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The Virtual Cell is a modeling tool that allows biologists and theorists alike to specify and simulate
cell-biophysical models on arbitrarily complex geometries. The framework combines an intuitive,
front-end graphical user interface that runs in a web browser, sophisticated server-side numerical
algorithms, a database for storage of models and simulation results, and flexible visualization
capabilities. In this paper, we present an overview of the capabilities of the Virtual Cell, and, for the
first time, the detailed mathematical formulation used as the basis for spatial computations. We also
present summaries of two rather typical modeling projects, in order to illustrate the principal
capabilities of the Virtual Cell. ©2001 American Institute of Physic$DOI: 10.1063/1.1350404

In the 50 plus years since Hodgkin and Huxley’s ground-
breaking work with the squid giant axon, mathematical
modeling has slowly but steadily become a viable ap-
proach to studying cell biophysical processes and phe-
nomena. This has undoubtedly resulted from a number
of key developments, including advances in quantitative
biology, computer science, and mathematics. Of great im-
portance have been the development of techniques lead-
ing to the elucidation of the myriad pathways underlying
many of the cell’s basic functions; the advances in com-
puter hardware and high-performance computing; and
more sophisticated analytical and numerical methods for
dealing with systems of nonlinear differential equations.
Indeed, such advances have given way to more quantita-
tive models involving more detailed descriptions of
mechanisms, cellular structure, and geometries. In turn,
the more successful models have helped to stimulate the
field as a whole, and to introduce modeling techniques
into more mainstream biology. Despite this progress,
however, cellular modeling remains limited to the more
mathematically andor computationally gifted few. This
is especially true with respect to spatial modeling, where
the mathematical and computational techniques are
much more sophisticated, and the computational require-
ments much higher; the problem only grows as models
incorporate more detailed descriptions of mechanisms,
structure, and geometry. Unfortunately, very few tools
exist to aide the modeler in treating detailed spatial mod-
els on complex three-dimensional geometries. A number
of mature packages exist for treating whole-cell models,
including Gepasi! and xppauT (Bard Ermentrout,
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XPPAUT 4.5, see http//www.pitt.edu/phase), as well as
spatial tools designed for the unique demands of model-
ing neuronal systems, including neurorf, and genesis’
Not one of these tools, however, can treat both nonspatial
as well as full three-dimensional spatial models, and those
that can treat spatial problems impose rather severe geo-
metric constraints. The Virtual Cell was designed with
these problems in mind. Our primary goal is to develop a
tool that allows experimental biologists to specify and
simulate arbitrarily complex cell-biophysical models on
complex geometries, without requiring extensive knowl-
edge about the underlying mathematical and computa-
tional techniques. In this paper, we present an overview
of the capabilities of the Virtual Cell, as well as the math-
ematical formulation used as the basis for spatial compu-
tations. We then present summaries of two rather typical
modeling projects, in order to illustrate the principal ca-
pabilities of the Virtual Cell.

I. VIRTUAL CELL OVERVIEW

The Virtual Cell is a computational modeling framework
and tool, designed for biologists and theorists alike, for con-
structing and simulating spatial and nonspatial cell physi-
ological models. Its most important features include an intui-
tive user interface that runs in a web browser, a back-end
database for storing and retrieving physiological models and
simulation results, and sophisticated mathematical and com-
putational algorithms. Our approach separates the model
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Extracellular hierarchy of compartments in a treelike structure. In this de-
composition of the cell, a compartment may ‘“communi-
Cytosol cate” or interact with its parent and its children, but not with
fucleus any other compartmer?t i.n the hierarchy. This inter-
IP Nuc compartmental communication takes the form of membrane
Cacyt & [ fluxes, typically arising from channels, pumps, and other
ca Ext & Ca_Nuc transport mechanisms in the membrane. In Fig. 1 the com-
e T . [ partments are arranged such that Cytosol is con_talne(_i in Ex-
@ ER tracellular, and both Nucleus and endoplasmic reticulum
IP_Cyt & ca ER (ER) are contained in Cytosol. With this hierarchy, it should
L o be clear that communication between ER and Nucleus is not
permitted, while that between ER and Cytosol is.
Species are the molecular or chemical species hypoth-

esized to be involved in the process under investigation.

FIG. 1. Typical model compartment layout, showing the tree-like layout of They are assigned to compartments or membranes, and may
four compartmentgExtracellular, Cytosol, ER, and Nucleuand their en- then participate in reactions and fluxes. Thus. in addition to

closing membranetlack circles. Also shown are several speciga_Ext, . . . T
Ca_Cyt, IP3R, IP_Nuc, etc), and three fluxesembedded in membranes, being used to represent chemical constituents inside com-
not labeleg. partments and membranes, they are also used, for example,
in membranes to represent channels or pumps, often in the

form of channel or pump states. Figure 1 also shows two

from the geometry—this allows the physiological model to SPECIES, calcium and |n05|tol-1,4,5-tr|sphosphat%)(I|s—

be mapped to different user-defined geometries, which caffibuted across the f_our compartments. Note that Wh”e. every
be either whole-cell“point” ) geometries or spatial geom- compartment contains calcpm, not <_';1II conta|r§.|lvv|.th|n

etries in one, two or three dimensions. It is not until a simu—eaCh compartment, the species are given names unique to the

lation is run that the model and geometry are linked together?omgartmem' trat h due to diffusi
thus, a simulation can be thought of as a pairing of a physi- pecies concentrations change due to difiusion, reac-

ological model with a geometry, as well as the settings specit-'ons and fluxes. Reactions are chemical reactions occurring

fying initial and boundary conditions and parameters. Théaetween species in a single gompartment, or between species
simulations are then run on our cluster of Compaq DS2 n a compartment and species in a related membrane. The

computers, and the results are returned to the user for visu‘ém:ar c?se IS us_ed, fc.)trhexar;ple, tlo represen:::he binding Of"’;
alization. An export utility can be used to export the data gomolecuiar species with a channet or pump. Fluxes represen

a range of formats for use in other visualization packages. inter-compartmental fluxes of a single species, and are there-

_ _ fore limited to membranes. In our representation, fluxes are
A. Physiological models merely flux functions, though their rate can be controlled by

Conceptually, a physiological model can be thought ofthe concentration of other species in the membrane, as well
as a collection of hypotheses that are assembled in an &S the compartments the membrane separates. Thus, channels
tempt to understand a physiological phenomenon or procesér€ often represented as both a flux and some number of

Operationally, a physiological model consists of a descrip_associated channel state species, all embedded in the mem-

tion of the organization of the relevant cellular Compart_brane; state transitions are Fhen r_egulated by compartmental
ments, molecular and chemical species, chemical reactiorid!d membrane-bound species. Figure 1 shows three fluxes,
among species, and fluxes between cellular compartments. '€ €ach in the plasma membrane, the ER membrane, and
this light, the hypotheses consist of the selection of comparth® nuclear membrane.
ments, how the compartments are arranged topologically,
which species are present, which reactions are involved, thg Geometr
kinetics of the reactions, and so on. The physiological model,” y
therefore, represents a chemical reaction system of species, The geometry defines the spatial extent of the compart-
reactions and fluxes spanning any number of compartmentsents defined in the physiological model. The geometry can
and membranes. Figure 1 illustrates several of the basibe a compartmental geometry defining a “whole-cell”
model components. The model shown contains four commodel, or an arbitrarily-shaped spatial geometry in any di-
partments(Extracellular, Cytosol, Nucleus, and ERhree  mension. A spatial geometry is composed of one or more
membranes(unlabeled; the gray circlgs seven species nonoverlapping regions. Regions are grouped according to
(Ca_Ext, Ca_Cyt, IP_Cyt, IP3R, IP_Nuc, Ca.Nuc, and the type of cellular structure they represent. Spatial geom-
Ca_ER), and three fluxesunlabeled; they are embedded in etries may be defined in terms of analytic functions or an
the membrangs Note that reactions are not shown in this image, or any combination of analytic functions and an op-
figure. tional image. An image, in our terminology, is a regularly
A compartment represents a cellular structure or orsampled scalar field in one, two, or three dimensions. The
ganelle that is structurally separated from other compartgeometry, therefore, is composed of one or more domains,
ments via a membrane. These compartments can be coenclosed in a bounding box that represents the simulation
tained in a “parent,” or enclosing, compartment, yielding a boundary.
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Analytic functions are input using inequalities. For ex- grid; the details are discussed below in Sec. Il. Once the
ample, a spherical region representing a cell’s nucleus couldimulation parameters have been fully specified, the simula-
be specified ax®+y?+z°<10?. Furthermore, inequalities tion is run on a cluster of Compagq DS20 dual-processor
can be combined using Boolean lodiasing the Boolean workstations. Results are returned to the user as they become
operator notation of the C programming languader ex-  available, providing immediate feedback, and allowing the
ample x?+y?+z2<10? && x>0 could be used to slice the user to halt the simulation if things go awry.
nucleus in half. Currently, the coordinate system used in  Simulation results are stored in medium-term stor@age
these analytic functions is limited to Cartesian coordinates.to several months, depending upon disk space limitations

