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Abstract
An overview is presented of the construction and use of algebraic partition functions to represent the equilibrium
statistical mechanics of multimolecular complexes and their action within a larger regulatory network.Unlike many
applications of equilibrium statistical mechanics, multimolecular complexes may operate with various subsets of
their components present and connected to the others, the rest remaining in solution. Thus they are variable-
structure systems. This aspect of their behavior may be accounted for by the use of ‘fugacity’ variables as a
representation within the partition functions.
Four principles are proposed by which the combinatorics of molecular complex construction can be reflected in
the construction of their partition functions. The corresponding algebraic operations on partition functions are
multiplication, addition, function composition and a less commonly used operation called contraction. Each has a
natural interpretation in terms of probability distributions on multimolecular structures. Possible generalizations
to nonequilibrium statistical mechanics are briefly discussed.

Keywords: biomolecular complex; allosteric enzyme; transcription complex; statistical mechanics; equilibrium;
partition function; fugacity; composition; contraction

INTRODUCTION
With the recent flourishing of systems biology, interest
has increased in methods for quantitatively modeling
the effects that biomolecular complexes have on
the larger regulatory networks and regulatory systems
within which they are embedded. For example,
transcription complexes can integrate a number of
transcription factor inputs into an overall decision for
or against the initiation of transcription of a specific
gene. Thus it provides a probability per unit time,
or a rate, of transcription initiation. How can we
quantitatively model this kind of ‘integration’ of
inputs? In the transcription complex case we would
like to translate from structural aspects of molecular
interactions within the complex, such as protein:DNA
binding and protein:protein interactions, which may
be partly known and partly hypothesized, to some
kind of rate law for the process of transcription. More
generally we would like to translate from structure
and experimentally measurable parameters to an
algebraic formula or very fast algorithm, depending

on the measurable parameters, for evaluating a rate law
governing a process mediated by the complex. From
such a rate law we can create an ordinary differential
equation model for the effect of the complex within
a larger network. If we also receive an algebraic
formula for the standard deviation of actual rate
from expected rate, as is possible in statistical mecha-
nics, then we can create more realistic stochastic
models such as stochastic differential equations.

Quite a variety of techniques can be used to
achieve the goal of constructing such quantitative
models. They can be divided into equilibrium and
nonequilibrium models for the biomolecular com-
plex or either can be used within a network-scale
model, which must generally be nonequilibrium in a
living system. Equilibration can happen at a fast time
scale for the complex, which forms a small part of a
larger system that changes on a slow time scale and is
at equilibrium; the result is a quasi-equilibrium
model of the complex and a rate law for its effect on
the larger system.
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In this note I will review a simplified way of
thinking about these problems that can straight-
forwardly yield algebraic rate laws for the activities of
multimolecular complexes in quasi-equilibrium, start-
ing from hypotheses about the interaction connectivity
of their state variables having to do with conformation
and binding sites. Foundations of equilibrium and
nonequilibrium statistical mechanics are recapitulated
and related to one another in Section ‘Equilibrium
and nonequilibrium statistical mechanics’, below. Very
small examples of equilibrium models are discussed in
Section ‘Equilibrium for binding sites’. More complex
algebraic models and partition functions can then be
built up step by step, using four main principles
of construction introduced in Section ‘Principles for
combining partition functions’. Multiplication of
partition functions corresponds to independent prob-
ability distributions. Addition corresponds to mixtures
of probability distributions. Function composition
corresponds to a tree-like (acyclic) topology of inter-
actions between subcomplexes that may or may not
bind to one another. Cycles can be added to such a
topology using a ‘contraction’ operation on a partition
function. Applications of each of these operations will
be shown in the examples of Section ‘Branching tree
structure’ and Section ‘Examples’, drawn largely from
quasi-equilibrium models of transcriptional regulation
and allosteric enzymes.

The result of successfully applying this ‘calculus’ of
model-building operations will be a specialized but
relatively simple reaction rate law that models the
activity of a multimolecular complex within larger,
network-level models. This law will take the form of
an algebraic expression that can be used not only in
simulations but also in mathematical analyses. Specific
examples of the analyses that become available
include (i) determining the qualitative behavior and
stability of a network model using methods of
dynamical systems theory [1], for example oscillations
arising from Hopf bifurcations in the Repressilator-
like [2] and p53/Mdm2 [3] network models, and (ii)
determining system identifiability for automatic
inference of pharmacokinetic parameters from data
[4]. Such analyses can enable one to understand more
deeply the actual biological systems being modeled.

