
P

s��
M�s�s

�

��k
� � by �d����

�b� �
P

s�
Pa�s�s��k � �inaa�s��k

P
s�
M�s�s��k �by �a

��� � �inaa�s��k
P

a�
�inaa��s��k �by �b

��� � �inaa�s��k

�by �e����

�c� �
P

k Pa�s�s��k �
P

kM�s�s��k
�inaa�s��k �by �a

��� � � �by �c����
�d� �

P
a�s�s�

Pa�s�s��k �
P

�s�
�
P

s�
M�s�s��k��

P
a
�inaa�s��k� �by �a

��� �
P

�s�
�
P

s�
M�s�s��k�

� �by

�b��� �
P

�s�s� M�s�s��k �by �d
��� � � �by �d����

�e� � Pa�s�s��k � M�s�s��k
�inaa�s��k �by �a

��� � M�s�s��kINA�s��s�
�inaa�s��kCa�INA��s� �by �f

�� g���

� Pa�s�s��kCa�INA��s�INA�s��s� �by �a
����

QED�

This change of variables is one�to�one� so E could simply be rewritten in terms of M and �ina� But

we can do better� �ina has many similarities to P with one index removed� so one could try to change

variables again to remove another index� This doesn�t quite work because �inaa�s��k relates coarse�scale

models to 
ne�scale data and therefore the constraints on �ina are tighter than the constraints on P � So

before attempting a hierarchical induction step� we factor �ina into a grouping term inajk that constructs



Bayesian Inference on Grammars by Neural Nets ��

a data hierarchy� and a coarse�scale matching matrix Pa�s��j �

�inaa�s��k �
X
j

inajkPa�s��j � ����

The resulting change of variables is illustrated in 
gure �� When augmented by the constraints stated in

Lemma � below� this change of variables has the e�ect of pushing the P matrix back one level into the

grammar� leaving behind Frameville variables M and ina at the bottom level �the 
nest scale�� This

entire process can be repeated inductively� as we will see�

To state the new constraints it is necessary to account for the redundancy inherent in the assignment

of j indices to groupings of data indexed by k �i�e� the freedom to permute j in inajk�� To this end�

we will de
ne a 
xed mapping Ra�s��j �consistent with Ca�� from possible copies of high level models

�i�e� tuples �a� �� s��� to high level frame instances �j�� then permute the j�s with a matrix Q in order

to get Pa�s��k� For example R could be chosen as follows� The number of nonzero Ca�INA�s� entries isP
a�s�

Ca�INA�s� � Lexicographically order these� and let Ra�s��j � � �� j indexes �a�s��� for which

Ca�INAa�s� � �� otherwise R � 	� Then

�r��
P

j Ra�s��j � Ca�INA��s�

�r��
P

a�s� Ra�s��j � �
�r�� Ra�s��j � Ra�s��jCa�INA��s��

����

Note that �r�� can actually be re
ned as follows� due to the lexicographical ordering of �a�s�� by

R� mapping such tuples to index j� we have

P
a�s�

Ra�s��j �

�
� if � � j � n����C� INA�
	 otherwise

� ��j � ����n����C� INA�� j�

����

where as before ��x� � � if x � 	 and ��x� � 	 if x � 	� Also n����C� INA� is the number of allowed

tuples� namely

n����C� INA� �
X
a�s�j

Ra�s��j �
X
a�s�

Ca�INA��s� � ����

For this function R�C� INA� we can now prove
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Lemma �
 There is a 	���valued function Ra�s��j�Ca�INA��s�� for which the following two conjunc�

tions �a� g and a� � h�� are equivalent for 	�� variables �ina� Q� P � ina� and M �

�a� Pa�s��j �
P

j� Ra�s��j�Qjj� � �a�� �inaa�s��k �
P

j inajkPa�s��j

�b� 
 Q is an embedded permutation� i�e� � �b��
P

j inajk � �

�b�� 
 P
j Qj�j � �

�b�� 
 P
j� Qj�j �

P
a�s� Ra�s��j�� ��

�b�� 
 P
j�j Qj�j �

P
a�s�

Ca�INA��s�

�c� 
 inajk �
P

a�s�
�inaa�s��kPa�s��j �c�� 
 inajk � inajk

P
a�s� Pa�s��j

�d�� 
 P
j Pa�s��j � Ca�INA�s�

�d� 
 P
a�s�

�inaa�s��k � � �e�� 
 P
a�s�

Pa�s��j � �

�e� 
 �inaa�s��k � �inaa�s��kCa�INA�s� �f �� 
 Pa�s� �j � Pa�s��jCa�INA�s�

�f� 
 P
kM�s�s��k

�inaa�s��k � � �g�� 
 P
kM�s�s��k

P
j inajkPa�s��j � �

�g� 
 P
a
�inaa�s��k �

P
s�
M�s�s� �k �h�� 
 P

j inajk
P

a Pa�s��j �
P

s�
M�s�s��k

����

Proof� Suppose �a � e �� a� � f ��� Then �f � g� and �g� � h�� are the same pair of addi�

tional constraints expressed in terms of �ina and �P� ina�� respectively� using a�� So it su�ces to prove

�a� e �� a� � f ���

��
�d�� �

P
j Pa�s��j �

P
j� Ra�s��j�

P
j Qjj� �by �a�� �

P
j� Ra�s��j�

P
a���s��

Ra���s���j
� �by �b��� �

P
j� Ra�s��j�

�by �r��� � Ca�INA��s� �by �r����

�e�� �
P

a�s� Pa�s��j �
P

j�
P

a�s� Ra�s��j�Qjj� �by �a�� �P
j� Qjj� �by �r��� � � �by �b����

�a�� �
P

j inajkPa�s��j �
P

j

P
a���s��

�inaa���s���k
Pa���s���j

�Pa�s��j� �by �c��

�
P

j

P
a���s��

�inaa���s���k
�aa������s�s��Pa�s��j �by �e

��� � �inaa�s��kCa�INA��s� �by �d
��� � �inaa�s��k �by

�e���

�b�� �
P

j inajk �
P

a�s�
�inaa�s��k�

P
j Pa�s��j� �by �c�� �

P
a�s�

�inaa�s��k �by �d
��� � � �by �d���

�f �� � Pa�s��j �
P

j� Ra�s��j�Qjj� �by �a�� � Ca�INA��s�

P
j� Ra�s��j�Qjj� �by �r��� � Pa�s��jCa�INA��s�
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�by �a���

�c�� � inajk
P

a�s�
Pa�s��j �

P
a�s�

P
a���s��

�inaa���s���k
Pa���s���j

Pa�s��j �by �c��

�
P

a�s�

P
a���s��

�inaa���s���k
�aa������s�s��Pa�s��j �by �e

��� � inaj�k �by �c���

�� We exhibited R�C� INA� obeying �r��� �r��� De
ne

Qjj� �
X
a�s�

Pa�s��jRa�s��j� � ��
�

�a� �
P

j� Ra�s��j�Qjj� �
P

a���s��
Pa���s���j

P
j� Ra���s���j

�Ra�s��j� �by ��
�� � Pa�s��j
P

j� Ra�s��j� �by

�r��� � Pa�s��jCa�INA��s� �by �r��� � Pa�s��j �by �f
����

�b�� �
P

j� Qjj� �
P

a�s� Pa�s��j
P

j� Ra�s��j� �by ��
�� �
P

a�s� Pa�s��jCa�INA��s� �by �r���

�
P

a�s� Pa�s��j �by �f
��� � � �by �e����

�b�� �
P

j Qjj� �
P

a�s�
�
P

j Pa�s��j�Ra�s��j� �by ��
�� �
P

a�s�
Ra�s��j�Ca�INA��s� �by �d

���

�
P

a�s� Ra�s��j� �by �r��� � � �by �r����
�b�� �

P
jj� Qjj� �

P
a�s�

�
P

j Pa�s��j��
P

j� Ra�s��j�� �by ��
�� �
P

a�s�
�Ca�INA��s��

� �by �r�� d
���

�
P

a�s� Ca�INA��s� �

�c� �
P

a�s�
�inaa�s��kPa�s��j �

P
j� inaj�k

P
a�s� Pa�s��jPa�s��j� �by �a

��� �
P

j� inaj�k
P

a�s� Pa�s��j�jj�

�by �d��� � inajk
P

a�s� Pa�s��j � inajk �by �d
����

�d� �
P

a�s�
�inaa�s��k �

P
j inajk

P
a�s� Pa�s��j �by �a

��� �
P

j inajk �by �c
��� � � �by �b����

�e� � �inaa�s��k �
P

j inajkPa�s� �j �by �a
��� � Ca�INA��s�

P
j inajkPa�s��j �by �f

���

� �inaa�s��kCa�INA��s� �

QED

Of the constraints ���a�� f ��� most can be regarded as constraining the variables M and ina rather

than Pa�s��j � That is not true for d
� � f � which� however� are analogous to the original constraints

on Pa�s�s��k� namely ���c � e�� Aside from dropping an index� the only change between constraints

on Pa�s�s��k and Pa�s� �j is that
P

k Pa�s�s��k � � becomes
P

j Pa�s��j � Ca�INA�s� since the grammar

generates extra �spurious� dots but not extra higher�level objects� Because of this close analogy� we can

iterate the entire process once to drop the s� index from P � and then again to 
nally eliminate P and

C in favor of high�level M and ina variables� What are the resulting constraints on M and ina# The

answer is provided by Theorem ��
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Theorem �
 For con
gurations of 	�� variables Pa�s�s��k and Ca�� satisfying the constraints

A �
P

k Pa�s�s��k � ��P
a�s�s�

Pa�s�s��k � ��
Pa�s�s��k � Pa�s�s��kCa�INA��s�INA�s��s� �

�a� and
X
�

Ca� � �� �b� ��	�

along with auxiliary variables Q� and Q� satisfying

B �
P

j Q
�
j�j � �� �a��P

j� Q
�
j�j � ��n����C�� j���j � ��� �b��P

j�j Q
�
j�j � n����C� �c��

and

P
iQ

�
i�i � � �a��P

i� Q
�
i�i � ��n����C�� i���i� �� �b��P

i�iQ
�
i�i � n����C� �c��

����

�for certain integer�valued functions n������C�� there is a one�to�one correspondance with constrained

con
gurations of 	�� variables M��M��M�� ina�� ina�� ina�� The correspondance is given by

C �
Pa�s�s��k � M�

�s�s��k

P
j ina

�
jkPa�s��j ���

Pa�s��j � M�
�s��j

P
i ina

�
ijPa��i ���

Pa��i � M�
��iina

�
ai ���

����

and inversely by

D �

M�
�s�s��k

�
P

a Pa�s�s��k �a��

ina�jk �
P

�s�s�

�P
s�
Pa�s�s��k

�
Pa�s��j �b��

Pa�s��j � P
j� R

�
a�s��j

�fCg�Q�
jj� �c��

M�
�s��j

�
P

a Pa�s��j �a��

ina�ij �
P

a�

�P
s� Pa�s��j

�
Pa��i �b��

Pa��i � P
i� R

�
a��i�fCg�Q�

ii� �c��

M�
��i �

P
a Pa��i �a��

ina�ai �
P

� Pa��i �b��

����

for 	�� variables Pa�s� �j and Pa��i and certain functions R�C�� The constraints on M and ina are

