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1.Introduction 

 
Activities this year fall in the categories of biological modeling, image analysis, 

mathematical and software tools, meetings, outreach, and dissemination as detailed 

below. Many papers, images, and software tools are available on the Computable Plant 

project web site, www.computableplant.org . 

 

2. Biological Modeling 

 
2.1  Computational modeling of the sepal epidermis (Chickarmane and Roeder) 

 

Last year we initiated the expansion of the computable plant project to address the 

development of lateral organs by focusing on the sepal as an initial model.  The sepal is 

the outermost green leaf-like floral organ.  Similar to the leaf and stem, the sepal 

epidermis contains cells with a wide variety of sizes from giant cells to small cells 

(Figure 1A-1B).  The mechanism through which this pattern of cells with diverse sizes is 

generated remains unknown.  Giant cells enlarge through a specialized cell cycle called 

endoreduplication in which the cell replicates its DNA, but fails to divide, and 

consequently becomes enlarged.  Similar to the leaf, we have verified that the size of 

each sepal cell corresponds with its DNA content or ploidy.  Once a cell 

endoreduplicates, it is no longer capable of dividing.  We hypothesize that there are a 

limited number of cell cycles that each cell can apportion between endocycles and mitotic 

cycles.  If a cell starts to endoreduplicate early, all of the subsequent cell cycles are also 

endocycles and consequently the cell becomes enlarged.  On the other hand, if a cell 

decides to divide early, it remains small.  Therefore, we predict that the timing of 

endoreduplication controls the ultimate cell size.   

Over the past year we have used a geometric model to test whether this hypothesis 

can reproduce the pattern of cell sizes found on the sepal epidermis.  Our model was 

based on several assumptions.  First we assumed that all cells grow at the same rate 

regardless of size to prevent distortions in the sheet of cells.  Plant cell walls constrain the 

cells and prevent them from slipping relative to one another.  Therefore, we modeled the 

overall sepal as an expanding rectangle upon which we superimposed cells that expand 

with the overall rectangle.  Second, we assumed that all cells undergo either the mitotic 

cell cycle or the endocycle and that both of these cell cycles have the same period.  To 

model the cell cycle, we created a simple protein oscillator in each cell.  Third, we 

assumed that when the cell cycle of a 2C cell reaches a threshold “decision point,” the 

cell must decide whether to divide or endoreduplicate randomly with a given probability.  

Fourth, we assumed that once a cell enters endoreduplication it can no longer divide and 

must undergo another endocycle the next time its cell cycle reaches the decision point.  

Fifth, we assumed that the total number of endocycles undergone by the most highly 

endoreduplicated giant cell represents the maximum number of cycles that the tissue 

undergoes regardless of whether those cycles are mitotic cycles or endocycles.  At the 

time the model was created, we limited the number of cell cycles to 5 because ploidy of 

giant cells was unknown. Now we find that giant cells are 16C, so next year we will 

revise the model to limit all cells to 3 cell cycles.  Sixth, we assumed that a cell 

approximately doubles its area in each cell cycle, so we have adjusted the cell cycle time 
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to correspond with the growth rate.  When we satisfy all of the above conditions, the 

outcome of running this model closely resembles the cell size distribution pattern of the 

sepal epidermis (Figure 1C).   

We have tested our computational model two ways.  As will be described below, 

we used live imaging to record the development of the sepal and have observed that the 

giant cells enter endoreduplication early while the small cells continue to divide as 

predicted in our model (see below).  Second we have tested our model by changing the 

probability with which cells endoreduplicate to determine if the simulated sepals match 

the sepals of plants in which endoreduplication is promoted or inhibited.  First, if we 

increase the probability of endoreduplication, the simulated sepals are largely covered by 

giant cells similar to the sepals of ATML1::KRP1 transgenic plants (kindly provided by 

Dr. Keiko Torii) in which the cell cycle inhibitor KRP1 is expressed throughout the 

epidermis (Figure 1G-1I).  Conversely, if we decrease the probability of entering 

endoreduplication early in sepal development, our computational model produces sepals 

without giant cells (Figure 1F).  In a screen for Arabidopsis mutants that fail to produce 

giant cells in the sepal epidermis, we isolated the loss of giant cells from organs (lgo) 

mutant.  The sepals of lgo mutants are completely covered by small cells (Figure 1D-1E), 

however, the overall size of the sepals is slightly larger than wild type, showing that the 

growth of the sepals is not affected.  Endoreduplication is not generally affected in the 

lgo mutant, since the highly endoreduplicated hair cells, or trichomes, form normally.  

Upon positional cloning we found that LGO encodes a small putative cell cycle inhibitor 

in the plant specific SIAMESE family.  We conclude that cell cycle inhibitors are likely to 

regulate the timing of endoreduplication and consequently the cell size pattern.   
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Figure 1: Computational 

modeling of sepal 

development 

 
 
Wild type (A-C) sepals have 
giant cells (red asterisks) 
interspersed between smaller 
cells.  The giant cells stretch a 
third the length of the sepal (A).  
Note that the giant cells are 
clustered (B). Our 
computational model simulates 
the cell size distribution pattern 
in the sepals (C).  
 
lgo-1 (D-F) sepals do not 
contain giant cells (D), although 
the small cells take a range of 
sizes (E) as in wild type. 
Decreasing the probability of 
entering endoreduplication in 
the first two cell cycles of the 
model recapitulates the lack of 
giant cells phenotype (F).   
 
 ATML1p::KRP1 (G-I) sepals are 

nearly covered with giant cells (G 

and H).  Only islands of small cells 

remain. Increasing the probability 

of entering endoreduplication 

during the first cell cycle in the 

model recapitulates the 

ATML1p::KRP1 phenotype 

including the islands of small cells 

(I).   
 

 

 
 
 

 

2.2 Cytokinin Perception (Gordon and Chickarmane).  

How do plant cells perceive the plant hormone, cytokinin, which is known to be an 

activator of several biological processes such as cell proliferation, cell senescence, etc. 

Experiments over the last several years have shown that the underlying biochemical 

network is essentially composed of a two-component signaling network involving 
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histidine kinases, and the type A & B Arabidopsis response regulators (ARR’s). The 

network responds to cytokinin by using signaling and gene regulatory interactions which 

have the ultimate effect of inducing negative feedback of cytokinin activity. Our broad 

goal is to understand how this network functions, not only as sensitivity of plants to 

cytokinin, but also ultimately as to how cytokinin gradients can pattern plant 

development. Our experiments so far suggest that cytokinin induces Wuschel, an 

important transcription factor which is responsible for sensitizing the plant to cytokinin, 

and also controlling the number of stem cells in the upper part of the shoot apical 

meristem zone. There are however two competing hypothesis as to how this induction 

could occur.  

 
Figure 2: The interaction network between various components of the cytokinin signaling network. The 

two main hypotheses marked in red suggest that cytokinin induction occurs either through suppression 

of CLV1, or through direct induction of Wus through type B ARR’s. (Hpt-Phospho transfer protein, A, 

B refer to type A, type B ARR’s, C1, C3-CLV1, CLV3) 

 

In Figure 2 is shown the putative network, which suggests that cytokinin could either 

repress CLV1, which leads to actvation of Wus, or activate Wus directly through type B 

ARR’s. As a way to test from among these hypotheses, we have developed a 

computational model of this network by modeling the protein levels by differential 

equations. Our model has the advantage of being able to test various hypotheses by 

successively “pruning” the network connections, i.e without altering any of the network 

parameters, to generate concentration levels of Wus for hypotheses (1) & (2). Such a 

method we believe is very useful, as no additional assumptions need to be made. We 

have simulated the model for the various hypotheses, with High/Low concentration of 

cytokinin, corresponding to treated/mock treated respectively, in an experiment in which 

we apply auxin to the shoot apex and measure the concentration of various of the 

components in the model. Figure 3, displays the fold changes that occur in the 

simulation, which we can compare to the experimentally obtained changes. The model 

suggests that the largest change occurs when cytokinin induces Wuschel through type B 

ARR’s. We are currently using confocal microscopy and profiling gene expression to 

test the specific predictions made by the model. 
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Figure 3. For each of the hypotheses schematized in the leftmost column, we compute the fold changes 

for mock-treated and cytokinin-treated tissue. The simulations correspond to the steady state level of 

Wuschel for low/high levels of cytokinin, for each of the networks shown. The networks themselves are 

subsets of the larger network shown in Figure 2, with the appropriate connection set to zero. The fold 

change for direct activation of Wus through type B ARR is the largest. 

