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Abstract—We study the limit properties of solutions for a class of systems of ordinary differen-
tial equations as the number of equations and a certain parameter grow unboundedly. We show
that the sequence of functions formed by the last components of solutions of such systems has
a repeated limit. The limit function is a solution of a delay differential equation. Estimates of
the convergence rate are obtained.
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1. INTRODUCTION

The theory of delay differential equations was intensively developing in the second half of the
20th century. This was related to numerous applied problems whose analysis necessitated solving
delay equations. Equations of this type arise in the description of processes whose rate is determined
by their previous states. Such processes are often referred to as “delay processes” or “processes
with aftereffect.” A reasonably complete introduction to the theory of delay differential equations
can be found, e.g., in [1–3].

The present paper deals with yet another problem that leads to the study of delay differential
equations. More precisely, we continue the analysis of relationships, established in [4], between
solutions of a class of systems of ordinary differential equations of infinite dimension and solutions
of equations of the form

d

dt
y(t) = f(y(t), qy(t − τ)), t > τ. (1.1)

The Cauchy problem for the following system of ordinary differential equations was considered
in [4] :

dx

dt
= An(τ, θ)x + h(qθyn),

dyn

dt
= f(yn, xn),

x1|t=0 = · · · = xn|t=0 = 0, yn|t=0 = y0,
(1.2)

where An(τ, θ) is the bidiagonal n × n matrix with main diagonal

(−(n − 1)/τ, . . . ,−(n − 1)/τ,−θ)

and with subdiagonal entries (n − 1)/τ , h(ξ) is the column vector of the form

h(ξ) = col(ξ, 0, . . . , 0), ξ = qθyn, τ, q > 0

are fixed parameters, and θ > 0; moreover, f(u, v) is a bounded function satisfying the Lipschitz
condition with respect to both variables:

sup
u,v∈R

|f(u, v)| = F < ∞, |f(u1, v1) − f(u2, v2)| ≤ L1|u1 − u2| + L2|v1 − v2|. (1.3)
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34 DEMIDENKO et al.

It was proved in [4] that some class of solutions of Eq. (1.1) can be represented as the repeated
limit

lim
θ→∞

lim
n→∞

yn(t, θ) = y(t), (1.4)

where yn(t, θ) is the last component of the solution of the Cauchy problem (1.2). The limit rela-
tion (1.4) was proved for q ∈ (0, 1) on the interval (τ, T0], where

τ < T0 < min
{

1 − q

L1

,
1
L2

}
.

In the present paper, we strengthen this result by proving the limit relation (1.4) for any pa-
rameter q > 0 on an arbitrary interval (τ, T ] and by estimating the convergence rate.

Note that relationships of this type between solutions of systems of ordinary differential equa-
tions of infinite size and solutions of delay differential equations were obtained in [5] when modeling
unbranched multistage synthesis of a material [6]. The corresponding system of differential equa-
tions has the form

dx1

dt
= g(xn) − n − 1

τ
x1,

dxi

dt
=

n − 1
τ

(xi−1 − xi), i = 2, . . . , n − 1,

dxn

dt
=

n − 1
τ

xn−1 − θxn.

(1.5)

It was shown in [5] that if the number n of equations in system (1.5) tends to infinity and only
the last components of the solution of the Cauchy problem with zero initial data x|t=0 = 0 are
considered, then we obtain a uniformly convergent sequence

xn(t) → y(t), n → ∞, t ∈ [0, T ];

moreover, the limit function y(t) satisfies the identity

dy(t)
dt

≡ −θy(t) + g(y(t − τ)), t > τ.

Consequently, the function y(t) is a solution of the delay differential equation (1.1) with right-hand
side

f(u, v) = −θu + g(v).

These results were generalized in [7] to a wide class of quasilinear differential equations.