Segmented images are images where each color corréar later retrieval and additional visualization. When simula-
sponds to a distinct type of cellular structure. Each contigution results are purged, however, all other model and simu-
ous region of the same color represents a domain in the géation data are still maintained in the database, so that the
ometry. Therefore, experimentally obtained imagesresults can be regenerated if needed at a later time by rerun-
(typically 8- or 16-bit imagesmust be preprocessed before ning the simulation. We also provide tools for extracting data
they can be used in geometry specifications. This preprocessubsets, and exporting the data in a number of standard im-
ing step usually involves only simple techniques found inage, animation, and data formats. This allows for more de-
most standard image processing packages: Sharpening, edgéded analysis, as well as the use of other visualization pack-
detection, thresholding, flood fill, etc. Once segmented, thages.
images are imported into the Virtual Cell database, and are
then available for use within the Virtual Cell. A three-
d?mens?onal geometry can be specified by a stack of WO, \MATHEMATICAL FORMULATION
dimensional images, each representing a slice through the
three-dimensional geometry. In this case, the images are cof- Governing equations

sidered to represent consecutive slices through the three- The central goal of the Virtual Cell is to perforspatial

dimensional geometry. modeling of cell physiological processes. In spatial simula-
tions, the nonlinear dynamics of interacting molecular spe-
C. Simulation mapping cies is combined with their diffusion, giving rise to a

a[eaction—diffusion system mapped to arbitrary geometry
with fluxes across membranésviathematically, this trans-
lates into a system of coupled “parabolic” type partial dif-
ferential equations with nonlinear reaction terms and flux
boundary or jump conditions at the membranes.

Once specified, the compartments of the physiologic
model can be mapped to groups of domaies., multiple
cells comprising the goemetry. Extensive checking is per
formed to ensure that the topological constraifgarent—

child relationshipsinherent in the compartmental layout are E imolicity. let i d Q taini
preserved during the mapping. For example, if two compart- or simplicity, 1€t us consider a domaf containing
ne region(};, inside a cell and another regidn,, outside

ments do not have a parent—child relationship between then], | ted by the cell b =1 b
they may not be mapped to regions that share a commothe ce ,segarta_\e >flthe cell mem r:lsme.lu,-e ~ el el d
boundary. It is important to note that, until the physiological , € concentrations of the various molecuiar Species invoive

model is mapped to the geometry, it is not possible to defind! cellular dynamics and governed by a system of reaction—

spatial parameters. We have therefore chosen to not aIIO\Sé/IfoSIOn equations

any physiological parameters at all to be specified until the  gu; ]

mapping has been performed. This constraint has the added ; =V (DiVu)+Ri, i=1..n, (2.9)
benefit of making physiological models more reusable, as . o o
values such as rate constaritshich tend to be cell- or N both Q;, and Q. HereD; is the diffusion coefficient of

preparation-dependentre not introduced into the physi- the ith species. The effect of all the reactions on fthfe
ological model. species is represented by the source t&m which is a

given function ofuy,...,u,. (The formulation also includes

the option that a certain species exists only in a single region,

say inQ;,.) If some of the diffusion coefficient®; are zero,
Once the physiological model and geometry have beeme then have a system of coupled partial and ordinary dif-

mapped, and parameters have been set, simulations can fegential equations.

set up and run. This generally involves setting a small num-  Suppose there ama different reactions with rates;, j

ber of simulation parameters like the size of the computa=1,...m, taking place among the various species. Usually

tional mesh, the time step, and the interval between datsachy; is a given nonlinear function of the concentrations of

storage steps. In the case of whole-cell models that are déhe species participating in thjsh reaction. Then, ify;; is

scribed by ordinary differential equations only, a number ofthe i, j) element of the integer-valued stoichiometry mafrix,

numerical methods can be chosen: Euler's method, Rungewhich represents how many molecules of itiespecies are

Kutta, Adams—Bashforth—Moulton, and Runge—Kutta—producedthe positive sighor consumedthe negative sign

Fehlberg. We are also currently integrating a stiff solver, adue to thejth reaction, we have

modern adaptation of the Gear algorithm for systems of stiff m

algebraic and ordinary differential equations. Spatial models R = 2 v 2.2)

are solved using a finite volume approach on a structured ' =1 "

D. Running simulations and visualizing results
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However, at spatial scales on the order of a whole cell or g=gcos®
larger, some physiological compartmei¢sg., endoplasmic
reticulum are too small and convoluted to be spatially re-
solved. Such internal compartments may be distributed as a
volume fraction of the regiofi);, of the enclosing compart- ®
ment(e.g., cytosogl Membrane binding reactions and trans- g=gsin®
membrane fluxes ofl; that occur on the surface of these
internal compartments are represented physically as molecu-
lar fluxes. These fluxes may be introduced as additional
source terms fou; within €.

Let the initial conditions

ui(x,0=u’(x), i=1,.n, xeQ, 2.3 Q. \\ O

mn

constant along thispart of T

and the boundary conditions a#f) be given. If for each

species there is zero flux at the borders of the computation&]CG- 2. Basic scheme for approximating boundaries. The regijpsand
domainQ. which is often the case. then QO are separated by a membrane boundaryvhich is approximated by

the boundanf’. The staircase shape Bfderives from the requirement that

Vu;-n=0 on /Q, (2.9 it must coincide with computational gridlines. Also shown is the scheme for
. . interpolating jump conditions specified dn to gridpoints onl’, as de-
wheren is the unit outward normal o#(). scribed in detail in the text.

Due to the presence of the cell membrane, we need to
impose jump conditions there, which relate the species con-

centragon(sj on d;ff(larsnt_ sgjes of t_he lmedmbr?ﬁ € SInC(?ectangular facets with normals parallel to the Cartesian
second-order spatial derivatives are Involved In the governy, o5 This creates difficulties for the accurate description of

Ing equations, we nged tvyo Jump cond.mon's across the MeMhe membrane fluxes, because the surface area of the stair-
brane for each species with nonzero diffusion coefficient. Le ase does not converge to that of a real membrane when the
th%out_sTI_e anc(ithe inside ?.f tk:e nllembrane ?e (lalenoted by ﬂ]’ﬁesh is refined. Moreover, a rotation of the coordinate sys-
SUbSCrIpt= and =, FESpECtiVely. -or exampiel|. Tepre= o, cqyig substantially change simulation results.

sents the concentration of thth species on the inside of the : : .
. As a simple example, suppo8s, to be a circle of radius
membrane. Leh be the outward unit normal on the mem- .~ pie examp PPOS -
1 in R%. Now let Q;, be any staircase approximation con-

brane(i.e., pointing towards the outside of the gellhen the o o ; -
( P d 9 taining ), (the area “inside” the staircase curve in Fig. 2

jump conditions at the membrane are

Jump Then the exact membrane bound&rand its approximation
= Vuils-n=g. (Uil i), T have lengths of 2 and 8, respectively. With reaction
—Vu|_-n=g_(u] ,u]-) (2.9 termsv;=0 and unit normal boundary flux per unit area on

. . bothI" andT', call their solutionsu; andT;, respectively.
whereg, ,g_:[0,2)X[0°)—R are typically given func- Then Eq.(2.1) give
tions ofu|, ,u;| - . However, depending on the physiologi- T

cal mechanisms involved, they can be functions of other J B

variables as well. In the case a membrane cannot store a EL} = —2mD;, (2.6
species, the flux in and out of the membrane must be the

same due to mass conservatign:=g_=g. Equation(2.1) i T —_8D. 2.7
together with initial condition(2.3), boundary condition at g, a '

n

(2.4), and jump conditior{2.5) determine the time evolution

of the species dynamics. Thus, no matter how fine the staircase approximation is, the

solutions in the two cases will differ immediately even if we
_ _ start with similar initial conditions.
B. Numerical algorithm The above example suggests that a necessary condition

