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We consider neural nets whose connections are defined by growth rules taking the

form of recursion relations. These are called genetic neural nets. Learning in these

nets is achieved by simulated annealing optimization of the net over the space of

recursion relation parameters. The method is tested on a previously defined

continuous coding problem. Results of control experiments are presented so that the

success of the method can be judged. Genetic neural nets implement the ideas of

scaling and parsimony, features which allow generalization in machine learning.
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1.  INTRODUCTION

Can a machine generalize as it learns? The question must be properly
framed before the answer is valuable. If the problem of machine learning is

posed as one of neural net optimization [5, 19], a precise scientific context is

established in which to explore questions such as generalization.
A synthetic neural net is a particular kind of circuit parameterized by real-valued

connection strengths between circuit elements called “neurons.” Machine learning

can be posed as the problem of optimizing some real-valued function of a network

over its parameter space. Such optimization often involves measuring a network’s

performance on a fixed set of inputs called the training set. If the network then
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performs acceptably on a predictable set of inputs much larger than the

training set, it has generalized.
What enables a neural net to generalize? We focus on the properties of

scaling and parsimony.

The information in a neural net is contained in its pattern of connection

strengths. Parsimony in a network means that this information is expressed
as succinctly as possible without compromising performance. It aids

generalization by reducing the size of the search space, and therefore the

number of nets which coincidentally do well on the training set but do not
generalize.

The idea of scaling is to solve small problems, where a large fraction of

the possible inputs can be sampled as the network learns, and to use the
results to automatically generate nets which solve bigger problems. Scaling

may also be thought of as extrapolation and hence generalization along a

scale axis. This kind of generalization is of critical importance for all

considerations of cost in neural net computing and learning.
To construct neural nets which exhibit scaling and parsimony requires a

fundamental shift from the optimization of neural nets to the optimization of

relatively simple growth rules for constructing nets. As a model for what is
intended, recall that genetically prescribed growth rules for biological neural

nets are far more concise than the synapses they determine. For example, the

human genome has been estimated to contain 30,000 genes with an average
of 2,000 base pairs each [12], for a total of roughly 10

8 base pairs; this is

clearly insufficient to independently specify the 1015 synapses [9] in the

human brain. Instead the genes probably specify rules for network growth,

as well as rules by which individual synapses can learn from experience.
The growth rules introduced in this paper are specified in terms of

underlying “genetic” information, which is taken to consist of a fixed

number of real-valued coefficients in a recursion relation defining a family
of successively larger neural nets. Even though our growth rules are not

directly modelled after any biological system, we summarize the

fundamental shift to the optimization of growth rules by describing the

resulting artificial circuits as “genetic neural nets.”
Since any growth rule can generate nets of unbounded size, a genetic

neural net will generally have many more connection strengths than there

are coefficients in its recursion relation. Then the net is parsimonious.
Indeed, the potential information content of the wiring in any neural net is

proportional to its number of connections, whereas the actual information

content of the wiring in a genetic neural net is at most the number of
coefficients in the recursion relation that generated it. (We assume that the

number of bits which can be stored in each connection strength or recursion

coefficient is small.) Parsimonious nets are also called “structured” nets, and
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learning rules for unstructured nets, or mixtures of the two types of nets, are

outside the scope of this paper.
From a programmer’s or circuit designer’s point of view, genetic neural

nets involve two fundamental principles: “divide-and-conquer” and “super

position”. The main idea of the divide-and-conquer strategy is to break up a

big problem into small pieces, each of which can be solved by the same
method, and then to combine the solutions. We mention the merge-sort

algorithm, fast Fourier transform and Karp’s algorithm for the Traveling

Salesman Problem in the Euclidean plane as examples of algorithms which
use this strategy. Superposition is a property which applies to the connection

strength between pairs of circuit elements or neurons. The set of all such

numbers in one net may be considered as a matrix, called the connection
matrix, indexed by pairs of neurons. In the context of neural networks, it has

been found that a network formed by addition or “superposition” of the

connection matrices of simpler networks is frequently able to perform a

combination of the simpler networks’ tasks [7, 8]. These ideas are combined
in Section 2 to derive a generic, or problem-independent, recursion relation

for connection matrices. An infinite family of successively larger connection

matrices, called a template, is specified by each such recursion relation.
Our strategy for machine learning with scaling and parsimony consists of

the following steps: (1) A recursion relation generates a family of related

connection matrices of increasing size. Families of connection matrices
form a search space. This space is parameterized using the coefficients of

the corresponding recursion relations. (Section 2.1). (2) A sequence of

learning tasks of increasing size is specified by choosing a task functional of

the connection matrices. Learning is achieved as this functional is
minimized over the coefficients in the recursion relation (Section 2.2). (3)

The task functional is combined with a parsimony constraint on the allowed

recursion relations, which requires that the number or information content of
the coefficients be small, to produce a global optimization problem, which

defines a dynamics on the space of recursion relations. (4) The optimization

problem so defined is infinite, and for practical purposes must be replaced

by a finite version. This is done by optimizing, or training, the recursion
relation on a finite number of small tasks and using the results to perform

larger tasks, without further training. In this way our procedure obtains

learning with generalization.
This circle of ideas has been tested by means of numerical simulation on a

coding problem (Section 3). Control experiments are presented so that the

success of our method can be judged. Suggestions for extensions of this
work are contained in a concluding section. A preliminary account of some

of the ideas presented here has appeared previously [14, 15].
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2.  GENETIC NEURAL NETWORKS

This section contains three parts; the first presents our method for the

recursive description of connection matrices, the second outlines the method

for optimizing them, and the third compares the method with related work.

