
F R O N T M A T T E R

An Exact Accelerated Stochastic Simulation Algorithm
Eric MjolsnessH1,2L, David OrendorffH2L, Philippe ChatelainH3L , and Petros Koumoutsakos H3L

H1L Institute for Genomics and Bioinformatics, and
H2L Department of Computer Science, University of California, Irvine, USA

H3L Computational Science, ETH Zürich, CH-8092, Switzerland

UCI ICS TR # 08-09
November 2008

B O D Y

Abstract
An exact method for stochastic simulation of chemical reaction networks, which accelerates the Stochas-

tic Simulation Algorithm (SSA), is proposed. The present “ER-leap” algorithm is derived from analytic
upper and lower bounds on the multi-reaction probabilities sampled by SSA, together with rejection
sampling and an adaptive multiplicity for reactions. The algorithm is tested on a number of well-quantified
reaction networks and is found experimentally to be very accurate on test problems including a chaotic
reaction network. At the same time ER-leap offers a substantial speed-up over SSA with a simulation time
proportional to the 2/3 power of the number of reaction events in a Galton-Watson process.

1 Introduction

The Stochastic Simulation Algorithm (SSA) [1] is a widely used method for simulating the stochastic
dynamics of chemical reaction networks. SSA executes every reaction event, and provides an accurate view of the
system dynamics, albeit at a significant computational cost over the corresponding mass-action differential
equations that approximate the mean numbers of each molecular species. A number of algorithms have been
proposed for the acceleration of the SSA at the expense of its accuracy. The t-leaping algorithm [2] and its recent
variants [3-5] simulate leaps over several reaction events during a preselected time increment. Further develop-
ments include multiscale stochastic simulation algorithms such as "Nested Stochastic Simulation'' [6], the multi-
scale methods [7] and [8], and the “slow-scale stochastic simulation” algorithm [9]. Another acceleration method
[10] uses rejection sampling to achieve constant time scaling with the number of reaction channels; this differs
from present work which uses rejection sampling to improve scaling with respect to the number of reaction events.

A related work is the R-leaping algorithm [11] which proposes the simulation of preselected numbers of
reaction firings that occur over time intervals sampled from an Erlang distribution. An essential aspect of these
approximate methods is the requirement that the changes to the reaction rate or “propensity” functions are small
during each step.

We present a stochastic simulation algorithm which, similar to R-leap, accelerates SSA by executing
multiple reactions per algorithmic step, but which samples the reactant trajectories from the same probability
distribution as the SSA. This “Exact R-leap” or “ER-leap” algorithm is a modification of the R-leap algorithm
which is both exact and capable of substantial speedup over SSA. The simplest versions of both t-leap and R-leap
have difficulties with the potential of producing negative numbers of reactants, which can be fixed by modifica-
tions such as Binomial tau-leap [3] and modified tau-leap [4]. Since ER-leap is exact, it intrinsically avoids this
potential pitfall; stochastic moves to negative reactant states have zero probability and will be rejected. We

1

emj
Text Box
In press, Journal of Chemical Physics, 2009

demonstrate by computational experiments that ER-leap can execute in time sublinear in the number of reaction
events to be simulated, while remaining exact. The algorithm is based on the rejection sampling concept, using
efficiently computable bounds on the SSA probability distribution.

The paper is organized as follows : In Section 2 we derive upper and lower bounds on the SSA reaction
probabilities after multiple reactions, expressed using matrix notation for Markov processes, and use rejection
sampling to derive the ER-leap algorithm. The algorithm itself is stated, analyzed for cost, and illustrated in
Section 2.5 . In Section 3 we report on a series of numerical experiments designed to evaluate the accuracy and
speedup of the ER-leap algorithm. In Section 4 we discuss the results, and conclude with an assessment of the
method in the context of related works and an outline of directions for future work.

2 Theory

This section is organized as follows: Section 2.1, Section 2.2, and Section 2.3 introduce the required
notations, reaction probabilities, and bounds on these probabilities, respectively. The ER-leap algorithm’s key
update equations are derived from these probability bounds in the calculations of Section 2.4 . The resulting
algorithm is assembled from the key update equations, analyzed for cost, and illustrated in the case of a simple
reaction network in Section 2.5 .

We consider a set of reactions, indexed by r , among chemical species Ca , indexed by a :

(1)8ma
r Ca < ö 8 m£

a
r Ca < with reaction rate rr

Here mr = @ma
r D and m£ r = @m£

a
r D are the input and output stoichiometries of the reaction r . In the following we

derive an expression for the probability of states after a number of such reaction events.

2.1 Notations

We introduce the following notations. The definition of a version of the indicator function 1 from
Boolean values to integers is:

1 HPL ª ; 1 if predicate P is true
0 otherwise .

The Kronecker delta function dHa, bL or dHa - bL is:

dHa - bL = da b = 1 Ha = bL = ; 1 if a = b
0 otherwise

The function V = diagHvL turns a d -dimensional vector v into a d äd square matrix V with components
Vi j = di j vi , i.e. zero everywhere except the diagonal which contains the components of v . Given an ordered list
of noncommuting matrices V HkL indexed by integers k , we defined the ordered product notation

‰
k=Kmax äKmin

V HkL = V HKmax L ÿ V HKmax -1L ÿ ... ÿ V HKmin +1L ÿ V HKmin L

In addition to the standard set-builder notation 8x » PHxL< for defining the members of a set from a
predicate P , we will build ordered sets or lists in a similar way using square brackets: @xHiL » PHxHiL, iL »» i œ D
imposes the image of a preexisting ordering on the index set (such as the ordering of natural numbers if Œ)

Exact_R_LeapTR08_09V2.nb

2

onto any elements xHiL selected for inclusion by the optional predicate P , and thus denotes a set together with a
total ordering. For example, the B-tuple @nb »» b œ 81, ... B<D denotes the components of a vector n.

2.2 Markov chain and multi-reaction probabilities

We denote states of the chemical reaction network by I, J, K, time by t , and algorithm step number by
k . Let na be the number of reactant molecules of type a present in a given state I at time t , so that I corresponds
to the vector or ordered list of nonnegative integers n = @nb »» b œ 81, ... B<D . Likewise if we are discussing are
several such states that are present at different times t£ and t≥ , we may denote them by n£ and n≥ or correspond-
ingly by J and K . The time interval between successive reactions is denoted by t .