We now describe the numerical technique which is regujor u; andT; to be close to one another is that the total flux
larly applied in the Virtual Cell for solving the governing into both membrane$ andI' have to be the same as the

equations outlined in the previous section. In Virtual Cellstaircase domain is refined. To achieve this, we correct the
applications, the computational domdihis always rectan- flux acrossl'. Let A, be the area of th&th staircase mem-
gular, and a structured orthogonal grid is utilized for spatialbrane element. Because the flux density specifie@ib is
discretizatiorf This facilitates automatic sampling of cell ge- meant to be normal to the real membradnethe corrected
ometry, particularly when it is based on experimental micro-flux density of theith species across theéh membrane ele-
scope images, where we can only tell whether a square pixehent is g(u;| ;. ,u;| _)cosé, where 6, is the angle that the

in the image lies inside or outside the cell, and also allows usormal tol' makes with the normal to the membrane element
to easily move from one-dimensionélD) to two- (2D) to (here, for simplicity, we assume that the center of the ele-
three-dimensional3D) simulations. This kind of spatial dis- ment belongs td’, the more rigorous definition is given be-
cretization results in a “staircase” approximation of a cell low). Hence the corrected flux across this membrane element
membrane. The membrane elements of such a staircase awél be g(u;|, ,u;| _)Ay cosé.
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Since the exact normal is generally not known in appli-order accurac§.As for the membrand’, the treatment, as
cations, one has to employ some kind of an interpolatiordiscussed above, is more complicated and leads to a lower
scheme to obtain a good estimate. In our practical implemersrder of accuracy in space in our current implementation. To
tation, we find it easier to “correct” the area of a membraneimprove the overall convergence rate of the entire algorithm
element:A,=A, cosé, and storeA, when sampling geom- in the future, a necessary condition is a better reconstruction
etry. A rigorous analysigsee Appendix shows that such of the membrane location to generate an accurate analytical
membrane flux correction as described above ensures tiffescription. Various interpolation algorithms are being tested
convergence dfi; to u; in the model linear elliptic and para- at this time.
bolic cases. By constructing exact solutions for some nonlin-  The resulting system of linear algebraic equations is
ear cases, our numerical tests also indicate convergence. solved iteratively at each time step by the line-by-line

We now give a more detailed description of our flux method’ The size of this linear system is determined by the
(membrang correction method using the 2D case for illus- Nnumber of computational volumesr grid points and the
tration purposes. Slightly more complicated bookkeeping igumber of species. For a typical application, more than 90%
required for the 3D case. For simplicity, we drop the specie®f the total computational time in the entire simulation is
numberi dependence and lej(x) denote the explicitly Spent on the solution of the linear system. It is, therefore,
known value ofg;(u;(x. ,t),u;(x_,t)) from the previous worthwhile to invest some effort in improving the efficiency
time step(see below for the discussion of time discretiza-of the linear solver. We are currently experimenting with
tion). Let h be the grid size in the staircase approximation.other iterative solvers based on Krylov iterative methods
First take many points; alongT so that the arc length be- such as preconditioned conjugate gradightsith a precon-
tweenx; andX; ., ; is less than B. For any pointxe I, let¢  ditioner using incomplete factorizations. Preliminary tests
be the angle that its normal makes with thexis. Definegi show the reduction in computational t_ime by at least a factor
be the value o at; . of 2 compared to the current line-by-line solver. We are also

Each center point of a horizontal or vertical segment in planning'to test pther preconditioners that take advantage of
T is at most #2h away from at least on& . Pick anyx; in the special matrix structure, such as block and ADI precon-

case there is a choice. Then for alin this same segment, dltloner_s. The parallel implementation of_these solvers W(_)ul_d
! further improve the speed of computations. Some prelimi-
define the corrected flux

nary experiments conducted on alternating direction type
T(X) solvers show encouraging speed-ups for a small number of
o processors. However, more work is needed before a decision
g(x;)cosé,; , can be reached on what combination of iterative solvers and
: . : ~ parallel implementation will give the best flexibility and
_ if x is in the horizontal segment ol". 2.9 overall performance.

g(x)sing;,
if x is in the vertical segment of' C. Fast processes in reaction—diffusion systems

As shown in the Appendix, such flux corrections on the stair-  Biological processes are generally composed of sets of
case membrane ensure tliatconverges tal in some norm.  events with vastly different time scales. Such multiple time
For the interior points iff);, andQ,, we currently use scales in the systems of interest make the equations stiff. A
a finite volume metha(to implement an implicit backward regular algorithm will necessitate a small time step to resolve
difference time discretizatiérof the diffusion term, and an the fast time scale for its numerical stability, even though the
explicit treatment of the nonlinear reactions in E2}1). This  actual physical phenomenon occurs at the slow time scale.
gives us numerical stability, and avoids solving a large systnless special precautions are taken, this will lead to expen-
tem of nonlinear equations, when the membrane jump consive numerical calculations. We first consider systems with
ditions are also treated explicitly. The local discretizationfast reactions and then briefly discuss the opposite limiting
error is first order in time and second order in space. Thease when diffusion or other equilibrating procesées.,
backward difference discretization is usually derived by arelaxation of charges to a membrarsge very fast.
finite difference approximation. However, the same scheme Calcium dynamics is an example of a situation where a
can be obtained as a consequence of the finite volumsystem contains reactiorisalcium buffering that are much
method’® which is numerically conservative. Unlike non- faster than the other key elements, calcium diffusion, and
conservative numerical schemes that would give mass coriluxes from (and back tp the internal calcium storés. In
servation only within a certain tolerance provided the spatiall994 Wagner and Keizer developed the rapid buffer approxi-
and temporal steps are small enough, the finite volume apmation to deal with this problertf. They used a pseudo-
proach ensures exact mass conservation even when the gsteady approximation to exclude “fast variables” and de-
size is coarséso that solution may not be computed accu-rived an effective transport equation for calcium. This
rately) which is important in physiological applications. One equation, in general, is no longer of a reaction—diffusion
can regard the finite volume method as a systematic way dfpe. Thus, we could not use this approach in our general
arriving at a conservative finite difference type schéme.  framework directly becausd) it would require a user to do
The zero boundary flux conditiof2.4) on a rectangular preliminary analytical work, which can often be quite in-
domain{) can be discretized in a standard way with secondsolved, and, more importantly?) in each particular case the
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final equations might be of different forms and require dif-{|1,__,|n_r}c R". Using (2.9), it is then easy to verify that

ferent algorithms. What we need is a general, purely numerig/jt(l;- u) =0, whereu= (uy,...,u,) . Hence for fixedx

cal, approach that can be applied to any reaction—diffusion

system with fast subsystems, no matter how complex its re- "

action scheme is. 2 Bijui=1;, i=1,..n-r, (2.11)
We have developed such an appro&tthich is based =1

on the combination of time splittit§ and a pseudo-steady where 5, is the jth component of the vectdy, andl; is

approximation applied to the fast subsystem. In this AP onstant during this time stefout depend orx), which
proach, time splitting involves updating variables in two :

. should be updated from the initial conditions in Stage I.
steps, separately for slow processes and for fast reactloné. . ) X
guation (2.11) represent all the conservation relations

Thus, we always remain within a general reaction—diffusion h : it ¢ .
scheme. In the current approach, to update variables in faglm ong the species with respect to fast reactlo_ns. .
) ' Next we employ the pseudo-steady approximation on the

reactions, we use a psepdo-steagiy approxmatlon; 1€, Wt subsystem, i.e., we assume that the fast reactions are in
replace ordinary differential equations with algebraic equa-

