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Abstract
To understand how an organism or ecosystem develops as a whole is a primary goal of sys-

tems biology. A mathematical model of an organ serves this goal by being simple and, at the
same time, descriptive of the various developmental aspects, such as cell division, growth, tissue
mechanics, genomics, etc., and the interplay between them. The organism of choice in this study
is Arabidopsis thaliana, a plant that has been the object of extensive and successful research.
We model mathematically two regions of the plant’s root, the stele and the outermost cell layer.
Using the rotational symmetry of the root, we view the longitudinal cross section of the root as
a 2-dimensional region. The stele and the outer cell layer are two subregions that, in the context
of our models, can be viewed as functionally independent of the rest of the root. Each subregion
is then approximated, neglecting the transverse dimension, as a 1-dimensional continuum, on
which our mathematical models are constructed. For the stele, our model predicts that mitotic
activity decreases exponentially with the distance from the quiescent center. For the outer cell
layer, we offer two continuum-mechanical models, aimed at describing the motion of the tissue
and its viscoelastic properties. In the first of these models, we assume constant stiffness and
obtain that a point in the tissue originally occupying position s is displaced after a time t to a
new position, s + t u(s), where u is a function well approximated by the linear form a0 + a1s. In
the second model, we assume linear displacement and find that the stiffness then varies in space,
increasing toward the root tip at the rate 1/

√
s as s → 0. This result agrees with the intuitive

hypothesis that, near the tip, longitudinal strain is necessarily accompanied by tangential strain,
which is hindered by the transversely oriented cellulose fibrils. The result also correlates with
the expansin concentration found to decrease towards the root tip in certain plants.
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Stochastic Models of the Stele

Model Setting and Simulation Algorithm

The longitudinal cross section of the stele is approximated as a 1-dimensional
continuous interval [A,B] ⊂ R, as shown in the figure below.

Root cross section Stele 1-D stele approximation

Initially, the 1-dimensional stele cells are of roughly equal size, up to a small
random perturbation. The locations of their distal (from the QC) ends are
recorded as the points

~s = (s1, . . . , sN ) (1)

in [A,B], so sj is the distal end of the j-th cell. The simulation proceeds as
follows. The points (1) then move according to a velocity profile v(s), which
satisfies

v(A) = 0 (2)

and generally alters the lengths of the cells. At every instant when a cell’s size
exceeds a threshold length,

sj − sj−1 ≥ threshold length d0, (3)

this cell divides (in this simulation, exactly in half, but this need not be the
case generally). The locations of the new cells’ distal ends are recorded.

The Choice of a Velocity Profile v(s)

We considered a priori the following three qualitatively different choices of
v(s) (here c denotes a constant),

v(s) = v0 = const., v(s) = cs, v(s) = cs2 (4)

in the framework of the above simulation. The first of these choices is unsuit-
able as it does not alter cell length, hence fails to capture growth. The third
choice potentially leads to discontinuous motion, contradicting intuition and
observation. The second choice remains suitable, agrees with experimental
data [7], and is used in the simulation.

Experimental Methods and Analysis

In vivo time lapse recording of cell division in roots was performed using an
automatic tracking method [3]. The experiment was run for approximately 15
hours. The obtained sequence of images was analyzed for the locations of the
mitoses taking place in the observed cross section of the stele.

Simulations and Experimental Results

The following Figure shows experimental data (part (A)) juxtaposed with
simulation results (parts (B-D)).

Figure Legend. Horizontal axis units: vtf (1 vtf = distance from vertex to
focus in the parabola that bounds the root cross section). Panel (A): the
experimentally observed 74 mitoses. Panels (B-D): a sample of simulation
results, for different values of cell size variation (c.s.v. ). Avg. cell size µ,
shown above the histograms, was also varied, but only the shown value agrees
with data. Tissue domain at time zero: A = 0 vtf, B = 60 vtf .
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Panel (D) shows the best qualitative agreement with experiment. Simulations
were also run for different values of the average cell size µ, but produced re-
sults in much less agreement with experiment. Thus, average cell size is a
prediction of the present model.