2. SYSTEMS WITH INFINITELY MANY DIFFERENTIAL EQUATIONS

The last two components of the solution of problem (1.2) are solutions of the following system
of integral equations:

xn(t, θ) = qθ

t∫
0

ψn(t − s, θ)yn(s, θ) ds, (2.1)

yn(t, θ) = y0 +

t∫
0

f(yn(s, θ), xn(s, θ)) ds, (2.2)

where

ψn(t, θ) =
e−θt

(1 − θτ/(n − 1))n−1
Sn(t, θ),

Sn(t, θ) = 1 − e−ωt

n−2∑
k=0

(ωt)k

k!
, ω =

n − 1
τ

− θ.
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ON THE RELATIONSHIP BETWEEN SOLUTIONS 35

Indeed, Eq. (2.1) can be obtained by taking into account the initial conditions x|t=0 = 0 and by
applying the Cauchy formula to the first n equations in (1.2), and Eq. (2.2) can be obtained just
by integrating the last equation in (1.2).

Now consider the sequence of Cauchy problems (1.2) obtained as the number n of equations
tends to infinity. By solving each of the problems and by considering only the last two components
of the solutions, we obtain the sequence {zn(t, θ)} of vector functions

zn(t, θ) = (xn(t, θ), yn(t, θ)).

The following lemma implies that, for fixed θ, this sequence is convergent in the space C[0, T ] ×
C[0, T ] of continuous vector functions.

Theorem 2.1. Let xn(t, θ) and yn(t, θ) satisfy the system of integral equations (2.1), (2.2).
Then the sequence {xn(t, θ), yn(t, θ)} is uniformly convergent on any closed interval [0, T ] for any
θ > 0 as n → ∞.

Proof. It suffices to prove that the sequence is Cauchy; together with the completeness of the
space C[0, T ] × C[0, T ], this implies the desired convergence.

Let us estimate the absolute values of the differences |xn(t, θ)−xn+l(t, θ)| and |yn(t, θ)−yn+l(t, θ)|,
l ∈ N . Since the function f(u, v) is bounded, it follows from Eq. (2.2) that the sequence {yn(t, θ)}
is uniformly bounded for any n and on any closed interval [0, T ] :

max
t∈[0,T ]

|yn(t, θ)| ≤ Y = |y0| + TF.

After simple transformations, we obtain the inequalities

|xn(t, θ) − xn+l(t, θ)| ≤ qθ

t∫
0

|ψn+l(t − s, θ) − ψn(t − s, θ)| |yn+l(s, θ)| ds

+ qθ

t∫
0

|ψn(t − s, θ)| |yn+l(s, θ) − yn(s, θ)| ds

≤ In,l(t, θ) + qθΨn

t∫
0

|yn+l(s, θ) − yn(s, θ)| ds,

|yn(t, θ) − yn+l(t, θ)| ≤ L1

t∫
0

|yn(s, θ) − yn+l(s, θ)| ds + L2

t∫
0

|xn(s, θ) − xn+l(s, θ)| ds,

where

In,l(t, θ) = qθ

t∫
0

|ψn+l(t − s, θ) − ψn(t − s, θ)| |yn+l(s, θ)| ds, Ψn(θ) = max
ξ∈[0,T ]

ψn(ξ, θ). (2.3)

By the definition of the function ψn(ξ, θ), we have the inequality

Ψn(θ) = max
ξ∈[0,T ]

|ψn(ξ, θ)| ≤ 1
(1 − θτ/(n − 1))n−1

.

Since limn→∞(1 − θτ/(n − 1))−n+1 = eθτ , it follows that there exists an n0 such that

Ψn(θ) ≤ 2eθτ = Ψ(θ)

for any n ≥ n0.

DIFFERENTIAL EQUATIONS Vol. 45 No. 1 2009



36 DEMIDENKO et al.

By using the notation

xn,l(t, θ) = xn+l(t, θ) − xn(t, θ), yn,l(t, θ) = yn+l(t, θ) − yn(t, θ),
Mn,l(θ) = max

t∈[0,T ]
In,l(t, θ),

we arrive at the system of integral inequalities

|xn,l(t, θ)| ≤ Mn,l(θ) + qθΨ(θ)

t∫
0

|yn,l(s, θ)| ds, (2.4)

|yn,l(t, θ)| ≤ L1

t∫
0

|yn,l(s, θ)| ds + L2

t∫
0

|xn,l(s, θ)| ds. (2.5)