. . o . ._equilibrium at all times. Consider the usual scenario when
tions that reflect rapid equilibrium of fast reactions. At th'sr:ksn This approximation amounts to neglecting the time
point care must be taken in choosing a humber of indEpenderivati\}e in Eq.(2.9), and results in

dent algebraic equations equal to the number of unknowns. e
This is achieved with stoichiometry analy®1s that results »:=0, i=1,..K (2.12

in a coupled system of nonlinear algebraic equations and a ' B ’

set of linear constraints, corresponding to conservation reIaTogether with Eq(2.11), they form a system afi nonlinear
tionships within the fast subsystem. It is important that theequations fom unknowns:u;, i=1,...n. We then use the
values of “fast” invariants are updated at each time St€Pjjnear equation(2.11) to reduce it tok nonlinear algebraic
using results from solving “slow” equations. The stoichiom- equation(2.12) andk unknowns, and solve them using New-
etry analysis is performed automatically within our frame-y,n's method, with a good initial guess from the initial con-
work after a user specifies which reactions are consideregiiions foru; in Stage I. For the general case whenk, a

fast. ) ) ) o particular choice of “independent?; is required to extraat
We now describe our algorithm in more deﬁé"w'thf equations out of a total number kf Details are again given
out loss of generality, let the fird reactions be fast with ' rRef 13
rates vy, ..., v, k<m, respectively, while the remaining The pseudo-steady approximation has its scope of appli-
—k reactions are slow with rateg,,...,vm, respectively.  capility. Obviously, it gives accurate results if the ratio of
Diffusion is assumed to be a slow process which is usuallyaracteristic times of fast and slow processes is small. In
the case in the length scale of interest. A typical time stepyac our results indicate that the relative error introduced by
say fromT to T+'At, is advanced in two stages..ln both {he approximation is roughly of the order of this ratio.
stages, the equations are coupled due to the reactiomjriate Therefore, the approximation may be appropriate if the char-
J=1..m. . acteristic times differ by two or more orders of magnitude.
Stage I:Due to fast reactions. We solve However, in nonlinear systems this ratio may vary in the
K process and, therefore, this condition might be violated. In
:E vy, i=1,.n, (2.9 fprmal singular pertur.bation' Iangugge, there migh.t be inte-
i= rior layers in the solutions with rapid change of variables. In
case one would like to resolve the interior layers, more ac-
with given initial conditionuj(x,T), i=1,...n, XCR®. Its  curate approaches should be used. We still can take advan-
actual implementation involves the pseudo-steady approximge of time splitting that allows us to break the problem into
mation and will be discussed below. We let their solution beg humber of manageable simpler sub-problems, that are stud-

&ui
ot

Ui(x), i=1,..n, after a time ofAt. o _ ied in a vast amount of literature. For example, we can treat
Stage II:Due to slow reactions and diffusion. Using the the reaction terms in Stage | with a stiff solver that will save
regular algorithm discussed above, we solve substantially as compared to a non-stiff version. However,

the pseudo-steady approximation, when it works, will save
even more as it eliminates the fast time scale.

Because we break down the original governing equa-
tions in a typical time stef@t into two simpler stepgStages
with the same boundary and jump conditions as for the govt and Il), the time splitting error is present even if we solve
erning equations and initial conditioflis(x) from the results the simpler equation®.9) and(2.10 exactly. The additional
in Stage I. The result that we obtain after a timeAdfis our ~ source of error coming from implementing the regular algo-
numerical approximation tay;(x, T+ At). We then repeat rithm in Stage Il was discussed in the previous section. In
stage | and Il to compute the solution at successive times. our actual numerical experiments, overall numerical stability

In Stage I, Eg.(2.9) involves thenxk stoichiometry and convergence are observed, with an overall accuracy of
matrix o{f)=q; , 1<i=<n, and 1=<j<k. Assume the rank first order in time. The application of our algorithm to study-
of the matriXa(#) to ber, thereforer <=min(n,k). Its left null  ing the effect of fast buffering on calcium waves in bistable
space V(")) has a dimension ofh—r, with a basis models is described below in Sec. Il B.

m

Jdu;
|=DiV2ui+ E a;j vy, izl,...n, (21@
=

ot
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We now briefly discuss the opposite limiting case where
diffusion of some molecular species is very fast compared to
reactions and membrane fluxes. In this case, the correspon(
ing concentrationy; is virtually uniform within a closed re-
gion (Q;, in Fig. 2) at any time, so that there is no need to
calculate its value for each elementary volume inside the
region. Instead, the whole regiéh,, can be characterized by
a single valueu" governed by an ordinary differential equa-
tion. This equation can be easily derived from E2.1) by
integrating oven);, and taking into account the membrane
jump condition(2.5)

aun
' f sz—f Dig+dF+J R.dQ. (2.13
ot Qin r in

We have recently incorporated the approximati@rl3 in
the Virtual Cell. The actual implementation uses a concept of
aregionvariable, a discrete type variable defined on a set of]
volume or membrane regions. Note that in the case of non
neuronal cells, the membrane potential falls into a categor¥ _ , ,

f a region variable defined on membranes. Thus. the ne IG. 3. (Colorn BK-induced calcium wave in an N1E-115 neuroblastoma
0 g . . : = Well. BK (500 nM) was applied externally to the bathing medium of a cell
capability will allow a user to combine the dynamics of the stained with fluorescent dyéura-2), and the fluorescence signal was col-
membrane potential with the spatially resolved dynamics ofected. In these images, calcium is displayed in pseudocolor, as shown in the

species concentrations. colorbar.

IIl. EXAMPLES OF THE VIRTUAL CELL outer membrane may also influence calcium dynamics and

APPLICATIONS TO CALCIUM DYNAMICS can be taken into account through the appropriate boundary
conditions.

Calcium oscillations and waves play an important role as
a prerequisite for triggering a number of physiological pro-A- An image-based model of calcium waves in
cesses such as hormone secretion, cell division, muscle coflifferentiated neuroblastoma cells
traction, etc® One of the key elements of intracellular cal- Application of bradykinin(BK) to differentiated N1E-
cium dynamics is calcium release from the endoplasmici15 neuroblastoma cells elicits a single, transient release of
reticulum (ER), an internal calcium store, through calcium calcium from internal stores via an Hdependent pathway.
channels that can be activated by cytoplasmic calcium ashis rise is in the form of a wave, and is highly reproducible
well as by other signaling molecules that are present in thérom cell to cell. The point of origin is typically the middle
cytoplasm, such as inositol-1,4,5-trisphosphate;)(IFwo  of the neurite, and the wave travels in both directions down
other components of the calcium flux across the ER memthe neurite, ultimately filling the soma. Recovery follows the
brane are direct leak through the membrane and calcium ugame pattern, the calcium concentration declining first at the
take by molecular pumps—the proteins embedded in thgvave initiation site, and spreading out along the neurite and
membranes that pump calcium ions back into the ER againsiito the soma. A typical BK-induced calcium wave is shown
its gradient. The calcium concentration in the ER is severajn Fig. 3.
orders of magnitude higher than that in the cytoplasm; there-  BK is believed to initiate the calcium response through a
fore, for many purposes the store can be considered to haygprotein cascade that leads to activation of phospholipase C
infinite capacity. The ER has a very complex, irregularand the phosphorylation of phosphatidyl inositol-4,5-
geometry'’ Being a continuous closed compartment, it fills abisphosphatéPIP,) to IP;. The IR diffuses through the cy-
cell with generally nonuniform density while occupying only tosol to the ER, where it activates calcium release through
~15% of the cell volume. In a continuous approximation, itthe IP; receptor calcium channel. The released calcium raises
can be modeled by calcium sources and sinks continuousie free calcium concentration, but also binds to both fixed
distributed with a certain density throughout a cell and charand mobile endogenous cytosolic calcium buffers. Cytosolic
acterized by certain rates. When combined with calcium difcalcium is then pumped back into the ER via sarcoplasmic—
fusion, they give rise to a reaction—diffusion type equdtion endoplasmic reticulum calcium ATPag8ERCA pumps.