THEORY
Equilibrium and nonequilibrium
statistical mechanics
This section serves to encapsulate the needed
elementary statistical mechanics in simple notation.

In an equilibrium statistical mechanics model,
the probability of any discrete state I of the
multimolecular complex, including all infor-
mation about its discrete conformation and binding
status, is proportional to the Boltzmann factor
exp(!!GI). Here GI is the Gibbs free energy of
the state and ! is inversely proportional to the
temperature: !¼ 1/(kT) where k is Boltzmann’s
constant in appropriate units. Consequently the
relative probabilities of any two states I and J have
the ratio

pI
pJ

¼ exp ð!!ðGI !GJÞÞ ð1Þ

The normalization factor for the probabilities pI is a
very important function, the ‘partition function’
Z(!), that can be constructed from GI:

Zð!Þ ¼
X

I
expð!!GIÞ)pI ¼ expð!!GIÞ=Zð!Þ ð2Þ

In a nonequilibrium model, by contrast, we
postulate nonnegative transition rates (transition
probabilities per unit time) KIJ from state J to
state I, most of which are zero. One can
imagine the possible transitions as ‘reactions’ of the
form

PJ !!!!!! !!!!!
KIJ

KJI

PI ð3Þ

which conserve total probability
P

I pI ¼ 1. The
discrete-state probabilities pI then must evolve
exactly according to the ‘master equation’ that
would ensue from the law of mass action for such
a set of reactions:

dpIðtÞ
dt

¼
X

J

KIJpJðtÞ!
X

J

KJI

 !

pIðtÞ%
X

J

WIJpJðtÞ ð4Þ

Here W is a matrix whose columns each add up
to zero.

Equilibrium and nonequilibrium formulations of
statistical mechanics are related, in that equilibrium
can be achieved by constraining the forward and
backward rates KIJ and KJI so as to satisfy the
condition of ‘detailed balance’ (KIJp&J ¼ KJIp&I for
some p&I ). This implies a steady state for a Boltzmann
distribution defined by

KIJ

KJI
¼ p&I

p&J
% expð!!ðGI !GJÞÞ

)
X

J
KIJp&J !

X
I
KIJ

! "
p&I ¼ 0

) dp&I =dt ¼ 0 ðsteady stateÞ
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The condition KIJ=KJI ¼ p&I =p
&
J is satisfiable by some

probabilities p&I , if and only if the product of rates
KIJ around any cycle is the same whether travers-
ing the cycle forwards or backwards. In this case,
equilibrium statistical mechanics arises as the
infinite-time endpoint of nonequilibrium statistical
mechanics. Further discussion of this point is in the
Supplementary Material Section S1.

The nonequilibrium approach may be essential
for many molecular machines, possibly in combina-
tion with equilibrium models for selected substruc-
tures. A general and systematic approach to
constructing nonequilibrium stochastic models
taking a form similar to the W matrix in Equation
(4), starting from models specified in terms of
reactions similar to Equation (3) augmented with
parameters for the reactants, and resulting in
simulation algorithms, has been proposed [5].

I now turn to the algebraic construction of
solvable free energy functions GI.

Equilibrium for binding sites
A single binding site
As an example, consider a single binding site which
may be unoccupied or may be occupied by a single
molecule of only one particular molecular species A.
The change in free energy for occupying the binding
site is the sum of the binding energy (which
we expect to be negative) and the change in free
energy due to taking one molecule of A out of
solution:

!Goccupied unoccupied ¼ !Gbinding ! kT log zA

where the ‘fugacity’ zA is proportional to
concentration of A in a dilute solution. Then by
Equation (1)

poccupied
punoccupied

¼ e!!!GbindingzA % !AzA:

The partition function of Equation (2) provides the
normalization for the two relative probabilities !AzA
and 1:

ZðzAÞ ¼ 1þ !AzA

and the probability of occupancy is

poccupied ¼
!AzA

1þ !AzA
¼ @ logZðzAÞ

@ log zA

The logarithmic derivative of Z(zA) is typical of how
Z can be used to calculate meaningful averages.
A graph representation of this probability
distribution would consist of a single binary

variable s 2 f0,1g, denoted by an open circle, in
total isolation from any other variables (Figure 1A).
The value of s is the number of occupying A’s, either
zero or one.