For given l ∈ N , we denote the right-hand sides of inequalities (2.4) and (2.5) by Un,l(t, θ) and
Vn,l(t, θ), respectively. By differentiating Un,l and Vn,l with respect to t, we obtain

dUn,l(t, θ)
dt

= qθΨ(θ)|yn,l(t, θ)| ≤ qθΨ(θ)Vn,l(t, θ), (2.6)

dVn,l(t, θ)
dt

= L1|yn,l(t, θ)| + L2|xn,l(t, θ)| ≤ L1Vn,l(t, θ) + L2Un,l(t, θ); (2.7)

in addition, Un,l(0, θ) = Mn,l(θ) and Vn,l(0, θ) = 0.
It follows from (2.7) that

Vn,l(t, θ) ≤ L2

t∫
0

eL1(t−s)Un,l(s, θ) ds. (2.8)

Then, by taking into account (2.6), we obtain

Un,l(t, θ) ≤ Mn,l(θ) + qθΨ(θ)L2

t∫
0

ξ∫
0

eL1(ξ−s)Un,l(s, θ) ds dξ. (2.9)

By denoting the right-hand side of inequality (2.9) by Wn,l(t, θ) and by following the same scheme,
we obtain the differential inequality

W ′′
n,l − αL1W

′
n,l − αWn,l ≤ 0, Wn,l(0, θ) = Mn,l(θ), W ′

n,l(0, θ) = 0, (2.10)

where α = qθΨ(θ)L2.
We rewrite the differential inequality (2.10) in the form

(
d

dt
− λ1I

)(
d

dt
− λ2I

)
Wn,l ≤ 0,

where
λ1 = (αL1 +

√
α2L2

1 + 4α )/2, λ2 = (αL1 −
√

α2L2
1 + 4α )/2 (2.11)

are the roots of the equation λ2 − αL1λ − α = 0.
Now, by integrating this inequality and by taking into account the initial data, we obtain

Wn,l(t, θ) ≤ Mn,l(θ)
λ1 − λ2

=
1

λ1 − λ2

max
s∈[0,T ]

In,l(s, θ)(λ1e
λ2t − λ2e

λ1t). (2.12)
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ON THE RELATIONSHIP BETWEEN SOLUTIONS 37

Note that [4]
max

t∈[0,T ]
In,l(t, θ) → 0, n → ∞. (2.13)

Since, by (2.4) and (2.9),
|xn,l(t, θ)| ≤ Un,l(t, θ) ≤ Wn,l(t, θ), (2.14)

it follows that {xn(t, θ)} is a Cauchy sequence.
Now let us show that {yn(t, θ)} is a Cauchy sequence on any interval [0, T ]. By virtue of

inequalities (2.5), (2.8), and (2.14), we have

|yn,l(t, θ)| ≤ Vn,l(t, θ) ≤ L2

t∫
0

eL1(t−s)Un,l(s, θ) ds ≤ L2

t∫
0

eL1(t−s)Wn,l(s, θ) ds. (2.15)

Consequently, by taking into account the estimate (2.12) and the convergence (2.13), we obtain the
relation

max
t∈[0,T ]

|yn,l(t, θ)| → 0, n → ∞,

on any closed interval [0, T ]; i.e., {yn(t, θ)} is a Cauchy sequence on [0, T ]. Since the space C[0, T ]×
C[0, T ] is complete, it follows that there exists a vector function

z(t, θ) = lim
n→∞

zn(t, θ) ∈ C[0, T ] × C[0, T ].

The proof of the theorem is complete.

Corollary. The limit vector function z(t, θ) = (x(t, θ), y(t, θ)) is a solution of the system of
integral equations

x(t, θ) = qθ

t−τ∫
0

e−θ(t−τ−s)y(s, θ) ds, t > τ, (2.16)

y(t, θ) = y0 +

t∫
0

f(y(s, θ), x(s, θ)) ds (2.17)

with x(t, θ) = 0, t ∈ [0, τ ].

Theorem 2.2. The system of integral equations (2.16), (2.17) has a unique continuous solution
on [0, T ] such that x(t, θ) = 0, t ∈ [0, τ ].