9 The IR receptor is a tetramer composed of four subunits,

EzV(DCVC)Jr f, (3.2 each of which has three binding sites: One foy, I1Bnd two

for calcium. Binding of IR is considered a prerequisite for

wherec is the calcium concentratiol is the calcium dif-  subunit activation, whereas calcium acts as a coagonist for
fusion coefficient, and = Jcnanner Jpumpt Jieak IS the rate of  the IP; receptor: One calcium binding site activates the sub-
change of calcium concentration due to fluxes through calunit, whereas the other site inactivates the subunit. In order
cium channels, pumps, and leak. Calcium fluxes across thte fit experimental data, it is assumed that three subunits
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must be in the activated state for the channel to be open. [Ca™]
Our model for IR dynamic$®*®includes production at J|eak=|-( 1- m)

the plasma membrane, at a rate proportional to the level of ER

BK receptor stimulation, and degradation within the cytosol. 5+ model also includes several cytosolic calcium buff-

We model IR dynamics as a reaction—diffusion process (s stationary buffers representing endogenous buffers like
a[1P5] calcium-binding proteins, and mobile buffers representing
=D,V IP3]—k;([IP3]—[IP3]o), (3.2 the fluorescent dyes used in our experimental measurements.
The details of how these buffers are treated are covered in
whereD; is the diffusion constant of P k; is the degrada- depth below, and are left out of this discussion for brevity.
tion rate of IR, and[IP;], is the basal IPconcentration. We In addition to calcium regulation and release, our model
model the BK receptor by assuming that fftoduction is a  includes two additional features: Realistic cellular geometry,
function of receptor stimulation. Since this is restricted to theand experimentally determined spatial variation in the distri-
plasma membrane, this enters in as a boundary condition fdtution of ER, IR receptors and SERCA pumps. As discussed

(3.7)

at

[1P] below, both turned out to be critical to our understanding of
the BK-induced waves.
dlIPs] The cellular geometries used were derived from fluores-
dn = Ji exp-kit. 33 cence microscope images of actual cells, for example, that

shown in Fig. 3. Indeed, in cases where comparisons be-

ot

From this equation, it should be clear thag Iftoduction is  tyween experiment and model were made, the models incor-
turned on at=0, decreasing in time with rate constdqt  porated the geometry of the actual cell used in the experi-
Note thatJ; is a function of space, as it contains the densityent. We used the Virtual Cell's image-based geometry
of BK receptor. _ _ _ features to input the geometries, and to identify two spatial
A number of experimental and modeling studies haveegions: The intracellular space, and the extracellular space.
shown that the binding to the inactivating calcium site is theggth the cytosol and the ER were mapped to the intracellular
slowest binding proce<8.This leads to the following model: space, and the ER was assigned a spatially varying volume
JCa*] density, relative to the volume of the cytosol. This allows us
=D/ VY Ca&"] to treat the ER as a distinct compartment without having to
specify its complicated geometrical shape.
+ (Jehanner Jpumpt Jieal) + Routterss  (3.4) Our model also allows for the spatial variation of the
distributions of the ER, IPreceptors, SERCA pumps and
where BK receptors. In order to estimate these distributions, we
[IP] [C&'] 3 performed immunofluorescent staining on fixed cells, and re-
JchanneFJmax< ( 3 ( - ‘)h) constructed their three-dimensional distributions; Fig. 4
[1Ps]+ KIP3 [Ca "]+ Kac shows a volume rendering of the three-dimensional distribu-
[C*] tion of SERCA pumps in an example N1E-115 Nb cell.
(1_ - ) (3.5)  These reconstructions were then analyzed to compute the
[Cg Jer relative fluorescence intensities in six regions of each cell:
is the flux through the IPreceptor. In this formulation, the [')lstallsoma, prQX|maI soma, proximal neurite, middle neu-
faster activation processéactivating calcium and Kbind- rite, distal heurite, and ng’Wth cone. These data were then
ing to the receptdrare assumed to be infinitely fast. Their corrgc_:ted for relative blurr!ng, and thg corrected relative in-
binding to the subunits is, therefore, represented as alwa);g'ns't'es (~20 cells per immunostain ser}esrvere_then_
being at equilibrium, giving rise to the first two factors in mapped onto the cellular geometry used for each smulatmn.
Jenamet The channel stath represents the fraction of chan- F19Uré 5 shows the mapping of ER densily the interiop
nel subunits not yet inactivated by calcium, and introducesand BK receptor(along the plasma membra)n&)r_ an ex-.
the slow time scale into the model. The SERCA pumps arélmple cell. Our analyses showed that the relative dlst_nb.u—
responsible for refilling the stores following calcium release,tlons ,Of ER |%_ receptors and SERCA pumps were statisti-
but are also important in maintaining low basal calcium Iev-Cally indistinguishablép<0.03, |nd|cat|n'g that bqth Fhe b
els at equilibrium. The flux due to the pUMPSypy, is Mod- receptors and SERCA pumps were uniformly d|s.tr|but.ed'on
eled as a Hill function the ER membrane. Table | shows the mean relative distribu-
tions (and standard deviation and standard erodrER and
[c&™]? BK receptors, subdivided into the six cellular regions. All
Jpump= Vma*[Ca?ﬂ—2+K2’ (3.6 simulations used these values, with variations up to but not
P exceeeding one standard deviation in order to fit the accom-
whereV . is the maximal pump rate, arig, is the calcium  panying experiments.
concentration at which the pump rate is half maximal. Both  Figure 6 shows experimental and simulation results for
the functional form and the parameter values used are ithe BK-induced calcium wave in two different N1E-115 Nb
agreement with experimental measurements on SERCAells using “best-fit” parameter valugsee Ref. 18 for ac-
Type 4B) pumps. Finally, we also include a small, passivetual values used with the relative distributions of ER, P
leak from the ER to the cytosol receptors, SERCA pumps and BK receptors within one stan-
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SERCA Immunofluorescence

Sagittal Shees

SOME neurite

FIG. 4. (Color) Example of a 3D immunofluorescence image used to determine intracellular distributions. In the example, an N1E-115 neuroblastoma cell has
been fixed and stained with an antibody to SERCA 2.

20 um

dard deviation of the means given in Table I. Following ap-spreads rapidly into the soma. However, the maximal ampli-
plication of BK (at t=0), IP; accumulates rapidly in the tude of calcium concentration in the soma, and the rate of
neurite, and to a lesser extent, in the soma and distal neuriteecovery do not match the accompanying experiment. We
Calcium and the newly producedyBpen the IR receptors speculate, however, that the simulations could be made to
cooperatively, initiating a bidirectional wave of increasedmore quantitatively match the experiment with rather small
calcium concentration. The calcium wave spreads with apparameter changes reflecting population variances.
proximately uniform maximal amplitudé~1.2 uM). The The two main features of the Virtual Cell illustrated in
elevated calcium then closes the Heceptors, anfllP;] falls  this example are the ability to specify cellular geometry us-
back to basal levels due to JRlegradation. The SERCA ing experimental images, and the ability to change the geom-
pumps then restore basal calcium levels, pumping cytosolietry easily and without modifying the physiological model.
calcium back into the ER. The utility of these two features is apparent in Fig. 6: By
The simulation shown in Fig.(6) is of a bipolar N1E-  varying realistic geometries, we can draw conclusions about
115 neuroblastoma cell. In these calculations, we assumedthe BK induced calcium wave that are independent of cellu-
symmetrical model: Both neurites contain ER and BK recepiar geometry(e.g., the wave is generally initiated in the neu-
tor distributions using mean values from Table I, while therite).
center of the soma is assigned a relative density of unityB Buffered calcium waves in bistable svstems
Comparison with the experimental images shows remarkably” y
good agreement in a number of key features: The location of Calcium buffering is now widely recognized to have a
wave initiation, the bidirectional wave propagation, thestrong impact on the overall intracellular calcium
spread of the wave from neurite to soma, maximal amplitudelynamics’?? In addition to endogenous buffer@nainly
of cytosolic calcium concentration, and clearance of calciunproteins with calcium binding sit¢shat are always present
from the cytosol. in a cell, there is another reason that makes the study of the
Figure &b) shows calculations in an aster-shaped neurobuffer effect on calcium dynamics very important. In experi-
blastoma cell. In these simulations, the BK receptor densitynental studies, calcium dynamics are visualized by loading a
was uniform, and the ER density in the periphery was set t@ell with a fluorescent indicator that acts as a high affinity
60% of a central circle, and the nuclear region was void ofmobile buffer. It is, therefore, crucial to know to what extent
ER. In this case, the fit to experiment was more qualitativeahe exogenous buffga fluorescent indicatpican distort the
than quantitative. The wave is initiated in the neurite, andoriginal pattern.