  In trying to understand the functionality of the network, we have developed a much 

more elaborate model of cytokinin perception, which includes the previous model as a 

subnetwork. This model which is partly based upon a recent review by Muller & Sheen 

(Science 318, 68-69, 2007),  is schematically shown in Figure 4. 

 
Figure 4: A schematic showing regulatory interactions of the cytokinin perception network showing two 

(similar in regulatory architecture) nested loops: The outer loop shows AHP6, which reduces the 

cytokinin signal and is regulated by an X gene, the latter itself is regulated by the incoming cytokinin 

signal. The inner loop once again contains negative regulation of the signal through type A ARR’s 

which are themselves transcribed by type B ARR’s (not shown). The type A ARR’s are suppressed by 

Wus, which is hypothesized to be induced by the signal. This leads to two nested positive feedback loops, 

which gives rise to interesting switch-like behavior.  

One of the central questions which we address in this model is which mechanisms can 

allow the cell to respond to different hormone levels, such that at each input level, a 

different  program is activated for a different threshold, for example, leaf senescence vs 

vascular differentiation vs shoot initiation, all effects of cytokinin concentration changes. 



 7 

The computational model of the signaling-genetic circuit suggests that the network 

functions as a multilevel switch, such that at varied threshold levels of the input 

concentration of cytokinin, we have different stable levels of output. This can be seen in 

Figure 5, where the type A ARR and Wuschel levels show multistability, and in 

particular type A ARR levels are high within a specific concentration region of 

cytokinin, suggesting that as a single input determinant, cytokinin could perhaps function 

as a regulator of several biological processes due to the underlying network. Other 

questions we are pursuing through modeling are: What are the dynamical consequences 

of several different A, B type RR’s, i.e is it possible to obtain a multilevel switch perhaps 

with several thresholds of cytokinin (analogous to a staircase)? How does the system 

avoid crosstalk? A class of the cytokinin receptor is bifunctional. How does this system 

adapt to stochastic fluctuations? 

 
Figure 5: The steady state levels of AHP6, the X gene which suppresses AHP6, type A ARR and Wus, as 

a function of cytokinin levels. SN denotes saddle-node bifurcation. There are two sequential switching 

events which occur as cytokinin levels are increased. In particular type A ARR levels are high between a 

range of cytokinin suggesting that only within this range of cytokinin, specific processes which require 

type A ARR, could occur. 

 

2.3 Regeneration (Gordon and Chickarmane):  

 

What determines the patterns of root/shoot formation when callus is induced by hormone 

media to form new shoot apical meristems, and thereby regenerate plants? When root 

tips are grown in shoot inducing media, after a period of two weeks,  shoots are formed 

at specific locations (Gordon et al., Development 134, 3539-3548, 2007). We are 

interested in finding out if there is a self-organized process which determines these 

locations. Experiments, in which the expression of two important transcription factors, 

CUC2 and WUSCHEL are monitored, prior to the formation of shoots, appear to be 

correlated to the shoot formation regions (Gordon et al., 2007). It is also known that 

relative levels of auxin and cytokinin determine the formation of roots and shoots. We 

postulate that the relative hormone levels which act upon and get further regulated by an 

underlying genetic network, which in this case involves CUC2 and WUSCHEL, can lead 

to pattern formation of roots/shoots. Thinking along these lines, we have constructed a 

model of a regulatory network, which is shown below, in Figure 6.  
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Figure 6: The regulatory network showing auxin and cytokinin acting upon the CUC2 and WUS genes. 

Auxin activates itself through its action on CUC2, but also induces cytokinin through STM (which 

synthesizes cytokinin). Cytokinin in turn is though to negatively regulate auxin in addition to having 

positive feedback interactions with WUS (the previous section). The net result is a classic activator-

inhibitor model. 

 

The network shows CUC2 and WUSCHEL, and their interactions with the hormones 

auxin and cytokinin, respectively, which are both of a positive nature. The core circuit 

suggests that auxin and cytokinin function as an activator-inhibitor pair, which can lead 

to robust pattern formation. Patterns are obtained however, only if we assume that auxin 

diffuses at a rate much slower than cytokinin.  This assumption is consistent with our 

understanding of auxin transport, which we know acts against auxin gradients by 

transport proteins, namely PIN1, which effectively reduces auxin diffusion. In Figure 7, 

we show a typical simulation which shows peaks of auxin surrounded by broader peaks 

of cytokinin,  

 
Figure 7. The regulator network shown in Figure 6  is converted to a set of reaction-diffusion equations, 

which are then solved for the steady state values of auxin and cytokinin. The plots show auxin and 

cytokinin concentrations as a function of space (in 2D).  

 

for a 2D version of the reaction-diffusion system.  Currently we are exploring the typical 

length scale of the pattern, as a function of the various feedback links, to study how the 

different interactions determine the size of the patterns. This we believe will be able to 

inform us about which regulatory links should be tested. For the future, we plan to further 

develop the model by including active transport of auxin due to PIN1, which should have 

the consequence of changing the effective diffusion, as discussed earlier, and hence can 

be further tested as a means to regulate the spatial extent of shoot formation. Through 



 9 

experiments, we are currently testing several links of the regulatory network discussed 

above. 

 

2.4 Homeostasis of stem cell numbers (Chickarmane) 

 

The shoot apical meristem, which is located at the tip of the shoot, houses stem cells. It is 

a veritable fountain of youth, since it provides differentiated cells to form lateral organs, 

as and when they are required by the plant. It is a fascinating question, as to how the 

number of stem cells is maintained, by signaling and regulatory interactions between 

these cells and other more differentiated cell populations. Genetic studies in our 

laboratory have revealed one piece of this puzzle, which sheds light on a negative 

feedback mechanism, whereby cells located below the stem cells (organizing center--

OC), maintain stem cells (forward loop), and where the stem cells somehow down-

regulate the activity of the OC cells (backward loop). Specifically, cells re-specify from 

neighboring cell populations back into stem cells, when the backward loop of the 

feedback mechanism is interrupted.  

To uncover other possibilities of regulation and general principles of homeostasis, we are 

employing a computational approach. We have developed population-based models that 

keep track of the number of cells of each population, where the rate of transitions from 

one population to the other is defined by the nature of the regulation. Through these 

population models we seek to identify which types of regulatory interactions can give rise 

to homeostasis. This would provide hypothesis, which we will use to test against the 

results of genetic experiments. In Figure 8, we show two such models which suggest 

either that cell specification can be controlled (model 1) or cell proliferation can be 

controlled (model 2). 

 

(a)                                                                (b) 

  
Figure 8. Two models which show regulatory schemes, for cell numbers, by which the CLV3, UFO and 

WUS expressing cells convert from one cell type to the other, with some of the rates depending on their 

cell numbers. Some of the links are common to both models, in particular those that make WUS and 

UFO cells ultimately go into forming the stem and leaves, respectively.  Experiments in our lab suggest 

that CLV3-expressing cells get respecified from the UFO-expressing cells, and this rate is controlled by 

WUS-expressing cells. The two main hypotheses are, (a) Respecification: The CLV3 cells are 

hypothesized to control the rate of transition of the UFO cells to WUS-expressing cells. (b) Proliferation: 

The proliferation rate of WUS-expressing cells is controlled by the CLV3 cells.  

 

The population models are described by differential equations, which can be used to 

compute the steady state cell numbers as a function of various parameters of the model. 