Proof. The existence of a solution has been proved above. Let us prove the uniqueness.
Suppose the contrary: there exist two distinct solutions (x1(t, θ), y1(t, θ)) and (x2(t, θ), y2(t, θ))

satisfying system (2.16), (2.17); moreover, x1(t, θ) = x2(t, θ) = 0, t ∈ [0, τ ]. Consider the difference

x(t, θ) = x1(t, θ) − x2(t, θ), y(t, θ) = y1(t, θ) − y2(t, θ)

of these solutions. Then x(t, θ) satisfies Eq. (2.16) and y(t, θ) satisfies the equation

y(t, θ) =

t∫
0

[f(y1(s, θ), x1(s, θ)) − f(y2(s, θ), x2(s, θ))] ds, t > 0. (2.18)

Hence we have

|x(t, θ)| ≤ qθ

t−τ∫
0

|y(s, θ)| ds, t > τ, (2.19)

x(t, θ) ≡ 0, 0 ≤ t ≤ τ, |y(t, θ)| ≤
t∫

0

[L1|y(s, θ)| + L2|x(s, θ)|] ds. (2.20)
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38 DEMIDENKO et al.

Then on the interval [0, τ ], we obtain the inequality

|y(t, θ)| ≤
t∫

0

L1|y(s, θ)| ds, (2.21)

and since y(0, θ) = 0, it follows from the Gronwall inequality that

y(t, θ) ≡ 0, t ∈ [0, τ ].

This, together with inequality (2.19), implies that x(t, θ) ≡ 0 for τ ≤ t ≤ 2τ .
Returning to inequality (2.20), we obtain the estimate (2.21) on [τ, 2τ ], which, just as above,

implies that y(t, θ) ≡ 0 for τ ≤ t ≤ 2τ . By repeating these considerations, we find that sys-
tem (2.16), (2.18) has only the zero solution on any interval [0, T ]. The resulting contradiction
implies the uniqueness of the solution of the system of integral equations (2.16), (2.17). The proof
of the theorem is complete.

3. PROPERTIES OF SOLUTIONS OF THE INTEGRAL SYSTEM AS θ → ∞
Let us study the behavior of the solution z(t, θ) of system (2.16), (2.17) as θ → ∞. For sim-

plicity, we consider the case in which θ is a positive integer. By solving this system for various
θ = m ∈ N , we obtain the sequence {zm(t)} of vector functions zm(t) = (xm(t), ym(t)), where

xm(t) ≡ qm

t−τ∫
0

e−m(t−τ−s)ym(s) ds, t > τ, (3.1)

ym(t) ≡ y0 +

t∫
0

f(ym(s), xm(s)) ds, (3.2)

and xm(t) ≡ 0 for t ∈ [0, τ ].

Theorem 3.1. Let the function f(u, v) satisfy condition (1.3). Then the sequence {zm(t)} is
convergent on (τ, T ] for any T > τ :

xm(t) → X (t), m → ∞, (3.3)
ym(t) → Y(t), m → ∞; (3.4)

moreover,

X (t) = qY(t − τ),

Y(t) = y0 +

t∫
0

f(Y(s), 0) ds, t ∈ [0, τ ], (3.5)

Y(t) = y0 +

τ∫
0

f(Y(s), 0) ds +

t∫
τ

f(Y(s), qY(s − τ)) ds, t ∈ (τ, T ]. (3.6)

Proof. Just as in [4], we prove the convergence (3.3), (3.4) successively on the intervals
(jτ, (j + 1)τ ] ⊂ (τ, T ].

First, consider the interval [0, τ ]. Since xm(t) ≡ 0, it follows from (3.2) that

ym(t) ≡ y0 +

t∫
0

f(ym(s), 0) ds;
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ON THE RELATIONSHIP BETWEEN SOLUTIONS 39

i.e., the sequence {ym(t)} is stationary, ym(t) ≡ y(t), m ∈ N . By definition, we set Y(t) = y(t),
t ∈ [0, τ ]. Consequently, the function Y(t) is a solution of Eq. (3.5) for t ∈ [0, τ ].

Consider the interval (τ, 2τ ]. By (3.1),

xm(t) = qm

t−τ∫
0

e−m(t−τ−s)Y(s) ds.