E � P
�s�s� M

�
�s�s��k

� � �a��P
�s� M

�
�s��j

� � �a��P
�M

�
��i � � �a��

P
j ina

�
j�k � � �b��P

i ina
�
i�j � � �b��P

a ina
�
a�i � � �b��P

j ina
�
j�kM

�
�s��j

�
P

s� INA�s��s�M
�
�s�s��k

�c��P
i ina

�
i�jM

�
��i �

P
s� INA��s�M

�
�s��j

�c��P
a ina

�
a�iM

�
root�a �

P
� INAroot��M

�
��i �c��

P
k ina

�
j�kM

�
�s�s� �k

� INA�s��s�M
�
�s��j

�d��P
j ina

�
i�jM

�
�s� �j

� INA��s�M
�
��i �d��P

i ina
�
a�iM

�
��i � Ca� � � �d��

ina�j�k � P
�s� M

�
�s� �j

�e��

ina�i�j � P
�M

�
��i �e��P

i ina
�
a�i � � �e��

M�
�s�s��k

� INA�s��s�M
�
�s�s��k

�f��

M�
�s��j

� INA��s�M
�
�s��j

�f��

����
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Notes� ��� The proof is given at a very detailed level� and could perhaps be shortened considerably

by the invention of new notation� ��� InM� ina space� E�d�� has the e�ect of de
ning C in the change of
variables back to P�C space� ��� The theorem asserts the existence of functions n������C� and R�C�� We

have already speci
ed n��� �
P

a�s� Ca�INA��s� and R� they also depend on the constants INA��s� � n
���

is analogous to n���� n��� �
P

a�Ca�� �INAroot�� � ��� ��� The constants INAroot�� � � and M
�
root�a � �

�in E� are introduced for uniformity of notation across levels �� �� and �� In particular INAroot�� � �

for the possible models types that may appear in a scene� but INA��s� � � and INA�s��s� � � for the

expected subparts of an object�

Proof of Theorem �� The goal is to prove A
B 
 D �� C 
 E � in which each labelled proposition
�equations ��	������ above� is itself a conjunction� It will be helpful to use the phrase ���� in the context

of ���� technically� �X �� Y in the context of Z� means X 
 Z �� Y 
 Z �
Step �� Assumptions A�a�
B���
D���� along with the de
nition ���b�� are equivalent by Lemmas

� and � to ���a�� 
 ���d�� 
 ���g�� 
 ���a�� h��� Note that B�b�� has been re
ned from �b�� in Lemma
�� according to equation ����� which is valid since Lemma � was proved for a particular R�C� INA�

satisfying equation ����� Upon eliminating �ina by ���a��� this conjunction may be rewritten as the

conjunction of

F �

Pa�s�s��k � M�
�s�s��k

P
j ina

�
jkPa�s��j �� C��� from ���a���P

�s�s� M
�
�s�s��k

� � �� E�a�� from ���d���
M�

�s�s��k
� INA�s��s�M

�
�s�s��k

�� E�f�� from ���g���P
j ina

�
jk � � �� E�b�� from ���b���P

j ina
�
jk

P
a Pa�s��j �

P
s�
M�

�s�s��k
��� E�c�� in context of D�a��� from ���h���

����

and

G � ina�jk � ina�jk
P

a�s�
Pa�s��j �a� �from ���c���P

kM
�
�s�s� �k

P
j ina

�
jkPa�s��j � � �b� �from ���g���

����

and

H �
P

j Pa�s��j � Ca�INA��s� �from ���d���P
a�s� Pa�s��j � � �from ���e���

Pa�s��j � Pa�s��jCa�INA��s� �from ���f ���
����

Thus A�a� 
 B��� 
 D��� is equivalent to F 
 G 
H�
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Step �� F has already been �translated� into parts of C 
 E � We must now translate G and H�
Let us 
rst work on H� which is analogous to A�a� except for the modi
cation to Pj P � There are

corresponding versions of Lemmas � and �� modi
ed only by loss of an index and as follows fromP
j Pa�s��j � Ca�INA��s� � ���c�� ���c

�� � ���f�� and ���g�� are all equal to Ca�INA��s� rather than

bounded by unity� Note that for INA��s� factors the loss of the s� index results in INAroot�� � � which

can be omitted from products in which it occurs� This a�ects ���e� f �� and ���e� d�� f ���

Thus H 
 B��� 
 D���� along with the de
nition �inaa��j �
P

s�
Pa�s� �j � are equivalent by analogs of

Lemmas � and � to the conjunction of

I �

Pa�s��j � M�
�s��j

P
i ina

�
ijPa��i �� C����P

�s�
M�

�s��j
� � �� E�a���

M�
�s��j

� INA��s�M
�
�s� �j

�� E�f���P
i ina

�
ij � � �� E�b���P

j ina
�
ij

P
a Pa��i �

P
s� M

�
�s��j

��� E�c�� in context of D�a���

����

and

J � ina�ij � ina�ij
P

a� Pa��i �a�P
j M

�
�s��j

P
i ina

�
ijPa��i � Ca�INA��s� �b�

��
�

and

K �
P

i Pa��i � Ca� �a�P
a� Pa��i � � �b�
Pa��i � Pa��iCa� �c�

��	�

Note that Pa��i � Pa��iCa� is actually redundant since Pa��iCa� � Pa��i
P

i� Pa��i� � Pa��i�

Thus H 
 B��� 
 D��� is equivalent to I 
 J 
 K�

Step �� At this point we know enough to rewrite G in terms of C and E � In the context of F
I
J
K�
i�e� �by step �� in the context of F 
H 
 B��� 
 D���� G is equivalent to the conjunction of

