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The Virtual Cell is a modeling tool that allows biologists and theorists alike to specify and simulate
cell-biophysical models on arbitrarily complex geometries. The framework combines an intuitive,
front-end graphical user interface that runs in a web browser, sophisticated server-side numerical
algorithms, a database for storage of models and simulation results, and flexible visualization
capabilities. In this paper, we present an overview of the capabilities of the Virtual Cell, and, for the
first time, the detailed mathematical formulation used as the basis for spatial computations. We also
present summaries of two rather typical modeling projects, in order to illustrate the principal
capabilities of the Virtual Cell. ©2001 American Institute of Physics.@DOI: 10.1063/1.1350404#
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In the 50 plus years since Hodgkin and Huxley’s ground-
breaking work with the squid giant axon, mathematical
modeling has slowly but steadily become a viable ap
proach to studying cell biophysical processes and phe
nomena. This has undoubtedly resulted from a number
of key developments, including advances in quantitative
biology, computer science, and mathematics. Of great im-
portance have been the development of techniques lead
ing to the elucidation of the myriad pathways underlying
many of the cell’s basic functions; the advances in com
puter hardware and high-performance computing; and
more sophisticated analytical and numerical methods for
dealing with systems of nonlinear differential equations.
Indeed, such advances have given way to more quantita
tive models involving more detailed descriptions of
mechanisms, cellular structure, and geometries. In turn,
the more successful models have helped to stimulate th
field as a whole, and to introduce modeling techniques
into more mainstream biology. Despite this progress,
however, cellular modeling remains limited to the more
mathematically andÕor computationally gifted few. This
is especially true with respect to spatial modeling, where
the mathematical and computational techniques are
much more sophisticated, and the computational require-
ments much higher; the problem only grows as models
incorporate more detailed descriptions of mechanisms,
structure, and geometry. Unfortunately, very few tools
exist to aide the modeler in treating detailed spatial mod-
els on complex three-dimensional geometries. A numbe
of mature packages exist for treating whole-cell models,
including Gepasi,1 and XPPAUT „Bard Ermentrout,
1151054-1500/2001/11(1)/115/17/$18.00

Downloaded 16 Nov 2001 to 137.78.90.162. Redistribution subject to AIP
XPPAUT 4.5, see http:ÕÕwww.pitt.eduÕphaseÕ…, as well as
spatial tools designed for the unique demands of model
ing neuronal systems, including neuron,2 and genesis.3

Not one of these tools, however, can treat both nonspatia
as well as full three-dimensional spatial models, and those
that can treat spatial problems impose rather severe geo-
metric constraints. The Virtual Cell was designed with
these problems in mind. Our primary goal is to develop a
tool that allows experimental biologists to specify and
simulate arbitrarily complex cell-biophysical models on
complex geometries, without requiring extensive knowl-
edge about the underlying mathematical and computa-
tional techniques. In this paper, we present an overview
of the capabilities of the Virtual Cell, as well as the math-
ematical formulation used as the basis for spatial compu-
tations. We then present summaries of two rather typical
modeling projects, in order to illustrate the principal ca-
pabilities of the Virtual Cell.

I. VIRTUAL CELL OVERVIEW

The Virtual Cell is a computational modeling framewo
and tool, designed for biologists and theorists alike, for c
structing and simulating spatial and nonspatial cell phy
ological models. Its most important features include an int
tive user interface that runs in a web browser, a back-
database for storing and retrieving physiological models
simulation results, and sophisticated mathematical and c
putational algorithms. Our approach separates the mo
© 2001 American Institute of Physics

 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



to
ca
-
u
e

ys
ec
h
2
is
t

s.

o

e
rip
rt
io
s.
ar
all

t
de
ci
en
as
m

in
is

or
ar
co
a

de-
i-
th
r-

ane
er

om-
Ex-

um
ld
not

oth-
on.
may
to

om-
ple,
the

wo

ery

o the

ac-
ring
cies
The
of a
sent
ere-
are
by
well
nnels
r of
em-
ntal
xes,
and

art-
can
l’’
di-
ore

to
m-
an
p-
ly
he
ins,
tion

t o

,

116 Chaos, Vol. 11, No. 1, 2001 Schaff et al.
from the geometry—this allows the physiological model
be mapped to different user-defined geometries, which
be either whole-cell~‘‘point’’ ! geometries or spatial geom
etries in one, two or three dimensions. It is not until a sim
lation is run that the model and geometry are linked togeth
thus, a simulation can be thought of as a pairing of a ph
ological model with a geometry, as well as the settings sp
fying initial and boundary conditions and parameters. T
simulations are then run on our cluster of Compaq DS
computers, and the results are returned to the user for v
alization. An export utility can be used to export the data
a range of formats for use in other visualization package

A. Physiological models

Conceptually, a physiological model can be thought
as a collection of hypotheses that are assembled in an
tempt to understand a physiological phenomenon or proc
Operationally, a physiological model consists of a desc
tion of the organization of the relevant cellular compa
ments, molecular and chemical species, chemical react
among species, and fluxes between cellular compartment
this light, the hypotheses consist of the selection of comp
ments, how the compartments are arranged topologic
which species are present, which reactions are involved,
kinetics of the reactions, and so on. The physiological mo
therefore, represents a chemical reaction system of spe
reactions and fluxes spanning any number of compartm
and membranes. Figure 1 illustrates several of the b
model components. The model shown contains four co
partments~Extracellular, Cytosol, Nucleus, and ER!, three
membranes~unlabeled; the gray circles!, seven species
~Ca–Ext, Ca–Cyt, IP–Cyt, IP3R, IP–Nuc, Ca–Nuc, and
Ca–ER!, and three fluxes~unlabeled; they are embedded
the membranes!. Note that reactions are not shown in th
figure.

A compartment represents a cellular structure or
ganelle that is structurally separated from other comp
ments via a membrane. These compartments can be
tained in a ‘‘parent,’’ or enclosing, compartment, yielding

FIG. 1. Typical model compartment layout, showing the tree-like layou
four compartments~Extracellular, Cytosol, ER, and Nucleus! and their en-
closing membranes~black circles!. Also shown are several species~Ca–Ext,
Ca–Cyt, IP3R, IP–Nuc, etc.!, and three fluxes~embedded in membranes
not labeled!.
Downloaded 16 Nov 2001 to 137.78.90.162. Redistribution subject to AIP
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hierarchy of compartments in a treelike structure. In this
composition of the cell, a compartment may ‘‘commun
cate’’ or interact with its parent and its children, but not wi
any other compartment in the hierarchy. This inte
compartmental communication takes the form of membr
fluxes, typically arising from channels, pumps, and oth
transport mechanisms in the membrane. In Fig. 1 the c
partments are arranged such that Cytosol is contained in
tracellular, and both Nucleus and endoplasmic reticul
~ER! are contained in Cytosol. With this hierarchy, it shou
be clear that communication between ER and Nucleus is
permitted, while that between ER and Cytosol is.

Species are the molecular or chemical species hyp
esized to be involved in the process under investigati
They are assigned to compartments or membranes, and
then participate in reactions and fluxes. Thus, in addition
being used to represent chemical constituents inside c
partments and membranes, they are also used, for exam
in membranes to represent channels or pumps, often in
form of channel or pump states. Figure 1 also shows t
species, calcium and inositol-1,4,5-trisphosphate (IP3), dis-
tributed across the four compartments. Note that while ev
compartment contains calcium, not all contain IP3. Within
each compartment, the species are given names unique t
compartment.

Species concentrations change due to diffusion, re
tions and fluxes. Reactions are chemical reactions occur
between species in a single compartment, or between spe
in a compartment and species in a related membrane.
latter case is used, for example, to represent the binding
molecular species with a channel or pump. Fluxes repre
inter-compartmental fluxes of a single species, and are th
fore limited to membranes. In our representation, fluxes
merely flux functions, though their rate can be controlled
the concentration of other species in the membrane, as
as the compartments the membrane separates. Thus, cha
are often represented as both a flux and some numbe
associated channel state species, all embedded in the m
brane; state transitions are then regulated by compartme
and membrane-bound species. Figure 1 shows three flu
one each in the plasma membrane, the ER membrane,
the nuclear membrane.