It was shown in [4] that the sequence {xm(t)} is uniformly convergent on [τ +δ, 2τ ] for any δ ∈ (0, τ),

xm(t) → X (t) ≡ qY(t − τ), m → ∞;

in addition, one has the estimate

|xm(t) − qY(t − τ)| ≤ qF

m
+ q(|y0| + τF )e−δm. (3.7)

Let us show that the sequence {ym(t)} is also uniformly convergent on [τ, 2τ ] :

ym(t) → Y(t), m → ∞.

By (3.2) and the condition imposed on the function f(u, v), we obtain

|ym+l(t) − ym(t)| ≤
τ+δ∫
τ

|f(ym+l(s), xm+l(s)) − f(ym(s), xm(s))| ds

+

t∫
τ+δ

|f(ym+l(s), xm+l(s)) − f(ym(s), xm(s))| ds

≤ 2δF + L1

t∫
τ

|ym+l(s) − ym(s)| ds + τL2 max
[τ+δ,2τ ]

|xm+l(t) − xm(t)|.

This, together with inequality (3.7), implies that

|ym+l(t) − ym(t)| ≤ 2δF + 2τL2

(
qF

m
+ q(|y0| + τF )e−mδ

)
+ L1

t∫
τ

|ym+l(s) − ym(s)| ds.

By using the Gronwall inequality, on the interval [τ, 2τ ], we obtain the estimate

|ym+l(t) − ym(t)| ≤ 2
(

δF + τL2

(
qF

m
+ q(|y0| + τF )e−δm

))
eL1t. (3.8)

Since δ > 0 is arbitrary, it follows that the sequence {ym(t)} is Cauchy in C[τ, 2τ ]. Therefore, the
convergence (3.4) holds.
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By virtue of (3.3) and (3.4), in (3.2), one can pass to the limit on the interval [τ, 2τ ] as m → ∞
and obtain (3.6). Indeed, by (3.2) and condition (1.3), we have

∣∣∣∣∣ym(t) −
(

y0 +

τ∫
0

f(Y(s), 0) ds +

t∫
τ

f(Y(s), qY(s − τ)) ds

)∣∣∣∣∣

=

∣∣∣∣∣
t∫

τ

[f(ym(s), xm(s)) − f(Y(s), qY(s − τ))] ds

∣∣∣∣∣

≤
∣∣∣∣∣

τ+δ∫
τ

[f(ym(s), xm(s)) − f(ym(s), qY(s − τ))] ds

∣∣∣∣∣

+

∣∣∣∣∣
t∫

τ+δ

[f(ym(s), xm(s)) − f(ym(s), qY(s − τ))] ds

∣∣∣∣∣

+

∣∣∣∣∣
t∫

τ

[f(ym(s), qY(s − τ)) − f(Y(s), qY(s − τ))] ds

∣∣∣∣∣
≤ 2δF + τL2 max

[τ+δ,2τ ]
|xm(t) − qY(t − τ)| + τL1 max

[τ,2τ ]
|ym(t) − Y(t)|.

This, together with (3.3) and (3.4), implies the inequality

lim
m→∞

∣∣∣∣∣ym(t) −
(

y0 +

τ∫
0

f(Y(s), 0) ds +

t∫
τ

f(Y(s), qY(s − τ)) ds

)∣∣∣∣∣ ≤ 2δF.

Therefore, since δ > 0 is arbitrary, we have

ym(t) → y0 +

τ∫
0

f(Y(s), 0) ds +

t∫
τ

f(Y(s), qY(s − τ)) ds, m → ∞,

for t ∈ [τ, 2τ ]. On the other hand, ym(t) → Y(t) as m → ∞. Therefore, relation (3.6) on the
interval (τ, 2τ ] follows from the uniqueness of the limit.

By letting l in inequality (3.8) tend to infinity, we obtain the estimate

max
[τ,2τ ]

|ym(t) − Y(t)| ≤ 2
(

δF + τL2

(
qF

m
+ q(|y0| + τF )e−δm

))
e2τL1. (3.9)

Note that relations (3.2) and (3.6) imply the estimates

max
[0,t]

|ym(s)| ≤ |y0| + tF, max
[0,t]

|Y(s)| ≤ |y0| + tF. (3.10)

Let us show that, by using the resulting estimates, one can prove relations (3.3) and (3.4) on
the interval (2τ, 3τ ]. We represent xm(t) as the sum of two terms,

xm(t) = qm

t−τ∫
0

e−m(t−τ−s)ym(s) ds

= qm

τ∫
0

e−m(t−τ−s)ym(s) ds + qm

t−τ∫
τ

e−m(t−τ−s)ym(s) ds

= Xm
1 (t) + Xm

2 (t). (3.11)
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By taking into account (3.10), for the first term, we obtain the estimate

|Xm
1 (t)| ≤ q(|y0| + τF )m

τ∫
0

e−m(t−τ−s) ds.