L � ina�jk � P
�s� M

�
�s��j

�a� �� E�e���P
kM

�
�s�s��k

ina�jk � M�
�s��j

INA�s��s� �b� �� E�d��� ����

as we now prove�

G�a� � L�a�� ina�jk � ina�jk
P

a�s� Pa�s� �j � ina�jk
P

�s� M
�
�s��j

�by D�a��� � P
�s� M

�
�s��j

since

ina�jk � ��
L�a�� G�a�� ina�jk �

P
�s� M

�
�s��j

� �ina�jk�
� � ina�jk

P
�s� M

�
�s� �j

� ina�jk � ina�jk
P

�s� M
�
�s��j

�
ina�jk �since ina

�
jk � �ina

�
jk�

� and
P

�s� M
�
�s��j

� � by I� � ina�jk � ina�jk
P

�s� M
�
�s��j

�
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L�b�� G�b�� PkM
�
�s�s� �k

ina�jk �M�
�s��j

INA�s��s� �
P

kM
�
�s�s��k

P
j ina

�
jkPa�s��j

� P
jM

�
�s��j

Pa�s��jINA�s��s� �
P

jM
�
�s��j

P
i ina

�
ijPa��iINA�s��s� �by I� � Ca�INA��s�INA�s��s� �by

J �b�� � ��
G � L�b�� It su�ces to deduce

X
k

M�
�s�s��kina

�
jkM

�
�s��j �M�

�s��jINA�s��s� ����

because this is L�b� if M�
�s��j

� � and otherwise M�
�s��j

� 	 � Pa�s��j � 	 �by I�a�� � ina�jk � 	

�by D���� which follows from F 
 G 
H and step �� � P
kM

�
�s�s��k

ina�jk � 	 � L�b�� To derive �����
multiply G�b� by Pa Pa�s��j �M�

�s��j
�using D���� and use F�c� to introduce INA�

�a��
X
k

M�
�s�s� �k

X
j�

ina�j�kPa��s��j�
X
a

Pa�s��j �M�
�s��j

INA�s��s� � ����

Now H � P
a Pa�s��j � f	� �g� Case �� There is a unique a for which Pa�s��j � �� Let a� be that a�

Then

Pa��s��j�
X
a

Pa�s��j �
X
a

Pa�s��j�Pa�s� �j � ����

Case 	� Pa�s��j � 	 �a� ���� for any a�� Either way the inequality ���� becomes

X
k

M�
�s�s��k

X
j�

ina�j�k
X
a

Pa�s��j�Pa�s��j �M�
�s��j

INA�s��s� � ����

But H � P
j Pa�s��j � � � Pa�s��j�Pa�s��j � �j�jPa�s��j �

P
a Pa�s��j�Pa�s��j � �j�jM

�
�s��j

�by D����
and ���� implies ����� as desired�

So� in the context of F 
 I 
 J 
 K� G is equivalent to L� We calculate A�a� 
 B��� �� 
 D��� ��
� !A�a� 
 B���
 D���"
B���
D��� �� F 
G 
H
B���
D��� �by Step �� �� D�a��
F 
 G 

H
B���
D��� �� D�a��
F 
G 
I 
J 
K �by Step �� �� D�a��
F 
I 
J 
K
L �by Step
� so far� �� C��� 
 E��� 
 I 
 J 
 K 
 D�a�� �by de
nitions of F and L� plus use of context D�a��
for E�c����
So� A�a� 
 B��� ��
 D��� �� �� C��� 
 E���
 I 
 J 
 K 
 D�a��

Step �� I has already been translated into the notation of C 
 E � it remains to translate J and K�
In this step we work on K� The analog of Lemma � breaks down here because we are at the top of the
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hierarchy� Instead� observe that K�b�
 D��� is directly equivalent to the conjunction

M �
Pa��i � M�

��iina
�
ai �a� �� C����P

�M
�
��i �

P
a ina

�
ai � � �b� �� E��a� b� c��� ����

as we now prove�

�� M�
��iina

�
ai � �

P
b Pb��i��

P
� Pa��i� � �Pa��i�

� � Pa��i� On the other hand � �
P

b� Pb��i �by

K�b�� � P
b Pb��i �

P
� Pa��i � Pa��i � Pa��i � � �

P
b Pb��i �

P
� Pa��i � �Pa��i � ��

� � �Pb Pb��i �P
� Pa��i�

�� �Pb Pb��i�
P

� Pa��i�
� � ��

P
b Pb��i��

P
� Pa��i�� therefore M

�
��iina

�
ai � �

P
b Pb��i��

P
� Pa��i�

� b�Pb Pb��i��
P

� Pa��i�c � b�Pa��i � �����c � Pa��i �since Pa��i � f	� �g�� Thus M�
��iina

�
ai � Pa��i� i�e�

we haveM�a�� We see P�M
�
�i �

P
a� Pa��i �

P
a ina

�
ai directly from D���� and Pa� Pa��i � � is K�b��

this establishesM�b��
�� Pa Pa��i � M�

��i

P
a ina

�
ai �by M�a�� � M�

��i

P
�M

�
��i �by M�b�� � M�

��i �by M�b��� LikewiseP
� Pa��i � ina�ai� so we have D���� From this we calculate

P
a� Pa��i �

P
�M

�
��i � � �byM�b���

So K�b� 
 D��� is equivalent to M� In the context of M� K�a� is equivalent �by straightforward
translation� to

N �
P

iM
�
��iina

�
ai � Ca� �� E�d��� ����

whence� in the context ofM� A�b� is equivalent to

O � � �
P

i�
P

�M
�
��i�ina

�
ai

�
P

i�
P

i� ina
�
ai��ina

�
ai �

P
i ina

�
ai �� E�e���� ����

As previously noted� K�c� is redundant in the context of K�a� and K�b��
Therefore� A�b� 
 D��� 
 K is equivalent toM
N 
O� i�e� to C��� 
 E����

Step �� Here we translate J to provide the missing pieces of C 
 E � In the context of C���
 D���

D��� 
 E��� 
 I 
 K 
 L� J is equivalent to the conjunction of

P � ina�ij � P
�M

�
��i �a� �� E�e���P

jM
�
�s��j

ina�ij � M�
��iINA��s� �b� �� E�d���� ��
�

Furthermore� the implication P � J doesn�t require the entire context� it follows from D���
E�a��
K
alone� We now prove these assertions�

J �a�� P�a�� ina�ij � ina�ij
P

a�
P

� Pa��i� � ina�ij
P

aM
�
��i �by D�a��� which is part of the context�

�P
aM

�
��i �since ina

�
ij � f	� �g��
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P�a�� J �a�� ina�ij �
P

�M
�
��i � �ina�ij�

� � ina�ij
P

�M
�
��j � ina�ij � ina�ij

P
�M

�
��i � ina�ij �since

ina�ij � �ina
�
ij�

� and
P

�M
�
��i � � by E�a��� � ina�ij � ina�ij

P
�M

�
��j � ina�ij

P
a� Pa��i �by D�a����

P�b� � J �b�� Pj M
�
�s��j

ina�ij � M�
��iINA��s� �

P
j M

�
�s��j

P
i ina

�
ijPa��i � �

P
iM

�
��iPa��i�INA��s�

� �
P

iM
�
��iM

�
��iina

�
ai�INA��s� �byM which follows from context K�b�
D��� by the 
rst half of Step ��

� Ca�INA��s� �by N which follows from context K�a�
M i�e� K�a�
 K�b�
 D�����
J �b�� P�b�� It su�ces to deduce

X
j

M�
�s��jina

�
ijM

�
��i �M�

��iINA��s� ��	�

because this is P�b� if M�
��i � � and otherwise M

�
��i � 	 � Pa��i � 	 �by D���� � ina�ij � 	 �by D����

�P
j M

�
�s��j

ina�ij � 	 � P�b�� To derive ��	�� multiply J �b� by Pa Pa��i �M�
��i �again using D����

�a��
X
j

M�
�s��j

X
i�

ina�i�jPa���i�
X
a

Pa��i �M�
��iCa��INA��s�� ����

Now K� P
a Pa��i � f	� �g�

Case �� There is a unique a for which Pa��i � �� Let a
� be that a� Then

Pa���i�
X
a

Pa��i �
X
a

Pa��i�Pa��i� ����

and Ca� �
P

i� Pa���i� �by K�a�� � � �since Pa��i � �� implies we can drop Ca� from the right hand side

of �����

Case 	� Pa��i � 	� �a� Case Pa� Ca�� � 	� pick a� so that Ca�� � �� Then we can drop Ca� from

the right hand side of ����� and Pa��i � 	 �a� ����� Case
P

a� Ca�� � 	� M
�
�i �

P
a� Pa���i �by D�a���

�P
a�i Pa���i �

P
a� Ca�� �by K�a�� � 	� This directly implies equation ��	� since both sides are zero�

So� without loss of generality we may assume equation ���� and drop Ca�� � � from the right hand

side of equation ����� As in the proof of step �� these su�ce to prove ��	�� ���� becomes

X
j

M�
�s��j

X
i�

ina�i�j
X
a

Pa��i�Pa��i �M�
��iINA��s� ����

but K � P
i Pa��i � � � Pa��i�Pa�i � �i�iPa��i �

P
a Pa��i�Pa��i � �i�iM

�
��i �by D���� and ���� implies

��	�� as desired�

So� in the context of C���
D���
D���
E���
I
K
L� J is equivalent to P which is just E�d�� e���
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Step �� Here we prove that A 
 B 
 D � C 
 E � which is half of Theorem �� Step � will establish
the converse�

First note thatA
B
D �� !A�a� 
 B��� ��
 D��� ��"
A�b�
D���
D�a�� �� C���
E���
I
J

 !K 
A�b� 
 D���" 
 D�a�� �by Step �� �� C��� ��
 E��� ��
 I 
 J 
 D�a�� �by Step ��� This will
be useful in Step � as well�

A 
 B 
 D �� C��� ��
 E��� ��
 I 
 J 
 D�a��� ����

�

Next� E���� L �by de
nition� and C��� 
 E���� K �Step ��� so we can augment ����� A 
 B 
 D
� C��� ��
 E��� ��
 D��� �� 
I 
 K 
 L 
 J � C��� ��
 E��� ��
 D��� �� 
I 
 K 
 L 
 P �by Step ��
� C��� ��
 E��� �� 
 !I 
 D�a��" 
 P � C��� ��
 E��� ��
 C���
 E��� �by de
nition of I�P��
Thus A 
 B 
 D � C 
 E �

Step 	� It remains to prove C 
E � A
B 
D� using the previous steps� By ���� it su�ces to prove
C 
 E � C��� ��
 E��� ��
 I 
J 
D�a��� which would be implied by C 
 E � I 
J 
D�a��� So that�s
what we will prove�

By Step �� C���
E����M
N
O � D���
K� From the de
nitions of I and P � C���
E���
D����
I
P � Thus C
E � D���
E���
I
K
P � By Step �� in the context D���
E�a��
K �which has just
been established�� P � J � Thus C 
 E � I 
 J 
 D���� We needed to prove C 
 E � I 
 J 
 D�a���
so it now su�ces to show C 
 E 
 D���� D�a���
Assuming C 
 E 
 D���� we calculate Pa Pa�s��j �M�

�s��j

P
i ina

�
ij

P
a Pa��i �by C����

� M�
�s��j

P
i ina

�
ijM

�
��i �by D�a��� � M�

�s��j

P
s��
INA��s��

M�
�s���j

�by E�c��� � M�
�s��j

P
s��
M�

�s���j
�by

E�f���� But � � P
i ina

�
ij �by E�b��� �

P
i ina

�
ijM

�
��i �since M

�
��i � �� �

P
s��
M�

�s�� �j
�by E�c�� and

E�f���� So Ps��
M�

�s���j
� � which implies M�

�s��j

P
s��
M�

�s���j
� M�

�s��j
� as usual� Thus

P
a Pa�s��j �

M�
�s��j

which is D�a��� as desired�
Thus C 
 E � A 
 B 
 D�

Together� Steps � and � show that

A 
 B 
 D �� C 
 E � ����

Q�E�D�
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Equation ���� is to be compared with the Frameville constraints� which include ����� Those con�

straints are represented at three levels of hierarchical organization by E�c� d�� In addition� constraints
E�a� b� are conventional� appearing for example as penalty terms in �Rule �� �� and �� of �Utans et al��
�
�
�� The static constraints of E�f� are usually taken to be obvious� only models present in the model
base may have match variables� This leaves E�e� as the only constraint not clearly accounted for in
previous Frameville research� Conversely previous work has relied mostly on the constraints found here�

including E�c� d�� for example �Utans et al�� �
�
� includes E�c� d� as �Rules � and ��� leaving only the
constraint of �Rule �� to di�er from E�e�� �Rules ��
 of that source just encoded the graph�matching
objective function�� Thus� the constraints of Theorem � agree with those of Frameville� with a few

minor di�erences �namely E�e� and the specialization of every M and ina variable to some hierarchical

level� which may be improvements on previous Frameville neural networks�

�
�
� The Objective Function

Proposition E in Theorem � establishes the Frameville syntax constraints� including the subtle con�
straints of equation ����� as a consequence of the grammar� We must now derive the Frameville ob�

jective function� equation ����� from equation ��	� which is the objective derived from the grammar�

This involves changing variables from P to ina and M as in Theorem �� and also from analog model

variables xa�s� and xa�� which were redundantly present in multiple copies for every model� to analog

instance variables xj and xi which determine the original variables by

xa�s� �
X
j

Pa�s��jxj and xa� �
X
i

Pa��ixi� ����

Now translating ��	� is a matter of substituting new variables for old in each term and adding an

entropy term that arises from integrating out Q� i�e� the redundancy of M and ina with respect to P �

The 
rst term of ��	� is E� �
P

a�s�s�

P
k Pa�s�s��k !H

�s�s��xa�s��xk�� �extra � ��s�s� "� With�

out loss of generality we can absorb the ��s into H � and omit them from the algebra� Substitut�

ing Pa�s�s��k � M�s�s��k
P

j inajkPa�s��j and using ����� E� �
P

a�s�s�

P
kM�s�s��k

P
j inajkPa�s��j

�H�s�s��
P

j� Pa�s��j�xj� �xk�� But H
�s�s��

P
j� Pa�s��j�xj� �xk� �

P
j� Pa�s��j�H

�s�s��xj��xk�� Since

Pa�s��jPa�s��j� � �j�j�Pa�s��j � we 
nd E� �
P

�s�s�

P
kM�s�s��k

P
j inajk �

P
a Pa�s��j� �H�s�s��xj �xk��

We can also evaluate
P

a Pa�s��j � M�s��j
P

a
�inaa��j �by ���a

��� � M�s��j
P

s� M�s��j �by ���g�� �
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M�s��j �by E�a���� Also M�s�s��k �M�s�s��kINA�s��s� �by E�f���� Then

E� �
X
�s�s�

X
jk

M�s�s��kM�s��jINA�s��s� inajkH
�s�s��xj�xk�� ����

The second term of ��	� is E� �
P

a�s�
Ca�H

�s��xa��xa�s�� �
P

a�s�
Ca�H

�s��
P

i Pa��ixi�
P

j Pa�s��jxj�

�
P

�s�

P
ij�
P

a Ca�Pa��iPa�s��j�H
�s��xi�xj�� But

P
aCa�Pa��iPa�s��j �

P
a Pa��iPa�s��j �by ���f

���

�
P

a Pa��iM�s��j
P

i� inai�jPa��i� � M�s��j
P

i� inai�j
P

a Pa��iPa��i� � M�s��j
P

i� inai�j�i�i�
P

a Pa��i �

M�s��jinaijM��i �by D�a���� Also M�s��j �M�s��jINA��s� �by E�f���� Thus

E� �
X
�s�

X
ij

M�s��jM��iINA��s�inaijH
�s��xi�xj�� ����

The third term of ��	� is E� �
P

a�Ca�H
root ��xa�� �

P
a�Ca�H

root ��
P

i Pa��ixi�

�
P

a�iCa�Pa��iH
root ��xi� �

P
a�i Pa��iH

root ��xi� �by K�c�� � P
a�iM

�
��iina

�
aiH

root ��xi� �by C�����
Thus

E� �
X
�

X
ai

M�
��iM

�
root�aINAroot��ina

�
aiH

root ��xi� ��
�

�since M�
root�a � � and INAroot�� � ��� which is in the desired form� But since

P
a Pa��i � M�

��i �by

D�a���� this special case could be more simply written as E� �
P

�iM
�
��iH

root ��xi��

There are also entropy terms that arise from integrating out Q� and Q�� i�e� the redundancy

of M and ina with respect to P � Let N� � n��C� be the maximum number of level � instances�

i�e� the range of j� and N� � n��C� be the same for level �� Then the entropy term �from B� is

log�

�
N�

n�

�
n��� � log�

�
N�

n�

�
n��� � log��N���� log��N� � n���� � log�N���� log��N�� n���� i�e�

S � log�N���� log��N� �
X
a�s�i

ina�aiM
�
�iINA��s���� � log�N

���� log��N� �
X
a�i

ina�aiM
�
�i��� �
	�

There is a further entropy term associated with integrating out unused analog model variables such

as xa�s�� but it may be absorbed into chemical potentials �� terms in E� and hence into H terms�

Thus the 
nal Frameville objective function is

E�M� ina� x� �
P

�s�s�

P
jkM

�
�s�s��k

M�
�s��j

INA�s��s� ina
�
jkH

�s�s��xj�xk�

�
P

�s�

P
ij M

�
�s��j

M�
��iINA��s�ina

�
ijH

�s��xi�xj�

�
P

�

P
aiM

�
��iM

�
root�aINAroot��ina

�
aiH

root ��xi�

����!log�N���� log��N� �Pa�s�i
ina�aiM

�
�iINA��s����

� log�N���� log��N� �Pa�i ina
�
aiM

�
�i���"

�
��
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where as before M�
root�a � INAroot�� � �� This is a strati
ed or layered version of the original Frameville

objective� as can be seen by rewriting it in terms of model indices �� �� � � � that range over all three

levels� and similar modi
ed instance indices i� j� � � �� and using the fact that in this paper INA is a tree�

E�M� ina� x� �
P

��

P
ij M

level���
��i M

level���
��j INA���ina

level���
ij H���xi�xj�

�����!log�N���� log��N��P��ij ina
�
ijM

�
root�iM

�
��jINA������

� log�N���� log��N� �P�ij ina
�
ijM

�
root�iM

�
��i���"�

�
��

This is to be compared with equation ����� The graph�matching terms di�er just by the new level

superscripts on M and ina� which preallocate instance indices i� j� k to speci
c levels of abstraction�

Such specialization of instance function could probably be removed at the cost of further entropy

terms� The entropy terms are new� and easily implementable with analog neural networks by Stirling�s

approximation and algebraic transformations of the resulting X logX forms �Mjolsness and Garrett�

�

	��

Thus we have translated the probability distribution of the Frameville grammar� speci
ed by the

objective and the constraints� into the standard Frameville variables� recovering the standard objective

function terms and constraints along with a few new ones� This may be regarded as a transformation

at the level of the probability distribution� before Mean Field Theory is applied and hence before any

approximations are made� It may also be possible to express this derivation as a transformation at the

level of the grammar� in which the permutation operation is applied in a limited form at each stage

rather than globally at the 
nal stage of the grammar�

�
�
� Frameville and High�Level Vision

As mentioned earlier� with the Frameville grammar we approach a modest plateau of generality� From

the generalized assignment problem of equation ��	� we have derived a network which explicitly has

problems of recognition �
nd M�i�� segmentation or grouping �
nd inaij�� correspondance between data

and the expected parts of an object �
nd M�s�s��k�� multiple instances of a model �
nd xi rather than�

say� x��� at multiple levels of abstraction �levels �� �� and � in the hierarchical grammar�� These processes

arise from Bayesian inference on a constrained Boltzmann probability distribution which� we proved�

is equivalent to the distribution generated by a simple grammar� The transformation to Frameville is

natural� it simply pushes the permutation matrix as far back into the grammar as is possible� so that

each grammar rule can be regarded as having its own relabelling processes even at abstract levels�

The resulting Frameville objective is di�erent from the original generalized assignment objective in

several important ways� Where the assignment objective is linear in its binary�valued match variables�
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the Frameville objective is cubic in far fewer variables� �The linear or cubic terms are multiplied

by analog parameter�check objectives H�x�x� in both cases�� This increase in polynomial order may

create more local minima in a smaller net� It is not clear whether this is a net gain or loss for practical

optimization� On the other hand� further simplifying transformations such as the correlation method of

Section ���� which have special conditions of applicability� are far more likely to apply to small� single�

object correspondance problems �e�g� 
nd M�s�s��k given M�s��j� that can arise in Frameville than to

the original monolithic assignment problem�

Thus the Frameville formulation suggests a modular decomposition of a large vision problem into

smaller� more homogeneous pieces to which special methods are most likely to apply� The decomposition

follows the lines indicated by the hierarchical and heterogeneous grammar�

One important aspect of model�based vision� and of the original Frameville networks� is still missing�

the use of an indexing scheme such as a discrimination tree or graph composed of ISA�links to organize

the set of models into a data base� Another e�cient indexing scheme� not used in the Frameville

networks� would be geometric hashing �Lamdan et al�� �
���� Either form of indexing could possibly be

added as a learned computational shortcut� Learning is brie�y discussed in the next section�
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� LEARNING

Three possible methods for learning a grammar are suggested here� They all assume that learning the

grammar can be expressed as tuning its parameters� as is the case for unstructured neural networks�

First� the kind of grammar we have been studying could be augmented with an initial set of �meta�

grammar� rules� which randomly choose the parameters of the permanent models and then generate

many images by the usual grammar� The task of inferring the permanent models� parameters is just

another Bayesian inference problem� stretched out over many images� Second� one could minimize the

Kullback information between the probability distributions of an unknown grammar� images from which

the perceiver sees� and a parameterized grammar� This algorithm would be similar to the �Boltzmann

machine� for neural network learning �Hinton and Sejnowski� �
���� Finally one could look for clusters

in model space by de
ning a distance �metric� D between images and mathematically projecting it

back though the grammar�

The latter alternative can be explained by an analogy with the forward�going composition law for

probabilities �and hence objectives�

e��En���xn��� � Pr�xn��� �
Z
dxnPr�xn��jxn�Pr�xn� �

Z
dxnPr�xn��jxn�e��En�xn�� �
��

which uses only those probabilities Pr�xn��jxn� directly provided by the grammar� One could de
ne a
backward�going composition law for �Dn�xn�yn� by� for example�

e�� �Dn�xn�yn� �
Z
dxn��

Z
dyn��Pr�xn��jxn�Pr�yn��jyn�e�� �Dn���xn���yn���� �
��

Here the proposed distance D is related to �D by �D�x�y� � f �D�x�y�� where f is any monotonic�

strictly increasing function such as the identity plus a constant� �D � D � c� or the squaring function�

�D � D��

This expression for D has the advantage that � can be varied as in deterministic annealing� and also

that if Pr�xn��jxn� is an invariant measure on a group G �e�g� translations� rotations or permutations
with uniform probability� and Dn�� respects G �i�e� if Pr�xn��jxn� �

R
dg��xn��� g �xn� and Dn���g �

x� y� � Dn���x� g�� � y�� then the large�� limit of �
�� is

Dn�xn�yn� � f�� ������� logmaxg��g��G exp��f �Dn���g� � xn� g� � yn���
� ming��g��GDn���g� � xn� g� � yn�
� ming��g��GDn���g

��
� g� � xn�yn�

� ming�GDn���g � xn�yn�
�
��
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which actually preserves all the properties of a distance metric including the triangle inequality� That

is� if Dn�� is a distance metric then Dn is also�

Expressions similar to �
�� could de
ne distances between objects at earlier and later stages in the

grammar� for example between an image and a model� in this way data can be clustered in the model

parameter space� In fact if d is such an asymmetric �distance� and Pr�xn��jxn� is an invariant measure
on a group G respected by d� then the large�� limit of

e��dn�xn�ym� �
Z
dxn��Pr�xn��jxn�e��dn���xn���ym�� �
��

is again

dn�xn�ym� � min
g�G

dn���g � xn�ym� �
��

where m � n�

��� Graph Matching Objectives

For example� we can use �
�� with �D � f�D� � D� to de
ne the distance between two graphs� G and

g� by adding permutation invariance to the Euclidean distance D��G� g� between the 	�� connection

matrices G�� and gij � Euclidean distance between matrices respects the adjoint representation of the

group of permutations� i�e� permutations that act by permuting the nodes of a graph and hence both

indices of a matrix�

!D��G� g�"
� � !min PermutationsP D��G�P � g�"�
� min Permutations P jjG� P � g � PT jj�
� min Permutations P jjG � P � P � gjj�
� min Permutations P

h
jjGjj�� jjgjj�� �trace

�
G � PgT � PT

�i
� jjGjj�� jjgjj�� �min Permutations P

P
��ij G��P�jgijP�i

�
��

which is the standard neural network objective function for inexact graph matching �von der Malsburg

and Bienenstock� �
��� Hop
eld and Tank� �
���� up to an additive constant� It is also a standard cost

metric for missing model links and extra data links in pure graph matching for computer vision �Ballard

and Brown� �
���� restricted to the case of permutation correspondances�

E�P � � missing model graph links � extra data graph links

�
P

��max
�
	� G�� �Pij gijP�iP�j

�
�
P

��max
�
	�
P

ij gijP�iP�j �G��

�
�

P
��

�
G�� �Pij gijP�iP�j

�� �

�
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since G and g are 	�� matrices and P is a permutation matrix� This is the same expression as that

minimized to produce D� above� though it has the interpretation of a distance �squared� between model

and data rather than between two models�

These objectives for graph�matching have proven useful in neural networks devoid of learning� but

they may also be useful in the approach to learning a structured neural network through abstract

clustering at a high level in a visual grammar�
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� DISCUSSION

Figure � is a diagram of the method used in this paper to derive neural networks from visual grammars

via Bayesian inference� Given a grammar of suitable form� one can calculate a joint probability distri�

bution on images and their explanations� This distribution may be transformed� by changing variables�

as we showed in the multiple curve grouping and Frameville networks� By using the Mean Field Theory

approximation� a Bayesian inference problem on this distribution is transformed into an optimization

problem with an algebraic objective function� This function can be further transformed� for example

using the techniques of �Mjolsness and Garrett� �

	�� to reduce its cost or increase its circuit�level

implementability� then a neural network follows from descent dynamics�

We studied grammars that model visual phenomena such as missing and extra data� group invari�

ances� hierarchical objects� multiple instances of an object in a scene� and �exible spline�like objects�

The rudiments of a frame system for knowledge representation emerged naturally from one such gram�

mar� by pushing the matching process from low levels to high levels in a hierarchical� multiple�instance

grammar� Nevertheless the full representational capacities of such grammars were hardly used� it re�

mains to design networks from grammars that generate trees recursively� or are context�dependent� or

include discrimination or inheritance trees on the set of object models� A somewhat more general view

of grammars whose rules posess connectionist models �similar to the objective functions attached to

rules in this paper� is presented in �Mjolsness et al�� �

�b�� where such grammars are proposed for

modelling the development of biological organisms� A di�erent way to translate a class of grammars into

neural network objective functions is presented in �Miller et al�� �

��� it currently applies to �regular�

languages and has been demonstrated in a low�level vision problem� Other directions for generalization

of the parallel grammar occur in the extensive literature on L�systems �Rozenberg and Salomaa� �
�	�

and graph grammars �Ehrig et al�� �
����

The grammars examined in this paper do not yet produced realistic images� and one could consider

adding new rules to move from the �pictures� we studied to gray�level images� This would allow the

preprocessing of images to produce pictures composed of image features� necessary in Section �� to be

replaced with more neural network computation� At another extreme� the idea of relating optimization

to Bayesian inference on a probabilistic grammar is in principle not restricted to vision at all� and could

perhaps be adapted to other problems to which neural network optimization has been applied�

The complexity of the visual world will certainly demand many grammars of increasing size for

success in computer vision by our approach� We have not yet discussed how to obtain such grammars�

though Figure � suggests hand�design and learning should be directed at producing grammars rather



Bayesian Inference on Grammars by Neural Nets ��

than the subsequent stages� Hand design takes a lot of human labor� Fortunately the large amount of

research in computer graphics is a source of generative models for images� some of which are mathe�

matically simple enough to be put in the form of a probabilistic grammar or are already close to that

form �e�g� �Smith� �
��� Prusinkiewicz� �

	��� In addition we speculated on possible algorithms for

learning the grammars� or at least aspects of them� by using visual experience�
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