2.1.  The Recursive Description of Connection Matrices

The recursive description of connection matrices requires the following

basic ingredients: (1) a method for indexing circuit elements or “neurons” by
specifying their position in a binary tree (a lineage, tree) of circuit elements.

(2) A family of such trees parameterized by an integer specifying the

problem size. (3) Recursion relations. Lineage trees are related to
connection matrices in that a given element of a connection matrix is

indexed by an ordered pair of nodes in a lineage tree. Connection matrices

as well as lineage trees of different sizes are related by recursion relations.

(4) Two sets of parameters in the recursion relations. Decomposition

matrices define the relationship between connection matrices in successive

generations of a family. A set of basis values complete the determination of

the connection matrix when a recursion relation is terminated after a finite
number of steps. The values of all of these parameters are obtained by

means of the optimization procedure discussed in Section 2.2.

To bring these ideas into focus, we begin with an example. Consider the

following matrix which represents the connections of a simple 1-
dimensional chain of neurons

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

(1)

Here a 1 in position (i, j) denotes a connection from neuron i to neuron j.
Thus the matrix represents a chain of neurons in which the first is connected
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to the second, the second to the third, etc. The matrix may be viewed as four

quadrants such that the upper-left and lower-right quadrants resemble the
entire matrix, the upper-right contains a single 1 in its lower-left corner, and

the lower-left quadrant is all zeroes.

We introduce an infinite family of matrices of the form (1), 1(n), and

refer to the family 1 as a template. The upper right quadrant of (1) is a

member of a second family 2. The pattern present in the families of

matrices 1 and 2 can be expressed recursively;

( )
( ) ( )

( )
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nn
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The basis values 1(0) and 2(0) are not determined by (2); they must be

supplied separately. In this example, 1(0) = 0 and 2(0) = 1. To expand the

recursion relation (2), each of the four quadrants of a template is expanded
recursively unless n = 1, in which case the relevant basis value is substituted

for that quadrant. This notion of a template may be generalized somewhat so

that each quadrant of a template is expressed as a linear combination of
other templates with real-number weights.

In the Appendix we provide similar recursive descriptions for connection

matrices corresponding to 2- and 3-dimensional grids of neurons.

The a(n)  notation enables us to represent entire connection matrices

recursively. We need, however, to produce recursion equations for
individual matrix entries (the connection weights). To do so, we develop a

method of addressing, or indexing, each entry through the idea of a lineage

tree of neurons. Imagine the recursive iteration of Eq. (2) run backwards,
from large to small matrices. At each stage, the set of neurons labeling the

rows or columns is divided into two groups labeled “left” and “right.” A

given neuron can be uniquely indexed by specifying a sequence of binary

decisions as to whether it belongs to the “left” or “right” group at each stage.
The sequence of divisions of neurons into smaller groups defines a binary

tree, the lineage tree, whose terminal nodes are the neurons. Each neuron is

now indexed by a string of 0’s (left) and 1’s (right) defining a path through
the tree. This string defines the “address” of the neuron and is denoted by i1,

. . . , in. A generic element of this string will be denoted p or q. Figure 1

shows a lineage tree of neurons and their addresses.
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Let us rewrite Eq. (2) using the lineage tree indexing of “neurons.” An

arbitrary element of a connection matrix is now addressed by an ordered

FIG. 1.  Lineage tree of neurons and their addresses.

pair of neuron addresses. For a connection matrix a(n), the entry denoting

the connection strength from the neuron with address i1 . . . in to the neuron
with address j1 . . . jn is Ti1

(a)
. . .in,  j1 . . . jn . In this notation,

1 n( ) =
1 n 1( ) 2 n 1( )
0 1 n 1( )

represents 22n
 equations, four of which are
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where i1 and j1 each vary over 0 and 1 to produce the 2  2 matrix on the

right-hand side. This equation is best treated as a special case of a general
recursion relation
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The matrix 
ab
pqD  appearing in (3) is called the decomposition matrix. It

has the value 1 if template b occurs in a at quadrant (pq) and is 0

otherwise. For example, in (2), the appropriate values of 
ab
pqD  are: 

1 1,

0 0,D  = 1,

2 1,

1 0,D  = 1, 
1 1,

1 1,D  = 1, 
2 2,

0 1,D  = 1, and the rest are zero.
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From (3) and the definition of 
ab
pqD , we can write the fundamental

recursion relation for connection matrices:

( ) ( )
,TDT

b

nj...j,ni...i
b

ab
ji

a

nj...j,ni...i 221111
=   n 1. (4)

This must be supplemented by the n = 0  connection matrices, T(a)
 = Dˆa

.

For the example of (2), Dˆ (1) = 0 and Dˆ(2)
 = 1.

It should be clear that (4) embodies a divide-and-conquer strategy for
connection matrices. Furthermore, because the right-hand side of (4) is a

sum, the superposition principle for designing connection matrices is

included if 
ab
pqD  is permitted to assume values other than 0 or 1.

The recursive description presented above is limited to square matrices of

size 2k
  2k

, corresponding to “neuron” indexing by complete, balanced

binary trees. We will next show how this limitation can be removed.