Then
max

[2τ+δ,3τ ]
|Xm

1 (t)| ≤ q(|y0| + τF )e−δm (3.12)

for any δ ∈ (0, τ). It was proved in [4] that

Xm
2 (t) → qY(t − τ) ≡ X (t), m → ∞. (3.13)

Let us present some considerations in [4], which are used in the proof of (3.13) and are needed in
Section 4.

Set

Um(t) = Xm
2 (t) − qY(t − τ) = qm

t−τ∫
τ

e−m(t−τ−s)ym(s) ds − qY(t − τ). (3.14)

By taking into account the relation

1 − e−m(t−2τ) = m

t−τ∫
τ

e−m(t−τ−s) ds,

we represent Um(t) in the form

Um(t) = qm

t−τ∫
τ

e−m(t−τ−s)(ym(s) −Y(s)) ds

+ qm

t−τ∫
τ

e−m(t−τ−s)(Y(s) − Y(t − τ)) ds − qY(t − τ)e−m(t−2τ).

Then, by (3.6), we have

Um(t) = qm

t−τ∫
τ

e−m(t−τ−s)(ym(s) −Y(s)) ds

+ qm

t−τ∫
τ

e−m(t−τ−s)

[ s∫
t−τ

f(Y(ξ), qY(ξ − τ)) dξ

]
ds − qY(t − τ)e−m(t−2τ)

= Um
1 (t) + Um

2 (t) + Um
3 (t). (3.15)

By taking into account the convergence (3.4), we have the uniform convergence Um
1 (t) → 0, m → ∞.

Since the function f(u, v) is bounded, we readily obtain the estimate

|Um
2 (t)| ≤ qF

m

∞∫
0

e−ηη dη =
qF

m
, (3.16)

and by using the second inequality in (3.10), we arrive at the estimate

|Um
3 (t)| ≤ q(|y0| + 2τF )e−δm. (3.17)
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Consequently, for any t ∈ (2τ, 3τ ], we have the convergence Um(t) → 0, m → ∞; moreover, it is
uniform on [2τ + δ, 3τ ] for any δ ∈ (0, τ). This readily implies the convergence (3.13). From (3.13)
and the estimate (3.12), we have the convergence (3.3) on the interval [2τ + δ, 3τ ] for any δ ∈ (0, τ).

Now let us consider the sequence {ym(t)} and show that it is uniformly convergent on the
interval [2τ, 3τ ].

We represent (3.2) in the form

ym(t) = y0 +

τ∫
0

f(ym(s), 0) ds +

2τ∫
τ

f(ym(s), xm(s)) ds +

t∫
2τ

f(ym(s), xm(s)) ds

= ym(2τ) +

t∫
2τ

[f(ym(s), xm(s)) − f(ym(s), qY(s − τ))] ds

+

t∫
2τ

f(ym(s), qY(s − τ)) ds. (3.18)

Then

ym+l(t) − ym(t) = ym+l(2τ) − ym(2τ) +

2τ+δ∫
2τ

[f(ym+l(s), xm+l(s)) − f(ym+l(s), qY(s − τ))] ds

+

t∫
2τ+δ

[f(ym+l(s), xm+l(s)) − f(ym+l(s), qY(s − τ))] ds

−
2τ+δ∫
2τ

[f(ym(s), xm(s)) − f(ym(s), qY(s − τ))] ds

−
t∫

2τ+δ

[f(ym(s), xm(s)) − f(ym(s), qY(s − τ))] ds

+

t∫
2τ

[f(ym+l(s), qY(s − τ)) − f(ym(s), qY(s − τ))] ds

for any l ≥ 1. Since the function f(u, v) is bounded, we have the inequality

|ym+l(t) − ym(t)| ≤ 4δF + |ym+l(2τ) − ym(2τ)| + τL2 max
[2τ+δ,3τ ]