We wish to track the time evolution of the probabilities PrHI, tL , for all possible system states I by
employing the governing Master (or Chapman-Kolmogorov) equation [12]. which we shall use here. We define
PrHI, t » J, kL as the “just-reacted state probability”: the probability of being in state I at time t immediately after
the k -th reaction event, given that the state is J at time zero. The Chapman-Kolmogorov equation [12] for such
just-reacted state probabilities follows from taking k to be a discrete time coordinate, and can be written:

(2)PrHI, t » J, kL º ‚
K

‡
0

t
d t PrHI, t » K, 1L PrHK, t - t » J, k - 1L

A key quantity in this equation is the “kernal” PrHI, t » K, 1L : the probability that if k = 1 reaction event has
just occurred, and if the previous state was K , then a time t has elapsed since the last reaction event and the new
state is I . This kernal also provides the linear weights that advance the quantity PrHK, t - t » J, k - 1L , whis is the
probability distribution over states K just after k - 1 reactions, to produce the probability distribution over states
I after k reactions, PrHI, t » J, kL . So we can rename this kernal the conditional distribution

HI, t£ » J, tL = PrHI, t£ - t » J, 1L
using notation similar to that of [13]. This is analogous to a matrix with two indices, each of which is a pair

consisting of a discrete-valued systems state (such as I or J) and a continuous-valued time (such as t£ or t).
Under the SSA algorithm must factor into an update from time t to t£ and then from state J to state

I :

(3)HI, t£ » J, tL º W`
I,J expH-Ht£ - tL DJ J L 1 Ht£ r tL .

with

(4)D = diagIh ÿ W` M

where h is the vector whose components are all 1, and “diag” turns a vector into the corresponding diagonal
matrix. This result is derived in more detail in [14] and [13]. The state space transition matrix W`

 contains the
summed probability rates or “propensities” for all reactions that could move the system from state J to state I . The
expenential term governs the distribution of waiting times between reaction events. The I ’th component of the
vector h ÿ W` , which is defined as DI I , is the the total probability per unit time for the system to leave state I . (In
many papers the summed reaction rate DI I is denoted as a0 HnL instead.)

Continuing with the matrix analogy for , and assuming that t < 0Ô k r 0 fl PrHI, t » J, kL = 0,

(5)PrHI, t » J, kL º ‚
K

‡
-¶

¶

d t HI, t » K, t - tL PrHK, t - t » J, k - 1L

Exact_R_LeapTR08_09V2.nb

3

Using vector notation PrH. » J, kL for the HI, tL parameters, we may write

(6)PrH. » J, kL ª ÎPrH. » J, k - 1L
 where the matrix-vector inner product Î is both a sum over states and an integral over all times t , as in Equa-

tion 5, and where

(7)= W`
 expH-D t DL 1 HD t r 0L .

Equation 7 expresses the Markov chain for the change of both chemical state and total time, after one reaction
event. The matrix W`

 contains probability rates or “propensities”, the much larger matrix contains only normal-
ized probability densities for the combination of a discrete state change and a continuous time change D t .

From Equation 6 and Equation 7, after k reaction events,

(8)PrH. » J, kL = k ÎPrH. » J, 0L = AW`
 expH-D t DL 1 HD t r 0LE

k
ÎPrH. » J, 0L

This expression is in accord with, for example, Theorem 10.1 of [14]. Furthermore it expresses concisely the
SSA algorithm for sampling from PrHI, t » J, kL by alternately updating the time t of most recent reaction, and the
molecular state I .

The aim of the SSA algorithm is to sample from this distribution PrHI, t » J, kL . Equation 6 may be taken
as a concise statement of the SSA algorithm update: it is a product of two conditional distributions, one (W`

 D-1)
for molecular state I given state J , and another one which samples time t£ given time t and state J according to
conditional distribution D expH-D t DL 1 HD t r 0L , evaluated at state J . These two sampling steps are alternated
and iterated k times as in Equation 6.

To derive D and , and therefore (by Equation 7) the detailed SSA simulation process, we need only
define the matrix W`

 of probability rates for a chemical reaction network. For the reaction network of Equation 1,
defining the net stoichiometry

D ma
r = m£

a
r - ma

r ,

the usual mass-action assumption for stochastic reactions corresponds to

W`
 Hn£ » nL = ‚

r
 W` HrL

 Hn£ » nL

where the probability rate matrix W` HrL
for reaction r has elements given by a product of factors for all the input

reactants (all a for which ma
r ∫ 0), times a product of Kronecker delta functions that enforce the net stoichiome-

tries on the system state:

W`
n£ ,n
HrL

= rr
i

k

jjjjjj ‰
8a»ma

r ∫0<

na !
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHna - mar L !

y

{

zzzzzz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
‰

8a»D ma
r ∫0<

dHna
£ - na - D ma

r L
É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
;

the corresponding diagonal matrix DHrL is

DHrL In£ » nM = rr
i

k

jjjjjj ‰
8a»ma

r ∫0<

na !
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHna - mar L!

y

{

zzzzzz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
‰

8a»D ma
r ∫0<

dHna
£ - na L

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
,

with D =⁄r DHrL . (The elements of W` HrL
 of are essentially reaction “propensity functions”, with a constant

coefficient ¤a H1 ê Hma
r L!L that can be absorbed into the definition of rr to maintain notational consistency with the

law of mass action, as discussed in Section 3.4 of [15] which also uses notation similar to that used here.) If we

Exact_R_LeapTR08_09V2.nb

4

define W = W`
- D , SSA dynamics simulates trajectories drawn from the solution to the Master Equation,

d p êd t = W ÿ p [12].

2.3 Upper and Lower Bounds

In order to derive a new simulation algorithm, equivalent to SSA, using rejection sampling [16], we
now seek simplified upper and lower bounds on the probability rate W`

I,J
HrL

expH-D t DJ J L (from Equation 7) for a
single reaction event. However, we will assume that the reaction event to be bounded occurs within a run of L
events in the SSA algorithm, in order to execute L reactions at once in the manner of the R-leap algorithm[11]. As
we will see, this essentially comes down to bounding each combinatorial factor na ! ê Hna - ma

r L! with a constant
bound, even though it may change throughout the run of L events.