Two such parameters are essentially: how do cell numbers vary with respect to loss/gain 

of function of CLV3, and to loss/gain of function of WUSCHEL? In Figure 9,  we plot 
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the cell numbers as a function of these parameters, which suggest that either extinction, 

or explosion of the cell numbers in the meristem, which agrees well with experiments. 

 
Figure 9: Based upon the schematics in Figure 8, we have described the evolution of the CLV3, UFO 

and WUS (n0, n1 & n2) cell numbers by coupled nonlinear differential equations. The equations contain 

parameters two of which correspond to loss/gain of function of CLV3 (parameter pc), and loss/gain of 

function of WUS (parameter p1). The plots show the steady state values of the cell numbers as a function 

of these parameters. In particular gain of function of WUS leads to a larger meristem (explosion) 

whereas loss of function of WUS leads to  a small meristem (extinction). Similarly loss/gain of  function 

of CLV3 leads to larger/smaller meristem, results which seem to be consistent with experiments. 

 

The population models are amenable to a stochastic treatment, which would answer the 

question, as to the mean exit time for extinction of the meristem, i.e when the cell 

numbers go to zero.  In Figure 10, we show a stochastic simulation of cell numbers which 

we then use to compute quantities such as the mean exit time, and the power spectrum of 

fluctuations. From an evolutionary standpoint, we would expect that a model of the shoot 

apical meristem would be robust against severe fluctuations in cell numbers, and hence 

these measures will allow us to differentiate between the two models.  

 
Figure 10. The figure shows a Monte-Carlo simulation (using the Gillespie algorithm) in which 

fluctuations of cell numbers can be clearly seen. Using these simulations we estimate the mean time for 

extinction/explosion, which could be used to differentiate the two models. 
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The next goal of this project is to scale this to a full spatial model, based upon a lattice, 

where each cell can be tracked independently. Such a combined 

computational/experimental approach we believe will significantly improve our 

understanding of the general paradigm of stem cells and their interactions with the niche. 

 

2.5 Modeling of Cell Division (Shapiro, Heisler) 

 

We have studied a model of cell division that takes into account several observations, 

notably the following four conjectures: (1) New cell walls are usually formed in a plane 

perpendicular to the principal axis of cell growth (Hofmeister's Rule, J. Wissenschaft  

Bot. 3:259-293, 1863); (2) New cell walls tend to form in a plane perpendicular to 

existing cell walls (Sach's rule, Arbeiten des. Botanisches Institut Wurzburg, 2:46-104, 

1878); (3) The plane of division tends to correspond to the shortest path that will halve 

the volume of the mother cell (Errera's Rule, Botanisches Centralblatt, 34:395-399, 

1888); (4) the planes of cell division tend to be staggered and avoid 4-way junctions 

(Sinnot & Bloch, Am. J. Bot., 28:607-617, 1941). More recently it has been observed that 

prior to cell division microtubules and actin filaments form spindles that connect the 

nucleus with the nearest point on each neighboring cell wall. Because these spindles are 

under tension they tend to move away from vertices; one pair of these spindles coalesces 

into the pre-prophase band that marks the eventual site of cell division. (Picket-Heaps, J. 

Ulstractuct. Res. 27:24-44, 1969; Flanders et al, J. Cell Bio. 110, 1111-1122, 1990; 

Goodbody, Venverloo and Lloyd, Development 113, 931-939, 1991). In our two-

dimensional model we first identify all possible spindles by constructing line segments 

from the center of mass to the nearest point on each cell wall. In most cases these 

spindles will interest the cell wall at a 90-degree angle, but in some cases they will 

intersect at a vertex. If the location of this vertex is not a local minimum distance (e.g., a 

small perturbation in each direction away from the vertex should lead to an increase in 

distance from the centroid), that particular spindle is removed from the list of candidate 

spokes. Then all possible combinations of spokes that meet at obtuse angles (angles 

greater than 90 degrees as measured at the centroid) are considered as possible division 

spoke-pairs. This set of spoke pairs is is narrowed down by minimizing a potential 

function that depends on three factors, and which is calculated as the sum of each of the 

three different potentials: (1) an “area potential” that is zero when the two daughter cells 

have equal area (VA=(A1-A2)/(A1+A2), in absolute value); (2) a “length potential” that 

is minimized when the sum of the lengths of the two spokes is minimal (VL = (S1+S2-

2b)/(2a), where S1 and S2 are the lengths of the spokes, and a and b are the major and 

minor radii of an ellipse of equal area to the cell that best fits the vertices); and (3) a 

“perpendicularity potential” that measures the the relative perpendicularity of the two 

spokes to the direction of cell growth (VP = sum of the absolute values of the dot 

products of the spokes with the growth direction vector). The direction of cell growth is 

determined by calculating the singular value decomposition of a least-squares fit of the 

transformation matrix that takes the the set of all vertices at one time point to a second 

time point just before cell division (Goodall and Green, Bot. Gaz. 147(1):1-15, 1986). 

These three factors can be added with different weights and used to predict the location 

of the cell division plane by minimizing the total potential over all allowed spoke pairs 

(a*VA + b*VL + c*VP for some set of three numbers a, b, and c). This is illustrated in 
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Figure 11, which evenly weighted all three factors (a, b, and c all equal to one). The data 

was taken from (Heisler et. al. Curr. Biol. 15:1899-1911, 2005).  

 

 

 

 
Figure 11. Left: observation of cell vertices at two time points just prior to cell division. 

Right: candidate spokes (dashed line); direction of cell growth (green bar); predicted pair 

of spokes that determine cell division (spokes 1 and 3, white line); superimposed on the 

actual post-division cell, showing the correctly pictured line of cell division.  
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3. Image Analysis 
 

3.1 Sepal Live imaging (Roeder) 

 

Last year we developed the technique for live imaging the nuclei of lateral organs, 

in this case sepals.  This year we have improved the technique by adding visualization of 

the plasma membranes and taking images at shorter time intervals (6 hours instead of 12).   

 In our earliest live imaging sequences we have observed that approximately 8 

files of cells in the floral meristem give rise to the sepal. In this initial phase during the 

formation of the sepal primordia, all of the nuclei are approximately the same size, 

indicating that all cells are still 2C or 4C depending on their stage in the cell cycle 

(Figure 12, 0 hours).  From the results of the computational model, I first predict that 

giant cells should stop dividing and start endoreduplicating early in sepal development.  I 

observe that from this early time point the giant cells never divide and their nuclear size 

increases indicating that they are endoreduplicating  (Figure 12, note arrows and nuclear 

size).  The second prediction is that the smaller cells should continue to divide while the 

giant cells endoreduplicate.  During this same three-day period, we observe that the 

smaller cells undergo 1 to 4 rounds of division (Figure 12).  Contrary to the model, we 

observe that the cell cycle periods of mitotic cells are not uniform.  In the coming year we 

will revise our model to take into account varying cell cycle times.  The final prediction 

is that the area of one giant cell should equal the area of a whole neighboring lineage if 

the growth rate of small cells and large cells are equal.  We observe that giant cells are 

approximately equal in size to the entire neighboring small cell lineage (Figure 12, 72 

hours).   
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Figure 12: Live imaging of wild type sepal development 

 

A single flower was imaged every 6 hours.  The nuclei in the epidermal cell layer were 

visualized with a fluorescently tagged histone (ML1::H2B-mYFP) shown in gold.  The 
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cell walls were stained with Propidium iodide shown in green (dead cells are also 

labeled).  The 3D confocal stacks generated at each time point were processed with the 

Amira software package and the images shown are the final cropped, registered, volume 

rendered output.  To analyze the pattern of cell division and endoreduplication, the 

lineage of each of the cells was tracked.  At time 0 each cell was marked with an 

individual colored dot.  At subsequent time points that cell and all of its progeny receive 

a dot of the same color.  Cell divisions are marked in the time point following the 

division by a white circle connecting the two daughter nuclei.  Note that the giant cells 

(indicated with arrows) never divide throughout the 72-hour period.  At time 0 the giant 

cell nuclei are the same size as surrounding cells suggesting that they have a similar DNA 

content and have not yet started to endoreduplicate; however, by the end of the image 

sequence the giant cell nuclei are enlarged relative to their neighbors suggesting that they 

have undergone endocycles.  Also note that the growth rate of giant cells and neighboring 

small cells appears to be equivalent.   