|xm(s) − qY(s − τ)|

+ τL2 max
[2τ+δ,3τ ]

|xm+l(s) − qY(s − τ)| + L1

t∫
2τ

|ym+l(s) − ym(s)| ds,

which, in view of the Gronwall type inequality, acquires the form

|ym+l(t) − ym(t)| ≤ (4δF + |ym+l(2τ) − ym(2τ)| + τL2 max
[2τ+δ,3τ ]

|xm(s) − qY(s − τ)|

+ τL2 max
[2τ+δ,3τ ]

|xm+l(s) − qY(s − τ)|)eL1t, t ∈ [2τ, 3τ ]. (3.19)

Since δ > 0 is arbitrary, it follows from the convergence (3.4) on [τ, 2τ ] and the uniform convergence
of the sequence {xm(t)} on [2τ+δ, 3τ ] that {ym(t)} is a Cauchy sequence in C[2τ, 3τ ]. Consequently,
the uniform convergence (3.4) occurs on [2τ, 3τ ].
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It follows from the preceding considerations that the sequence {ym(t)} uniformly converges to
the function Y(t) on the entire interval [τ, 3τ ].

Now, in view of (3.3) and (3.4), one can readily pass to the limit as m → ∞ on the interval
[2τ, 3τ ] and obtain relation (3.6). Indeed, by taking into account (3.18), we obtain

∣∣∣∣∣ym(t) −
(
Y(2τ) +

t∫
2τ

f(Y(s), qY(s − τ)) ds

)∣∣∣∣∣

≤ |ym(2τ) − Y(2τ)| +
∣∣∣∣∣

2τ+δ∫
2τ

[f(ym(s), xm(s)) − f(ym(s), qY(s − τ))] ds

∣∣∣∣∣

+

∣∣∣∣∣
t∫

2τ+δ

[f(ym(s), xm(s)) − f(ym(s), qY(s − τ))] ds

∣∣∣∣∣

+

∣∣∣∣∣
t∫

2τ

[f(ym(s), qY(s − τ)) − f(Y(s), qY(s − τ))] ds

∣∣∣∣∣.

This, together with the uniform convergence (3.3) on the interval [2τ + δ, 3τ ] and the uniform
convergence (3.4) on the interval [2τ, 3τ ] and after the passage to the limit, implies the inequality

lim
m→∞

∣∣∣∣∣ym(t) −
(
Y(2τ) +

t∫
2τ

f(Y(s), qY(s − τ)) ds

)∣∣∣∣∣ ≤ 2δF.

Consequently, since δ > 0 is arbitrary, we have the convergence

ym(t) → Y(2τ) +

t∫
2τ

f(Y(s), qY(s − τ)) ds, m → ∞,

for t ∈ [2τ, 3τ ]. But since

Y(2τ) = y0 +

τ∫
0

f(Y(s), 0) ds +

2τ∫
τ

f(Y(s), qY(s − τ)) ds

and ym(t) → Y(t), m → ∞, it follows from the uniqueness of the limit that relation (3.6) holds on
the interval (τ, 3τ ].

If 3τ < T , then the proof of the convergence (3.3) and (3.4) and relation (3.6) for t ∈ (3τ, T ]
can be performed successively on the intervals (jτ, (j + 1)τ ] by the same scheme. The proof of the
theorem is complete.

Remark. It was shown in [4] that if 0 < q < 1, then the function Y(t) is a solution of the
initial-value problem

d

dt
Y(t) ≡ f(Y(t), qY(t − τ)) for τ < t ≤ T0,

Y(t) ≡ y0 +

t∫
0

f(Y(s), 0) ds for 0 ≤ t ≤ τ
(3.20)

on the interval [0, T0], where

T0 < min
{

1 − q

L1

,
1
L2

}
.
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It follows from Theorem 3.1 that, for each T > τ , the function

Y(t) ∈ C[0, T ] ∩ C1(0, τ) ∩ C1(τ, T )

is a solution of the initial-value problem (3.20) on the entire interval [0, T ] for any q > 0.

