Biostatics of Arabidopsis thaliana: 1-Dimensional Mathematical Models of the Growing Root ${ }^{(*)}$

Alexander V. Sadovsky ${ }^{(1), \dagger,(* *)}$, Marcus G. Heisler ${ }^{(2)}$, Elliot M. Meyerowitz ${ }^{(2)}$, Ana Campilho ${ }^{(3),(\#)}$, Eric Mjolsness ${ }^{(1)}$, Pierre F. Baldi ${ }^{(1)}$

References

1. Dolan L et. al. (2004) Plant Bio., Vol. 7, Iss. 1:33-39.
2. Feynman, RP (1970) Feynman Lectures On Physics, Vol. 2 . Garcia B, Campilho A, Scheres B, Campilho A (2004) Automatic Tracking of Arabidopsis thaliana Root Meristem in Confocal Mi-
croscopy. ICIAR LNCS 3212, 166.
, Hathes 3212, 166.
3. Kerstens et. al. (2001) Plant Physiol, Vol. 127:381-385 6. Rozanov Yu (1977) Probability Theory: A Concise Course, Dover 7 van der Weele CM et. al. (2003) Plant Physiol. 132(3):1138-48
Affiliations, Credits, and Acknowledgments
Insitute for Genomics and Bioinformatics,
(2) Divivision of Biology, $156-29$

California Institute of Technology, Pasadena, CA 91125, USA
(3) Department of Biology, Utrecht University

Padualaan 8, 3584 CH Utrecht, The Netherlands
Corresponding author (email: avs@ics.uciedu
(*) Supported by NIH, National Research
Service Award 5 T15 LM007443, the National Library of Medicine.
) Supported by a PRAXISXXIIFCT grant
(Gulbenkian PhD Program in Biology and Medicine).

Stochastic Models of the Stele

Model Setting and Simulation Algorithm
The longitudinal cross section of the stele is approximated as a 1 -dimensional continuous interval $[A, B] \subset \mathbf{R}$, as shown in the f g gure below.

Initially, the 1 -dimensional stele cells are of roughly equal size, up to a small andom perturbation. The locations of their distal (from the QC) ends are $\left[A, B \mid\right.$ so s, is the distal $s=\left(s_{1}, \ldots, s_{N}\right)$ (1) follows. The points (1) then move according to a velocity profi le $v(s)$, which satisfies
$v(A)=0$

Simulations and Experimental Result
The following Figure shows experimental data (part (A)) juxtaposed with imulation results (parts (B-D))
igure Legend. Horizontal axis units: $v f$ ($1 \mathrm{vff}=$ distance from vertex to focus in the parabola that bounds the root cross section). Panel (A): the experimentally observed 74 mitoses. Panels (B-D): a sample of simulation results, for different values of cell size variation (c.s.v.). Avg. cell size μ, shown above the histograms, was also varied, but only the shown value agrees
with data. Tissue domain at time zero: $A=0$ vt $f, B=60$ vt f.
Mitosis histograms
Mitosis location plots

Panel (D) shows the best qualitative agreement with experiment. Simulations were also run for different values of the average cell size μ, but produced results in much less agreement with experiment. Thus, average cell size is a

1-Dimensional Steady Motion Models of the Root

A Brief on 1-Dimensional Continuum Mechanics

Consider a rod of length l and cross section A. In order to stretch or compres it lengthwise to a new length $l+\Delta l$, so as to achieve the fractional change in length $\epsilon=\frac{\Delta l}{l}$
(5)
(negative in the case of compression), one must apply a certain force F, which depends on the required fractional stretch: $F=F(\epsilon$. The dimensionles the rod, the larger the force required to achieve a given strain. Thus, F is proportional to ϵA. For many materials, these proportions are linea
$F=Y \epsilon A, \quad$ where the quantity Y measures the stiffness of the material Rewrite (6) in the form

$$
\begin{equation*}
\frac{F}{A}=Y \epsilon \tag{}
\end{equation*}
$$

The left-hand side is called stress. Equation (7) describes the rod's stress r e sponse to a given strain ϵ. The intensity of this response is reflected by the constant Y, called Young's modulus [2], which characterizes the stiffness of the material.

Model Setting
The longitudinal cross section of the outer cell layer is regarded as a dimensional continuum. It is parametrized by a variable x, which varies fron 0 (the tip of the RAM) to L (some point on the RAM surface).

We consider the motion of this tissue fragment over a period of time commensurate with one cell cycle. At a time instant t during this period, a poin originally in position x is displaced to a new location $x+u(t, x)$, where $u(t, x)$ is the displacement, to be found by solving the governing equation below. The linear viscous effects, found small in experiments [5], have bee neglected as a first approximation.

Cr. By
The Parameter x vs. the Distance s Along the RAM Axis
 Denote the distance from the tip along RAM axis by s. Then the RAM cross section is bounded by $f(s)=2 \sqrt{ } f_{s}$ (principal branch), and the constant f_{f} has the same units of leng as s. The variable x thus parameriizes the arc lengsth $[4]$ of $f(s)$. Figure 2 of $[1]$ suggests,

Results
The Homogeneous Case $Y=$ const.. The static governing equations and the $B C$ s yield

$$
v(x)=v(x)=v_{0}+v_{1} x, \quad \text { where } v_{0}=0, v_{1}=\left(V_{L}-v_{0}\right) / L,
$$

which admits a linear fit $v_{u f f}(s)=a_{0}+a_{1} s$, accurate for $v_{1}=$ to $6.6^{\%}$
The Inhomogeneous Case $Y=Y(x)$. We find Y as a function of s. Assuming), one obtains $d v / d s=c=$ const., henc

$$
Y(s)=\frac{\sigma_{0} \sqrt{1+\left(f_{0} / s\right)}}{}
$$

\qquad(10)

which predicts a rapid increase in stiffness toward the RAM $\operatorname{tip}\left(x \rightarrow 0^{+}\right)$ This result agrees with the intuitive hypothesis that, near the tip, longitudina
strain is necessarily accompanied by tangential strain, which is hindered by the transversely oriented cellulose fi brils. The result also correlates with the expansin concentration found to decrease towards the root tip in certain plants.