 

3.2 Processing of live imaging data (Burl) 

 
 

Over the past year, image analysis techniques have been developed and applied to new 

datasets help answer key biological questions relating to sepal development in 

Arabidopsis. 
 

An automatic nucleus segmentation algorithm was developed to provide improved 

accuracy in identifying nuclei in fluorescent CLSM images and stack projections. The 

technique uses local filtering, thresholding, and connected components to initially 

identify blobs. Features extracted from the blobs, such as the number of local maxima 

and deviation of the boundary contours from an ellipse, are used to determine whether a 

given blob should be split into smaller blobs. Figure 13 shows nuclei detected by the 

algorithm (in randomly selected colors) superimposed on an image of the corresponding 

cell membranes. 
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Figure 13. Nuclei detected by the nucleus segmentation algorithm (in randomly selected colors) 

superimposed on an image of the corresponding cell membranes. 

 

Since the formation of giant cells is one of the most striking features in the developing 

Arabidopsis sepal, a variety of tools for statistical analysis of the segmentation images 

was developed. For example, one tool determines ellipse moments and uses these 

moments to determine a pseudo-volume, V, for each nucleus. Looking at histograms of 

log2(V) for different Arabadopsis mutants, which externally show differences in their 

giant cell structures, can be used to quantify specific properties. Figure 14 shows 

normalized histograms of nucleus pseudo-volume for wild type, as well as the siamese-

related 1 (smr1) mutant and the E10-19 mutant. 
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Figure 14. Normalized histograms of nucleus pseudo-volume for wild type, as well as the siamese-related 1 

(smr1) mutant and the E10-19 mutant. 

 

The spatial distribution of giant cells and non-giant cells is also of interest. A graph 

showing which cells have a shared wall with which other cells captures the spatial 

topology. Floyd's algorithm was implemented to compute the "hop distance" between all 

pairs of cells. Because of the elongated shape of the giant cells, the hop distance is likely 

to be more relevant for study of spatial relationships than simple Euclidean distance. 

Figure 15 shows the color-coded hop distance between the central red cell and the other 

cells (e.g., the dark purple cells are two hops from the central red cell). 
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Figure 15. Color-coded hop distance between the central red cell and the other cells (e.g., the dark purple 

cells are two hops from the central red cell). 

 

In addition to analysis of static sepal images, a major thrust over the past year has been 

the study of time sequences. The ability with live imaging to observe the same 

developing specimen at different time points is a huge advance over previous imaging 

techniques. Algorithms were developed that can take nucleus tracking results and assign 

lineage labels to the nuclei. Figure 16a shows the initial nucleus labels assigned to nuclei 

in a sepal that is at an early stage of development. Figure 16b shows the lineage labels 

approximately 8 days later. Figure 16c shows the destination of various nuclei from the 

early sepal, with the triangle markers representing the position of the nucleus (or its 

descendant) after 8 days of development. The vectors are color-coded to represent the 

number of descendants produced by the original nucleus, e.g., red represents a nucleus 

that persisted without dividing, and green represents a nucleus that divided once to form 

two daughter cells. 
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(a)  

(b)  

(c)  

 
Figure 16. (a) Initial nucleus labels assigned to nuclei in a sepal that is at an early stage of development. (b)  

The lineage labels approximately 8 days later. (c) This image shows the destination of various nuclei from 

the early sepal, with the triangle markers representing the position of the nucleus (or its descendant) after 8 

days of development. The vectors are color-coded to represent the number of descendants produced by the 
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original nucleus, e.g., red represents a nucleus that persisted without dividing, and green represents a 

nucleus that divided once to form two daughter cells. 

 

Tools for more detailed growth studies and estimation of growth rates were also 

developed. One tool uses singular value decomposition (SVD) of the estimated affine 

transformation between successive frames in a time sequence to establish principal 

growth axes and rates of growth along these axes. The growth curves are well-modeled 

by exponential functions (equivalent to a compound interest model). Figure 17a shows an 

alternate analysis based on aligning sepal images according to a macroscopic coordinate 

system for the entire sepal and looking at the growth of an axis-aligned bounding box. All 

markers of a given color represent the positions of a handful of nuclei at a specific time 

point. Each radial olive green line connects all instances of the same nucleus over time. 

The colored rectangles show the growth of the bounding box over time. Figure 17b 

shows the corresponding cumulative growth curves with red representing growth along 

the long axis of the sepal and blue representing growth perpendicular to the long axis. 

(Note that the curves are normalized to start at 1 when t=0; we are mainly interested in 

the growth factor obtained from an exponential fit to the curves rather than the absolute 

sizes versus time.) 

 

 

(a)  
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(b)  

Figure 17. (a) This figure shows an alternate growth analysis based on aligning sepal 

images according to a macroscopic coordinate system for the entire sepal and looking at 

the growth of an axis-aligned bounding box. All markers of a given color represent the 

positions of a handful of nuclei at a specific time point. Each radial olive green line 

connects all instances of the same nucleus over time. The colored rectangles show the 

growth of the bounding box over time. (b)  This graph shows the corresponding 

cumulative growth curves with red representing growth along the long axis of the sepal 

and blue representing growth perpendicular to the long axis. (Note that the curves are 

normalized to start at 1 when t=0; we are mainly interested in the growth factor obtained 

from an exponential fit to the curves rather than the absolute sizes versus time.) 
 

To verify that the giant cells are endoreduplicating, we measured the nuclear area over 

time.  In plants the nuclear area is proportional to the DNA content.  We observe, that 

while all the nuclei are of a similar size at time point 0 indicating that they are all 2C, the 

giant cell nuclei (colored) increase in size over the period of the time-lapse image.  In 

contrast, the dividing nuclei (black) remain within the same size range throughout the 

time interval indicating that they have not endoreduplicated.  Note that in the last time 

point at 72 hours, the sepal rotates, which causes the absence of nucleus 6 (magenta) 

from view and the apparent shrinkage of nucleus 3 (blue).   
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Figure 18. Giant cell nuclear size increase versus time. The colored curves show the 

growth of giant cell nuclei over time. The black curves represent a control test which 

shows that the (regular) dividing nuclei remain within the same size range throughout the 

time interval indicating that they have not endoreduplicated. 

 

3.3 Filtering: improving quality of microscopy images (Cunha) 

Images generated in optical and electron scattering microscopy inevitably contain noise, 

which might prevent a straightforward computational image analysis. The in vivo 

confocal images acquired during the development of the Arabidopsis thaliana are not an 

exception. Noise is present throughout the entire image stack. We have greatly benefited 

from removing noise prior to further image processing. Robust image denoising has 

significantly helped us in the development of a semi-automatic method for segmenting 

cell membrane and cytoplasm. Denoising has also allowed us to clearly visualize and 

identify the geometries present in an image, as for example the shape of cell walls before 

and after mitosis, which is a valuable measure in the investigation of cell growth. 

 

We have developed a robust and efficient algorithm for nonlocal image denoising [1,2], 

which is a rewriting of the recently proposed nonlocal means filter of Buades, Coll, and 

Morel [2]. Our approach and efficient implementation on contemporary shared memory 

multicore computers enabled us to produce results much faster than competing schemes 

with either superior or equally good results. The method works by computing for each 

pixel in the image a weighted average intensity and it takes into account the distance 

between patches around the pixel being modified and its neighboring pixels in both 

Euclidean and intensity spaces. The underlying principle justifying the remarkable 

success of the method is that an image itself contains enough redundant information to 

boost its signal.  
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Figure 19: This figure shows the noisy and denoised versions of a tiny piece of a much 

larger image of guard cells in a sepal, magnified 8x from the original image. Note the 

sharpness of cell walls after denoising and the almost homogeneous intensity in the 

cytoplasm. These are typical characteristics of results obtained with our filter, which 

contribute to a great extent in segmentation. 