ER and BKR Distributions Used for Modeling Relative ER
Density
1.0

0.75
0.5

0.25

FIG. 5. (Colon Intracellular distributions of BK receptor and ER{Ifeceptor/SERCA 2, projected onto the morphology of the cell in Fig. 4. The relative BK
receptor surface densities along the plasma membrane for the six averaged regions of the cell are shown in color-coding along the periphegg; the avera
distribution of the ER is identical to that of JPeceptor and SERCA, and is shown as gradations of gray values within the cell with a scale indicator on the
right. In both cases, densities are expressed relative to the leftmost section of the soma taken as unity.
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TABLE I. Relative distributions of ER and BK receptors. We have applied our appro&éhto fast reactions in
- g e reaction—diffusion systemsee Sec. Il Cto study the effect
- - of fast mobile buffers on calcium waves in bistable systems
Region Mean ~ SE ~ SD  Mean  SE  SD  [Fig 7 shows the typical behavior of the functibfc) in Eq.
Outer soma 1.00 0.00 1.00 0.00 (3.1) for one-variable systemighat are known to maintain
Inner soma 1.03 013 116 003 stable self-propagating wavé$.Moreover, bistability is
,\P/Irizxgzﬂit”ee“”te 006%7 00'2245 22;1356 00'2126 thought to be essential in the phenomenon of fertilization
Distal neurite 0.58 023 179 018 calcium waveg? It is important for bistability thaf (c) has
Growth cone 0.53 0.23 0.95 0.09 three zero<C,in<Co<Cpax, Which in the absence of diffu-
_— sion would correspond to the concentration values in two

ER distribution BKR distribution

Experiment Simulation Experiment Simulation

FIG. 6. (Color) Experimental and simulation BK-induced calcium release in N1E-115 neuroblastoma cells of differing morphology. Cells were loaded with
fura-2 and imaged as in Fig. 4a) Intracellular distributions were modeled as in Fig. 5 but with two neurites instead oflmnBK receptor and ER were
modeled as having uniform distributions throughout the cell except for the small fingerlike nascent neurite, which was assigned lower ER deistéigs co

with Fig. 5. Scale bardia) 50 microns, andb) 20 microns.
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FIG. 7. (a) Typical shape of the functiofin one-variable bistable models.
(b) Typical traveling wave profile in one-variable models.
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ing calcium dynamics, so the pseudo-steady approximation
can be applied and the set of reaction parameters reduces to
the buffer dissociation constakt=Kk/k,,. (Here,[B] and
[CaB]| are the concentrations of the free and bound forms of
the buffer, respectively.

According to theorem 2.1, in Ref. 25, the systé3nl0
allows for the monotone traveling wave solutions connecting
two stable steady states and a unique wave speed. For this
case, it is also possible to derive the general expression for
the wave speed, somewhat analogous to(B@®*3

Jccmaxf(c) dc)

min
Dyb:K
D.(K+c¢)?

1 Dph:K
+DC(K+C)2

. dC 2d -1

agl %) -

[ @il vl

In the limit of low buffer affinity K/C,,,,1 this equation
can be show to reduce to a well-known expression for the

wave speetf
Dbbt 1/2
+
DCK) !

v=

bK

x TKro?

1

-1

b,
: (3.12

K

v=vo(l+

stable steady states separated by an unstable steady state. In
physiological applications the system usually rests at avherev, is the speed of a wave in the absence of buffering.

steady state with lower concentrati@),;,. Thus, to excite

Although Eg.(3.11) is not explicit, one can get some

the system, we have to overcome the concentration barriémportant insights by analyzing it. Define=D,b,/D.. Let
Co—Cmin- Therefore, the position of the unstable steady-us fix C,,, and C,,.x and vary the system excitability by

state concentratio@, with respect taC,,i, andC,,x charac-
terizes the system excitability.

changing C,. To emphasize this fact, we writd(c)
=f(c,Cy). Then from Eq(3.11), the sign of the wave speed

In the absence of buffers, one can derive a general imand, consequently, the condition for the existence of the

plicit expression for the wave speedof a traveling wave
type solution c(x+vt)=c(§) in a one-variable bistable

systentt
Crnax » [dc 2 -1
fa

F(L f“)dC)(L dE

In the presence of a mobile buffer interacting with cal-
cium according to the reaction

C.+B=C,B, (3.9

where B and CaB denote the free and bound forms of the
buffer, the system is described by the set of equations

(3.9

min

aC—D Vic+f+R

E_ o cC+T+R,

b—D V2hb—R 3.1
E_ b y ( . Q
R=—kyc(b;—b) + kb,

whereb=[CaB], Dy, is the buffer diffusion coefficients,,

traveling wave with the domination of the higher steady-state
concentratiopis determined by the sign of the integral

dc, (3.13

v—jcmaxf o 14+ 25
e, SN e
which depends both on system excitability and buffer char-
acteristics. This is in agreement with the result of Ref. 26
obtained by means of a particular nonlinear transformation.
We further define

Crmax
G(co)zf f(c,Co)dc,
Cmaxf(C,Co)

H(CO,K)EJ mdc

Chin
If 9f/9Cy<<0, which is true, for instance, in the case of a
cubic polynomial, f(c)=(JO/Cﬁ]‘,i))(c—cmm)(c—CO)(Cmax
—¢), then dG/9Cy<0 and dH/dCy<0. Hence there are
unique values ofCy, ¢, and©=T(K), such thatG(c)=0

andk. are the reaction kinetic constants, and the total buffeand H(€,K) =0. SinceH(c,K)<0, thent e (C,,,C) andt

concentratiorb;=[B]+[CaB] is conserved at each spatial
point for anyt>0 if we assume zero flux boundary condi-

tends toc asK increases.
We now fixK and consider anf e (Cin,€] (high ex-

tions for the buffer,the same diffusion coefficients for bothcitability regime; then the integral3.13 is positive irre-

forms of the buffer, and initially spatially uniform buffer

spective of the value of. In other words, the traveling wave

distribution. As we mentioned above, calcium buffering isspeed is always positive no matter what total buffer concen-
considered to be much faster than other components affectration we introduce and how large its diffusion coefficient
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0.8 |

b 06 —g(ch)=0
— f(c,h)=0

0.4 4

vivy

0.2

0 0 02 04 06 08 1 12 14
{ \.o 20 30 40 50 ¢, micro M

b/K

h 0.8 — g(c,h)=0

— - — —o— — f(c,h)=0
0.6 -

Do= 10Hm%s 50 Hm's 10 Ham’/s 50 Hm’/s
Co= 04HM  04HM  01HM 0.1 4M 04

FIG. 8. Results of 1D simulations for the cubic polynomial model: The 92 ; ‘ ;
normalized wave speed vs buffer binding ratio for varying system excitabil- 0 02 04 06 08 1 12 14

ity and buffer diffusion akK=0.1 M. While decreasing with the growing ¢, micro M

total buffer concentration, the wave speed stays positive at high system

excitability (Co=0.1xM) and becomes negative beyond some threshold atFIG. 9. Nullclines of the Li—Rinzel model for the cases of highand low
low system excitability Co=0.44M). The dependence of the wave speed (b) excitability.

on the buffer diffusion coefficient is increasing at high excitability and de-
creasing at low excitability. In these calculation§,,;;=0 uM, Cax
=1.0uM, andJo=20 uM/s. obtained from 1D simulations for the cubic polynomial con-
firm such a conclusion.

Although the simple analysis, valid for one-variable
bistable models, does not apply in multivariable bistable
models, most of the qualitative conclusions appear to hold in
a more realistic Li—Rinzel mod®which has been success-

1 G(Cy) fully applied in the studies of calcium dynamit®:®24In the
vCo= -~ K H(Cy,K)" (314 apsence of a mobile buffer, the model contains two vari-
hthat f h i ith _ ables: The calcium concentration, and the probabilityh

such thatfory=yc,, there are no traveling waves With posi- yhat the inhibition site of a channel subunit is free of calcium.
tive speeds. ICo,=c, the wave speed is negatitéhe lower  The model, given by the equations
steady-state concentration dominaties any combination of

is, as long as the system excitability is sufficiently high. On
the other hand, whei€,e (Tt,c) (the low excitability re-
gime), there is a threshold value of

buﬁer_pa_ramete_rs. ‘9_02 D.VZc+f(c,h),
It is interesting to note that the dependence of the nu-  dt
merator in Eq.(3.11, V, on Dy, is drastically different in Jh (3.1
regions of high and low excitability: FO€,<T the wave —=g(c,h),
speed v is positive and dV/dD,>0, while for Cg at

€ (C,c),dVIdD,<0. Thus, in situations when the numerator js bistable for some parameter s&té* and we again con-

of Eq. (3.1 plays a dominant role in determining the wave sider two modes when the unstable steady-state concentra-
speed, an increase of the buffer diffusion coefficient mayion C,, is close to and far from the low steady-state calcium
speed up or reduce the wave velocity in the high- and lowconcentrationC,,,, (Fig. 9. We will call them again the
excitability modes, respectively. In the low-affinity limit modes of high and low excitability, respectively, assuming
K/Cpmax—, when the low-excitability region is disappearing that, as in one-variable models, the relative location of
becaus€—c, we expect the wave speed to be an increasingteady-state concentratiofifor Egs. (3.15 without diffu-
function of Dy, for any Cq e (Cpin,C), in accordance with Eq.  sion] controls the system excitability.