Consider the effects of allowing more general lineage trees. For example,

consider the class of Fibonacci trees, denoted F(n ). These are parameterized

by an integer n and have the form ( ) ( ) ( )12= nF,nFnF  with F(1) =

F(2) = terminal nodes. Here we have used a composition operation (,) to
build trees out of smaller trees: (L, R ) denotes a tree composed of a root

node, a left branch leading to left subtree L, and a right branch leading to

right subtree R (see Fig. 2). If lineage trees are Fibonacci trees, the

connection matrices will have sides of length 1, 2, 3, 5, and 8. Sizes 3  3

and 5  5 are given as examples

FIG. 2. Fibonacci trees, defined by F n( )= F n 2( ),F n 1( ) , for n = 4 and n = 5.

Note that F(5) contains a copy of F(4) on its right side, and a copy of F(3) on its left side.
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T0, 0 T0,10 T0,11
T10, 0 T10,10 T10,11
T11, 0 T11,10 T11,11

T00, 00 T00, 01 T00,10 T00,110 T00,111
T01, 00 T01, 01 T01,10 T01,110 T01,111
T10, 00 T10, 01 T10,10 T10,110 T10,111
T110, 00 T110, 01 T110,10 T110,110 T110,111
T111, 00 T111, 01 T111,10 T111,110 T111,111

(5)

It is also possible to consider multi-parameter tree families, each with a
corresponding family of connection matrices.

Removing the restriction to complete, balanced binary trees has the effect

of allowing termination of paths at different depths in the tree. Then the row
and column labels of a connection matrix would have different lengths, so

Eq. (4) could not be applied. This problem can be circumvented by formally

extending the shorter string using multiple copies of a new symbol “2,” until
its length equals that of the larger string. Equation (4) is again applicable,

although the decomposition matrix must be augmented by parameters 
ab
p2D

and 
ab
2qD .

As a further refinement we may set 
(a)T = 1, where  is the empty string,

and we may add a final “2” to each string and set D22
ab

 = abDˆ(a), where ab

is the Kronecker delta. In this manner the basis values become part of the

decomposition matrix. Thus the recursion parameters, the basis values, and

the new parameters 
ab
p2D  and 

ab
2qD  can all be aggregated into one 4-index

object (D22
ab

).

Our basic equation (4), which now accommodates general lineage trees,

can be rewritten with the recursion expanded as
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We observe that for i and j fixed, Eq. 6 is a sum (over bn) of matrix

products, and a given term in the sum over {bo . . . bn} is the (i, j) th element

of a tensor product.
Equation (6) is fundamental in defining the meaning of the templates and

lineage trees. Through the recursive division of templates into quadrants and

of sets of neurons (contained in a lineage tree) into left and right subsets, the
formalism embodies the principle of divide-and-conquer. The summation
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makes it possible for several networks to be superimposed, a technique

generally useful in network design.
The recursion equation approach to genetic neural networks has great

expressive power. It allows networks to contain arbitrary interconnections,

including cycles. It also encompasses replication, as demonstrated in the

Appendix, suggesting applications to VLSI design where replication and
hierarchy are fundamental.

2.2.  Learning and Network Optimization

Current methods of learning with circuits or neural networks generally

involve minimization of an objective function Etask which characterizes the

task to be learned. Standard techniques for accomplishing this include the
Boltzman machine [5], back-propagation [19], and master/slave nets [11]. In

applying these methods, one customarily uses the connection matrices T as

independent variables. When recursion equations for genetic neural

networks are used, however, it is the D-matrices which are the independent
variables, and the objective function depends on them through the

connection matrices: Etask - Etask (T(D)).

With this understanding, we can use simulated annealing or, if the
connection matrix is of “feed-forward” type, back-propagation to search for

the optimizing set of D-matrices.

For these optimization methods, T depends not only on D but also on the

lineage tree. If a fixed family of lineage trees is chosen, depending, for
example, on a single size parameter or “generation number” n, then Etask -

Etask (T(D, n)). The goal is to minimize this quantity for some or all very

large values of n, but only small values of n are available in practice due to
the expense of optimizing the objective function for large connection

matrices. But evaluating Etask once is much cheaper than optimizing it and

can therefore be done for much larger values of n, if there is reason to
believe that T(D, n) might scale well.

For this reason we optimize the task performance on the first g generations

of small networks. Thus we optimize

Etask = Etask T D,n( )( )
n =1

g

(7)

so that a single D is forced to specify T at a variety of different sizes, and

then we evaluate Etask (T(D, n)) for n » g. It is a remarkable fact that this Etask
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(T(D, n » g)) can still be very low; in other words, that for optimization

purposes Eq. (7) can approximate

Etask = Etask T D,n( )( )
n =1

G » g

(8)

This can only be done by finding and using scaling relationships,

expressed in our case by the decomposition matrix D.

We wish to discourage learning by large scale memorization, i.e., by the
formation of large look-up tables, because such procedures do not allow

generalization. To control the amount of information which may be stored in

D we add a parsimony constraint to Etask. Several measures of parsimony are
possible; the one which we have adopted in this paper is

( )=
abpq

ab
pqparsimony DVE , (9)

where V(D ), the parsimony cost of each template entry, has three

components: a cost 1 if D is nonzero, a cost 2 for each bit in a binary

expansion of D, and a cost 3|x| for an extra factor 2x, where x is an integer,

in the expression for D.

For efficiency of network evaluation, feed-forward networks may be

encouraged by penalizing all but the feed-forward connections:

Efeed forward D, g( ) = Tij D, n( )
ij

feedback
n =1

g

. (10)

This term is of the same form as Etask, but is not nearly as task specific,

depending only on the assignment of neurons to successive layers in the

network. In our experiments, however, we simply truncated feedback
connections to zero rather than penalizing them. Equation (l0) could be

modified to include all connections, thereby introducing a general

sparseness constraint that favors less costly connectivity patterns in the final
network.