For step number l within the run we must find a simplifying upper bound for the key expression

FnHrL ª Â
8a»ma

r ∫0<

i

k
jjjj
loom
noo

na !ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHna -mar L! if na r ma
r

0 otherwise

y

{
zzzz

that occurs in W`
 and D , and also to find a simplifying lower bound for its contribution to D , in order to lower-

bound both factors in under Equation 3. The products rr FnHrL are usually called “propensity functions” denoted
ar HnL for all R reaction channels:

(9)

ar HnL ª rr FnHrL ,

a0 HnL ª ‚
r=1

R
 ar HnL

possibly with a different normalization convention as a function of ma
r if ma

r ∫ 1 as mentioned in the previous
section. In this work it is more convenient to keep separate the structural terms FnHrL and the reaction rates rr ,
rather than combining them as in Equation 9. Fortunately every FnHrL is monotonic in each na , so we may find
upper and lower bounds on FnHrL by finding upper and lower bounds on each na .

A very simple, though not very tight, set of bounds is:

(10)na + l minr 8D ma
r < b na

£ b na + l maxr 8D ma
r <

The corresponding upper and lower bounds Fè and Fè on F for the l + 1-st reaction event (after l reaction events
have already occurred) within a run of L events is:

Fè n, l
HrL b Fn£

HrL b Fè n, l
HrL

where

(11)
Fè n, l

HrL ª F@na +l minr 8D ma
r < »»1babAD

HrL

Fè n, l
HrL

ª F@na +l maxr 8D ma
r < »»1babAD

HrL

The sparsity structure of W` HrL
 is given by SHrL œ 80, 1< :

Exact_R_LeapTR08_09V2.nb

5

S`n£ ,n
HrL

= 1 JW`
n£ ,n
HrL

> 0N œ 80, 1<

=
i

k

jjjjjj ‰
8a»ma

r ∫0<
 1 Hna r ma

r L
y

{

zzzzzz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
‰

8a»D ma
r ∫0<

 dHna
£ - na - D ma

r L
É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

S` I,J = 1
i

k
jjjjj‚

r
SI,J

HrL y

{
zzzzz = 1 IW`

I,J > 0M

We will assume that reactions have unique outcomes (or, redefine the states I so this becomes true):

(12)‚
I

S` I,J
HrL

= 1 .

Taking l consecutive steps of this chain results in another sparsity structure of “reachability”:

RI»J l ª HS`
l
LI,J = 1 JHW` l

LI,J > 0N ª
loom
noo

1 if HW` l
LI,J > 0,

0 otherwise

We now start the reactions from state K = n = @na »» a œ 81, ... A<D . Since

W`
n£ ,n
HrL

= rr FnHrL S`n£ ,n
HrL

,

we have the bounds

RJ»K l = 1 fl Wè I,J»K l
HrL b W`

I,J
HrL
b Wè

I ,J»K l
HrL

where

Wè I,J»K, l
HrL ª rr Fè K,l

HrL S` I ,J
HrL

Wè
I,J»K, l
HrL

ª rr Fè K,l
HrL

 S` I,J
HrL

.

These quantities bound W`
I,J
HrL

, in the circumstance that l reaction events have occurred since the system was in
state K .

We also need to bound -D in Equation 3. To this end, note from Equation 4 that

DI J = dI J ‚
I£

‚
r

W`
I£ ,J
HrL

= dI J DI I .

Then

RJ»K l = 1 fl

-Dè K l = -‚
r

‚
I£

Wè
I£ ,J»K l
HrL

b -DJ J b -‚
r

‚
I£

Wè I£ ,J»K l
HrL = -Dè K l

where

(13)

Dè K l ª ‚
r

rr Fè K , l
HrL

Dè K l ª ‚
r

rr Fè K , l
HrL

Exact_R_LeapTR08_09V2.nb

6

Thus, assuming RJ»K l = 1and D t r 0, upper and lower bounds on the elements of the Markov process given
by Equation 3 are determined as follows:

(14)rr FK ,l
HrL S` I,J

HrL
 expI-D t Dèè K l M b W`

I,J
HrL

expH-D t DJ J L b rr Fè K , l
HrL

 S` I,J
HrL

 expI-D t Dè K l M .

These desired bounds on reaction probability rates W`
I,J
HrL

expH-D t DJ J L follow from the simple bounds of
Equation 10 on na

£ as a function of na and l .

2.4 Exploitation of probability bounds

We now use the bounds of Equation 14 to derive the key update equations of the ER-Leap algorithm. The
resulting ER-leap algorithm will be assembled from these equations and discussed in Section 2.5, followed by
computational experiments in Section 3. In this Section we perform the required calculations to derive the key
update equations..

2.4.1 Rejection sampling

Rejection sampling [16] allows one to exploit probability bounds in exact sampling, as follows: given a
target distribution PHxL and an algorithm for sampling from a related distribution P£ HxL and from the uniform
distribution UHuL on [0,1], and if

PHxL < M P£ HxL
for some constant M > 1, then PHxL satisfies

PHxL = P£ HxL PHxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅM P£ HxL + H1 - 1 ê ML PHxL

and therefore also

(15)PHxL = ‡ P£ Hx£ L d x£ ‡ UHuL d u C1 Ku <
PHx£ L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅM P£ Hx£ L O ÿ dHx - x£ L + 1 Ku r PHx£ L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅM P£ Hx£ L O ÿ PHxLG

which constitutes a mixture distribution, that can be applied recursively as needed to sample from PHxL .
Pseudocode for sampling PHxL according to Equation 15 is as follows (where "//" introduces a comment):

while not accepted {
sample P£ HxL and UHuL ; // P£ HxL only approximates PHxL
compute AcceptHxL = PHxL ê HM P£ HxLL ; // acceptance probability
if u < AcceptHxL then accept x ;

} // now PHxL is sampled exactly
What is essential in applying this algorithm is to find a provable strict upper bound Pè HxL = M P£ HxL for PHxL

(where M > 1), which is not a probability distribution but which when normalized yields a probability distribution
P£ HxL that is easier to sample than PHxL . We also want acceptance to be likely, for computational efficiency; for
that reason M should be as close to 1 as possible, so that the bound on PHxL is as tight as possible for a given
computational cost.