(3.12. However, in the case of a high affinity buffer and ~ Our numerical results show that, similar to the one-
low-system excitability Co « (C,c)), this dependence might variable models, the buffer effect on the speed of a traveling
be the reverse. In this case, the growthDof will lead to @ wave strongly depends on the system excitability. In the high
point y=yc, at which the traveling wave with a positive excitability mode, the wave speed increases with the buffer
wave speed ceases to exist. Our numerical reskig 8 diffusion coefficient and will never become negatifg.
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b; {micro M) FIG. 12. Hysteresis loop in the wave speed dependence on the total buffer

] ) ~ concentration in the low excitability mode of the Li—Rinzel modelKat
FIG. 10. Wave speed dependencies on the total concentration of a high=0.1 ;M and D, =50 um?%s.

affinity buffer (K=0.1xM) at varying buffer diffusion coefficient in the
high-excitability mode of the Li—Rinzel model.

value problem solver to track down a traveling wave, only
10). For the low-excitability modéFig. 11), the wave speed Stable traveling waves are accounted for in Figs. 10 and 11.
is a decreasing function of the buffer diffusion coefficient atWe expect the full picture to be a reverSe-curve as de-
a fixed total buffer concentration. When the total buffer con-picted in Fig. 13, with bifurcation occurring when we cross
centration exceeds a critical level, the wave speed becoméBe limit pointsA; andA,. Because the middle branch in the
negative as in the one-variable models. reverseS—curve usually corresponds to the unstable travel-

In this model, however, with increasing total buffer con- ing waves, a continuation algoritffrhas to be employed to

centration, we observe a sudden drop of wave speed preceidace the full response curve.
ing the change in the wave directidRig. 11). Thus, there is When the total buffer concentration is such that there are
a finite interval of wave speed values for which no stabletwo stable traveling waves, each of the two stable branches
traveling wave exists. On the other hand, if we start with ahas its own domain of attraction. Initial conditions that are
wave profile, corresponding to a high total buffer concentraclose to one of the stable wave profiles will usually be at-
tion, and then gradually decrease the buffer concentration itracted to it. If we push the total buffer concentration beyond
our simulations, the jump occurs at a lower critical valuethe limit points(say, we start with the wave that belongs to
resulting in a typical hysteresis loop presented in Fig. 12the fast branch and then increase the buffer concentration to
which is a magnified picture of the middle curve in Fig. 11 the value for which there exists only one stable wave on the
near its discontinuous jump. Therefore, for a fixed bufferslow branch, since now there is only one stable traveling
diffusion coefficient, there are at least two stable travelingvave, a large change in the wave speed has to take place to
waves with very different velocities when the total buffer settle down into the stable wave profile. Such a discontinu-
concentration lies in a certain interval. Since we use an initiapus change is a hallmark of a bifurcation taking place in the

system. No similar phenomenon has been observed in the

one-variable models.

0.8 1 A
—&= Dy = 25 Hm’/s
0.6 -
s =6~ Dy = 50 Hmi’ls
S
04 -
~g= Db =100 HEmls v
0.2 -
0 - "
1.6
0.2
b, (micro M) >
FIG. 11. Wave speed dependencies on the total concentration of a high- b,
affinity buffer (K=0.1xM) at varying buffer diffusion coefficient in the
low-excitability mode of the Li—Rinzel model. FIG. 13. A full reverse S-curve with the unstable bradgih, .
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The experimentally observed fertilization calcium 2 10 uM
waveg® are not traveling plane waves, they are rather tran-
sient processes initiated by localized spikelike perturbations
in a finite domain constrained by a cell membrane. A fluo-
rescent indicator that is used in experiments to visualize cal- o 50
cium dynamics, e.g., fura2 acts as a high-affinity mobile
buffer and, as we saw, can significantly influence the prop-
erties of calcium waves. To study the possible effect of the [
fluorescent indicator on fertilization calcium waves, we have | [
run three-dimensional simulations using realistic geometry,
initial, and boundary conditions. In particular, we have simu-
lated fertilization calcium waves in a spherical c@h egg
using the Li—Rinzel modg(3.15 with a physiologically rea- J
sonable set of parametétshat provides system bistability in
the high-excitability mode.

We introduce two types of buffers in our 3D simulations.
The immobile low-affinity buffer, with a dissociation con-
stant of 10uM and a total concentration of 200M, repre- ===
sents endogenous buffers, while the mobile high-affinity
buffer, with a diffusion coefficienD,=50um?s and a dis-
sociation constanK=0.24uM, mimics fura-2. A wave is N
initiated by a calcium spike localized near the cell mem- Nl
brane. The spike is centered at the membrane and has a r.
dius of 5um and an amplitude of 3@M. We run simula-

t=2s

t=5s

t=9s N

o VOO
Y I X X .
/l
/|
!
3
e OOV

tions with varying total concentrations of the indicatby, TR t=115s NG
The results show a strong effect of the fluorescent indicator NL
on wave formation. The indicat¢the mobile buffey usually calcium indicator-bound calcium

causes a delay in the wave formation and can even prevent a
wave if the total concentration of a mobile buffer rises aboveriG. 14. Calcium wave in the presence of the fluorescent indicator fura-2
a certain threshold for the given initial conditions. For our (K=0.24uM, Dy=50 um?/s, andb,=9.5uM) (left column, as compared

parameter set this critical concentration is found to-l to the dynamics of the indicator-bound calcium that mimics the behavior of
M ! the fluorescence intensityight column. Images of the equatorial slice of
)

: . ) ) an egg are accompanied with a line scan along the cell diameter that coin-
The simulation results obtained bf=9.5uM are pre- cides with the symmetry axis. Fertilization is initiated at the left pole of the

sented in Fig. 14. Since in biological experiments one di-sphere.
rectly measures the fluorescence intensity which correlates
well with the bound buffer concentration, it is interesting to

compare the dynamics of the bound form of fura-2 with theyineics. This is sufficient to specify a compartmental model
actual dynamics of free calcium. Figure 14 illustrates a NNyt can then be automatically converted to a system of or-
linear relationship between the two dynamics. Thus, care haginary differential equations. To implement spatial models,
to be .exerC|sed in extracting the caImum dyngmlcs from the.ajular geometry(derived from 2D or 3D experimental or
experimentally measured fluorescence interiSity. idealized imagesis mapped to the previously defined topol-
Finally, the calcium waves in the presence of a moderatgy, and appropriate diffusion coefficients are specified. This
amount of fura-2 and without it are compared in Fig. 15. They,an necessitates the solution of partial differential equations.
flu_orescent |nd|cat(_)r strongly interacts with the |n|t|at|ng_-|-he framework automatically converts the biological mecha-
spike and substantially slows down the wave. Thus, even ifisms to a corresponding mathematical system that incorpo-
the calcium dynamics are correctly extracted from the fluoyates mass conservation relationships and pseudo-steady
rescent intensity, it can still differ significantly from the ac- g¢4te approximations. The mathematical equations that are
tual situation without an indicator. generated by the graphical user interface can be viewed and
edited, thus facilitating interactions between experimentalists
and theoreticians. The Virtual Cell then applies the appropri-
ate numerical solver to perform simulations of intracellular
The Virtual Cell is a computational modeling environ- dynamics and analyze simulation results. Several standard
ment designed to be used by both cell biologists and mathsolvers including stiff solvers and variable time step solvers
ematical biologists. A given cell biological process is definedare available for the solution of ordinary differential equa-
in terms of which molecules are involved and where they argion. The finite volume method is currently used for PDE
located within the cell. An intuitive, web-based interface al-problems. Because the simulations produce the same kinds
lows the specification of cellular compartment topology;of spatial and temporal records that can be obtained by ex-
these compartments are then associated with the relevaperiment, the predictions of a model can be analyzed with
molecular species and their chemical reaction and transpotihe same statistical and/or image analysis methods used to

