A multicellular model of a feedback network regulating spatial gene expression domains in the shoot apical meristem

Henrik Jönsson1, Bruce E. Shapiro2, Victoria Gor2, Marcus Heisler3, G. Venugopala Reddy3, Elliot M. Meyerowitz2 and Eric Mjolsness1

1Complex Systems Division, Department of Theoretical Physics, Lund University, Sweden. henrik@thep.lu.se
2Jet Propulsion Laboratory and Division of Biology, California Institute of Technology, Pasadena CA, USA. bshapiro@caltech.edu
3Institute for Genomics and Bioinformatics, and School of Information of Computer Science, University of California, Irvine CA, USA. mmj@uci.edu

The shoot apical meristem (SAM) of plants is the biological target for a mathematical model for developmental biology. We present simulations of a stem cell regulating inter-cellular network with emphasis on the regulation of the “organizing center” and activation of the WUS-expressing domain. In vivo GFP measurements of important proteins are quantified and used as templates for the models.

The shoot apical meristem (SAM) of Arabidopsis

- Source of the aboveground part of a plant
- Small (about 10^6) cells
- Genes important for the development identified

Some genes and known interactions

- CLVATA3 (CLV3): stem cell marker
- CLVATA1 (CLV1): receptor kinase
- WUSCHEL (WUS): homeodomain, transcription factor
- ATML1 (ATML1): homeodomain, transcription factor

The interactions between CLV3, CLV1 and WUS partly regulate the development of the SAM, and thereby the complete plant. WUS induces both CLV1 and CLV3. On the other hand CLV3(ligand) and CLV1(receptor) act in a network repressing WUS creating a feedback loop for the regulation. Genes exist which are expressed only in the L1 layer (such as ATML1). The signal inducing WUS expression is unknown and a hypothesis for that is introduced in this work.

A network for regulating CLV3

How can WUS regulate CLV3 when the expression domains do not overlap?

A partly hypothesized network, where the inducing signal from WUS is combined with an L1-originating signal for CLV3 activation. X is suggested by experiments, but unknown. L1 and Y have genes with analogous expression patterns (ATML1 and ACR4).

Simulation

In previous work we have demonstrated that the model network is able to produce expressions mimicking the stem cell region in the SAM, assuming the WUS-domain is present.

Simulation of a 3D non-growing SAM of 1765 cells. The final (stable) expression level of the stem cell marking CLV3 is shown.

Quantifying in vivo GFP-data

We are developing software for automatic extraction of cell data from a stack of GFP images of living plants. This can be used to create templates of cell positions, cell sizes, and protein/mRNA concentrations at a (sub)cellular level.

Left shows a horizontal section including a membrane stain (red) and GFP connected to the WUS promoter (green). Right shows the extracted walls using a watershed algorithm.

A network for regulating WUS

What is inducing WUS-expression?

In this hypothesis, the dynamics of a pattern forming reaction-diffusion model is used (e.g. Meinhardt's activator-inhibitor model, or a gene regulatory network (GRN) model with diffusion) to introduce a concentration peak of an activator A. The activator induces WUS expression. The wavelength of the activator peaks is large enough to allow only one peak within the SAM. The central location of the single peak is assured by a repression of the activator from the L1 layer and in the stem. Data suggests that the L1 layer signal could be CLV3 diffusing laterally from the apex.

Simulations

2D simulations of vertical (left) and horizontal (right) layers of the SAM including the WUS region. WUS expression is emerging from a state of no concentrations.

Laser ablation experiment

If the central zone, including the WUS expression domain, is removed from the SAM it is reorganized and either one or two new functional SAMs can be developed (Reinhardt et al. 2003). The WUS expression first comes on in a ring surrounding the ablated region, and then one region or two regions on opposite sides regain strong WUS expression. In the first case one SAM is continued, and in the second the SAM is divided into two new SAMs.

Schematic view of the laser ablation experiment where the cells of the central zone are removed. Left shows a vertical view and right shows a horizontal view.

Simulation

2D simulation of the WUS inhibiting network. The figures show the time evolution of the WUS concentration. The dynamics mimic the experimental dynamics of a WUS expression starting in a ring around the ablated region and then reorganizes into two confined regions on opposite sides of the ablated cells.

The model

Essential parts of a developmental system are included in a library of mathematical models, and continuous differential equations are simulated for cellular variables and molecular concentrations. The model includes:

- Gene regulatory network (GRN)
- Molecular reactions
- Active molecular transport and diffusion
- Cell growth
- Cell cycle/proliferation
- Mechanical cell-cell interactions

http://www.computableplant.org

The aim of the computablePlant project is to create a developmental biology simulation-software, and to follow protein dynamics using in vivo confocal microscopy. The project also encompasses development of image quantification software, automatized code generation from mathematical models, and model inference algorithms for parameter optimization and computer generated hypotheses.