B. Geometry

The geometry defines the spatial extent of the comp
ments defined in the physiological model. The geometry
be a compartmental geometry defining a ‘‘whole-cel
model, or an arbitrarily-shaped spatial geometry in any
mension. A spatial geometry is composed of one or m
nonoverlapping regions. Regions are grouped according
the type of cellular structure they represent. Spatial geo
etries may be defined in terms of analytic functions or
image, or any combination of analytic functions and an o
tional image. An image, in our terminology, is a regular
sampled scalar field in one, two, or three dimensions. T
geometry, therefore, is composed of one or more doma
enclosed in a bounding box that represents the simula
boundary.

f
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Analytic functions are input using inequalities. For e
ample, a spherical region representing a cell’s nucleus co
be specified asx21y21z2,102. Furthermore, inequalities
can be combined using Boolean logic~using the Boolean
operator notation of the C programming language!; for ex-
ample,x21y21z2,102 && x.0 could be used to slice th
nucleus in half. Currently, the coordinate system used
these analytic functions is limited to Cartesian coordinate

Segmented images are images where each color c
sponds to a distinct type of cellular structure. Each conti
ous region of the same color represents a domain in the
ometry. Therefore, experimentally obtained imag
~typically 8- or 16-bit images! must be preprocessed befo
they can be used in geometry specifications. This preproc
ing step usually involves only simple techniques found
most standard image processing packages: Sharpening,
detection, thresholding, flood fill, etc. Once segmented,
images are imported into the Virtual Cell database, and
then available for use within the Virtual Cell. A three
dimensional geometry can be specified by a stack of t
dimensional images, each representing a slice through
three-dimensional geometry. In this case, the images are
sidered to represent consecutive slices through the th
dimensional geometry.

C. Simulation mapping

Once specified, the compartments of the physiolog
model can be mapped to groups of domains~e.g., multiple
cells! comprising the goemetry. Extensive checking is p
formed to ensure that the topological constraints~parent–
child relationships! inherent in the compartmental layout a
preserved during the mapping. For example, if two comp
ments do not have a parent–child relationship between th
they may not be mapped to regions that share a com
boundary. It is important to note that, until the physiologic
model is mapped to the geometry, it is not possible to de
spatial parameters. We have therefore chosen to not a
any physiological parameters at all to be specified until
mapping has been performed. This constraint has the ad
benefit of making physiological models more reusable,
values such as rate constants~which tend to be cell- or
preparation-dependent! are not introduced into the phys
ological model.

D. Running simulations and visualizing results

Once the physiological model and geometry have b
mapped, and parameters have been set, simulations ca
set up and run. This generally involves setting a small nu
ber of simulation parameters like the size of the compu
tional mesh, the time step, and the interval between d
storage steps. In the case of whole-cell models that are
scribed by ordinary differential equations only, a number
numerical methods can be chosen: Euler’s method, Run
Kutta, Adams–Bashforth–Moulton, and Runge–Kutt
Fehlberg. We are also currently integrating a stiff solver
modern adaptation of the Gear algorithm for systems of s
algebraic and ordinary differential equations. Spatial mod
are solved using a finite volume approach on a structu
Downloaded 16 Nov 2001 to 137.78.90.162. Redistribution subject to AIP
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grid; the details are discussed below in Sec. II. Once
simulation parameters have been fully specified, the sim
tion is run on a cluster of Compaq DS20 dual-proces
workstations. Results are returned to the user as they bec
available, providing immediate feedback, and allowing t
user to halt the simulation if things go awry.

Simulation results are stored in medium-term storage~up
to several months, depending upon disk space limitatio!
for later retrieval and additional visualization. When simu
tion results are purged, however, all other model and sim
lation data are still maintained in the database, so that
results can be regenerated if needed at a later time by re
ning the simulation. We also provide tools for extracting da
subsets, and exporting the data in a number of standard
age, animation, and data formats. This allows for more
tailed analysis, as well as the use of other visualization pa
ages.

II. MATHEMATICAL FORMULATION

A. Governing equations

The central goal of the Virtual Cell is to performspatial
modeling of cell physiological processes. In spatial simu
tions, the nonlinear dynamics of interacting molecular s
cies is combined with their diffusion, giving rise to
reaction–diffusion system mapped to arbitrary geome
with fluxes across membranes.4 Mathematically, this trans-
lates into a system of coupled ‘‘parabolic’’ type partial di
ferential equations with nonlinear reaction terms and fl
boundary or jump conditions at the membranes.

For simplicity, let us consider a domainV containing
one regionV in inside a cell and another regionVout outside
the cell, separated by the cell membrane. Letui ,i 51,...,n, be
the concentrations of the various molecular species invol
in cellular dynamics and governed by a system of reactio
diffusion equations

]ui

]t
5¹•~Di¹ui !1Ri , i 51,...,n, ~2.1!

in both V in andVout. HereDi is the diffusion coefficient of
the i th species. The effect of all the reactions on thei th
species is represented by the source termRi , which is a
given function ofu1 ,...,un . ~The formulation also includes
the option that a certain species exists only in a single reg
say inV in .! If some of the diffusion coefficientsDi are zero,
we then have a system of coupled partial and ordinary
ferential equations.

Suppose there arem different reactions with ratesn j , j
51,...,m, taking place among the various species. Usua
eachn j is a given nonlinear function of the concentrations
the species participating in thisj th reaction. Then, ifa i j is
the ~i, j! element of the integer-valued stoichiometry matrix5

which represents how many molecules of thei th species are
produced~the positive sign! or consumed~the negative sign!
due to thej th reaction, we have

Ri5(
j 51

m

a i j n j . ~2.2!
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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However, at spatial scales on the order of a whole cel
larger, some physiological compartments~e.g., endoplasmic
reticulum! are too small and convoluted to be spatially r
solved. Such internal compartments may be distributed
volume fraction of the regionV in of the enclosing compart
ment ~e.g., cytosol!. Membrane binding reactions and tran
membrane fluxes ofui that occur on the surface of thes
internal compartments are represented physically as mol
lar fluxes. These fluxes may be introduced as additio
source terms forui within V in .

Let the initial conditions

ui~x,0!5ui
0~x!, i 51,...,n, xPV, ~2.3!

and the boundary conditions on]V be given. If for each
species there is zero flux at the borders of the computati
domainV, which is often the case, then

¹ui•n50 on ]V, ~2.4!

wheren is the unit outward normal on]V.
Due to the presence of the cell membrane, we nee

impose jump conditions there, which relate the species c
centrations on different sides of the membrane. Si
second-order spatial derivatives are involved in the gove
ing equations, we need two jump conditions across the m
brane for each species with nonzero diffusion coefficient.
the outside and the inside of the membrane be denoted b
subscript2 and 1, respectively. For example,ui u1 repre-
sents the concentration of thei th species on the inside of th
membrane. Letn be the outward unit normal on the mem
brane~i.e., pointing towards the outside of the cell!. Then the
jump conditions at the membrane are

2¹ui u1•n5g1~ui u1 ,ui u2!,
~2.5!

2¹ui u2•n5g2~ui u1 ,ui u2!,

where g1 ,g2 :@0,̀ )3@0,̀ )→R are typically given func-
tions of ui u1 ,ui u2 . However, depending on the physiolog
cal mechanisms involved, they can be functions of ot
variables as well. In the case a membrane cannot sto
species, the flux in and out of the membrane must be
same due to mass conservation:g15g2[g. Equation~2.1!
together with initial condition~2.3!, boundary condition
~2.4!, and jump condition~2.5! determine the time evolution
of the species dynamics.

B. Numerical algorithm

We now describe the numerical technique which is re
larly applied in the Virtual Cell for solving the governin
equations outlined in the previous section. In Virtual C
applications, the computational domainV is always rectan-
gular, and a structured orthogonal grid is utilized for spa
discretization.6 This facilitates automatic sampling of cell ge
ometry, particularly when it is based on experimental mic
scope images, where we can only tell whether a square p
in the image lies inside or outside the cell, and also allows
to easily move from one-dimensional~1D! to two- ~2D! to
three-dimensional~3D! simulations. This kind of spatial dis
cretization results in a ‘‘staircase’’ approximation of a c
membrane. The membrane elements of such a staircas
Downloaded 16 Nov 2001 to 137.78.90.162. Redistribution subject to AIP
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rectangular facets with normals parallel to the Cartes
axes. This creates difficulties for the accurate description
the membrane fluxes, because the surface area of the
case does not converge to that of a real membrane when
mesh is refined. Moreover, a rotation of the coordinate s
tem could substantially change simulation results.