The entire objective function employed in Section 3 is of the form

( ) ( ) ( )g,DEEg,DEDE forwardfeedparsimonytask µ++= , (11)
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which depends on g, 1, 2, 3, and µ,, and is to be minimized by simulated

annealing.

2.3.  Discussion

There are notable differences between the optimization method just

described and others currently in use. The Boltzman machine learning rule,

for example, is a local rule involving symmetric connections. Symmetric
connections imply that there is an additional energy function, not present in

our formulation, which depends on neuron activities rather than on synapse

strengths and is minimized as the network runs. The back-propagation
learning rule is a local rule originally restricted to feed-forward connections.

Equation (6) can express asymmetric and non-feed-forward connections,

and we will not impose an energy function which is minimized by neuron

activities, so these restrictions on connectivity do not apply to genetic neural
nets.

Genetic neural nets as described by Eq. (6), on the other hand, are not

local. Non-local learning rules are required to express the structure which is
present in the network.

Back-propagation has difficulty with generalization (see, e.g., Denker et

al. [2]) and is very costly, if it does not actually fail, when scaled up to

larger circuits [17]. We think that the basic reason for these scaling and
generalization problems is the unstructured nature of the networks that can

result from back-propagation. The use of a concise reparameterization of the

space of connection matrices favors structured nets which scale.
Both back-propagation and the Boltzman machine involve gradient

descent in the space of connection matrices for a neural network, but back-

propagation may be the more practical algorithm, at least when it is
restricted to feed-forward nets. (The case of non-feed-forward networks is

dealt with by Lapedes and Farber [11] and by Pineda [16].) To compare our

method to back-propagation, which allows one to compute dT/dt  dEscore/

dT efficiently for a feed-forward network, one need only obtain dT/dD

analytically from Eq. (6) and follow gradients:

dD

dt

Escore

D
=

Escore

T

T

D
.

Our experiments with this gradient descent method were much less

successful than the experiments with simulated annealing reported in
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Section 3, owing perhaps to very local minima introduced by the parsimony

constraint.
There is a body of recent work in theoretical computer science which

supports the idea that parsimony is important to machine learning. We cite

the work of Angluin [1], Haussler [4], and Rivest and Schapire [18]. We

also mention the hand-designed structure in the networks of Scalettar and
Zee [20] which leads to successful generalization. We expect parsimony and

structure to be of increasing importance in studies of machine learning.

We use the genetic analogy in a fundamentally different way than does
John Holland and colleagues in their work on “genetic algorithms” [6]. For

Holland, genetics provides new ideas for searching, such as crossover,

whereas we focus on parsimonious rules for constructing nets. We
nevertheless expect that our approach would be enhanced by the use of

crossover and his by more extensive use of parsimony.

3.  EXPERIMENTS WITH THE CONTINUOUS CODE PROBLEM

We next describe the results of numerical simulations which were carried

out to test the ideas presented in the previous section. We consider the

following problem [14], illustrated in Fig. 3. Given a unary input , for

example a 1-dimensional image with a single spot at position , the task is

to compute a compressed code for  in such a way that nearby ’s have

codes which are “nearby” in the sense that they differ by only a few bits. In
other words, a small change in the input number corresponds to a small

Hamming distance between the two output codes, a small Hamming

distance between two code words corresponds to a small distance between

the corresponding numbers (graceful degradation under codeword
corruption-a kind of fault-tolerance), and in general the unsigned difference

between two numbers is to be a monotonic function of the Hamming

distance between the two codes.
This defines a “continuous code” problem which requires optimization of

a feed-forward neural network with N input neurons equally spaced on the

unit interval, A = 2 log N output neurons, and no interneurons, so that two
unary inputs which are geometrically close to one another will produce two

outputs which are close in the Hamming metric. The objective function for

this task therefore relates geometric distance to Hamming distance,

Etask o( ) =
1

N 2

i j

N

p
1

A
o i o j( ) 2

=1

A
2

i, j =1

N

, (12)
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where [ ]10,o i  is the value of the output neuron indexed by a when the

input neurons are all clamped to zero except for the i th one, which is

clamped to one. If only the i th input neuron is on, the column i*o  describes

the net’s output and is thus the code word corresponding to input i.
Likewise, each output neuron may be thought of as a “feature detector” in

which case the row *ao  is the feature to which it responds. Equation (12) is

quartic in aio .

FIG. 3.  The continuous coding task. A connection matrix of the form shown generates a
feed-forward network. For each input i the network outputs are recorded in a column of the
output matrix (or code matrix). The continuity of the output matrix is numerically evaluated
by an objective function. Nearby values of i should generate nearby output codes if the

objective function is to be minimized.

Because there are only N legal inputs to this network, the problem of

generalization is not nearly as difficult as it could be for some other tasks.