 
Table 1. Timing for filtering images of different sizes. Filtering time scales linearly with 

image size, which is a desired property specially when working with large sized images 

typically produced by current microscopes. Note from the table above that small images 

are filtered in real time. This is convenient when we are only interested in a small portion 

of the overall image. 

 

3.4. Segmentation: a fully automatic approach  (Cunha) 

We developed automatic and semi-automatic segmentation methods to determine sizes of 

sepals and cells.  

 

In our completely automatic approach we adopted the Active Contours Without Edges 

model presented in [2]. The method works by splitting the image into regions each with a 

unique average intensity. Although there may be multiple disconnected regions there are 

only two distinct segmented areas, one representing the foreground and the other the 

background. The interior region corresponds to the region of interest, the foreground, 

while the exterior region represents the background. In theory, a pixel moves to a 

foreground region if its color is closer to the foreground color than the background color, 

and vice versa. The method is suitable for segmenting sepals because their natural color 
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is uniform or close to uniform when compared to the background intensity or we can 

stain them such that their color becomes almost homogeneous during image acquisition. 

 

We have implemented the active contours segmentation program with robustness in mind 

and efficiency at this point is of secondary concern. We solve the Euler-Lagrange partial 

differential equation corresponding to the energy model using steepest descent. Although 

this can be excruciatingly slow for some problems, it gave us much control on the 

propagation of the level set curve that defines the interface between interior and exterior 

regions. Since we are mainly concerned with computing areas of blob type objects, like 

sepals, we can reduce images to an affordable size prior to segmentation without 

compromising results. Once we get a mask in a reduced image we scale back to original 

size to obtain true measurements. In practice, we experimented a CPU wall clock per 

iteration very affordable (less than 1 minute per sepal) and we could segment 16 sepals at 

a time using our multicore platform.  

 

The winning sepal segmentation approach consisted of combining a strong staining with 

mixing of mathematical morphology clean up procedures and active contours 

segmentation method. In a few cases sepals did not have a uniform color thus presenting 

difficulties to have a single segmented region (see Figure 21). By strongly coloring sepals 

and removing spurious data from the images using mathematical morphology operators 

(see Figure 22) we were able to generate accurate masks for sepals, from which we could 

automatically compute area sizes. This procedure entirely eliminated manual 

interventions to correct results. Validation of automatic results showed errors below 3% 

(given that the manual segmentation is accurate, an assumption we can certainly dispute). 

 

 

 
 

Figure 20. We have segmented sepals using the active contours without edges model [3]. 

The top row shows a few steps of the propagation of the level set curve (in red) enclosing 

the region of interest, from start (circle) to final configuration. The bottom row shows the 

respective evolution of the segmented region. The sepal area is computed from the final 

binary mask (bottom right image). 
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Figure 21. Segmenting sepals with a soft rubber might create more regions than 

necessary. (Top row) A small area within the sepal has approximately the same average 

intensity as the region exterior to the sepal leading the soft rubber to split into two pieces 

and create an undesired hole as seen in the top right picture. (Bottom row) We solve this 

problem by strengthening the rubber and starting from a level set curve covering 

approximately the whole sepal. The rubber shrinks and converges to the right response 

without breaking into pieces. The rubber stiffness and its initial contour are thus 

important parameters of the problem. 

 

 
Figure 22. A combination of right imaging and segmentation tool led us to a fully 

automatic segmentation method for sepals, even when small aberrations are present in the 

images. Sepals were stained such that their color is almost completely homogenous 

throughout thus eliminating the problem of multiple regions with same average intensity 

shown in Figure 21. We use mathematical morphology operators to remove the spurious 

thin features present in these new images (left picture) and prior to run our active 

contours segmentation program. The final mask is accurate and just a few iterations are 

needed to converge to a stable solution. 
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3.5. Segmentation: an assisted approach  (Cunha) 

The automatic segmentation of many neighboring cells, shown for example in Figure 

23B, presented some difficult challenges. The usage of our active contours segmentation 

revealed leakages through cell walls in many places, hard to control in a satisfactory 

fashion. Spurious information coming from neighboring slices, non-uniform coloring, 

and most importantly the occurrence of cell walls with weak signals were the major 

impeding factors that prevented us from adopting our previously described automatic 

segmentation approach. These difficulties led us to develop an assisted segmentation 

method that in practice behaved much better than the automatic one for these types of 

images, and it required little user intervention to control the quality of results.  

 

Note that although we developed what we think is a simple but robust method our 

success naturally depends on the quality of the acquired images. Highly deteriorated 

images would require a more sophisticated segmentation approach. But given that newer 

technologies can produce images with superior quality, our current methods are certainly 

applicable to them and higher rates of success are expected. 

 

We adopted our assisted approach for segmenting images of the types illustrated in 

Figures 23 and 24.  We stress here that filtering has played a major role in facilitating the 

development of this approach. Filtering significantly enhanced edges in the images while 

smoothing flat areas and judiciously throwing away as much noise as possible. 

 

 

 
 

Figure 23. We developed an assisted segmentation procedure to measure cell size where 

relatively little manual intervention is required to segment cells. The image in (A) shows 

a large number of the cells present in (B), each cell colored with a different gray color. In 

(B) we have the result after filtering an original slice from a confocal image (not shown) 



 27 

using our fast nonlocal mean filter. Denoising leaves cells with uniform or close to 

uniform dark colors throughout, easily distinguishable from cell walls that are much 

lighter. A simple threshold applied to the filtered image approximates very well the cell 

interior regions, shown in (C). But due to spurious information inherited from the 

acquisition process, a manual intervention is needed to discard those badly segmented 

cells (user visually selects and eliminates undesired masks). A set of clean cells is then 

created resulting in the image (D). Running a connected components program in this 

binary image produces the colored image in (A) whose histogram (E) gives us the area of 

each cell.  

 

 
 

Figure 24. From images to geometric models of cell walls. We want to depart from the 

simplified, straight sided geometric model for cell walls to a more faithful model that 

closely mimics the observed data. This should ultimately impact the quality of plant 

growth simulation as we introduce finite element models that more accurately represent 

reality. The image in (A) is a slice from a confocal stack, very noisy, but with enough 

information for us to construct an equivalent image (B) showing clearly the cell walls in 

(A). We achieve (B) after the following image processing steps: we denoise (A) with our 

robust filter [1,2] and obtain (C) whose cell interiors and walls are very distinguishable 

and clean of noise. (D) is the gray color threshold of (C) giving the cell walls a thickness. 
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We compute the distance transform [5] of these walls and obtain (E). We extract the 

ridges of (E) which are unique one pixel wide lines. The ridges represent the central lines, 

the skeletons of cell walls and they have all the necessary information to construct 

decimated splines representing the wall edges. The image in (B) is a slightly blurred 

version of the ridges so to allow an easy visualization otherwise difficult with one pixel 

wide lines. We are currently working on methods to construct these decimated splines 

from the pixilated lines and build 3D cells from them. 
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4. Mathematical and Software Tools for modeling 

 
4.1 Mathematical tools for modeling 

 

In order to compare the Dynamical Grammars (DG) modeling framework developed 

within the Computable Plant project [Mjolsness and Yosiphon 2006] with others such as 

L-systems and P-systems, we examined the mapping of graph grammars into DG’s and of 

geometric cell complexes into graph grammars. The first mapping requires a global 

object identifier (OID) parameter added to each simulated object, which can then appear 

as a mutable parameter in other objects thereby constructing a dynamic web or graph 

representation. But can graph grammars be mapped into the semantics of DG’s, which is 

given in terms of time evolution operators, without the use of globally unique OID’s? 

This question was pressed on us by Przemek Prusinkiewicz. 