As a simple example, supposeV in to be a circle of radius
1 in R2. Now let Ṽ in be any staircase approximation co
taining V in ~the area ‘‘inside’’ the staircase curve in Fig. 2!.
Then the exact membrane boundaryG and its approximation
G̃ have lengths of 2p and 8, respectively. With reactio
termsn j50 and unit normal boundary flux per unit area o
both G and G̃, call their solutionsui and ũi , respectively.
Then Eq.~2.1! give

]

]t EV
ui522pDi , ~2.6!

]

]t EṼ in

ũi528Di . ~2.7!

Thus, no matter how fine the staircase approximation is,
solutions in the two cases will differ immediately even if w
start with similar initial conditions.

The above example suggests that a necessary cond
for ui and ũi to be close to one another is that the total fl
into both membranesG and G̃ have to be the same as th
staircase domain is refined. To achieve this, we correct
flux acrossG̃. Let Ak be the area of thekth staircase mem-
brane element. Because the flux density specified in~2.5! is
meant to be normal to the real membraneG, the corrected
flux density of thei th species across thekth membrane ele-
ment is g(ui u1 ,ui u2)cosuk where uk is the angle that the
normal toG makes with the normal to the membrane elem
~here, for simplicity, we assume that the center of the e
ment belongs toG, the more rigorous definition is given be
low!. Hence the corrected flux across this membrane elem
will be g(ui u1 ,ui u2)Ak cosuk .

FIG. 2. Basic scheme for approximating boundaries. The regionsV in and
Vout are separated by a membrane boundaryG, which is approximated by

the boundaryG̃. The staircase shape ofG̃ derives from the requirement tha
it must coincide with computational gridlines. Also shown is the scheme

interpolating jump conditions specified onG to gridpoints onG̃, as de-
scribed in detail in the text.
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Since the exact normal is generally not known in app
cations, one has to employ some kind of an interpolat
scheme to obtain a good estimate. In our practical implem
tation, we find it easier to ‘‘correct’’ the area of a membra
element:Ãk5Ak cosuk and storeÃk when sampling geom
etry. A rigorous analysis~see Appendix! shows that such
membrane flux correction as described above ensures
convergence ofũi to ui in the model linear elliptic and para
bolic cases. By constructing exact solutions for some non
ear cases, our numerical tests also indicate convergence

We now give a more detailed description of our flu
~membrane! correction method using the 2D case for illu
tration purposes. Slightly more complicated bookkeeping
required for the 3D case. For simplicity, we drop the spec
number i dependence and letg(x) denote the explicitly
known value ofgi(ui(x1 ,t),ui(x2 ,t)) from the previous
time step~see below for the discussion of time discretiz
tion!. Let h be the grid size in the staircase approximatio
First take many pointsx̄i alongG so that the arc length be
tweenx̄i and x̄i 11 is less than 2h. For any pointxPG, let u

be the angle that its normal makes with thex axis. Defineū i

be the value ofu at x̄i .
Each center pointx of a horizontal or vertical segment i

G̃ is at most 2&h away from at least onex̄i . Pick anyx̄i in
case there is a choice. Then for allx in this same segment
define the corrected flux

g̃~x!

55
g~ x̄i !cosū i ,

if x is in the horizontal segment ofG̃

g~ x̄i !sinū i ,

if x is in the vertical segment ofG̃

. ~2.8!

As shown in the Appendix, such flux corrections on the sta
case membrane ensure thatũi converges tou in some norm.

For the interior points inV in andVout, we currently use
a finite volume method7 to implement an implicit backward
difference time discretization8 of the diffusion term, and an
explicit treatment of the nonlinear reactions in Eq.~2.1!. This
gives us numerical stability, and avoids solving a large s
tem of nonlinear equations, when the membrane jump c
ditions are also treated explicitly. The local discretizati
error is first order in time and second order in space. T
backward difference discretization is usually derived by
finite difference approximation. However, the same sche
can be obtained as a consequence of the finite volu
method,7,9 which is numerically conservative. Unlike non
conservative numerical schemes that would give mass
servation only within a certain tolerance provided the spa
and temporal steps are small enough, the finite volume
proach ensures exact mass conservation even when the
size is coarse~so that solution may not be computed acc
rately! which is important in physiological applications. On
can regard the finite volume method as a systematic wa
arriving at a conservative finite difference type scheme.9

The zero boundary flux condition~2.4! on a rectangular
domainV can be discretized in a standard way with seco
Downloaded 16 Nov 2001 to 137.78.90.162. Redistribution subject to AIP
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order accuracy.8 As for the membraneG, the treatment, as
discussed above, is more complicated and leads to a lo
order of accuracy in space in our current implementation.
improve the overall convergence rate of the entire algorit
in the future, a necessary condition is a better reconstruc
of the membrane location to generate an accurate analy
description. Various interpolation algorithms are being tes
at this time.

The resulting system of linear algebraic equations
solved iteratively at each time step by the line-by-li
method.7 The size of this linear system is determined by t
number of computational volumes~or grid points! and the
number of species. For a typical application, more than 9
of the total computational time in the entire simulation
spent on the solution of the linear system. It is, therefo
worthwhile to invest some effort in improving the efficienc
of the linear solver. We are currently experimenting w
other iterative solvers based on Krylov iterative metho
such as preconditioned conjugate gradients10 with a precon-
ditioner using incomplete factorizations. Preliminary te
show the reduction in computational time by at least a fac
of 2 compared to the current line-by-line solver. We are a
planning to test other preconditioners that take advantag
the special matrix structure, such as block and ADI prec
ditioners. The parallel implementation of these solvers wo
further improve the speed of computations. Some preli
nary experiments conducted on alternating direction ty
solvers show encouraging speed-ups for a small numbe
processors. However, more work is needed before a deci
can be reached on what combination of iterative solvers
parallel implementation will give the best flexibility an
overall performance.

C. Fast processes in reaction–diffusion systems

Biological processes are generally composed of set
events with vastly different time scales. Such multiple tim
scales in the systems of interest make the equations stif
regular algorithm will necessitate a small time step to reso
the fast time scale for its numerical stability, even though
actual physical phenomenon occurs at the slow time sc
Unless special precautions are taken, this will lead to exp
sive numerical calculations. We first consider systems w
fast reactions and then briefly discuss the opposite limit
case when diffusion or other equilibrating processes~e.g.,
relaxation of charges to a membrane! are very fast.

Calcium dynamics is an example of a situation wher
system contains reactions~calcium buffering! that are much
faster than the other key elements, calcium diffusion, a
fluxes from ~and back to! the internal calcium stores.11 In
1994 Wagner and Keizer developed the rapid buffer appro
mation to deal with this problem.12 They used a pseudo
steady approximation to exclude ‘‘fast variables’’ and d
rived an effective transport equation for calcium. Th
equation, in general, is no longer of a reaction–diffusi
type. Thus, we could not use this approach in our gen
framework directly because~1! it would require a user to do
preliminary analytical work, which can often be quite in
volved, and, more importantly,~2! in each particular case th
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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final equations might be of different forms and require d
ferent algorithms. What we need is a general, purely num
cal, approach that can be applied to any reaction–diffus
system with fast subsystems, no matter how complex its
action scheme is.

We have developed such an approach,13 which is based
on the combination of time splitting14 and a pseudo-stead
approximation applied to the fast subsystem. In this
proach, time splitting involves updating variables in tw
steps, separately for slow processes and for fast react
Thus, we always remain within a general reaction–diffus
scheme. In the current approach, to update variables in
reactions, we use a pseudo-steady approximation; i.e.,
replace ordinary differential equations with algebraic eq
tions that reflect rapid equilibrium of fast reactions. At th
point care must be taken in choosing a number of indep
dent algebraic equations equal to the number of unknow
This is achieved with stoichiometry analysis5,15 that results
in a coupled system of nonlinear algebraic equations an
set of linear constraints, corresponding to conservation r
tionships within the fast subsystem. It is important that
values of ‘‘fast’’ invariants are updated at each time s
using results from solving ‘‘slow’’ equations. The stoichiom
etry analysis is performed automatically within our fram
work after a user specifies which reactions are conside
fast.

We now describe our algorithm in more detail.13 With-
out loss of generality, let the firstk reactions be fast with
ratesn1 ,...,nk ,k<m, respectively, while the remainingm
2k reactions are slow with ratesnk11 ,...,nm , respectively.
Diffusion is assumed to be a slow process which is usu
the case in the length scale of interest. A typical time st
say from T to T1Dt, is advanced in two stages. In bo
stages, the equations are coupled due to the reaction ratn j ,
j 51,...,m.