However, it is definitely nontrivial, since we will train the network for sizes
N (and A = 2 log N) which are far smaller than those for which we will test

the network. In fact the sizes of successive generations, indexed by an

integer n, will be determined by N = 2n.
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The energy function Etask (o) in Eq. (12) becomes a function of T rather

than o once we determine o(T ). This involves running the network on each
input i; that is, the input neurons are clamped to zero except for the i th one

which is set to one. Then neuron values si are repeatedly updated until they

all stop changing. Various update rules can be employed; we use the update

rule for discrete neurons

si t + 1( ) =
1

2
1+ sgn Tij s j t( )

j

. (13)

Whether the update is done synchronously (as in this equation) or
asynchronously does not matter for a feed-forward net. In this way we

obtain Etask (T) which together with Eq. (6) defines Etask (T(D, n)) which may

be substituted into Eq. (7). Then the entire objective function E(D) is given

by Eq. (11). We optimize E(D) by simulated annealing [10] using the
Metropolis method [13] for updating each decomposition matrix element.

The temperature schedule is determined by an initial temperature thigh, a

constant factor freduce for reducing the temperature, a fixed number of
accepted local moves required at each temperature, and an upper bound on

the number of rejections allowed at a temperature which, if violated,

terminates the run. Initially all decomposition matrix entries 
ab
pqD  are zero.

Simulated annealing involves generating moves which alter the templates.

A single move consists of changing one 
ab
pqD ; a sequence of moves

repeatedly runs through all possible values of indices a, b, p, q. For the

purpose of generating possible moves, each nonzero 
ab
pqD  is represented in

binary numbering as 
ab
pqD  = m  2x

 = ± bkbk-1. . . b o  2x
. The number of

mantissa bits, k + 1, varies and contributes to the parsimony cost, V (
ab
pqD )

= 1 + 2k + 3|x|, where 1, 2, 3 are input parameters.

Initially 
ab
pqD  is zero so V (

ab
pqD ) = 0. The move from zero is to ±1  2°,

±1  2-2
, or ±1  2-4, with all six choices equally likely. Subsequent moves

serve to increase, decrease, or maintain the precision k, or set 
ab
pqD  = 0, all

with equal probability. For example, if 
ab
pqD = 1012  2-3, the precision is

increased by moving to 10112  2-2 or 10012  2-4
, the precision is decreased

by moving to 102  2-2 or 112  2
-2

, and the precision is maintained by

moving to 1102  2-3 or 1002  2
-3. Note some of these moves create trailing
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zeroes in the mantissa; this is necessary to ensure there is a path to any

number.
The lineage trees used are shown in Fig. 4; they contain N = 2

n
 input

neurons and A = 2 log N output neurons.

We record here the values of various parameters used in the optimization

experiments. There were three families of decomposition matrices (index a

and b ranged from 1 to 3 in 
ab
pqD ); this number was chosen to minimize

computing costs and as a further hard parsimony constraint on the solutions.
These three families were trained on generations 2 through 5 and tested on

generations 6 through 8; . the temperature started at thigh = 0.05 and dropped

by factors of , freduce = 0.8 each time 500 update changes were

FIG. 4.  The lineage trees used in the experiments consist of two subtrees: a balanced binary

tree of size N for the input neurons and an almost balanced binary tree of size A for the
output neurons. An almost balanced tree of size M consists of almost balanced subtrees of
size [M/2] and [M/2]. Trees for A = 6 and A = 10 are shown.

accepted, stopping only when 20,000 rejections were required to get these

500 acceptances; the parsimony weights were 1 = 0.00032, 2 = 0.000005,

and 3 = 0.000005.

At any value of p we can compare the genetic neural network method’s
performance to simulated annealing considered as an optimization method

operating directly on the space of all one-layer feed-forward connection

matrices. The simplest experiment involves comparing GNN and simulated

annealing for the sequence of slightly different tasks parameterized by p
(Eq. (12)) by computing the ratio of scores

Egenetic p, n( )
Econtrol p, n( )

,
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where the control score is averaged over three independent runs. Twelve
runs for each of several values of the task parameter p are shown in Fig. 5.

During the GNN simulated annealing procedure, genetic descriptions are

sometimes found which scale better than any later configuration, but are

thrown away. This phenomenon may be called “overlearning” and we do
not entirely understand it, though it is similar to many dynamical systems in

which a trajectory will linger near one attractor before settling into another.

To take advantage of this phenomenon, we test the genetic description on
size n = 6 (one size larger than the training set) after each 500 update

acceptances. We continually keep the genetic description with the lowest

score so far on size n = 6. This stored decomposition matrix is the output of
the GNN optimization procedure; the decomposition matrix chosen is often

the last one reached in the course of annealing. Since the

FIG. 5. The ratio of scores of genetically optimized nets and of control experiments involving

simulated annealing of unstructured nets, as a function of a parameter p appearing in the
continuous coding task. Control experiments are averaged over three runs. For each p, twelve
GNN runs are shown. Crosses show results for n = 5, the largest training size for the genetic
optimization (but very infrequent evaluations are also made at size n = 6 to prevent
overlearning, as described in the text). Open circles show results for n = 8, where the network
is obtained by pure extrapolation without any further training.
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evaluation on size n = 6 is performed very infrequently compared to the

training evaluation on sizes n = 2 through 5, it adds almost no computational
expense.

The average of control experiment scores is empirically well behaved: the

associated standard deviation is only a few percent of the mean. As shown

in Fig. 5, however, the genetic scores vary by a factor of as much as 30
between good runs and bad runs, both of which happen frequently. To filter

out the worst runs we consider a set of four successive runs and choose the

output of the genetic learning procedure to be the best decomposition matrix
in the set, as judged by its performance at n = 6. It is this filtered genetic

description which we examine for scaling; its relative score, averaged over

three sets of runs, is

R p, n( ) =
min4 runs Egenetic p, n( )

3 sets of runs

Econtrol p, n( )
3 runs

,

FIG. 6. The ratio of filtered scores for genetic neural nets and of the control experiments as

described in Fig. 5. All GNN experimental results are averaged over three sets of four runs;
within each set of four runs the best result for n = 6 is selected. This procedure reliably filters
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out the poor runs present in Fig. 5. Dotted lines show results for n = 5, the largest training
size for the genetic optimization. Solid lines show results for n = 8, demonstrating scaling
without further training or filtering.