But what if PHxL is expensive to compute? Then AcceptHxL will also be expensive to compute and
rejection sampling may be prohibitively expensive, even for a good approximating P£ HxL . A solution to this
problem is possible if a cheap lower bound for PHxL is available. Suppose there is a function Aè HxL such that

Exact_R_LeapTR08_09V2.nb

7

(16)0 b Aè HxL b AcceptHxL ª PHxL ê HM P£ HxLL < 1 .

Then

AcceptHxL = Aè HxL ÿ 1 + H1 - Aè HxLL ÿ QHxL, where

QHxL ª
i
k
jjj

AcceptHxL - Aè HxL
ÅÅÅ

1 - Aè HxL
y
{
zzz ,

and AcceptHxL becomes a mixture of probabilities defined over the pair of actions (accept, reject). Then we
have the following “accelerated rejection sampling algorithm”, in pseudocode:

while not accepted {
sample P£ HxL and UHuL ; // cheap but approximate
compute Aè HxL ; // cheap
if u < Aè HxL then accept x ;
else {

compute AcceptHxL = PHxL ê M P£ HxL ; // expensive
compute QHxL = HAcceptHxL - Aè HxLL ê H1 - Aè HxLL ; // Aè HxL < 1 fl 1 - Aè HxL ∫ 0
sample UHuL ;
if u < QHxL then accept x ;
else reject x ;

}
}
Again, the bound Aè HxL b AcceptHxL should be as tight as possible for a given level of computational cost, to

maximize the probability of early and therefore low-cost acceptance. A natural measure of the tightness of this
bound is Ÿ Aè HxL d x b 1, which should be as close to 1 as possible given cost considerations. However, even if
Aè HxL = 0 for some values of x , the algorithm still samples the distribution PHxL exactly.

We now seek M , P£ HxL , and Aè HxL for a run of L successive reaction events in the SSA algorithm.

2.4.2 Equivalent Markov process

In this section we will use algebraic manipulations to transform the formula for SSA (Equation 8) into
an equivalent form (Equation 18) that represents an accelerated rejection sampling algorithm, as outlined in the
previous section.

The first step in the algebraic derivation is to identify a probability distribution equivalent to L steps of
the original SSA Markov process, which can itself be iterated to create a new, equivalent Markov process. The
target distribution P is (from Equation 8)

AW`
 expH-D t DLE

L
ÎPrH. » K, 0L

From Equation 14,

W`
I,J expH-tk DJ J L =

i

k

jjjjjjjj„
r

rr S` I,J
HrL i

k

jjjjjj
FI

HrL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè K , l-1

HrL

y

{

zzzzzz Fè K , l-1
HrL

y

{

zzzzzzzz
 expI-tk IDJ J - Dè K l MM expI-tk Dè K l M

Expand out the ordered matrix product for states J reachable from K after L steps:

Exact_R_LeapTR08_09V2.nb

8

RJ»K L = 1 fl
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=L-1ä0

W`
expH-tk DL

É

Ö

ÑÑÑÑÑÑÑÑÑÑIL , I0

= „
8Ik »k=1 .. L-1<

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=L-1ä0

W`
Ik+1 ,Ik expH-tk DIk ,Ik L

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

= „
8Ik »k=1 .. L-1<

„
8rk <

Â
k=L-1ä0

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i

k

jjjjjjrrk S` Ik+1 ,Ik

Hrk L i

k

jjjjjj
FIk

Hrk L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 , L-1

Hrk L

y

{

zzzzzz Fè I0 , L-1
Hrk L y

{

zzzzzz expI-tk IDIk ,Ik - Dè I0 L-1 MM expI-tk Dè I0 L-1 M
É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

= „
8rk »k=1 .. L-1<

„
8Ik <

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=L-1ä0

S` Ik+1 ,Ik

Hrk L
É

Ö

ÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=L-1ä0

rrk Fè I0 , L-1
Hrk L

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

ä

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k=L-1ä0

i

k

jjjjjj
FIk

Hrk L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 , L-1

Hrk L

y

{

zzzzzz expI-tk IDIk ,Ik - Dè I0 L-1 MM

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
 exp

i

k
jjjjj-

i

k
jjjjj‚

k
tk

y

{
zzzzz Dè I0 L-1

y

{
zzzzz

Now ⁄I S` I,J
HrL

= 1 allows a change of representation to eliminate the inner state sums:

Ik = Ik Hrk-1 , Ik-1 L = Ik Hr = @r0 , ... rl D, I0 L
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=l-1ä0

W` expH-tk DL
É

Ö

ÑÑÑÑÑÑÑÑÑÑIl , I0

= „
8rk »k=1 .. L-1<

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=l-1ä0

rrk Fè I0 , L-1
Hrk L

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
 exp

i

k
jjjjj-

i

k
jjjjj‚

k
tk

y

{
zzzzz Dè I0 L-1

y

{
zzzzz

ä

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k=L-1ä0

i

k

jjjjjj
i

k

jjjjjj
FIk Hr,I0 L

Hrk L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 ,L-1

Hrk L

y

{

zzzzzz
y

{

zzzzzz expI-tk IDIk Hr,I0 L,Ik Hr,I0 L - Dè I0 L-1 MM

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ

Define new rule probabilities

(17)pr»K , l = rr Fè K , l
HrL ê Dè K l ª

rr Fè K , l
HrL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
‚

r
rr Fè K, l

HrL .