Two independent sites
To build up larger models we can use rules for
appropriately combining partition functions. For two
binding sites that have no influence on one another,
and are thus independent, the partition functions
multiply:

Zðz1,z2Þ ¼ 1þ !1z1ð Þ 1þ !2z2ð Þ

so that for example

p1occupied ¼
@ logZðz1,z2Þ

@ log z1
¼ !1z1

1þ !1z1

1 2

1

21

1

A

B

C

1

1

2

2

Figure 1: Illustration of elementary partition functions
in dilute solution. Rows: A,B,C. (A) Left: single binding
site, occupied. Right: single binary occupancy variable
uncoupled to all others, representing this situation.
Partition function is 1þx1z1. (B) Left: Two independent
binding sites, both occupied. Right: two binary occu-
pancy variables representing this situation, uncoupled.
Partition function is Z(z1, z2,)¼ (1þx1z1)(1þx2z2).
(C) Left: two binding sites with energetic interaction
(synergistic or antisynergistic) between the two occupy-
ing molecules. Right: two binary occupancy variables
representing this situation, energetically coupled.
Partition function is1þx1z1þ1þx2z2þ!1x2x12z1z2.
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as expected. The monomial terms in the expanded
form of Z,

Zðz1,z2Þ ¼ 1þ !1z1 þ !2z2 þ !1!2z1z2

correspond to the four different possible binding
states and their probabilities.

On the other hand if sites 1 and 2 both bind A
and we want to know the average total number of A
molecules bound, the answer is given by a different
logarithmic derivative of Z (Supplementary Material
Section S2).

The graphical model for this system would consist
of two binary variable nodes s 2 f0,1g, one for each
site, with no connecting link between them or any
other variable (Figure 1B).

Two nonindependent sites
If we now allow energetic interactions between two
binding sites b¼ 1 and b¼ 2 that can each be empty
or occupied by molecules of species 1 or 2,
respectively, and no other internal states, then

Zðz1,z2Þ ¼
X

fsjsi2f0,1gg
zs11 z

s2
2 !

s1
1 !

s2
2 !

s1s2
12 ¼ 1þ !1z1þ

!2z2 þ !1!2!12z1z2

This situation is illustrated in Figure 1C.
A protein with a single binding site that can be

empty or occupied by species 1 or 2 would be
modeled the same way except that both occupiers
cannot be present simultaneously, i.e. s1 ^ s2 must
be true (Figure 2A), hence the impossible state
s1¼ s2¼ 1 is omitted from the sum over all possible
states in the partition function and

Zðz1,z2Þ ¼
X

fsjs12f0,1g^s1^s2g
zs11 z

s2
2 !

s1
1 !

s2
2 !

s1s2
12 ¼ 1þ!1z1þ!2z2

The generalization to Boltzmann distributions in
general is discussed in the Supplementary Material
Section S3.

If the protein is itself regarded as another species
that can be present or absent, with fugacity z0,
then it must be present, so s0 ^ s1 ^ s2 must
be true, and the partition function is
Z(z1, z2)¼z0(1þ!1z1þ!2z2). Likewise, a hetero-
dimer consisting only of species 1 and 2 with no
internal states would satisfy s1 ^ s2 (Figure 2B) and
therefore Z(z1, z2)¼!12z1z2 (This is a trivial case
since there is only one state, but it will be useful
when the species are given internal states as well).
In each case, as for any probability generating
function, the coefficients can be normalized to give
the probabilities of each possible configuration of
bindings.

Thus partition functions may be expressed as
polynomials in fugacity variables. This is a particu-
larly convenient notation for molecules in a dilute
solution which acts as a reservoir, since in that case
fugacities zi are proportional to concentrations
ci¼ [Si]. Their logarithmic derivatives, which com-
monly describe the average activity of a multi-
molecular complex, are then just ratios of such
polynomials. Such a polynomial partition function
can be cast as a polynomial with homogeneous
degree by introducing the complementary
fugacity variables zþi and z!i and substitu-
ting zi ¼ zþi =z

!
i : Zhomogðzþ,z!j!Þ ¼ Zðzþ=z!j!Þ

ð
Q

i ðz!i Þ
diÞ, where di is the degree of zi in Z. This

formulation is entirely equivalent mathematically,
since we may set z!i ¼ 1 in Zhomog to recover Z,
and it can be useful when we want to treat pairs of
binding/unbinding or activation/inactivation states
in a symmetric manner.