Stage I:Due to fast reactions. We solve

]ui

]t
5(

j 51

k

a i j n j , i 51,...,n, ~2.9!

with given initial conditionui(x,T), i 51,...,n, x,R3. Its
actual implementation involves the pseudo-steady appr
mation and will be discussed below. We let their solution
ũi(x), i 51,...,n, after a time ofDt.

Stage II:Due to slow reactions and diffusion. Using th
regular algorithm discussed above, we solve

]ui

]t
5Di¹

2ui1 (
j 5k11

m

a i j n j , i 51,...,n, ~2.10!

with the same boundary and jump conditions as for the g
erning equations and initial conditionsũi(x) from the results
in Stage I. The result that we obtain after a time ofDt is our
numerical approximation toui(x,T1Dt). We then repeat
stage I and II to compute the solution at successive time

In Stage I, Eq.~2.9! involves then3k stoichiometry
matrix a ( f )[a i j , 1< i<n, and 1< j <k. Assume the rank
of the matrixa ( f ) to ber, therefore,r<min(n,k). Its left null
spaceN((a ( f ))T) has a dimension ofn2r , with a basis
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$ l1 ,...,ln2r%,Rn. Using ~2.9!, it is then easy to verify that
]/]t( l i•u)50, whereu5(u1 ,...,un)T. Hence for fixedx

(
j 51

n

b i j uj5I i , i 51,...,n2r , ~2.11!

whereb i j is the j th component of the vectorl i , and I i is
constant during this time step~but depend onx!, which
should be updated from the initial conditions in Stage
Equation ~2.11! represent all the conservation relatio
among the species with respect to fast reactions.

Next we employ the pseudo-steady approximation on
fast subsystem, i.e., we assume that the fast reactions a
equilibrium at all times. Consider the usual scenario wh
r 5k<n. This approximation amounts to neglecting the tim
derivative in Eq.~2.9!, and results in

n i50, i 51,...,k. ~2.12!

Together with Eq.~2.11!, they form a system ofn nonlinear
equations forn unknowns:ui , i 51,...,n. We then use the
linear equation~2.11! to reduce it tok nonlinear algebraic
equation~2.12! andk unknowns, and solve them using New
ton’s method, with a good initial guess from the initial co
ditions for ui in Stage I. For the general case whenr ,k, a
particular choice of ‘‘independent’’n i is required to extractr
equations out of a total number ofk. Details are again given
in Ref. 13.

The pseudo-steady approximation has its scope of ap
cability. Obviously, it gives accurate results if the ratio
characteristic times of fast and slow processes is small
fact, our results indicate that the relative error introduced
the approximation is roughly of the order of this ratio.13

Therefore, the approximation may be appropriate if the ch
acteristic times differ by two or more orders of magnitud
However, in nonlinear systems this ratio may vary in t
process and, therefore, this condition might be violated.
formal singular perturbation language, there might be in
rior layers in the solutions with rapid change of variables.
case one would like to resolve the interior layers, more
curate approaches should be used. We still can take ad
tage of time splitting that allows us to break the problem in
a number of manageable simpler sub-problems, that are s
ied in a vast amount of literature. For example, we can tr
the reaction terms in Stage I with a stiff solver that will sa
substantially as compared to a non-stiff version. Howev
the pseudo-steady approximation, when it works, will sa
even more as it eliminates the fast time scale.

Because we break down the original governing eq
tions in a typical time stepDt into two simpler steps~Stages
I and II!, the time splitting error is present even if we solv
the simpler equations~2.9! and~2.10! exactly. The additional
source of error coming from implementing the regular alg
rithm in Stage II was discussed in the previous section.
our actual numerical experiments, overall numerical stabi
and convergence are observed, with an overall accurac
first order in time. The application of our algorithm to stud
ing the effect of fast buffering on calcium waves in bistab
models is described below in Sec. III B.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



r
d
on

to
th
y
a-

e

t o
t o
o
o

ne
he

o

a
ro
co
l-

m
m

a
th

m
u
th
in
r
r
a

la
a

ly
, i
us
a
di
n

ca
t

and
ary

e of
.
le

wn
he
the
nd
n

a
e C
5-

gh
ises
ed
lic

ic–

its,

r
for

ub-
der
nits

a
ell
l-
n the

121Chaos, Vol. 11, No. 1, 2001 The Virtual Cell
We now briefly discuss the opposite limiting case whe
diffusion of some molecular species is very fast compare
reactions and membrane fluxes. In this case, the corresp
ing concentrationui is virtually uniform within a closed re-
gion ~V in in Fig. 2! at any time, so that there is no need
calculate its value for each elementary volume inside
region. Instead, the whole regionV in can be characterized b
a single valueui

in governed by an ordinary differential equ
tion. This equation can be easily derived from Eq.~2.1! by
integrating overV in and taking into account the membran
jump condition~2.5!

]ui
in

]t E
V in

dV52E
G

Dig1dG1E
V in

RidV. ~2.13!

We have recently incorporated the approximation~2.13! in
the Virtual Cell. The actual implementation uses a concep
a regionvariable, a discrete type variable defined on a se
volume or membrane regions. Note that in the case of n
neuronal cells, the membrane potential falls into a categ
of a region variable defined on membranes. Thus, the
capability will allow a user to combine the dynamics of t
membrane potential with the spatially resolved dynamics
species concentrations.

III. EXAMPLES OF THE VIRTUAL CELL
APPLICATIONS TO CALCIUM DYNAMICS

Calcium oscillations and waves play an important role
a prerequisite for triggering a number of physiological p
cesses such as hormone secretion, cell division, muscle
traction, etc.16 One of the key elements of intracellular ca
cium dynamics is calcium release from the endoplas
reticulum ~ER!, an internal calcium store, through calciu
channels that can be activated by cytoplasmic calcium
well as by other signaling molecules that are present in
cytoplasm, such as inositol-1,4,5-trisphosphate (IP3). Two
other components of the calcium flux across the ER me
brane are direct leak through the membrane and calcium
take by molecular pumps—the proteins embedded in
membranes that pump calcium ions back into the ER aga
its gradient. The calcium concentration in the ER is seve
orders of magnitude higher than that in the cytoplasm; the
fore, for many purposes the store can be considered to h
infinite capacity. The ER has a very complex, irregu
geometry.17 Being a continuous closed compartment, it fills
cell with generally nonuniform density while occupying on
;15% of the cell volume. In a continuous approximation
can be modeled by calcium sources and sinks continuo
distributed with a certain density throughout a cell and ch
acterized by certain rates. When combined with calcium
fusion, they give rise to a reaction–diffusion type equatio11

]c

]t
5¹~Dc¹c!1 f , ~3.1!

wherec is the calcium concentration,Dc is the calcium dif-
fusion coefficient, andf 5Jchannel2Jpump1Jleak is the rate of
change of calcium concentration due to fluxes through
cium channels, pumps, and leak. Calcium fluxes across
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outer membrane may also influence calcium dynamics
can be taken into account through the appropriate bound
conditions.

A. An image-based model of calcium waves in
differentiated neuroblastoma cells

Application of bradykinin~BK! to differentiated N1E-
115 neuroblastoma cells elicits a single, transient releas
calcium from internal stores via an IP3-dependent pathway
This rise is in the form of a wave, and is highly reproducib
from cell to cell. The point of origin is typically the middle
of the neurite, and the wave travels in both directions do
the neurite, ultimately filling the soma. Recovery follows t
same pattern, the calcium concentration declining first at
wave initiation site, and spreading out along the neurite a
into the soma. A typical BK-induced calcium wave is show
in Fig. 3.

BK is believed to initiate the calcium response through
g-protein cascade that leads to activation of phospholipas
and the phosphorylation of phosphatidyl inositol-4,
bisphosphate~PIP2! to IP3. The IP3 diffuses through the cy-
tosol to the ER, where it activates calcium release throu
the IP3 receptor calcium channel. The released calcium ra
the free calcium concentration, but also binds to both fix
and mobile endogenous cytosolic calcium buffers. Cytoso
calcium is then pumped back into the ER via sarcoplasm
endoplasmic reticulum calcium ATPase~SERCA! pumps.