Then,
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=l-1ä0

W`
exp H-tk DL

É

Ö

ÑÑÑÑÑÑÑÑÑÑIl ,I0

= „
8rk »k=1 .. L-1<

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=L-1ä0

prk »I0 , L-1

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
 HDè I0 L-1 L

l
 exp

i

k
jjjjj-

i

k
jjjjj‚

k
tk

y

{
zzzzz Dè I0 L-1

y

{
zzzzz

ä

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k=L-1ä0

i

k

jjjjjj
i

k

jjjjjj
FIk Hr,I0 L

Hrk L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 ,L-1

Hrk L

y

{

zzzzzz expI-tk IDIk Hr,I0 L,Ik Hr,I0 L - Dè I0 L-1 MM
y

{

zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ

= ‚
8rk »k=1 .. L-1<

 e1 HrL e2 HrL

where

Exact_R_LeapTR08_09V2.nb

9

e1 HrL ª

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=L-1ä0

prk »I0 , L-1

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
 HDè I0 L-1 L

l
 exp

i

k
jjjjj-

i

k
jjjjj‚

k
tk

y

{
zzzzz Dè I0 L-1

y

{
zzzzz

e2 HrL ª Â
k=L-1ä0

i

k

jjjjjj
i

k

jjjjjj
FIk Hr,I0 L

Hrk L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 ,L-1

Hrk L

y

{

zzzzzz expI-tk IDIk Hr,I0 L,Ik Hr,I0 L - Dè I0 L-1 MM
y

{

zzzzzz

We define an arbitrary ordering “b” on the reaction types or channels indexed by r , so the reactions events are
“sorted” by type iff r0 b r1 b ... b rL-1 . Let s denote a permutation on L elements which we may apply to this
ordering to get an unordered sequence of rules r = 8rk » k = 0 .. L - 1< . For a given unordered r we further restrict
the permutations s to be those which do not interchange equal r’s; this will avoid double-counting.

Then in the foregoing expression ⁄8rk »k=1 .. L-1< e1 HrL e2 HrL we may replace the multiple sum over
reactions with a sum over permutations s that order the reactions, and an outer sum over the possible ordered
reaction sets:

‚
8rk »k=1 .. L-1<

 eHrL = ‚
8r0b...brL-1 <

 ‚
8s » s permutes unequal r s<

e1 HsHrLL e2 HsHrLL

The number of r’s taking each possible value 1. .. R is denoted @s1 , ... sR D = sHrL ; these are the number of
times each type of reaction occurs in the sequence r . The components of s and r are therefore related as follows:

sr = ‚
k=0

L-1

dHrk - rL, which satisfies

sr œ and ‚
r

 sr = L

Also the ordered list of r’s is determined by the vector s :

rk = min
loom
n
oor

ƒƒƒƒƒƒƒƒƒƒƒƒ
k b ‚

i=0

r
 si

|oo}
~
oo.

Hence we may replace the sum over ordered r with a sum over constrained s :

‚
8rk »k=1 .. L-1<

 eHrL = ‚
9s » sr œ , ⁄r sr =L=

‚
8s » s permutes unequal r s » s<

e1 HsHrLL e2 HsHrLL

e1 HrL however depends on r only through s , which is permutation invariant:

e1 HrL ª eè1 HsHrLL = eè1 HsHsHrLLL = e1 HsHrLL

Hence

Exact_R_LeapTR08_09V2.nb

10

‚
8rk »k=1 .. L-1<

 e1 HsHrLL e2 HsHrLL = „
9s » sr œ , ⁄r sr =L=

eè1 HsHrLL ‚
8s » s permutes unequal r s » s<

e2 HsHrLL

= „
9s » sr œ , ⁄r sr =L=

eè1 HsHrLL
i

k

jjjjjj ‚
8s » s permutes unequal r s » s<

e2 HsHrLL
y

{

zzzzzz

= ‚
9s » sr œ , ⁄r sr =L=

eè1 HsHrLL K L
s1 ... sR

O Xe2 HsHrLL\8s permutes unequal r s » s<

where X ...\ denotes averaging over the given set . On the other hand, e2 HrL is invariant under any permuta-
tion s which only exchanges equal r’s, so

Xe2 HsHrLL\8s permutes unequal r s » s< = Xe2 HsHrLL\8s permutes integers 1..L<

and we find

‚
8rk »k=1 .. L-1<

 e1 HsHrLL e2 HsHrLL = ‚
9s » sr œ , ⁄r sr =L=

K L
s1 ... sR

O eè1 HsHrLL Xe2 HsHrLL\8s permutes r s » s<

Consequently,
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=l-1ä0

W`
exp H-tk DL

É

Ö

ÑÑÑÑÑÑÑÑÑÑIL ,I0

= „
9s » sr œ , ⁄r sr =L=

K L
s1 ... sR

O
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰
r=1

R
Hpr»I0 , L-1 Lsr

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
 HDè I0 L-1 L

l
 exp

i

k
jjjjj-

i

k
jjjjj‚

k
tk

y

{
zzzzz Dè I0 L-1

y

{
zzzzz

ä [

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k=L-1ä0

i

k

jjjjjj
FIk HsHrL,I0 L

Hrk L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Fè I0 ,L-1
Hrk L

y

{

zzzzzz expI-tk IDIk HsHrL,I0 L,Ik HsHrL,I0 L - Dè I0 L-1 MM

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
_
8s»s<

.

This can be decomposed into more elementary probability distributions:

(18)

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=L-1ä0

W`
exp H-tk DL

É

Ö

ÑÑÑÑÑÑÑÑÑÑIL ,I0

=
HDè I0 L-1 L

L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
HDè I0 L-1 L

L ‚
9s » sr œ , ⁄r sr =L=

MultinomialHs » p, LL

ä Erlang
i

k
jjjjj‚

k
tk

ƒƒƒƒƒƒƒƒƒƒƒƒ
L, Dè I0 L-1

y

{
zzzzz UniformSimplexHt; LL AcceptHs, L, tL

where

MultinomialHs » p, LL = K L
s1 ... sR

O
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰
r=1

R
Hpr»I0 , L-1 Lsr

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
, with

pr»I0 , L-1 =
rr Fè I0 , L-1

HrL

ÅÅ
‚

r
rr Fè I0 , L-1

HrL ;

ErlangHt; l, lL ª ll e-l t tl-1 ë Hl - 1L!

where Xt\Erlang = l ê l ;

Exact_R_LeapTR08_09V2.nb

11

We note that the Erlang distribution is the Gamma distribution specialized to integer-valued shape
parameter, l ,

UniformSimplexHt; LL = 1ìi
k
jjj

tL-1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHL - 1L !

y
{
zzz ;

and the acceptance probability

AcceptHs, l, tL ª XPs \8s»s< ,

where

(19)Ps =

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k=L-1ä0

i

k

jjjjjj
FIk HsHrL,I0 L

Hrk L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 ,L-1

Hrk L

y

{

zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
 exp

i

k
jjjjj-‚

k
 tk IDIk HsHrL,I0 L,Ik HsHrL,I0 L - Dè I0 L-1 M

y

{
zzzzz .