 

The answer seems to be a qualified yes. There is a direct mapping of the DG syntax for 

graph grammars to time-evolution operators, in which the symbolic OID parameters are 

reinterpreted as local and temporary object identifiers rather than global and permanent 

ones. And new syntactic constructs can be added to the language which omit such 

parameters entirely. All of this leads to a natural extension of DG’s, which we call  

Dynamical Graph Grammars (DGG’s), that may be convenient for developmental 

modeling. However, behind the scenes in the general expression for DGG time evolution 

operators that determines the validity of any simulation engine, a sum over global object 

indices is still required. It’s not part of the language anymore, so of no concern to the 

users of the modeling language, but it remains part of the semantics of the language, and 

therefore important to inventors of simulation algorithms. 

 

 

4.2 Software tools for modeling 

 

Software Developed (Shapiro) 

 

We have developed a the growzilla simulator, which implements the spring wall model in 

two dimensions.  Cells are modeled as polygons, with springs connecting the two vertices 

at the end of each wall (see Figure 25). The resting length of the spring is increased in 

proportion to strain to simulate growth; the dynamics of a physics-based model of weak 

springs in a viscous medium is used to maintain cell shape as the wall lengths increase to 

match their resting lengths. Turgor pressure is simulated by a fixed outward force on each 

wall that is applied normally and split equally at each vertex. Tissues are implemented 

using a data structure that is composed of three parts: a list of vertex coordinates; a list of 

edges specified as vertex pairs; and a list of cells specified as lists of edges. Cell division 

is implemented with the model described elsewhere in this report, and occurs when the 

cell mass (area) passes a pre-specified threshold. Anistropic growth and strain models are 

also implemented.   In addition, the hypothesis that the cells stiffen in a direction 

perpendicular to cell growth, the direction of cell growth is used to dynamically 

determine the stiffness of the springs as a function of time. Figure 25 shows the end result 

of a simulation starting with a single hexagonal cell after twelve cell division using a 
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1:3:1 weight ratio (area:length:perpendicularity)  of the model described elsewhere for 

cell division, incorporating the stiffness feedback model. Growzilla is built on a substrate 

of programs that includes the open source mathsbml, xlr8r, and mergeinterpolation 

packages.  

 

 

       
 

Figure 25. Spring wall model. Each cell is described by a network of springs around the 

edges. Right: result of applying the cell division model staring with a single hexagonal 

cell, after 12 cell divisions. The bars indicate growth direction.  

 

Several other software packages were modified this year; (1) The xCellerator simulator, 

which is used to simulate biochemical networks via the automated conversion of 

reactions into differential equations and their numerical solution had several 

improvements: It was upgraded to compatibility with Mathematica version 6.0;  install 

scripts for linux and Mac OSX were included in the distribution;  a new option 

“BoundaryCondition” was added to allow simulations with time-dependent stimulations 

(instead of just at time equals zero); several improvements to improve efficiency were 

implemented. (2) The x20 simulator was developed to produce reactions in the organism 

file format and run simulations using the organism simulator. (3) The 

“MergeInterpolation” package was developed to aide plotting and merging of 

interpolation data overt different time spans that have different numbers of equations. 

MergeInterpolation is used by Growzilla. (4) Cellzilla/Mpower which is use to develop 

static simulations using a weak spring model and Voronoi geometry was upgraded to 

Mathematica version 6. 

 

Reference 

 

“Stochastic Process Semantics for Dynamical Grammars”, Eric Mjolsness and Guy 

Yosiphon. Annals of Mathematics and Artificial Intelligence, 47(3-4) August 2006.
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5. Activities and Meetings 
 

Computable Plant Annual Meeting, Caltech Kerckhoff Marine Lab (KML), Corona del 

Mar, California, Saturday, Nov 17, 8:30am - 4:00pm: 

 

Schedule 

 

Eric Mjolsness and Elliot Meyerowitz: Brief introductions 

Adrienne Roeder (Caltech): Sepal biology and image analysis 

Vijay Chikarmane (Caltech): Sepal model 

 

10-11am: 

Victoria Miranova (ICG): ODE root model 

Guy Yosiphon (UCI): Dynamical Grammar root model 

Break & discussion 

 

11am-12 noon: 

Sergey Nikolaev (ICG): Shoot Apical Meristem homeostasis and maintainance 

Bruce Shapiro (ICG): Shoot Apical Meristem maintainance 

 

Lunch 

 

1-2pm: 

Nadya Omelianchuk (ICG): AGNS database software 

Tigran Bacarian (UCI): Image analysis software 

Break & discussion 

 

2-3pm: 

Sean Gordon: Callus biology 

Ilya Akberdin (ICG): Embryo model 

 

3-4pm: 

Discussion and opportunity for technical interchange. 
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Eric Mjolsness and Adrienne Roeder at KML. 

 

 
Sergey Nikolaev, Victoria Mironova, and Ilya Akberdin (all from Institute for Cytology 

and Genetics (ICG), Novosibirsk, Russia) at KML. Also visiting from ICG were Vitali 

Likoshvai and Nadezhda Omelianchuk. 
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Some applied mathematics for root modeling at KML. 

 

Spinoff meeting series: Computational Morphodynamics “supergroup meetings” at 

Caltech. First of the series: 

Caltech Computational Morphodyamics Workshop 

21 May 2008, Powell-Booth 100, Caltech campus 

 

09:00 AM     09:15 AM     Introductions 

 

09:15 AM     09:40 AM     Meyerowitz Lab 

09:40 AM     10:05 AM     Elowitz Lab 

10:05 AM     10:30 AM     Asthagiri Group 

 

10:30 AM     10:45 AM     Break 

 

10:45 AM     11:10 AM     Mjolsness Group 

11:10 AM     11:35 AM     CACR 

11:35 AM     12:00 PM     Discussion 

 

12:00 PM     12:30 PM     Lunch 

 

12:30 PM     12:55 PM     Boris Shraiman (UCSB) 

12:55 PM     01:20 PM     Stathopolous Lab 

01:20 PM     01:45 PM     Ingmar Riedel-Kruse 

 

01:45 PM     02:00 PM     Coffee 

02:00 PM     03:00 PM     Discussion 
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Caltech Computational Morphodynamics Workshop (May 21, 2008). Front row: 

unidentified, Anand Asthagiri, Elliot Meyerowitz, Vijay Chickarmane, Michael Elowitz, 

Boris Shraiman (KITP). Second row: Bruce Shapiro, Oren Schaedel, Marcus Heisler, 

Adrienne Roeder, Alex Cunha, Lauren LeBon, David Sprinzak, Chin-Lin Guo. 

Summarized at http://computational-morphodynamics.net/meetings.html. 
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6. K-12 Outreach 

 

Grounding in Botany at the Huntington Botanical Gardens completed its fourth full year 

and we are in the middle of the fifth year’s summer institute. The Grounding in Botany 

program continues to combine support with a grant from the Arthur Vining Davis 

Foundations. This summer and last we moved to a four-week format (four days a week). 

The program year began with a very successful summer course and was followed by five 

workshops scheduled through the 2007-2008 academic year. This summer’s course will 

also be followed by five workshops through the 2008-2009 school year. 

 

We continued to expand recruitment efforts this year, increasing the number of contacts 

for advertising the summer program. Again the course was approved by the Los Angeles 

Unified School District for salary point credit, and LAUSD advertised it on their web site 

of professional development opportunities. In addition to email announcements to various 

list-serves, we also sent personal letters to over 150 department science chairs, covering a 

large portion of the LA basin. For both years, the teachers represented a variety of 

academic backgrounds and classroom levels, including continuation schools and Advance 

Placement biology.   

 

The 2007 program (5 Photos included) included lectures and lab work on topics 

including: genetics; plant physiology; the scientific process; current botanical research; 

growing Wisconsin Fast Plants and using them in the classroom; diffusion and osmosis; 

sexual and asexual reproduction; plant hormones; and plant morphology. The class even 

took a field trip to the Los Angeles Zoo to learn about plant/animal interactions and 

adaptations. Lectures and labs were lead and facilitated by Huntington staff with guest 

lectures from  

• Dr. Elliot Meyerowitz, George W. Beadle Professor of Biology and Chair of the 

Division of Biology at the California Institute of Technology. 