This quantity is shown by the dotted line in Fig. 6 for generation n = 5, the

last generation for which the decomposition matrices were trained, and for
which N = 32 and A = 10. The associated variance, and the relative scores

for each run,

min4 runs Egenetic p, n( )

Econtrol p, n( )
3 runs

,

are also shown as a function of p in this figure. Next, the recursion relation

(6) is used to extrapolate far beyond the training set to generation n = 8,

where the network size parameters are N = 256 and A = 16. The resulting
large network has had no training at all on any inputs of size N = 256, and

yet performs well as indicated by the solid line in Fig. 6, with associated

data points and variances. We note that the comparison with the control

experiments is best near p = 0 and p = 1, and is not as good near p = 0.5.

This may indicate that the solution is intrinsically more complicated near

p = 0.5. We also report that, as the size n is increased past 5, the p = 0.5
control scores decline slowly and the absolute GNN scores rise very slowly.

Thus there is nontrivial scaling behavior even for p = 0.5.

One may also study generalization along the scale axis in more detail as in
Table I, where (min4 runs Egenetic (p, n)) and (Econtrol (p, n)) (each averaged over

three trials, as before) are displayed as a function of n, for p = 0.1. At p = 0.1

and n  5 the control scores are relatively flat, so we report genetic scores

for sizes considerably beyond the sizes for which we can afford to do the

control experiments. The relatively flat GNN scores extend well past the
training set size; this demonstrates successful scaling. In addition, it is

possible to come considerably closer to the control scores by using a slower

GNN annealing schedule than that used in Table I and Figs. 5 and 6.
On a Multiflow Trace 7/200, the computing time for a single run of the

control experiment for n = 8 was 4.4 CPU-h, whereas the GNN method

required an initial investment of 18.6 h (including four runs for the filtering

step) to get the recursion relation for sizes n = 2 through 5, and an extra half
second to extrapolate the recursion relation to obtain a connection matrix for

n = 8. The initial GNN investment time may not yet be minimal, because the

continuous coding score energy is completely recomputed at each move in
the GNN procedure, but incrementally recomputed for each move in the
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control experiment. It is possible that incremental GNN evaluation would be

faster. Nevertheless, for larger sizes the GNN method becomes much faster
than the control method because only the relatively small extrapolation time

changes; it is not necessary to recompute the recursion relation.

Table I shows further comparative timing data which demonstrate a great

advantage for the GNN method: not only do the asymptotically GNN
timings increase linearly in N = 2n, compared to the control timings which

are increasing quadratically, but there is an additional constant factor of

about 102 which favors the GNN timings. The control experiment timings
are minimal, since they assume that the required number of acceptances and

the allowed number of rejections in the control experiment’s annealing

procedure scale linearly with N, which is an optimistic assumption. Also,
unlike the control timings, the GNN timings are much smaller than the

quadratically increasing time required to perform a single evaluation of the

energy function; thus only the time to compute the network, and not the time

to exhaustively test it, is reported. All reported timings are averages over
three runs. We conclude that the GNN learning method is asymptotically

much faster than the control method.

We present an example of a decomposition matrix and its n = 3 and n = 6
output matrices aio  which were found by our optimization procedure.

The example is for the case p = 0.1 and has scores of 0.0971 for n = 3 and
0.1423 for n = 6, which are good. For clarity of display, blanks indicate

matrix entries with value 0. For n = 3, o is

1111

1111

1111

1111

1111

1111

and for n = 6 it is
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In agreement with results of our earlier investigations [14] at small p, all

of the features (the rows of these o matrices) are Walsh functions. (To make
this identification we must replace zero entries with -1, or use output

neurons with values ± 1 instead of 0 and 1.) The Walsh functions are a

standard orthogonal set of basis functions [3] used in the Walsh transform,

analogous to trigonometric basis functions for the Fourier transform.
Algorithms for computing the Walsh functions are given in [3] and below.

Extending the a (n) notation of Eq. (2) to include the 3 X 3 matrices D**
ab

,

where the * subscripts take values “0,” “1,” or “2” as described in

TABLE I

Scaling and Timing, p = 0.1

Size n Score CPU time (s)

N = 2n, A = 2 n GNN Anneal T GNN Anneal T

2-5a 0.1381 ± 0.0012 0.1364 ± 0.0001 16766b 214 ± 25
6 0.1431 ± 0.0023 0.1394 ± 0.0001 0.1 ± 0.05 793 ± 48
7 0.1466 ± 0.0040 0.1400 ± 0.0001 0.2 ± 0.05 3548 ± 136
8 0.1479 ± 0.0034 0.1400 ± 0.0001 0.5 ± 0.05 15902 ± 123
9 0.1477 ± 0.0031 c 1.2 ± 0.05 64000d

10 0.1474 ± 0.0033 c 2.7 ± 0.05 c

11 0.1466 ± 0.0030 c 6.0 ± 0.17 c

12 0.1462 ± 0.0026 c 12.9 ± 0.10 c

13 0.1460 ± 0.0023 c 28.2 ± 0.05 c

aScores are for size 5.
bMultiply by four to account for filtering. Includes training on sizes 2-5.
cNot computed due to expense.
dEstimated.