From the definition of Ps in Equation 19 and the fact that Fè and Dè are bounds, it follows that
Accept Hs, l, tL b 1. Also, if RJ»K L-1 = 0 (so that state J is not reachable from state K after L - 1 steps of SSA)
then Ps = 0, so that Equation 18 still agrees with Equation 8 despite the restriction to RJ»K L-1 = 1 stated in the
foregoing calculation.

Thus, Equation 18 provides an equivalent probability distribution and Markov process to Equation 8 .

2.4.3 Efficient rejection sampling algorithm

We now seek M and P£ and Aè HxL among the factors of Equation 18. We can upper-bound and lower-
bound Ps of Equation 19:

(20)Pè
i

k
jjjjjs, ‚

k
tk , L

y

{
zzzzz b Ps b 1

where

(21)Pè
i

k
jjjjjs, ‚

k
tk , L

y

{
zzzzz ª

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â

r=1

R i

k

jjjjjj
Fè I0 , L-1

HrL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 , L-1

HrL

y

{

zzzzzz

sr
É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
 exp

i

k
jjjjj-

i

k
jjjjj‚

k
tk

y

{
zzzzz IDè I0 L-1 - Dè I0 L-1 M

y

{
zzzzz

Note that Pè does not depend on s . This allows us to use rejection sampling [16] to transform samples
of the bounding distribution

gHs, tL = MultinomialHs » p, LL Erlang
i

k
jjjjj‚

k
tk

ƒƒƒƒƒƒƒƒƒƒƒƒ
L, Dè I0 L-1

y

{
zzzzz UniformSimplex

i

k
jjjjjt; l, ‚

k=0

L-1

tk
y

{
zzzzz

into samples of the target distribution

f Hs, tL = gHs, tL HD
è

I0 l L
L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
HDè I0 l L

L AcceptHs, L, tL

since the ratio f Hs, tL êgHs, tL is bounded above by M = IDè I0 L-1 êDè I0 L-1 M
L
r 1. gHs, tL plays the role of P£ HxL

in the rejection sampling algorithm of Section 2.4.1, f Hs, tL plays the role of PHxL , and M has just been defined.
This bound is independent of all randomly chosen variables s, t, t, s and just restores the probability otherwise

Exact_R_LeapTR08_09V2.nb

12

lost in rejection sampling due to the AcceptHs, L, tL factor being b 1. It remains to define Aè HxL for the “efficient
rejection sampling” algorithm.

In order to apply the “efficient rejection sampling” algorithm of Section 2.4.1, we need to find a lower
bound Aè HxL for AcceptHs, l, tL = XPs\8s»s< . Fortunately PHs, ⁄k tk , LLè is a lower bound for Ps , so we can just
average over s compatible with s . Then Ps may be expressed as a mixture distribution:

Ps = Pè ÿ 1 + H1 - Pè L ÿ Qs , where

(22)Qs = i
k
jjj

Ps - PèÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - Pè

y
{
zzz b 1

and thus

XPs \8s»s< = Pè ÿ 1 + H1 - Pè L ÿ XQs \8s»s<

However, instead of numerically averaging over s to compute XQs \8s»s< in each iteration, we will instead draw
a single sample of s and use that sample's value of Qs . This step is also exact since we can just define
AcceptHs, L, tL = AcceptHs, L, tL ÿ PrHs » sL , where PrHs » sL is uniform, and apply accelerated rejection sampling
to f Hs, tL PrHs » sL using the corresponding bounds f Hs, tL PrHs » sLfor P£ HxL and Ps for Aè HxL .

Algorithmically this expression can be sampled from as follows. First compute Pè . Then with probabil-
ity Pè , accept the “current” candidate move determined by all the other distributions. In the relatively unlikely
event (probability 1-Pè) that the move is not immediately accepted this way, we then draw a random s » s and
compute its Qs . Then, accept the current move with probabilty Qs , and with probability 1 - Qs reject the current
move, draw a new one, and iterate. For computational efficiency the initial acceptance rate Pè should be high.
Pseudocode for the resulting algorithm will be presented in the next section.

2.5 Exact R-leap algorithm

We now assemble the ER-leap algorithm from the key update equations derived in previous sections: Equation
11, Equation 13, Equation 17, Equation 18, Equation 21, Equation 19, and Equation 22 .

2.5.1 Algorithm summary

We adapt the efficient rejection sampling algorithm of Section 2.4.1, with the random variables
s, s, and t, and the expressions for P , P£ , M and Aè of Section 2.4.3, into pseudocode for the core of the result-
ing Exact R-leap algorithm:

set counters , ⁄k Pè k , ⁄k Pè k
2 to zero

starting at state I0 , initial time t0 , and user-specified initial leap L
while t § T {

if L equals 1 then perform one SSA step, set Pè =1 (for dynamic L update counter) ;
else repeat {

compute or update the bounds on F ’s, D’s for I0 ,
by Equation 11 and Equation 13;

compute p : pr»I0 , l-1 = rr Fè I0 , l-1
HrL ê Dè I0 l ;

Exact_R_LeapTR08_09V2.nb

13

sample s from MultinomialHs » p, lL
(using sorted sequential Binomials, for efficiency, as in R-leap) ;

sample ⁄k tk from ErlangI⁄k tk » L, Dè I0 l M ;

compute Pè Hs, ⁄k tk , LL by Equation 21 ; // cheap
with probability Pè {

accept step;
if first-rejection-iteration then increment early-acceptance counter;

} otherwise {
// expensive
sample s from permutations consistent with s ;
compute Ps œ @Pè , 1D by Equation 19 ;

compute Qs = J Ps -PèÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1-Pè
N ;

with probability Qs accept step otherwise reject step;
}

} until step accepted ;
update I0 ;
increment , ⁄k Pè k =⁄k Pè k + Pè , ⁄k Pè k

2 =⁄k Pè k
2 + Pè 2 ;

if n r b then compute maximal L by Equation 25.
 if L changed or Uniform œ @0, 1D is below 1/L2 then set counters , ⁄k Pè k , ⁄k Pè k

2 to zero ;
} until done
The implementation used in this paper is written in C++ and contains around 600 lines of code for the core

components.