Principles for combining partition
functions
There is a useful set of principles for creating
partition functions that reflect the structure of

nand1 2

1

2
and1 2

1
2

A

B

Figure 2: Illustration of elementary partition func-
tions in dilute solution. (A) Left: a protein with a single
binding site that can be empty or occupied by species 1
or 2, but not occupied by both. Z(z1,z2)¼
1þx1z1þx2z2. Right: logical coupling s1 ^ s2 between
two binary occupancy variables representing this
situation. (B) Left: A heterodimer of two molecular
species ‘bound’ to a fictitious enclosing complex.
Z(z1,z2)¼x12z1z2.Right: logical coupling s1 ^ s2 between
two binary complex-membership variables representing
this situation.
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multimolecular complexes. The principles are named
after the algebraic operations on partition functions
that they invoke: multiplication, addition, composition
and contraction.

Multiplication
From the foregoing example of two independent
binding sites, a first principle for combining partition
functions is: The product of two partition functions
corresponding to probability distributions P1(s1) and
P2(s2) is itself a partition function representing the
independent distribution P1(s1) P2(s2). In other
words, the partition functions of independent random vari-
ables multiply. In this case the logarithmic derivatives
just add up.

Addition
A second principle results from adding partition
functions. The weighted sum w1Z1(z)þw2Z2(z)
reweights all the monomial terms within either Z1(z)
or Z2(z). Thus, the nonnegatively weighted sum of par-
tition functions represents a mixture distribution of the
component probability distributions with related
weights, in this case w01P1ðzÞ þ w02P2ðzÞ.

Composition
A third principle is a powerful tool for constructing
complex structures and will be illustrated in Section
‘Branching tree structure’: that functional composition of
partition functions corresponds to a tree-like structure in the
construction of the molecular system represented.
The functional composition is achieved by substitut-
ing a whole partition function Zf for an appropriate
fugacity variable zi occurring within another parti-
tion function Zc obtaining Zc(Zf (z0), z). The
assumed molecular tree structure is reflected in the
tree structure of partition functions and their
arguments. Logarithmic derivatives may then be
taken using the chain rule of differential calculus, as is
done in Equation (6) in Section ‘Transcriptional
regulation by hierarchical cooperative activation’
subsequently. A similar phenomenon arises in the
theory of birth and death processes or branching
processes, in which a single generating function may
be composed with itself many times [6].

Contraction
A fourth principle is not quite as simple. A special
contraction operation on partition functions, defined
in Section ‘Contraction example: 1D Ring’, allows
cycles to be introduced into the treelike, noncyclic
structure resulting from the operation of the

third principle. This is important due to the many
non-treelike structures, such as rings, that may be
present in multimolecular complexes. The resulting
computations appear to be generally more difficult,
so that a premium is placed on minimizing the
number of contractions.

These principles can be applied repeatedly in
various orders to generate interesting structure, as we
will show in the remainder of the article using their
italicized names to highlight how each principle
is employed. Together, these principles point
towards a symbolic ‘calculus’ for creating and
reasoning about equilibrium multimolecular com-
plex models.

Branching tree structure
Dyson [7] first solved the equilibrium statistical
mechanics of a model with branching structure. Here
we will provide notation to make this type of
calculation convenient for molecular complexes that
can be built up in solution.

Transcriptional regulation by multiple binding sites
In a simple quasi-equilibrium model of transcrip-
tional regulation of gene i, which has a set of
transcription factor binding sites labeled by (i,b), by
transcription factors j, it is assumed that the complex
has two states that permit or prohibit transcriptional
initiation. We start out using the addition principle just
as for the single-binding-site example, except that
now the single binary variable s1¼(1 refers to
conformation and not occupancy. We give these
two alternatives fugacity-like variables z(i , creating a
homogeneous polynomial in z:

ZiðzÞ ¼ !izþi þ z!i

If we freeze the conformation variable si, then the
transcription factor binding sites are assumed to be
occupied independently. Here we simplify and
assume each site (i,b) is specific for a single
transcription factor j(i,b), so that it has partition
function

"ðsiÞ
ib ¼ 1þ !ðsiÞ

ib zjði,bÞ

By the multiplication principle, the partition
functions "ðsiÞ

ib multiply up over the sites b yieldingQBði,mÞ
b¼1 "ðsiÞ

ib . By the composition principle, we can
substitute this product for the fugacity zðsiÞi in Zi(z).
The resulting model is
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Zið"i,zÞ ¼ "i!i