Section 2.1, we may express the learned recursion relations as
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0 n + 1( ) =
0 0 0

1 n( ) 2 n( ) 0 0

0 0 0

( )

( ) ( )

( ) ( )

( ) ( ) ( )

=+

nnn

nn

nn

n

111

11

11

1

2

1
2

0

0
2

1

1 (14)

( ) ( ) ( ) ( )

( ) ( )

=+

nn

nnnn

22

2222

240

3
2

5

000

1

for all n  -1. Also a (-1) = 1, for all a.

Here the 3  3 matrices are to be converted to 2  2 matrices in

accordance with the shape of the lineage tree as well as its maximum depth,
n, in the manner determined by Eq. (6). The horizontal and vertical bars in

Eq. (14) separate the 2  2 matrices from the terminating values 
ab
p2D , 

ab
2qD

and aa

22
D .

Note the great simplicity of these recursion relations. They may be

understood fairly easily: the o family of matrices, which serves as the final

network connection matrix, is specialized to eliminate all but the feed-

forward connections from input neurons to output neurons and thereby gain

parsimony. The Walsh functions are implicit in the expression for 1 (n + 1),

for they are generated by the tensor product

Ti1 ...in , j1 ... jn = Mi1 , j1
Mi2 , j2

...Min , jn
,

where

=
11

11
M ,    =

1111

1111

1111

1111

MM , . . .
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which is, in our notation,

1 n + 1( ) =
1 n( ) 1 n( ) 0

1 n( ) 1 n( ) 0

0 0 1 n( )

for N = A = 2
n
. The remaining entries of 1 and 2  may be regarded as

adjustments for the fact that A is neither large nor a power of 2 in the
continuous coding problem.

A second example illustrates the dominant GNN behavior for p  0.8. This

set of solutions generates output matrices which appear to be nearly optimal

for p = 1, and are not optimal for p  0.9 but score well enough and are very

simple. We exhibit one particularly parsimonious set of recursion relations

which was learned for p = 1. The n = 3 output matrix o is

11111111

11111111

11111

1111

111

1

and larger sizes also result in triangular matrices, scaled up. The triangular o

matrices show that the network computes a kind of unary code in which the
position of the single input neuron which is turned on is linearly mapped

into the position of the boundary between blocks of on and off output

neurons. The recursion relations themselves are

0 n + 1( ) =
0 0 0

1 n( ) 0 0

0 0 0
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( )

( ) ( )

( )

( )

=+

00

080

0

1

2

1

21

1

n

n

nn

n (15)

( )

( ) ( )

( ) ( )

( ) ( ) ( )

=+

nnn

nn

nn

n

222

22

22

2

6

0

0
2

1

1

for all n  -1. Also a ( -1) = 1, for all a.

Once again the o family is specialized to eliminate all but feed-forward

connections. Now 2 is specialized to create rectangular blocks of negative

matrix entries, and 1 is specialized to make triangular submatrices. (The

thresholding operation for the output neurons sent zero or positive input

sums to + 1 output values and negative input sums to zero output values; the
learned solutions rely on this treatment of the special zero-input-sum case.)

The coefficients 8, 1/2, and 6 could be set to unity without affecting

performance.

4.  EXTENSIONS OF THE GNN THEORY

The purpose of this section is to outline several fundamental extensions of
the GNN theory presented in Section 2. The experimental investigation of

these ideas is left to future research.

4.1.  Structured Trees

The families of lineage trees defining the address of a neuron have had a

regular structure, but their structures have been imposed as part of the task.

Can these structures be learned, and what would be gained by doing so? The
principal advantage would be that the optimization procedure would have

greater freedom to choose its own mapping of the problem onto circuit

elements, i.e., to develop its own representation of the problem.
The objective functions of Section 2.2 depend on the decomposition

matrices and on the lineage trees. What we shall do here is provide a

recursive description of families of lineage trees in terms of new parameters

analogous to those occurring in the decomposition matrices.
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The nodes in an infinite binary tree can be indexed, or addressed, by

strings i1 . . . in, of 0’s and 1’s. o each node in the tree we assign a variable

Li1
 . . in which is 1 if that node occurs in the present lineage tree, and zero

otherwise. Li1 _ . . in
 will be determined by a set of real weights Wi1 . . . in

. If Wi1

... in
 is among the N largest weights in the tree, then Li1 ...in

 = 1 and the i th

node is in the tree. Otherwise it is zero and the node is not in the tree. This

procedure can be expressed as the minimization of

Etree L( ) = Li1 ... jn N
i1 ...inn =1

2

Li1 ... jn Wi1 ... jn
i1 ...inn = 0

. (16)

In analogy with Eq. (4) for the decomposition matrices, we can now write

a recursion relation for the weights,

=

=

B

b

b

ni...i

ab

i

a

ni...i
WW

1
211

  ( )1n . (17)

The set of weights which specify the desired lineage tree can be taken to

be W1
i1…in

. As in the case of the number of connection strength templates, if

B is small then the lineage tree is structured.

We give an example. Consider the class of almost balanced lineage trees

used in our experiments and described in Fig. 4. Figure 7 gives an
assignment of weights Wi1 . . . In

 to the infinite binary tree which gives this

class of lineage trees. The figure also shows a set of weights Wi1 . . . in
 which

are needed in the recursion relation for Wi1 . . . in
. To produce these weights,

FIG. 7. A portion of the infinite structured lineage tree determined by weights generated in
Eqs. (17) and (18).

one uses Eq. (17) with the hand-designed coefficients
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0
11
=
1

2
, 1

11
=
1

2
, 0

12
=
1

2
, W 1

= 1

0
23
= 1, 1

23
= 1, W 2

= 0

0
33
=
1

4
, 1

33
=
1

4
, W 3

=
1

4
.