2.5.2 Acceptance ratio analysis

A preliminary analysis looks very permissive of large L :

(23)
Dè a ª minr D ma

r mè a ª maxr ma
r

D
è

a ª maxr D ma
r mè ª maxr ⁄a ma

r

Then for large na , such that

na p HL - 1L » Dè a » +mè a ,

we further insist that

LHL - 1L b mina naÅÅÅ
mè maxa IDè a - Dè a + mè a M

 logH1 ê aL

where a œ @0, 1D is the minimal early-acceptance rate (should be close to 1 for efficiency). If a = 1 - e , this
becomes roughly

L b &'''
e mina naÅÅÅ

mè maxa IDè a - Dè a + mè a M
.

Exact_R_LeapTR08_09V2.nb

14

2.5.3 Asymptotic cost of update

The asymptotic computational cost of simulating with ER-leap can be analyzed. The amount of computa-
tion required to calculate and sample Pè is dominated by the time required to calculate the reaction probability rates
or propensities. The asymptotic cost of this will be OHRL , where R is the number of reaction types or channels. In
the event that an “early” sample is rejected, the more thorough sampling and calculation of Ps , that becomes
necessary, will be dominated by the recalculation of the reaction probability rates for each of the L reaction
events. Therefore, computing Ps will have asymptotic cost OHL RL . Thus, during simulation the expected computa-
tion per attempted leap will be the inevitable cost of calculating Pè plus the cost of calculating Ps , which is occurs
with probability (1 - XPè \). So the computational cost for one leap attempt can be estimated as

(24)OHR + H1 - XPè \L L RL

To calculate the expected CPU cost per reaction event, we assume that all Ps samples are rejected.
This yields a lower bound on the expected number of accepted reaction events per leap, which will be XPè \ L .
Additionally, the cost for one SSA step will be OHR) and the number of reactions events per step will be one. Thus
the per-event costs for ER-leap and SSA will be

ERleap cost =
ERleap leap cost
ÅÅ
reaction events

§
R + H1 - XPè \L L R
ÅÅÅXPè \ L ,

SSA cost =
SSA step cost

ÅÅÅ
reaction events

=
R
ÅÅÅÅÅÅ
1

.

The cost ratio between SSA and ER-leap is therefore

cost ratio =
ERleap cost
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

SSA cost
§

1 + H1 - XPè \L L
ÅÅXPè \ L .

When this cost ratio is less than one, ER-leap will be asymptotically faster than SSA. This is the case
whenver XPè \ > H1 + LL ê 2 L which in turn is > 1 ê 2 . Finally, taking the inverse of the cost ratio gives us the lower
bound on the speedup of ER-leap over SSA, which is

speedup ∂
XPè \ L

ÅÅ
1 + H1 - XPè \L L

.

The required data structures and space requirements for ERLeap do not go significantly beyond what is
conventional for SSA simulation: Each reaction needs a list of input/output species, so an array is used to remem-
ber the state of the system as well as a temporary state copy when calculating Ps , and arrays are used to store s, t
, and the maximal and minimal Dè a values.

2.5.4 Dynamic choice of L

ER-leap efficiency depends on finding an L which optimally balances the benefits of having a large L
versus the potential inefficiencies that would result from sample rejections. Our heuristic is described here.

Recall from Equation 24 the the cost of calculating early acceptance samples will be OHR) and the
expected cost of calculating the late acceptance samples is OHH1 - XPè \L L RL for each leap attempt. Balancing these
costs yields L = 1 ê H1 - XPè \L , or XPè \ = HL - 1L ê L . So, during simulation the goal is to chose an L satisfying
XPè \ º HL - 1L ê L . This is done by sampling Pè to obtain an estimate of the ‘true’ value of XPè \ (for which we take at
least five samples). Then L is increased or decreased by at most one, to minimize the error in the condition

Exact_R_LeapTR08_09V2.nb

15

XPè \b º HL - 1L ê L , where the b parameter is introduced to tune differences in CPU running time between the Pè and
Ps calculations. Experiments (not presented) show good performance when b=2/3 and this is used in all subse-
quent experiments.

Confidence intervals for our estimate of m , the mean of Pè , come from the central limit theorem:

m = mêê ≤ z $%%%%%%%%s2
êêêêê
ÅÅÅÅÅÅÅÅn

= mêê ≤ Error

where statistics for calculating the sample mean and sample variance I mêê , s2
êêêê

M are gathered from Pè during
simulatiion, z is a ‘confidence factor’ (we used z=1.7 in experiments), and n is the number of samples. Given the
goal XPè \ for a given L , namely hHLL = HHL - 1L ê LL1ê b , the rule for updating L to a new L£ is

(25)L£ =

loooom
n
ooo

L + 1, if hHLL < mêê - Error and hHL + 1L < mêê + Error

L - 1, if mêê - Error < hHL - 1L and mêê + Error < hHLL
L, otherwise

which changes L whenever the interval 8mêê - Error , mêê + Error < doesn’t contain hHLL , and changing L by one
would either (a) put h (L£) within this interval, or (b) put h (L£) in between hHLL and this interval, thereby bringing
it closer to the desired interval.

2.5.5 An Illustrative Example

As a specific example of the use of the ER-leap algorithm, consider the two-reaction dimerization

process ;2 S1 V
r1

r2
 S2? with forward and reverse reactions r = 1 and r = 2. Recall from Equation 9 that the instanta-

neous rates of firing, also called propensities, for each reaction are given by

a1 HnL = r1 n1 Hn1 - 1L, a2 HnL = r2 n2 .

(Some authors divide a1 HnL by two to “avoid double counting”, but our convention is to absorb this factor of
two into r1 and thereby remain notationally consistent with the law of mass action.) ER-leap requires upper and
lower bounds on the propensities for each reaction at any of L reaction event “steps”. The bounds are not required
to be tight, but here it is easy to find the tightest bounds using Equation 11:

aè1 HnL = r1 Hn1 + 2 HL - 1LL HHn1 + 2 HL - 1L - 1LL, aè 1 HnL = r1 Hn1 - 2 HL - 1LL HHn1 - 2 HL - 1L - 1LL
aè2 HnL = r2 Hn2 + HL - 1LL, aè 2 HnL = r2 Hn2 - HL - 1LL.