The IP3 receptor is a tetramer composed of four subun
each of which has three binding sites: One for IP3, and two
for calcium. Binding of IP3 is considered a prerequisite fo
subunit activation, whereas calcium acts as a coagonist
the IP3 receptor: One calcium binding site activates the s
unit, whereas the other site inactivates the subunit. In or
to fit experimental data, it is assumed that three subu

FIG. 3. ~Color! BK-induced calcium wave in an N1E-115 neuroblastom
cell. BK ~500 nM! was applied externally to the bathing medium of a c
stained with fluorescent dye~fura-2!, and the fluorescence signal was co
lected. In these images, calcium is displayed in pseudocolor, as shown i
colorbar.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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must be in the activated state for the channel to be open
Our model for IP3 dynamics18,19 includes production a

the plasma membrane, at a rate proportional to the leve
BK receptor stimulation, and degradation within the cytos
We model IP3 dynamics as a reaction–diffusion process

]@ IP3#

]t
5Di¹

2@ IP3#2ki~@ IP3#2@ IP3#0!, ~3.2!

whereDi is the diffusion constant of IP3, ki is the degrada-
tion rate of IP3, and@ IP3#0 is the basal IP3 concentration. We
model the BK receptor by assuming that IP3 production is a
function of receptor stimulation. Since this is restricted to
plasma membrane, this enters in as a boundary condition
@ IP3#

d@ IP3#

dn
5Ji exp2ki t. ~3.3!

From this equation, it should be clear that IP3 production is
turned on att50, decreasing in time with rate constantki .
Note thatJi is a function of space, as it contains the dens
of BK receptor.

A number of experimental and modeling studies ha
shown that the binding to the inactivating calcium site is
slowest binding process.20 This leads to the following model

]@Ca21#

]t
5Dc¹

2@Ca21#

1s~Jchannel2Jpump1Jleak!1Rbuffers, ~3.4!

where

Jchannel5JmaxS S @ IP3#

@ IP3#1K IP3
D S @Ca21#

@Ca21#1Kact
DhD 3

3S 12
@Ca21#

@Ca21#ER
D , ~3.5!

is the flux through the IP3 receptor. In this formulation, the
faster activation processes~activating calcium and IP3 bind-
ing to the receptor! are assumed to be infinitely fast. The
binding to the subunits is, therefore, represented as alw
being at equilibrium, giving rise to the first two factors
Jchannel. The channel stateh represents the fraction of chan
nel subunits not yet inactivated by calcium, and introdu
the slow time scale into the model. The SERCA pumps
responsible for refilling the stores following calcium relea
but are also important in maintaining low basal calcium le
els at equilibrium. The flux due to the pumps,Jpump, is mod-
eled as a Hill function

Jpump5Vmax

@Ca21#2

@Ca21#21Kp
2 , ~3.6!

whereVmax is the maximal pump rate, andKp is the calcium
concentration at which the pump rate is half maximal. Bo
the functional form and the parameter values used are
agreement with experimental measurements on SER
Type 2~B! pumps. Finally, we also include a small, passi
leak from the ER to the cytosol
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@Ca21#ER
D . ~3.7!

Our model also includes several cytosolic calcium bu
ers: Stationary buffers representing endogenous buffers
calcium-binding proteins, and mobile buffers represent
the fluorescent dyes used in our experimental measurem
The details of how these buffers are treated are covere
depth below, and are left out of this discussion for brevit

In addition to calcium regulation and release, our mo
includes two additional features: Realistic cellular geome
and experimentally determined spatial variation in the dis
bution of ER, IP3 receptors and SERCA pumps. As discuss
below, both turned out to be critical to our understanding
the BK-induced waves.

The cellular geometries used were derived from fluor
cence microscope images of actual cells, for example,
shown in Fig. 3. Indeed, in cases where comparisons
tween experiment and model were made, the models in
porated the geometry of the actual cell used in the exp
ment. We used the Virtual Cell’s image-based geome
features to input the geometries, and to identify two spa
regions: The intracellular space, and the extracellular sp
Both the cytosol and the ER were mapped to the intracellu
space, and the ER was assigned a spatially varying volu
density, relative to the volume of the cytosol. This allows
to treat the ER as a distinct compartment without having
specify its complicated geometrical shape.

Our model also allows for the spatial variation of th
distributions of the ER, IP3 receptors, SERCA pumps an
BK receptors. In order to estimate these distributions,
performed immunofluorescent staining on fixed cells, and
constructed their three-dimensional distributions; Fig.
shows a volume rendering of the three-dimensional distri
tion of SERCA pumps in an example N1E-115 Nb ce
These reconstructions were then analyzed to compute
relative fluorescence intensities in six regions of each c
Distal soma, proximal soma, proximal neurite, middle ne
rite, distal neurite, and growth cone. These data were t
corrected for relative blurring, and the corrected relative
tensities ~;20 cells per immunostain series! were then
mapped onto the cellular geometry used for each simulat
Figure 5 shows the mapping of ER density~in the interior!
and BK receptor~along the plasma membrane! for an ex-
ample cell. Our analyses showed that the relative distri
tions of ER, IP3 receptors and SERCA pumps were statis
cally indistinguishable~p,0.05!, indicating that both the IP3
receptors and SERCA pumps were uniformly distributed
the ER membrane. Table I shows the mean relative distr
tions ~and standard deviation and standard error! of ER and
BK receptors, subdivided into the six cellular regions. A
simulations used these values, with variations up to but
exceeeding one standard deviation in order to fit the acc
panying experiments.

Figure 6 shows experimental and simulation results
the BK-induced calcium wave in two different N1E-115 N
cells using ‘‘best-fit’’ parameter values~see Ref. 18 for ac-
tual values used!, with the relative distributions of ER, IP3
receptors, SERCA pumps and BK receptors within one st
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 4. ~Color! Example of a 3D immunofluorescence image used to determine intracellular distributions. In the example, an N1E-115 neuroblastom
been fixed and stained with an antibody to SERCA 2.
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dard deviation of the means given in Table I. Following a
plication of BK ~at t50!, IP3 accumulates rapidly in the
neurite, and to a lesser extent, in the soma and distal neu
Calcium and the newly produced IP3 open the IP3 receptors
cooperatively, initiating a bidirectional wave of increas
calcium concentration. The calcium wave spreads with
proximately uniform maximal amplitude~;1.2 mM!. The
elevated calcium then closes the IP3 receptors, and@ IP3# falls
back to basal levels due to IP3 degradation. The SERCA
pumps then restore basal calcium levels, pumping cytos
calcium back into the ER.

The simulation shown in Fig. 6~a! is of a bipolar N1E-
115 neuroblastoma cell. In these calculations, we assum
symmetrical model: Both neurites contain ER and BK rec
tor distributions using mean values from Table I, while t
center of the soma is assigned a relative density of un
Comparison with the experimental images shows remarka
good agreement in a number of key features: The locatio
wave initiation, the bidirectional wave propagation, t
spread of the wave from neurite to soma, maximal amplitu
of cytosolic calcium concentration, and clearance of calci
from the cytosol.

Figure 6~b! shows calculations in an aster-shaped neu
blastoma cell. In these simulations, the BK receptor den
was uniform, and the ER density in the periphery was se
60% of a central circle, and the nuclear region was void
ER. In this case, the fit to experiment was more qualitat
than quantitative. The wave is initiated in the neurite, a
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spreads rapidly into the soma. However, the maximal am
tude of calcium concentration in the soma, and the rate
recovery do not match the accompanying experiment.
speculate, however, that the simulations could be mad
more quantitatively match the experiment with rather sm
parameter changes reflecting population variances.

The two main features of the Virtual Cell illustrated
this example are the ability to specify cellular geometry u
ing experimental images, and the ability to change the ge
etry easily and without modifying the physiological mode
The utility of these two features is apparent in Fig. 6: B
varying realistic geometries, we can draw conclusions ab
the BK induced calcium wave that are independent of ce
lar geometry~e.g., the wave is generally initiated in the ne
rite!.

B. Buffered calcium waves in bistable systems

Calcium buffering is now widely recognized to have
strong impact on the overall intracellular calciu
dynamics.21,22 In addition to endogenous buffers~mainly
proteins with calcium binding sites! that are always presen
in a cell, there is another reason that makes the study of
buffer effect on calcium dynamics very important. In expe
mental studies, calcium dynamics are visualized by loadin
cell with a fluorescent indicator that acts as a high affin
mobile buffer. It is, therefore, crucial to know to what exte
the exogenous buffer~a fluorescent indicator! can distort the
original pattern.
BK
the avera
on the
FIG. 5. ~Color! Intracellular distributions of BK receptor and ER/IP3 receptor/SERCA 2, projected onto the morphology of the cell in Fig. 4. The relative
receptor surface densities along the plasma membrane for the six averaged regions of the cell are shown in color-coding along the periphery;ge
distribution of the ER is identical to that of IP3 receptor and SERCA, and is shown as gradations of gray values within the cell with a scale indicator
right. In both cases, densities are expressed relative to the leftmost section of the soma taken as unity.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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TABLE I. Relative distributions of ER and BK receptors.