• Dr. Eric Mjolsness, Associate Professor, Department of Information and 

Computer Science at the University of California at Irvine 

• Dr. Jose Luis Reichmann, Director, Gene Expression Center at Caltech 

• Elaine Wong, Graduate student at the University of California at Irvine 

• Sean Gordon, Graduate student at the California Institute of Technology 

 

Our follow up workshops have provided additional labs and lectures on a variety of 

topics that help strengthen and expand the use of plants in the classroom. The workshops 

in the 2007-2008 series were: 

• October 27th, 2007: “Lesson Sharing and Discussions with Program 

Graduates.” Participants shared the lesson plans that they designed as part of the 

course with each other and received valuable input from their peers.  

• November 17th, 2007: “I’m Your Venus: Carnivorous Plants in the 

Classroom.” Ecology and evolution standards where addressed with an engaging 

look at the peculiar world of carnivorous plants. Participants experimented with 

(and took home) meat-eating flora, including the ever-famous Venus’ fly trap.  
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• February 9th, 2008: “Hormones in the Harvest.” Dr. Deb Folsom of the 

Huntington and Pasadena City College gave a guest lecture about how people 

manipulate plant hormones so that we have “better” consumable goods. This 

fascinating talk ended with a trip to see the Camellia Festival, where there where 

beautiful and interesting examples of what can happen when these hormones are 

manipulated. 

• March 8th, 2008: “Composters Make It From The Ground-Up.” Decomposers 

are an integral but often hidden part of the food web. In this workshop, 

participants looked closely (even microscopically) at the decomposition process 

and learned how to bring it into the classroom as a fascinating illustration of the 

carbon and nitrogen cycles. 

• April 26th, 2008: “Invasives”. In this workshop, teachers studied the 

characteristics of invasive plants and did some mathematical modeling with UCI 

graduate student Elaine Wong to predict an invasive plant’s ability to spread.   

 

While the dates of the 2008-2009 workshops have yet to be determined, they will follow 

the same topics and roughly the same distribution throughout the year as 2007-2008. 

 

We are extremely pleased with the reactions from our participants. Comments such as 

“[Grounding in Botany] completely exceeded my expectations” and “I feel like I got 

great ideas for my classroom and learned a lot myself” were common in our evaluations, 

and we continued to hear praise for the course as the teachers were supported through 

workshops. At our most recent workshop, for example, one teacher took aside an 

instructor to let her know just how many lessons and activities from the course she has 

incorporated into her classroom already and how, most importantly, she now has the 

confidence to teach about plants where she hadn’t before. Some participants have even 

brought family members to attend follow-up workshops because they where so excited 

about the material. Another extremely important outcome of the Grounding in Botany 

course is the camaraderie and sharing of ideas and resources among participants. At each 

follow-up workshop, participants compare labs completed and activities planned, share 

successes and discuss challenges, trade lesson plans, and share stories about student 

achievements.  

 

On our front-end and summative evaluation of participants to assess the success of the 

program, biology content scores raised an average of 27 percent after completion of the 

2007 summer institute. A post-test at the end of the 2007-2008 academic year showed 

that teachers retained 90% of their summer content knowledge (over 8-months later). 

Additionally, teachers’ intent to make botanical sciences and botanical lab work a part of 

their classroom curriculum increases substantially, as does their level of confidence in 

teaching about plant biology. “I never knew I could learn so much hands-on valuable info 

for my class in such a short period… A class I will always remember and cherish” said 

one participant. Another added, “The course is very practical. If I had botany taught to 

me like this in undergrad, I’d be a botanist today.” These comments are backed by our 

year-end evaluation in which teachers reported a significant increase in the number of 

plant based labs they where using in their classroom (an average of eleven plant labs).  
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Not only do participants gain more content knowledge in botany, but evaluation has 

revealed that they also gain the skills to translate that knowledge to their students in 

meaningful ways. The 13 2007-2008 teachers and 14 2008-2009 teachers we worked 

with this year together will impact over 3000 students in this academic year alone—and 

evidence shows that the performance of those students will improve. For example, after 

all the high school science teachers in the Pasadena Unified School District (PUSD) 

attended Huntington workshops based on GIB materials, the scores of PUSD students 

(where 65% students are eligible for federal free-reduced lunch and 30% are English 

language learners) on the 2005–2006 California Standards Test in biology rose by 10 

percent.  

 

This June we had a proposal accepted for the National Meeting of The American Public 

Garden Association (APGA) where we gave a one day-workshop highlighting the 

Grounding in Botany program and disseminating several of the labs to Botanical 

Educators from around the country. Also, many of our labs have been posted on the 

Grounding in Botany webpage of the Huntington Garden’s website 

(http://www.huntington.org/Education/giblessons.html) for increased dissemination 

potentials to all teachers.  

 

For the 2008-2009 summer institute, we will offer a modified version of the Grounding 

in Botany. This version will utilize a cadre of teachers from previous years’ who each 

bring 2 colleagues from their school to the program and develop the curriculum toward 

the level of school adoption.  The teachers who have participated in the program will be 

co-teaching the material to their colleagues. We have also started talks with faculty from 

the Cal-State system to try to integrate the Grounding in Botany course into pre-service 

training for graduate students pursuing their Master’s of Teaching in Science.  
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7. Dissemination 

 

Journal Publications 

 

“Antagonistic Regulation of PIN  Phosphorylation by PP2A and PINOID Directs 

Auxin Flux”, M. Michniewicz, M. K. Zago, L. Abas, D. Weijers, A. Schweighofer, I. 

Meskiene, M. G. Heisler, C. Ohno, J. Zhang, F. Huang, R. Schwab, D. Weigel, E. M. 

Meyerowitz, C. Luschnig, R. Offringa, and J. Friml, Cell 130, 1-13, Sept 21 2007. 

 

“An Exact Accelerated Stochastic Simulation Algorithm”, E. Mjolsness, D. 

Orendorff, P. Chatelain, P. Koumoutsakos, submitted. 

 

“Mathematical Model of Auxin Distribution in the Plant Root”, V. A. Likhoshvai, N. 

A. Omel’yanchuk, V. V. Mironova, S. I. Fadeev, E. D. Mjolsness, and N. A. 

Kolchanov. Russian Journal of Developmental Biology, Vol. 38, No. 6, pp. 374–382, 

2007. 

 

“A Model Study of the Role of Proteins CLV1, CLV2, CLV3, and WUS in 

Regulation of the Structure of the Shoot Apical Meristem”, S. V. Nikolaev, A. V. 

Penenko, V. V. Lavreha, E. D. Mjolsness, and N. A. Kolchanov. Russian Journal of 

Developmental Biology, Vol. 38, No. 6, pp. 383–388, 2007.  

 

 “Towards a Calculus of Biomolecular Complexes at Equilibrium”, Eric Mjolsness. 

Briefings in Bioinformatics, 8(4):226-33 July 2007. 

 

 “On Cooperative Quasi-Equilibrium Models of Transcriptional Regulation”, Eric 

Mjolsness. Journal of Bioinformatics and Computational Biology, vol 5 no 2(b) pp 

467-490, 2007. 

 

 

Book Chapters 

 “Towards the Inference of Stochastic Biochemical Network and Parameterized 

Grammar Models”, Yosiphon, G. and E. Mjolsness. In N. Lawrence et al., eds., 

Learning and Inference in Computational Systems Biology (title with MIT Press), 

accepted 2008 for publication 2009. 

 

Oral Presentations 

 

Marcus Heisler, Febuary 14th, 2008. Keystone meeting on Plant Hormones and 

Signaling. Auxin Transport Patterning and Primordium Development at the Shoot 

Apical Meristem. 

 

E. Meyerowitz, September 18, 2007 University of Maryland, Symposium on Grand 

Challenges in 21st Century Bioscience 

E. Meyerowitz, October 22, 2007 North Carolina Biotechnology Center, Research 

Triangle Park,  
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E. Meyerowitz, November 9, 2007 Duke University, Computational Developmental 

Biology: How Mathematics, Computers and Genetics Combine to Explain Plant 

Development. 