YBðiÞ

b¼1

1þ !þ
ib zjði,bÞ

# $
þ
YBðiÞ

b¼1

1þ !!
ib zjði,bÞ

# $

where we have introduced temporarily the extra
fugacity-like variable "i to mark terms associated
with si¼ 1, i.e. the transcriptionally active states.
The fraction of maximal transcriptional activation is
then [8]

si þ 1

2

% &
¼ @ logZi

@ log "i

''''
"i¼1

¼

!i
QB

b¼1 1þ !þ
ib zjði,bÞ

# $

!i
QB

b¼1 1þ !þ
ib zjði,bÞ

# $
þ
QB

b¼1 1þ !!
ib zjði,bÞ

# $ ð5Þ

This model, inspired by the classic Monod-Wyman-
Changeux (MWC) model for allosteric enzymes [9],
can serve as a foundation for deriving [8] artificial
neural net (ANN) models of transcriptional regula-
tion that have been used in models of Drosophila
development (e.g. [10]). If factor j has just one
binding site regulating gene i, the activation as a
function of zj is an n¼ 1 Hill function with no
cooperativity. But multiple binding sites for a single
factor j can add cooperativity to the transcriptional
response of gene i to factor j.

The interaction graph corresponding to this
model consists of a parent node si connected
separately to each of a set of children nodes
sib 2 f0,1g representing the occupancy of the

corresponding sites. There are no direct connections
among the children. This situation is is illustrated in
Figure 3A.

Further partition function engineering of this
general flavor was performed in order to generalize
the MWC model to allosteric enzymes with
multiple activators, inhibitors and/or substrates [11].
Logarithmic derivatives were used to derive rate
laws for the action of such enzymes for inclusion
within a larger-scale ordinary differential equation
model for the synthesis of branched chain amino
acids in Escherichia coli. Since good agreement with
experimental data was obtained, the resulting
Generalized MWC (GMWC) model has been
added to the Cellerator software [12] for cell
model generation and analysis, which runs within
the Mathematica computer algebra system.

EXAMPLES
Transcriptional regulation by
hierarchical cooperative activation
We may take the foregoing model one step
further by interposing an extra level of hierarchical
structure in transcriptional activation corresponding
to modules of interacting binding sites. Using
addition, multiplication and composition exactly as before,

Zið"i, zÞ ¼"i!i

YMðiÞ

m¼1

Zþ
imþ

YMðiÞ

m¼1

Z!
im

ZðsiÞ
im ð#im, zÞ ¼#im!

ðsiÞ
im

YBði,mÞ

b¼1

"þ
imbþ

YBði,mÞ

b¼1

"!
imb

"ðsimÞ
imb ¼1þ !ðsimÞ

imb zjði,m,bÞ

This gives us the Hierarchical Cooperative
Activation (HCA) model of transcriptional regula-
tion [8]. Its graph consists of a parent node, the
transcriptional activation variable si, connected or
linked to its children nodes, the module activation
variables sim (none connected to each other), each
of which is linked to grandchildren node occupancy
variables simb (Figure 3B). By letting the index
i vary in these equations, we may describe an
entire network of mutually regulating transcription
factors.

An example calculation using logarithmic deriva-
tives and the chain rule is to calculate the fractional
site occupancy of one binding site, which may be an
observable quantity:

fimb ¼
X

si¼ 0,1

PrðsiÞ
X

sim¼ 0,1

Prðsi;mjsiÞPrðsimbjsimÞ ð6Þ

1 2 3

1 2 3

1 2 1 1 2 3

A

B

Figure 3: (A) Parent node energetically coupled to
children nodes, which are not energetically coupled
amongst themselves. No lateral interactions are
present. (B) Two layers of tree coupling among
three layers of tree nodes. No lateral interactions are
present.
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where each Pr can be further calculated as in
Equation (5). The brief calculation is shown in the
Supplementary Material Section S4. It provides
an example of calculating with a ‘biomolecular
calculus’.

1D Chain
An example of a different sort has state information,
but no occupancy information and no variable
connectivity due to varying occupancy of binding
sites. Instead there is one binary variable si 2 f(1g at
every node in a one-dimensional chain of N identical
nodes. We may regard the first node as the ‘top’ one
in a downward growing lineage tree that never
branches, having additive partition function at the
top level:

Z1ðzÞ ¼ !þzþ1 þ !!z!1 ¼ 1 1
# $

) !þ 0
0 !!

( )
) zþ1

z!1

( )

ð7Þ

Then the composition principle gives the first substitu-
tion to make in Equation (7), to reach the second
level:

zðsÞ1 ðzÞ } xþx s þzþ2 þ x!xsz!2

Similarly at depth i in the trivial nonbranching tree
(i.e. at position i in the chain), the composition principle
can be written

zþi
z!i

( )
}

!þþ !þ!