Region

ER distribution BKR distribution

Mean SE SD Mean SE SD

Outer soma 1.00 0.00 0.00 1.00 0.00 0.0
Inner soma 1.03 0.02 0.13 1.16 0.03 0.1
Proximal neurite 0.67 0.04 0.25 2.36 0.16 0.7
Mid neurite 0.60 0.04 0.24 2.45 0.22 0.9
Distal neurite 0.58 0.04 0.23 1.79 0.18 0.8
Growth cone 0.53 0.04 0.23 0.95 0.09 0.3
Downloaded 16 Nov 2001 to 137.78.90.162. Redistribution subject to AIP
We have applied our approach13 to fast reactions in
reaction–diffusion systems~see Sec. II C! to study the effect
of fast mobile buffers on calcium waves in bistable syste
@Fig. 7 shows the typical behavior of the functionf (c) in Eq.
~3.1! for one-variable systems# that are known to maintain
stable self-propagating waves.23 Moreover, bistability is
thought to be essential in the phenomenon of fertilizat
calcium waves.24 It is important for bistability thatf (c) has
three zerosCmin,C0,Cmax, which in the absence of diffu-
sion would correspond to the concentration values in t
ed with

co
FIG. 6. ~Color! Experimental and simulation BK-induced calcium release in N1E-115 neuroblastoma cells of differing morphology. Cells were load
fura-2 and imaged as in Fig. 4.~a! Intracellular distributions were modeled as in Fig. 5 but with two neurites instead of one.~b! BK receptor and ER were
modeled as having uniform distributions throughout the cell except for the small fingerlike nascent neurite, which was assigned lower ER densitiesnsistent
with Fig. 5. Scale bars:~a! 50 microns, and~b! 20 microns.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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stable steady states separated by an unstable steady sta
physiological applications the system usually rests a
steady state with lower concentrationCmin . Thus, to excite
the system, we have to overcome the concentration ba
C02Cmin . Therefore, the position of the unstable stead
state concentrationC0 with respect toCmin andCmax charac-
terizes the system excitability.

In the absence of buffers, one can derive a general
plicit expression for the wave speedv of a traveling wave
type solution c(x1vt)5c(j) in a one-variable bistable
system4

v5S E
Cmin

Cmax
f ~c!dcD S E

2`

` S dc

dj D 2

dj D 21

. ~3.8!

In the presence of a mobile buffer interacting with c
cium according to the reaction

Ca1B
CaB, ~3.9!

whereB and CaB denote the free and bound forms of th
buffer, the system is described by the set of equations

]c

]t
5Dc¹

2c1 f 1R,

]b

]t
5Db¹2b2R, ~3.10!

R52konc~bt2b!1koffb,

whereb5@CaB#, Db is the buffer diffusion coefficient,kon

andkoff are the reaction kinetic constants, and the total bu
concentrationbt5@B#1@CaB# is conserved at each spati
point for any t.0 if we assume zero flux boundary cond
tions for the buffer,the same diffusion coefficients for bo
forms of the buffer, and initially spatially uniform buffe
distribution. As we mentioned above, calcium buffering
considered to be much faster than other components af

FIG. 7. ~a! Typical shape of the functionf in one-variable bistable models
~b! Typical traveling wave profile in one-variable models.
Downloaded 16 Nov 2001 to 137.78.90.162. Redistribution subject to AIP
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ing calcium dynamics, so the pseudo-steady approxima
can be applied and the set of reaction parameters reduc
the buffer dissociation constantK[koff /kon. ~Here,@B# and
@CaB# are the concentrations of the free and bound forms
the buffer, respectively.!

According to theorem 2.1, in Ref. 25, the system~3.10!
allows for the monotone traveling wave solutions connect
two stable steady states and a unique wave speed. For
case, it is also possible to derive the general expression
the wave speed, somewhat analogous to Eq.~3.8!13

v5S E
Cmin

Cmax
f ~c!S 11

DbbtK

Dc~K1c!2DdcD
3S E

2`

` S 11
btK

~K1c!2D S 11
DbbtK

Dc~K1c!2D S dc

dj D 2

dj D 21

.

~3.11!

In the limit of low buffer affinity K/Cmax@1 this equation
can be shown13 to reduce to a well-known expression for th
wave speed26

v5v0S 11
Dbbt

DcK
D 1/2S 11

bt

K D 21

, ~3.12!

wherev0 is the speed of a wave in the absence of bufferi
Although Eq. ~3.11! is not explicit, one can get som

important insights by analyzing it. Defineg[Dbbt /Dc . Let
us fix Cmin and Cmax and vary the system excitability b
changing C0 . To emphasize this fact, we writef (c)
[ f (c,C0). Then from Eq.~3.11!, the sign of the wave spee
~and, consequently, the condition for the existence of
traveling wave with the domination of the higher steady-st
concentration! is determined by the sign of the integral

V[E
Cmin

Cmax
f ~c,C0!S 11

gK

~K1c!2Ddc, ~3.13!

which depends both on system excitability and buffer ch
acteristics. This is in agreement with the result of Ref.
obtained by means of a particular nonlinear transformati
We further define

G~C0![E
Cmin

Cmax
f ~c,C0!dc,

H~C0 ,K ![E
Cmin

Cmax f ~c,C0!

~K1c!2 dc.

If ] f /]C0,0, which is true, for instance, in the case of
cubic polynomial, f (c)5(J0 /Cmax

3 )(c2Cmin)(c2C0)(Cmax

2c), then ]G/]C0,0 and ]H/]C0,0. Hence there are
unique values ofC0 , c̄, and c̃5 c̃(K), such thatG( c̄)50
and H( c̃,K)50. SinceH( c̄,K),0, thenc̃P(Cmin ,c̄) and c̃
tends toc̄ asK increases.

We now fix K and consider anyC0P(Cmin ,c̃# ~high ex-
citability regime!; then the integral~3.13! is positive irre-
spective of the value ofg. In other words, the traveling wav
speed is always positive no matter what total buffer conc
tration we introduce and how large its diffusion coefficie
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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is, as long as the system excitability is sufficiently high. O
the other hand, whenC0P( c̃,c̄) ~the low excitability re-
gime!, there is a threshold value ofg

gC0[2
1

K

G~C0!

H~C0 ,K !
, ~3.14!

such that forg.gC0
, there are no traveling waves with pos

tive speeds. IfC0> c̄, the wave speed is negative~the lower
steady-state concentration dominates! for any combination of
buffer parameters.

It is interesting to note that the dependence of the
merator in Eq.~3.11!, V, on Db is drastically different in
regions of high and low excitability: ForC0, c̃ the wave
speed v is positive and ]V/]Db.0, while for C0

P( c̃,c̄),]V/]Db,0. Thus, in situations when the numerat
of Eq. ~3.11! plays a dominant role in determining the wa
speed, an increase of the buffer diffusion coefficient m
speed up or reduce the wave velocity in the high- and lo
excitability modes, respectively. In the low-affinity lim
K/Cmax→`, when the low-excitability region is disappearin
becausec̃→ c̄, we expect the wave speed to be an increas
function ofDb for anyC0P(Cmin ,c̄), in accordance with Eq
~3.12!. However, in the case of a high affinity buffer an
low-system excitability (C0P( c̃,c̄)), this dependence migh
be the reverse. In this case, the growth ofDb will lead to a
point g5gC0

at which the traveling wave with a positiv
wave speed ceases to exist. Our numerical results~Fig. 8!

FIG. 8. Results of 1D simulations for the cubic polynomial model: T
normalized wave speed vs buffer binding ratio for varying system excita
ity and buffer diffusion atK50.1mM. While decreasing with the growing
total buffer concentration, the wave speed stays positive at high sy
excitability (C050.1mM) and becomes negative beyond some threshold
low system excitability (C050.4mM). The dependence of the wave spe
on the buffer diffusion coefficient is increasing at high excitability and d
creasing at low excitability. In these calculations,Cmin50 mM, Cmax

51.0mM, andJ0520mM/s.
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obtained from 1D simulations for the cubic polynomial co
firm such a conclusion.