E. Meyerowitz, November 28, 2007 University of Wisconsin, How the Shoot Apical 

Meristem Works: Dynamic Imaging, Genetics and Computational Models. 

E. Meyerowitz, January 25, 2007 Rockefeller University, Computational 

Morphodynamics: Live Imaging and Computational Modeling of Plant Stem Cells in 

the Shoot Apical Meristem. 

E. Meyerowitz, March 3, 2008 B.I.G. Lecture, University of Lausanne, Plant Stem 

Cells: Live Imaging and computational Models of the Arabidopsis Shoot Apical 

Meristem. 

E. Meyerowitz, March 6, 2008 Mendel Lecture, Academy of Science of the Czech 

Republic, Brno, Plant Stem Cells: Live Imaging and computational Models of the 

Arabidopsis Shoot Apical Meristem. 

E. Meyerowitz, May 20, 2008 U.C. Santa Barbara, Computational Morphodynamics: 

Live Imaging and Computational Modeling of Plant Stem Cell in the Shoot Apical 

Meristem. 

E. Mjolsness, “Computational Morphodynamics”, Computational Morphodynamics 

Workshop, Beckman Network Modeling Center (BNMC), Caltech, May 21 2008. 

 

E. Mjolsness, “Prospects for Computational Morphodynamics”, invited talk, CPIB 

Workshop on Auxin Transport, Center for Plant Integrative Biology, Nottingham, 

May 16 2008. 

 

E. Mjolsness,  “Cellerator, Sigmoid, Cellzilla, and Plenum”, invited talk, CPIB 

Workshop on Auxin Transport, Center for Plant Integrative Biology, Nottingham, 

May 15 2008. 

 

E. Mjolsness,  “Opportunities and challenges in cyberinfrastrucure development”, 

invited talk, iPlant kickoff meeting, Cold Spring Harbor, April 8 2008. 

 

E. Mjolsness,  “Computational Frameworks for Developmental Biology”, invited 

talk, UCI Developmental Biology Center retreat, March 17, 2008. 

 

E. Mjolsness, “Computational Frameworks for Phyllotaxis and Morphodynamics”, 

invited talk, Workshop on Morphogenesis, Kavli Institute for Theoretical Physics, 

March 3, 2008. 

 

E. Mjolsness,  “New Mathematical Methods for Systems Biology”, Tutorial, 

International Society for Systems Biology (ICSB 2007), Long Beach California, 2:00 

- 5:00 PM, Monday October 1, 2007. 

 

E. Mjolsness,  “A Random Steady State model for the activity of Pyruvate 

Dehydrogenase”, invited talk, System Biology for Microbes at the 6-th Annual 
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International Conference on Computational Systems Bioinformatics (CSB 

2007), Life Science Society, San Diego, August 2007. 

 

E. Mjolsness,  “Computational Support for Theory in Science”, invited discussion 

provocation, Caltech e-Science and Cyberinfrastructure Workshop, June 13, 2007. 
 

Bruce Shapiro, Developmental Modeling of the Shoot Apical Meristem,  Johan 

Radon Institute of Computational and Applied Mathematics, Special Semester on 

Quantitative Biology, Linz, Austria, Nov. 2007. 

 

Guy Yosiphon, “Stochastic Multiscale Modeling Methods for Stem Cell Niches”, 

NIPS workshop on Machine Learning for Computational Biology, December 2007. 

 

 

Poster presentations 

 

“A receptor kinase is required for giant cell formation in Arabidopsis sepals” 

Adrienne H. K. Roeder, Carolyn K. Ohno, and Elliot M. Meyerowitz, Poster 

presentation 18th International Conference on Arabidopsis Research.  Beijing, China, 

20-23 June 2007 (Roeder). 

 

 “Topological Index of a Model of p53 Dynamics Triggered by DNA Damage”, V. P. 

Golubyatnikov and E. Mjolsness, 

 

 

 “Finite Element Modeling of Mechanical Properties of Plant Cells in Arabidopsis 

thaliana”, Pawel Krupinski, Marcus Heisler, Patrick Hung, Elliot Meyerowitz, and 

Eric Mjolsness, Poster and Proceedings extended abstract, ICSB 2007: The Eighth 

International Conference on Systems Biology, Long Beach California, Oct 2-4 2007. 
 

 “1D Modeling of Auxin Distribution in Plant Roots”, Vitaly V. Likhoshvai, Victoria 

V. Mironova, Nadya A. Omelianchuk, Stanislav I. Fadeev, Nikolay A. Kolchanov, 

and Eric D. Mjolsness, Poster and Proceedings extended abstract, ICSB 2007: The 

Eighth International Conference on Systems Biology, Long Beach California, Oct 2-4 

2007. 

 

 “Modeling of the Shoot Apical Meristem Structure Regulation Based on CLV1, 

CLV2, CLV3 and WUS Interactions”, Sergey Nikolaev, Alexey Penenko, Viktoriya 

Lavreha, Pavel Smal, Eric Mjolsness, and Nikolay Kolchanov Poster and Proceedings 

extended abstract, ICSB 2007: The Eighth International Conference on Systems 

Biology, Long Beach California, Oct 2-4 2007. 

 

“Mathematica Platforms for Modeling in Systems Biology: Recent Developments in 

MathSBML and Cellerator”, Bruce E. Shapiro, James Lu, Michael Hucka, Eric D. 

Mjolsness, Poster and Proceedings extended abstract, ICSB 2007: The Eighth 

International Conference on Systems Biology, Long Beach California, Oct 2-4 2007. 
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 “Integrating system for segmenting and tracking fluorescent objects on the image 

data of growing cell colonies”, Tigran Bacarian and Eric Mjolsness, Poster and 

Proceedings extended abstract, ICSB 2007: The Eighth International Conference on 

Systems Biology, Long Beach California, Oct 2-4 2007. 

 

 “High-accuracy R-leaping: Implementing and Exploring a Potentially Exact method 

for Accelerated Stochastic Simulation” D. Orendorff, P. Chatelain, P. Koumoutsakos, 

and E. Mjolsness, Poster and Proceedings extended abstract, ICSB 2007: The Eighth 

International Conference on Systems Biology, Long Beach California, Oct 2-4 2007. 

 

 “Dynamical Grammar Modeling of Cellular Proliferative Dynamics in the Olfactory 

Epithelium”, G. Yosiphon, K. K. Gokoffski, A. L. Calof, A. D. Lander, E. Mjolsness. 
Poster and Proceedings extended abstract, ICSB 2007: The Eighth International 

Conference on Systems Biology, Long Beach California, Oct 2-4 2007. 

 

Press 

 

Barbara Ellis, “Greening the Classroom”, Caltech News v 24 no. 4, 2007. Reports on 

Martha Kirouac’s Computable Plant outreach project at Huntington Botanical 

Gardens. http://pr.caltech.edu/periodicals/CaltechNews/archive.html . 

 

Software 

 

Recently updated versions of many Computable Plant project codes can be found on 

the project web site, www.computableplant.org  software. 

 

In addition the Computable Plant PI’s have teamed up with others to propose a grand 

challenge project in Computational Morphodynamics to the new iPlant Collaborative, 

that could deliver tools incorporating knowledge and progress from the Computable 

Plant project to a much wider community of plant biologists. Successful proposers 

cannot expect to receive any funding as a result of their success, gaining instead just 

the right to advise iPlant on what problems to tackle and how. Preliminary success in 

this public service effort is recorded at 
http://www.iplantcollaborative.org/component/content/article/49-public/113-grand-challenge-

workshops-in-2008 . 

 

Meetings 
 

Through competitive proposals the PI’s have won the rights to hold two funded 

international followup meetings relating to Computational Morphodynamics: the 

iPlant Grand Challenge Workshop (see Software, above) in December 2008, and 

(with UCI’s Clare Yu) a future Kavli Institute for Theoretical Physics (KITP) short 

program in “Morphodynamics for Plants, Animals and Beyond” in Santa Barbara. 

 