1-Dimensional Steady Motion Models of the Root

A Brief on 1-Dimensional Continuum Mechanics

Consider a rod of length l and cross section A. In order to stretch or compress
it lengthwise to a new length l + 4l, so as to achieve the fractional change in
length

ε =
4l

l
(5)

(negative in the case of compression), one must apply a certain force F , which
depends on the required fractional stretch: F = F (ε). The dimensionless
quantity ε is called, strain. Larger strain requires larger force. Also, the thicker
the rod, the larger the force required to achieve a given strain. Thus, F is pro-
portional to εA. For many materials, these proportions are linear:

F = Y εA, where the quantity Y measures the stiffness of the material
(6)

Rewrite (6) in the form
F

A
= Y ε (7)

The left-hand side is called stress. Equation (7) describes the rod’s stress re-
sponse to a given strain ε. The intensity of this response is reflected by the
constant Y , called Young’s modulus [2], which characterizes the stiffness of
the material.

Model Setting

The longitudinal cross section of the outer cell layer is regarded as a 1-
dimensional continuum. It is parametrized by a variable x, which varies from
0 (the tip of the RAM) to L (some point on the RAM surface).

1-D continuum (in red) Parametrization by x

We consider the motion of this tissue fragment over a period of time com-
mensurate with one cell cycle. At a time instant t during this period, a point
originally in position x is displaced to a new location x + u(t, x), where
u(t, x) is the displacement, to be found by solving the governing equations,
below. The linear viscous effects, found small in experiments [5], have been
neglected as a first approximation.

symbol meaning relations steady state assumptions
ρ(t, x) mass (density) ∂tρ = 0 (so ρ = ρ(x))
u, u(t, x) displacement ∂ttu = 0
v, v(t, x) velocity v = ∂tu v = v(x) (since ∂ttu = 0)
ε strain ε = ∂xu
σ stress σ = Y ε (equation (7)) ∂xσ = 0 (so σ = σ0 = const.)

Governing
Equations:

ρ ∂ttu︸ ︷︷ ︸
= ∇ · σ

︸ ︷︷ ︸
= ∂xσ

mass times acceleration elastic forces

∂tρ︸︷︷︸
= −∇ · (ρ ∂tu)

︸ ︷︷ ︸
+ g

︸︷︷︸

rate of change in mass mass transport source of growth







(8)

BCs: By symmetry, u|x=0 = 0, so v|x=0 = 0. By data [7], v|x=L = VL.

The Parameter x vs. the Distance s Along the RAM Axis
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f(s) = 2 (f
0
 s)1/2

Denote the distance from the tip along RAM axis by s. Then the RAM cross section is

bounded by f(s) = 2
√

f0s (principal branch), and the constant f0 has the same units of length

as s. The variable x thus parametrizes the arc length [4] of f(s). Figure 2 of [1] suggests, to

a good qualitative approximation, f(100) = 100, so f0 = 25.

Results

The Homogeneous Case Y = const.. The static governing equations and the
BCs yield

v(x) = v(x) = v0 + v1x, where v0 = 0, v1 = (VL − v0)/L, (9)

which admits a linear fit vaff (s) = a0 + a1s, accurate for v1 = to 6.6%.

The Inhomogeneous Case Y = Y (x). We find Y as a function of s. Assuming
(9), one obtains dv/ds = c = const., hence

Y (s) =
σ0

√

1 + (f0/s)

c
, hence lim

s→0+
s1/2Y (s) = σ0

√

f0/c (10)

which predicts a rapid increase in stiffness toward the RAM tip (x → 0+).
This result agrees with the intuitive hypothesis that, near the tip, longitudinal
strain is necessarily accompanied by tangential strain, which is hindered by
the transversely oriented cellulose fibrils. The result also correlates with the
expansin concentration found to decrease towards the root tip in certain plants.