!!þ !!!

( )
) !þ 0

0 !!

( )
) zþiþ1

z!i!1

( )

This rule is easy to apply recursively to Equation
(7), resulting in the usual solution for a 1D Ising
model with chain topology as detailed in the
Supplementary Material Section S5.

Similar chain models, albeit nonhomogeneous,
can be used to augment the HCA model by
describing the equilibrium of a chain of transcription
factor binding sites that compete for occupancy by
overlapping with one another along DNA [8].

Contraction example: 1D ring
A final example demonstrates the contraction principle
by which we can go beyond treelike topologies by
adding cycles. The graph interpretation of contrac-
tion is to identify two nodes representing state
variables si and sj, demanding that they are identically
equal and that any redundant probability factors be
removed. Graphically this operation can add a cycle
to a tree. Here we will demonstrate it on the trivial
tree consisting of the chain in the 1D Ising model of

length Nþ 1, tying the first and last state variables to
each other as SNþ 1¼S1.

In order to ‘remember’ the value of s1 we
introduce the temporary fugacity-like variable $ in
the previous calculation:

Z1ðzÞ ¼ !þzþ1 $ þ !!z!1
The last node must correct for the overcounting of
!(s1) and must cancel out $ if SNþ 1¼S1:

zþNþ1

z!Nþ1

( )
}

$!1=!þ

1=!!

( )

Then we pick off the coefficient of the $p term of
the series expansion of ZN($, z) in $, denoted
here Coef[ZN($,z), $, p], for p¼ 0, in this way
performing the contraction operation:

ZNðzÞ
''
zNþ1a z1

¼ Coef ½ $ 1
# $

) . . . )

$!1=!þ 0

0 1=!!

( )
,$,0+ ¼ Tr #N# $

ð8Þ

This is the usual solution for a homogeneous ring
(known in statistical mechanics as the one-
dimensional homogeneous Ising model with peri-
odic boundary conditions) as detailed in the
Supplementary Material Section S5.

For example, for N¼ 4 the resulting partition
function is

Z4ðJ,%Þ ¼ 4þ2e!4J!þ4e2!%þ4e!2!%þ e4!ðJþ%Þ þ e4!ðJ!%Þ

and for N¼ 6 it is

Z6ðJ,%Þ ¼ 2e!6!J þ 12e!2!J þ 6e2!J þ e6!ðJþ%Þþ
e6!ðJ!%Þ þ 6e2!ðJþ2%Þ þ 6e2!ðJ!2%Þ þ 6e2!ðJþ%Þþ
6e2!ðJ!%Þ þ 9e!2!ðJþ%Þ þ 9e!2!ðJ!%Þ

A general notation and integral expression for the
contraction operation is given in the Supplementary
Material Section S6.

DISCUSSION
The foregoing examples can be augmented with
many others by repeatedly applying the four
principles proposed for constructing partition func-
tions. For example, one could create a ring-of-trees
topology. The Drosophila transcriptional regulatory
model family of [13], and the multiply regulated
allosteric enzyme model of [11], can also be derived
by using these principles.

Each of the model construction principles has an
interpretation in terms of interaction graphs in
equilibrium statistical mechanics, now widely applied
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as ‘Markov random fields’ in pattern recognition or
‘graphical models’ in machine learning. Multiplica-
tion corresponds to disconnected subgraphs. Addi-
tion corresponds to a mixture model gated by a
discrete selection variable. Composition corresponds
to a tree topology, which unlike conventional
graphical models may have a variable structure due
to subtrees that can be present or absent. Contraction
corresponds to identifying and fusing two existing
nodes and thereby possibly creating cycles. These
latter two principles still require experience to apply
correctly since they are not yet fully formalized and
automated using a computer algebra representation
such as that of [12].
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Key Points
, Detailed balance relates equilibrium and nonequilibrium statisti-

calmechanics.
, Logarithmic derivatives of thepartition function predict average

values.
, Partition functions are polynomials in fugacity variables.
, Partition functions can be combined by four operations, reflect-

ing the structure of a complex.
, TheclassicMonod-Wyman-Changeux(MWC)modelcanbebuilt

using the addition,multiplication, andcompositionprinciples.
, TheMWCmodel canbe extended invariousways using the four

partition function operations.
, The contraction operation allows for nontree topologies in a

complex.
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