Although the simple analysis, valid for one-variab
bistable models, does not apply in multivariable bista
models, most of the qualitative conclusions appear to hold
a more realistic Li–Rinzel model20 which has been success
fully applied in the studies of calcium dynamics.18,19,24In the
absence of a mobile buffer, the model contains two va
ables: The calcium concentration,c, and the probabilityh
that the inhibition site of a channel subunit is free of calciu
The model, given by the equations

]c

]t
5Dc¹

2c1 f ~c,h!,

~3.15!
]h

]t
5g~c,h!,

is bistable for some parameter sets,13,24 and we again con-
sider two modes when the unstable steady-state conce
tion C0 is close to and far from the low steady-state calciu
concentrationCmin ~Fig. 9!. We will call them again the
modes of high and low excitability, respectively, assumi
that, as in one-variable models, the relative location
steady-state concentrations@for Eqs. ~3.15! without diffu-
sion# controls the system excitability.

Our numerical results show that, similar to the on
variable models, the buffer effect on the speed of a trave
wave strongly depends on the system excitability. In the h
excitability mode, the wave speed increases with the bu
diffusion coefficient and will never become negative~Fig.

l-

m
t

-

FIG. 9. Nullclines of the Li–Rinzel model for the cases of high~a! and low
~b! excitability.
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10!. For the low-excitability mode~Fig. 11!, the wave speed
is a decreasing function of the buffer diffusion coefficient
a fixed total buffer concentration. When the total buffer co
centration exceeds a critical level, the wave speed beco
negative as in the one-variable models.

In this model, however, with increasing total buffer co
centration, we observe a sudden drop of wave speed pre
ing the change in the wave direction~Fig. 11!. Thus, there is
a finite interval of wave speed values for which no sta
traveling wave exists. On the other hand, if we start with
wave profile, corresponding to a high total buffer concent
tion, and then gradually decrease the buffer concentratio
our simulations, the jump occurs at a lower critical val
resulting in a typical hysteresis loop presented in Fig.
which is a magnified picture of the middle curve in Fig. 1
near its discontinuous jump. Therefore, for a fixed buf
diffusion coefficient, there are at least two stable travel
waves with very different velocities when the total buff
concentration lies in a certain interval. Since we use an in

FIG. 10. Wave speed dependencies on the total concentration of a
affinity buffer (K50.1mM) at varying buffer diffusion coefficient in the
high-excitability mode of the Li–Rinzel model.

FIG. 11. Wave speed dependencies on the total concentration of a
affinity buffer (K50.1mM) at varying buffer diffusion coefficient in the
low-excitability mode of the Li–Rinzel model.
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value problem solver to track down a traveling wave, on
stable traveling waves are accounted for in Figs. 10 and
We expect the full picture to be a reverseS—curve as de-
picted in Fig. 13, with bifurcation occurring when we cro
the limit pointsA1 andA2 . Because the middle branch in th
reverseS—curve usually corresponds to the unstable trav
ing waves, a continuation algorithm27 has to be employed to
trace the full response curve.

When the total buffer concentration is such that there
two stable traveling waves, each of the two stable branc
has its own domain of attraction. Initial conditions that a
close to one of the stable wave profiles will usually be
tracted to it. If we push the total buffer concentration beyo
the limit points~say, we start with the wave that belongs
the fast branch and then increase the buffer concentratio
the value for which there exists only one stable wave on
slow branch!, since now there is only one stable travelin
wave, a large change in the wave speed has to take pla
settle down into the stable wave profile. Such a disconti
ous change is a hallmark of a bifurcation taking place in
system. No similar phenomenon has been observed in
one-variable models.

h-

h-

FIG. 12. Hysteresis loop in the wave speed dependence on the total b
concentration in the low excitability mode of the Li–Rinzel model, atK
50.1mM and Db550mm2/s.

FIG. 13. A full reverse S-curve with the unstable branchA1A2 .
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The experimentally observed fertilization calciu
waves28 are not traveling plane waves, they are rather tr
sient processes initiated by localized spikelike perturbati
in a finite domain constrained by a cell membrane. A flu
rescent indicator that is used in experiments to visualize
cium dynamics, e.g., fura-2,29 acts as a high-affinity mobile
buffer and, as we saw, can significantly influence the pr
erties of calcium waves. To study the possible effect of
fluorescent indicator on fertilization calcium waves, we ha
run three-dimensional simulations using realistic geome
initial, and boundary conditions. In particular, we have sim
lated fertilization calcium waves in a spherical cell~an egg!
using the Li–Rinzel model~3.15! with a physiologically rea-
sonable set of parameters13 that provides system bistability in
the high-excitability mode.

We introduce two types of buffers in our 3D simulation
The immobile low-affinity buffer, with a dissociation con
stant of 10mM and a total concentration of 200mM, repre-
sents endogenous buffers, while the mobile high-affin
buffer, with a diffusion coefficientDb550mm2/s and a dis-
sociation constantK50.24mM, mimics fura-2. A wave is
initiated by a calcium spike localized near the cell me
brane. The spike is centered at the membrane and has
dius of 5 mm and an amplitude of 30mM. We run simula-
tions with varying total concentrations of the indicator,bt .
The results show a strong effect of the fluorescent indica
on wave formation. The indicator~the mobile buffer! usually
causes a delay in the wave formation and can even preve
wave if the total concentration of a mobile buffer rises abo
a certain threshold for the given initial conditions. For o
parameter set, this critical concentration is found to be;11
mM.

The simulation results obtained atbt59.5mM are pre-
sented in Fig. 14. Since in biological experiments one
rectly measures the fluorescence intensity which correl
well with the bound buffer concentration, it is interesting
compare the dynamics of the bound form of fura-2 with t
actual dynamics of free calcium. Figure 14 illustrates a n
linear relationship between the two dynamics. Thus, care
to be exercised in extracting the calcium dynamics from
experimentally measured fluorescence intensity.30

Finally, the calcium waves in the presence of a moder
amount of fura-2 and without it are compared in Fig. 15. T
fluorescent indicator strongly interacts with the initiatin
spike and substantially slows down the wave. Thus, eve
the calcium dynamics are correctly extracted from the fl
rescent intensity, it can still differ significantly from the a
tual situation without an indicator.

IV. CONCLUSION

The Virtual Cell is a computational modeling enviro
ment designed to be used by both cell biologists and m
ematical biologists. A given cell biological process is defin
in terms of which molecules are involved and where they
located within the cell. An intuitive, web-based interface
lows the specification of cellular compartment topolog
these compartments are then associated with the rele
molecular species and their chemical reaction and trans
Downloaded 16 Nov 2001 to 137.78.90.162. Redistribution subject to AIP
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kinetics. This is sufficient to specify a compartmental mod
that can then be automatically converted to a system of
dinary differential equations. To implement spatial mode
cellular geometry~derived from 2D or 3D experimental o
idealized images! is mapped to the previously defined topo
ogy and appropriate diffusion coefficients are specified. T
then necessitates the solution of partial differential equatio
The framework automatically converts the biological mech
nisms to a corresponding mathematical system that inco
rates mass conservation relationships and pseudo-st
state approximations. The mathematical equations that
generated by the graphical user interface can be viewed
edited, thus facilitating interactions between experimental
and theoreticians. The Virtual Cell then applies the appro
ate numerical solver to perform simulations of intracellu
dynamics and analyze simulation results. Several stand
solvers including stiff solvers and variable time step solv
are available for the solution of ordinary differential equ
tion. The finite volume method is currently used for PD
problems. Because the simulations produce the same k
of spatial and temporal records that can be obtained by
periment, the predictions of a model can be analyzed w
the same statistical and/or image analysis methods use

FIG. 14. Calcium wave in the presence of the fluorescent indicator fu
~K50.24mM, Db550mm2/s, andbt59.5mM! ~left column!, as compared
to the dynamics of the indicator-bound calcium that mimics the behavio
the fluorescence intensity~right column!. Images of the equatorial slice o
an egg are accompanied with a line scan along the cell diameter that
cides with the symmetry axis. Fertilization is initiated at the left pole of t
sphere.
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analyze experiments. Models, geometries, mathematical
tems, and simulation results are stored in a central data
that maintains the privacy of user models while providing
mechanism for model sharing. The software is access
through a web browser via the website of the National R
source for Cell Analysis and Modeling at the U. Con
Health Center~www.nrcam.uchc.edu!.