(18)

A11 other ab
p are zero.

4.2.  Function Similarity Matrix

Consider a collection of templates. The operation of substituting one

template for another in a decomposition matrix would, with high
probability, be counterproductive (result in a lower score). However, if two

templates b and c are known on the basis of past experience to perform a

similar function, then the substitution of c for b should improve the score

with probability approaching one half. How can we discover and use such
similarities?

If a decomposition matrix element 
ab
2qD  is nonzero, the collection of

indices a, p, q, specifies a place where b can occur. We call the triple a, p, q

a context of b. If c can be substituted for b in one context, we propose that c

is similar to b and can also be substituted in another context.

We introduce slowly changing variables Sbc C=- [0,1] which measure the
degree of similarity between b and c. The matrix S is called the function

similarity matrix. The effect of Sbc, on the optimization procedure will be

expressed by a new contribution to the objective function. We pick this to be
of the form:

EFSM D, S( ) = Dpq
ab

pqa
contexts

bc
substitutions

Dpq
ac Sbc . (19)

This has the following effects: Sbc, increases when templates b and c are in
competition for the same position, and template c will be introduced into

competition with template b when Sbc > 0. The efficacy of this new term

may be measured by varying its Lagrange multiplier and observing the
effect on performance.
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Our experiments so far have not involved sufficiently many templates to

justify the use of the function similarity matrix. It may be thought of as a
means of organizing a large library of templates for use in learning.

4.3.  GNN Summary

As augmented by structured trees and the function similarity matrix, we
may summarize the full GNN approach to learning as follows:

(1) Ti, j
(a)

= Di1 j1

ab

b

Ti ', j '
(b)

, ( )nn i...i'i;i...ii
21

==

(2) =

b

b

'i

ab

i

a

i
W*W

1
;

choose the largest N weights 1
iW  to get a lineage tree (20)

(3) ( ) ( )( ) ( )+=
abpq

ab
pq

nsgeneration
task DVn,DTEDE

bc
ac
pq

bc pqa

ab
pq SDD* .

The unstarred expressions have been tested by numerical experiments
whose results are reported in this paper. The findings on the test problem

considered may be summarized as follows: (a) genetic neural nets permit

generalization by scaling, in that nets trained on small problems continue to

score well on much larger versions of the same problem, and (b) the
computation with structured nets is more efficient than direct optimization

of connection matrices to a degree that increases with problem size.

Equation (20) is our present formulation of genetic neural networks, and it is
subject to change in response to new experiments.

APPENDIX: RECURSIVE DESCRIPTIONS OF GRIDS OF

DIMENSION 2 AND 3

In the following recursion equation, 1(n) specifies the connection matrix

for a 2-dimensional toroidal grid whose neurons are numbered in the

hierarchical zig-zag order shown in Fig. 8(a). The dimensions of the grid are

22[n/2]  22[n/2].
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The relationship between the templates is shown as a graph in Fig. 8(b). a

and b are independently controllable weights on the final grid connections in
the x and y directions, respectively, allowing one to describe

FIG. 8.  (a) 2 D toroidal grid: Connection pattern and ordering of sites. Note periodic

boundary conditions for 4  4 grid. (b) 2 D grid: Graph of dependencies between templates.

anisotropic, homogeneous grids. The recursion equation is

1 n+1( ) =
2 n( )+ 3 n( )+ 5 n( ), 4 n( )

4 n( ), 2 n( )+ 3 n( )+ 5 n( )
( ) ,00

1
=

( )
( )

( )
=+

n

n
n

3

3

2
0

0
1 , ( ) ,00

2
=

( )
( ) ( )

( )
=+

n

nn
n

2

42

3
0

1 , ( ) ,00
3

= (21)



164 MJOLSNESS, SHARP, AND ALPERT

( )
( )

( )
=+

n

n
n

5

5

4
0

0
1 , ( ) ,a=0

4

( )
( )

=+
0

00
1

4

5
n

n , ( ) ,b=0
5

for all n  0.

FIG. 9.  (a) 3D grid: Local ordering of sites. (b) 3D grid: Template dependency graph.

A similar set of templates specifies three-dimensional toroidal grids as in

Fig. 9. In this case the recursion equations are

1 n+1( ) =
2 n( )+ 3 n( )+ 4 n( )+ 6 n( )+ 7 n( ), 5 n( )

5 n( ), 2 n( )+ 3 n( )+ 4 n( )+ 6 n( )+ 7 n( )
( ) ,00

1
=

( )
( )

( )
=+

n

n
n

3

3

2
0

0
1 , ( ) ,00

2
=

( )
( )

( )
=+

n

n
n

4

4

3
0

0
1 , ( ) ,00

3
=

( )
( ) ( )

( )
=+

n

nn
n

2

52

4
0

1 , ( ) ,00
4

= (22)
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( )
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( )
=+

n

n
n
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6

5
0

0
1 , ( ) ,a=0

5

( )
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( )
=+

n

n
n

7

7

6
0

0
1 , ( ) ,b=0

6

7 n+1( ) =
0 0

5 n( ) 0
, ( ) ,c=0

7

for all n  0.
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