IV. CONCLUSION
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e 2 uM physical framework for the solution of all problems in cell
biology. Any problem that involves structural dynamics, e.g.,
cell motility or mitosis, will require new physical formula-
tions and numerics that will need to be integrated with the
0 50 um existing infrastructure for reaction—diffusion. Thus, our ef-
forts to develop the Virtual Cell will continue to offer excit-
ing research challenges as we approach the ultimate goal of
enabling mathematical modeling of any cell biological pro-
cess.
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APPENDIX: A PROTOTYPE PROBLEM FOR FLUX
CORRECTION

As discussed in Sec. I B, cell geometry can be defined
analytically or can be taken directly from an experimental
microscope image. To unify both ways of defining geometry,
we approximate the cell membrane by a jagged vertical and
horizontal boundary as in Fig. 2. In the future, we will treat
a smooth cell membrane more accurately, so that in conjunc-
tion with other improvements, we can obtain a higher-order
method. In what follows, we will show that the method of

with indicator without indicator flux correction on the staircase membrane described in Sec.
IIB ensures convergence in some norm. We start with a
FIG. 15. Simulation of a fertilization calcium wave in the presence of fura-2model linear elliptic problem and then extend results to a
;‘E:e%s:fé][\"é f?ub()T:S‘)cfeLr:‘fiﬁaigggﬂ%}igc-glﬁmr)) (:‘:nfta;ggugqhgnedqagtg‘rieal linear parabolic problem. It is physically clear that the con-
slice of an egg are accompanied with a line sc.an along the cell diameter thé(tergence should be also observed in the nonlinear parabO“C_
coincides with the symmetry axis. Fertilization is initiated at the left pole of CAse because the suggested treatment of membrane fluxes is
the sphere. independent of whether the reaction term is linear or nonlin-
ear.
Case I:the elliptic problem.
analyze experiments. Models, geometries, mathematical sys- Let f:RN—R be in L, and g:RN—R be continuous.
tems, and simulation results are stored in a central databa&gven aC* domainQ C RN and consider an elliptic problem
that maintains the privacy of user models while providing a V2U—u=—
. : . 4 u—u=-—f, xeQ,
mechanism for model sharing. The software is accessible
through a web browser via the website of the National Re-  Ju
source for Cell Analysis and Modeling at the U. Conn. an
Health Centefwww.nrcam.uchc.edu

In this paper, we have described some of the mathematPhysicallyg is the flux per unit surface area of the domain.
cal details that allow the Virtual Cell to be a useful general-Next, we replaceQ) by another Lipschitz domaif), and
purpose tool for the solution of reaction—diffusion equationsstudy
relevant to biology. We have also provided examples of -
some applications of the software to problems in calcium VZU-TU=-f, xeQ,
dynamics. It is important, however, to note the limitations of Py

. ]
the current embodiment of the system and the goals for fu- —
ture improvement. Most important is the improvement of our an
numerical methods for the solution of PDEs to enable theye will prove thatu andT are close to one another in some

treatment of realistic large 3D models. These could inCIUdenorm when(l is a good staircase approximation(® pro-
stiff spatial solvers, full operator splitting and unstructured ' g bp P

grid techniques, as well as finite element-based solvers. Bot¥1'ded thatg is Ehosen properly. For easy exposition, we

deterministic and stochastic physical formulations have beefssume tha€) e () in the proof. We caution that even in the
implemented, but the latter is still in need of significant de-ca@se Wherg=1, we cannot choosg=1 because the stair-
velopment and has not as yet been deployed within the rekase domain has much larger surface area than tHateofd
leased version of the software. Finally, it is important to noteconsequently the total flux into the domaifisand () are
that reaction—diffusion equations alone are not a sufficiensubstantially different.

t=5s
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For all test functiongoecx((_)) [and hence for all test
function in HX(Q) by approximatiof, weak H* solutionu
satisfies

| vuv rue-tel- | ge, (A3)

and a similar equation fdi.

Since the domair) is C, recall the standard bounded
linear extension operatdg:H(Q)—HY(RN).3! Thus there
exists a constar@>0 such that for alb e H(Q), Ev=v in
Q, and

IE,[h1rvy=<Cllv[lnq) - (A4)

For simplicity, we will denoteEv by v from now on. We
now extendu to aHY(RN) function.

Define aH! functionw=T—u in Q. From Eq.(A3) and
the corresponding equation fair we obtain

fﬁ[Vw-soﬂLWso]

fﬁxn

whereI" andT" are part of the boundary as indicated in Fig.
2.

We will take ¢ =w in the above equation. In case of zero
boundary flux, i.e.g=4=0, we see that

[f¢_VU'V<P_U§D]+ff§€P_fF9§Da (A5)

il

H1(Q)
<[Ifll.2 @ o)Wl @ o)+ Ul o) lWlhy @ o)
<[[fllLz@ o) Wl @)+ ullbz @ o)Wy @)

<325+ 220+ 2ulne (A6)
Since| f[| 2.0y and ||u||H1(Q\Q) go to zero as mea8(\Q)
—0, we haveli—u in H}(Q).

With nonzero boundary flug and a proper choice @,
if we can show that withp=w, the difference in the last two
terms on the right-hand-side OA5) is small, then the same
argument leads tdi—u in HY(Q). For simplicity, we as-

Schaff et al.

HEUFgwcosé’dx—Eijfi .g(x))w cosf;dx

szi[ ‘ f (g cosf—g(x;)cosd;)wdx

+ fbig&i)cos?if (awlay) dyH.

With h small enough, we can assume thfgcosd

—g(X)cost|<e. Hence, there exist constants;>0, i
=2,3,... such that

H f| |+cff w
<e| |w O
r 2 oa| gy

< €C3|W||p1(0) + C3Vmeas\ Q) |wl|y1G)
<CjlW[ly ) (e+ Vmeag Q)

<2eCa|wW|p1 @),

(A7)

after invoking the trace theorefh.lnequality (A7) and a
similar one for integration oveF; , lead to

[w- gW’$4caf||W||Hl <3l 5+ Coc?
T T

when meas\Q)) is sufficiently small. Thus, this last term
has to be added to the right-hand side of inequéi). The
same argument allows us to recoderu in H(Q) even
when the boundary flux is nonzero.
Case ll: the parabolic problem.

Fix any T>0. Let f:RNX[0,T]—R be in L. and
g:RVX[0,T]—R be continuous. Again, we have@' do-
main QCQ, which is a staircase approximation. L&k

=0 X[0,T], andQ;=0x[0,T]. We consider

Viu—u—u=-f, xeQr,

Ju

- (A8)
an 20

=g,

u(x,0)=ug(x) in Q.

Similarly,

sume the domain to be two-dimensional although only a

slightly more complicated book keeping is required for

VA-TU-T=—f, xeOr,

higher dimensions. Then, according to our approach de-

scribed in Sec. II B, the corrected flux denditys defined by
Eqg. (2.8).

Let all the horizontal and vertical segments with the
sameXx, be denoted byl'; , and T’ ,, respectively. Then,
from their definitions, ff@wds=2iffi’hg(fi)w cosédx
+Efr g(x_,)wsma dy. In addition, [rgwds=/rgw
><(00520+Sln2 f)ds=frgwcosfdx+ [ gwsinady. We note

thatw are evaluated at two different locatioRsandT in the
above two equations.

For all Xefi’h, let their x-coordinate satisfya;<x
<b;. Thus
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(A9)
an 20

:’g,

TU(x,0)=ug(x) in Q.

Here we have assumed that the initial conditigrfor u and

U are the same i, hence we use the same symbols for two

different initial conditions. Leuge Lﬁ,C(RN).

Extendu to RNX[0,T], and define a functiow=T—u
in Qr. Hencew(x,0)=0 in Q. We then follow similar ideas
in getting Eq.(A5) as in the elliptic case. After we put the
test functione to bew, we have for anyt e (0,T],
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;JQWZ("t)+j fél[|Vw|2+W2]

1 t
ﬁ W2(-,0)+f ﬁ {fw—V,-Vw—uw}
oNQ 0JO\Q

R

Similar  calculations lead to = mMgX<t[oWA(-.t)
+foT[|V2w|2+w2] goes to zero as med3{)— 0.

(A10)
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