4. ESTIMATES FOR THE CONVERGENCE RATE

Here we obtain estimates for the convergence rate of

ym(t) → Y(t), m → ∞,

and
yn(t,m0) → ym0(t), n → ∞

for given m0.

Theorem 4.1. The estimate

max
[jτ,(j+1)τ ]

|ym(t) − Y(t)| ≤ Cj

ln m

m
, m 	 1, (4.1)

holds on any interval [jτ, (j + 1)τ ] ⊂ [0, T ], where Cj > 0 is a constant independent of m.

Proof. Inequality (3.9) holds on the interval [τ, 2τ ] for each δ ∈ (0, τ). Then, by setting
δ = (ln m)/m, we obtain the inequalities

max
[τ,2τ ]

|ym(t) −Y(t)| ≤ 2
(

ln m

m
F + τL2

(
qF

m
+

q(|y0| + τF )
m

))
e2τL1 ≤ C1

ln m

m
. (4.2)

Consider the next interval [2τ, 3τ ]. By taking into account the convergence (3.4) and by passing
to the limit in inequality (3.19) as l → ∞, we obtain

max
[2τ,3τ ]

|ym(t) − Y(t)| ≤ (4δF + |ym(2τ) − Y(2τ)|

+ τL2 max
[2τ+δ,3τ ]

|xm(t) − qY(t − τ)|)e3τL1 . (4.3)

Let us estimate max[2τ+δ,3τ ] |xm(t) − qY(t − τ)|. By using formulas (3.11), (3.14), and (3.15),
we obtain the representation

xm(t) − qY(t − τ) = Um
1 (t) + Um

2 (t) + Um
3 (t) + Xm

1 (t).

Consider the first term. By the definition of Um
1 (t),

|Um
1 (t)| ≤ qm

t−τ∫
τ

e−m(t−τ−s)|ym(s) − Y(s)| ds ≤ q max
[τ,2τ ]

|ym(ξ) − Y(ξ)|.

This, together with inequality (4.2), implies the estimate

|Um
1 (t)| ≤ qC1

lnm

m
.

Then, by using the estimates (3.12), (3.16), and (3.17) for arbitrary δ ∈ (0, τ), we obtain the
inequality

max
[2τ,3τ ]

|ym(t) − Y(t)| ≤
(

4δF + C1

ln m

m
+ τL2

(
qC1

ln m

m
+

qF

m
+ 2q(|y0| + 2τF )e−δm

))
e3τL1 .

Consequently, just as on the preceding interval, we can set δ = (ln m)/m and obtain the esti-
mate (4.1) on the interval [2τ, 3τ ]. The proof of inequality (4.1) for any j can be performed
successively on the intervals. The proof of the theorem is complete.

DIFFERENTIAL EQUATIONS Vol. 45 No. 1 2009



ON THE RELATIONSHIP BETWEEN SOLUTIONS 45

Theorem 4.2. Let m0 be a given number. Then the inequality

max
[0,T ]

|yn(t,m0) − ym0(t)| ≤ Cn−1/4, n 	 1, (4.4)

holds on the interval [0, T ] for any T > τ, where C > 0 is a constant independent of n.

Proof. By virtue of inequalities (2.12) and (2.15), the estimate

|yn+l(t,m0) − yn(t,m0)| ≤
L1

λ1 − λ2

max
ξ∈[0,T ]

In,l(ξ,m0)

t∫
0

(λ1e
λ2s − λ2e

λ1s) ds (4.5)

holds on any interval [0, T ]. It follows from the proof of Theorem 1 in [4] that

max
ξ[0,T ]

In,l(ξ,m0) → In(m0), l → ∞; (4.6)

moreover, the limit expression satisfies the estimate

In(m0) ≤ C1n
−1/4, n 	 1, (4.7)

where C1 is a constant independent of n. By taking into account Theorem 2.1 and the conver-
gence (4.6) and by passing to the limit as l → ∞ in inequality (4.5), we obtain the estimate

|ym0(t) − yn(t,m0)| ≤ C2In(m0), t ∈ [0, T ],

where C2 > 0 is a constant independent of n. This, together with (4.7), implies inequality (4.4).
The proof of the theorem is complete.
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