In this paper, we have described some of the mathem
cal details that allow the Virtual Cell to be a useful gener
purpose tool for the solution of reaction–diffusion equatio
relevant to biology. We have also provided examples
some applications of the software to problems in calci
dynamics. It is important, however, to note the limitations
the current embodiment of the system and the goals for
ture improvement. Most important is the improvement of o
numerical methods for the solution of PDEs to enable
treatment of realistic large 3D models. These could inclu
stiff spatial solvers, full operator splitting and unstructur
grid techniques, as well as finite element-based solvers. B
deterministic and stochastic physical formulations have b
implemented, but the latter is still in need of significant d
velopment and has not as yet been deployed within the
leased version of the software. Finally, it is important to n
that reaction–diffusion equations alone are not a suffic

FIG. 15. Simulation of a fertilization calcium wave in the presence of fur
~K50.24mM, Db550mm2/s, andbt59.5mM! ~left column!, and in the
absence of a fluorescent indicator~right column!. Images of the equatoria
slice of an egg are accompanied with a line scan along the cell diamete
coincides with the symmetry axis. Fertilization is initiated at the left pole
the sphere.
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physical framework for the solution of all problems in ce
biology. Any problem that involves structural dynamics, e.
cell motility or mitosis, will require new physical formula
tions and numerics that will need to be integrated with
existing infrastructure for reaction–diffusion. Thus, our e
forts to develop the Virtual Cell will continue to offer excit
ing research challenges as we approach the ultimate go
enabling mathematical modeling of any cell biological pr
cess.
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APPENDIX: A PROTOTYPE PROBLEM FOR FLUX
CORRECTION

As discussed in Sec. I B, cell geometry can be defin
analytically or can be taken directly from an experimen
microscope image. To unify both ways of defining geomet
we approximate the cell membrane by a jagged vertical
horizontal boundary as in Fig. 2. In the future, we will tre
a smooth cell membrane more accurately, so that in conju
tion with other improvements, we can obtain a higher-ord
method. In what follows, we will show that the method
flux correction on the staircase membrane described in S
II B ensures convergence in some norm. We start with
model linear elliptic problem and then extend results to
linear parabolic problem. It is physically clear that the co
vergence should be also observed in the nonlinear parab
case because the suggested treatment of membrane flux
independent of whether the reaction term is linear or non
ear.
Case I: the elliptic problem.

Let f :RN→R be in L loc
2 and g:RN→R be continuous.

Given aC1 domainV,RN and consider an elliptic problem

¹2u2u52 f , xPV,
~A1!

]u

]n U
]V

5g.

Physicallyg is the flux per unit surface area of the doma

Next, we replaceV by another Lipschitz domainṼ, and
study

¹2ũ2ũ52 f , xPṼ,
~A2!

]ũ

]n U
]Ṽ

5g̃.

We will prove thatu andũ are close to one another in som

norm, whenṼ is a good staircase approximation toV, pro-
vided that g̃ is chosen properly. For easy exposition, w

assume thatVPṼ in the proof. We caution that even in th
case wheng51, we cannot chooseg̃51 because the stair
case domain has much larger surface area than that ofV and

consequently the total flux into the domainsV and Ṽ are
substantially different.

at
f
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130 Chaos, Vol. 11, No. 1, 2001 Schaff et al.
For all test functionwPC`(V̄) @and hence for all tes
function in H1(V) by approximation#, weak H1 solution u
satisfies

E
V

@¹u•¹w1uw2 f w#5E
]V

gw, ~A3!

and a similar equation forũ.
Since the domainV is C1, recall the standard bounde

linear extension operatorE:H1(V)→H1(RN).31 Thus there
exists a constantC.0 such that for allvPH1(V), Ev5v in
V, and

iEviH1~RN!<CiviH1~V! . ~A4!

For simplicity, we will denoteEv by v from now on. We
now extendu to a H1(RN) function.

Define aH1 functionw[ũ2u in Ṽ. From Eq.~A3! and
the corresponding equation forũ, we obtain

E
Ṽ

@¹w•w1ww#

5E
Ṽ\V

@ f w2¹u•¹w2uw#1E
G̃
g̃w2E

G
gw, ~A5!

whereG and G̃ are part of the boundary as indicated in F
2.

We will takew5w in the above equation. In case of ze
boundary flux, i.e.,g5g̃50, we see that

iwi
H1~Ṽ !

2

<i f iL2~Ṽ\V!iwiH1~Ṽ\V!1iuiH1~Ṽ\V!iwiH1~Ṽ\V!

<i f iL2~Ṽ\V!iwiH1~Ṽ !1iuiH1~Ṽ\V!iwiH1~Ṽ !

< 1
2iwi

H1~Ṽ !

2
12i f iL2~Ṽ\V!12iuiH1~Ṽ\V! . ~A6!

Since i f iL2(Ṽ\V) and iuiH1(Ṽ\V) go to zero as meas(Ṽ\V)
→0, we haveũ→u in H1(V).

With nonzero boundary fluxg and a proper choice ofg̃,
if we can show that withw5w, the difference in the last two
terms on the right-hand-side of~A5! is small, then the same
argument leads toũ→u in H1(V). For simplicity, we as-
sume the domain to be two-dimensional although only
slightly more complicated book keeping is required f
higher dimensions. Then, according to our approach
scribed in Sec. II B, the corrected flux densityg̃ is defined by
Eq. ~2.8!.

Let all the horizontal and vertical segments with t
same x̄i be denoted byG̃ i ,h and G̃ i ,v , respectively. Then,
from their definitions, *G̃g̃wds5S i*G̃ i ,h

g( x̄i)w cosūidx

1Si*G̃i,v
g(x̄i)w sinūi dy. In addition, *Ggwds5*Ggw

3(cos2u1sin2 u)ds5*Ggwcosudx1*G gwsinudy. We note
thatw are evaluated at two different locationsG andG̃ in the
above two equations.

For all xPG̃ i ,h , let their x-coordinate satisfyai<x
<bi . Thus
Downloaded 16 Nov 2001 to 137.78.90.162. Redistribution subject to AIP
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H[U E Ggw cosu dx2S iE G̃ i ,h
g~ x̄i !w cosū idxU

<S i H U E
ai

bi
~g cosu2g~ x̄i !cosū i !wdxU

1U E
ai

bi
g~ x̄i !cosū iE ~]w/]y! dyUJ .

With h small enough, we can assume thatug cosu

2g(x̄i)cosūi u<e. Hence, there exist constantsCi.0, i
52,3,... such that

H<eE
G
uwu1C2E E

Ṽ\V
U]w

]yUdx dy

<eC3iwiH1~V!1C3Ameas~Ṽ\V!iwiH1~Ṽ !

<C3iwiH1~Ṽ !~e1Ameas~Ṽ\V!!

<2eC3iwiH1~Ṽ ! , ~A7!

after invoking the trace theorem.31 Inequality ~A7! and a
similar one for integration overG̃ i ,v lead to

U E
G̃
g̃w2E

G
gwU<4C3eiwiH1~Ṽ !<

1
4iwi

H1~Ṽ !

2
1C4e2,

when meas(Ṽ\V) is sufficiently small. Thus, this last term
has to be added to the right-hand side of inequality~A6!. The
same argument allows us to recoverũ→u in H1(V) even
when the boundary flux is nonzero.
Case II: the parabolic problem.

Fix any T.0. Let f :RN3@0,T#→R be in L loc
2 and

g:RN3@0,T#→R be continuous. Again, we have aC1 do-
main V,Ṽ, which is a staircase approximation. LetQT

[V3@0,T#, andQ̃T[Ṽ3@0,T#. We consider

¹2u2u2ut52 f , xPQT ,

]u

]n U
]V

5g, ~A8!

u~x,0!5u0~x! in V.

Similarly,

¹2ũ2ũ2ũt52 f , xPQ̃T ,

]ũ

]n U
]V

5g̃, ~A9!

ũ~x,0!5u0~x! in Ṽ.

Here we have assumed that the initial conditionu0 for u and
ũ are the same inV, hence we use the same symbols for tw
different initial conditions. Letu0PL loc

2 (RN).
Extendu to RN3@0,T#, and define a functionw[ũ2u

in Q̃T . Hencew(x,0)50 in V. We then follow similar ideas
in getting Eq.~A5! as in the elliptic case. After we put th
test functionw to bew, we have for anytP(0,T#,
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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1

2 EṼ
w2~•,t !1E E

Q̃t

@ u¹wu21w2#

5
1

2 EṼ\V
w2~•,0!1E

0

tE
Ṽ\V

$ f w2¹u•¹w2uw%

1E
0

t H E
G̃
g̃w2E

G
gwJ . ~A10!

Similar calculations lead to max0<t<T *Vw2(•,t)
1**QT

@u¹2wu21w2# goes to zero as meas(Ṽ\V)→0.
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