The upper bound aè 1 comes from the extreme situation in which all L reactions are of type r = 2. Two S1 are
produced every time r = 2 fires. So we calculate the upper bounding propensities with an upper bound for S1 :
n1
è = n1 + 2 HL - 1L . Recall that HL - 1L is used instead of L because about the bounds apply just before the Lth step

occurs. The other bounds are calculated in the same way.
Given bounds on a1 and a2 , we can sample the reactions and time step. First, the number of times

r = 1 and r = 2 are fired Hs1 , s2 L is sampled from a multinomial distribution (here equivalent to a binomial) with
parameters II aè 1 HnLÅÅÅÅÅÅÅÅÅÅÅÅÅaè 0 HxL , aè 2 HnLÅÅÅÅÅÅÅÅÅÅÅÅÅaè 0 HnL M, LM , where aè0 HnL = aè1 HnL + aè2 HnL . Next, the total time step t is sampled from the gamma
distribution with parameters Iaè0 HnL, LM .

To compute the probability of early acceptance, Equation 21 is used. This simplifies to

Exact_R_LeapTR08_09V2.nb

16

Probearly Hs, tL =
i

k

jjjjjj
Fè I0 , L-1

H1L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 , L-1

H1L

y

{

zzzzzz

s1

i

k

jjjjjj
Fè I0 , L-1

H2L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 , L-1

H2L

y

{

zzzzzz

s2

 expI-Ht1 + t2 L ID
è

I0 L-1 - Dè I0 L-1 MM

=
i
k
jjj

aè1 HnL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅaè1 HnL

y
{
zzz

s1

i
k
jjj

aè2 HnL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅaè2 HnL

y
{
zzz

s2

 expI-tIaè0 HnL - aè0 HnLM.

We accept the sample Hs, tL early, and with little computational cost, with Probearly . If there is no early accep-
tance, the probability of late acceptance must be calculated. To calculate this first we must sample an ordering of
reactions, s . This ordering is just a random shuffling of the L reactions. So our sample may look like
s = 8r = 1, r = 1, r = 2, ... r = 1< . Next, we need to sample the length of individual time steps for each reaction,
8t1 , t2 , ..., tL < . This can be done by independently sampling L unit exponential random variables and
“normalizing” them so their sum is t. It is now possible to calculate the true probability of acceptance from
Equation 19:

Probaccept Hs, 8ti<L =
i

k

jjjjjj
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 , L-1

H1L

y

{

zzzzzz

s1

i

k

jjjjjj
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 , L-1

H2L

y

{

zzzzzz

s2

 ‰
i=1

L
Fè Ii , L-1

Hsi L exp I-ti IDIi L-1 - Dè I0 L-1 MM

= K 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅaè1 HnL O

s1

 K 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅaè2 HnL O

s2

 ‰
i=1

L
 asi Hni L expI-ti Ia0 Hni L - aè0 HnLMM.

Here aè HnL and aè0 HnL are held constant during the calculation, but the true propensities asi Hni L are recalculated
after each reaction si occurs. State I0 corresponds to state vector n , and Ii corresponds to ni , where i œ 81. .. L<
indexes the step number. With probability HProbaccept - Probearly L ê H1 - Probearly L we accept the sample and update
n . Otherwise the sample is rejected.

In general calculating the propensity bounds with Equation 11 and Equation 13 can be made efficient
by noting that the maximum and minimum amounts by which a species may change in one reaction event remains
constant throughout the simulation. These D

è
a and Dè a values (defined in Equation 23) are calculated prior to

simulation, and the bounding nè a is calculated as nèa = na + HL - 1L Dè a , from Equation 10. Then the propensity
upper and lower bounds are calculated as conventional propensities except that the bounding nè a and nèa are used
for each reactant instead of na .

3 Numerical Simulations

The above stochastic algorithms are implemented in the C++ programming language and run on a
MacBook running OS X v10.5 with an Intel dual-core 1.83Ghz processor and 2.0GB of RAM. Experiments are
performed with emphasis on exploring accuracy and speedup. We compare the present algorithm with the soft-
ware developed for the t-leap and R-leap algorithms as reported in the R-leap paper [11].

Exact_R_LeapTR08_09V2.nb

17

3.1 Accuracy

Here we verify ER-leap equivalence to SSA via numerical experiments. As an example of the tests
performed in the CaliBayes test suite [17], we consider the Galton-Watson stochastic process where analytic
solutions for the mean and standard deviation are known. Mass-action stochastic kinetics are assumed. The
solutions are compared to trajectories of many runs of SSA, ER-leap, t-leap and R-leap.

Algorithm accuracy was validated using a statistical test as performed in CaliByaes. The ith sample at
time t will be denoted Xt

HiL and is drawn from the random variable Xt . The analytic mean and standard deviation at
time t are mt and st . Additionally, Xt

êêêê is the sample mean and St
êêê is the sample standard deviation assuming

E@Xt D = mt . Using the central limit theorem, we eventually arrive to:

Zt =
è!!!n Xt

êêêê
-mtÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅst

, Yt = $%%%%%%n
ÅÅÅÅÅ
2

i

k
jjjjj

St
êêê2

ÅÅÅÅÅÅÅÅÅÅÅÅ
st 2 - 1

y

{
zzzzz .

Under the null hypothesis that the simulator is correct, the Zt and Yt values should have a standard
normal distribution. So most Zt values are expected to lie in the range H-3, 3L . We further relax this constraint for
Yt to lie in the range H-5, 5L because the standard deviation is less likely to be normally distributed.

Figure 1. ER-leap (·) with L = 4 and SSA (Û) compared with the analytical (–––) mean and standard deviation. Y-axis in units
of molecules. The Zt and Yt values will be normally distributed, assuming SSA equivalence. Therefore values in the range (-3,3)
are considered reasonable. Galton-Watson stochastic process 8X ö2 X, X ö«< with rate parameters {1.0, 1.1} respectively and
XH0L = 100. Simulation time is 50 seconds. Results from 20,000 runs.

We performed this analysis on SSA and ER-leap. As Figure 1 indicates, Zt and Yt are within the
expected range for both simulation algorithms. This supports the notion that SSA and ER-leap draw from the same
distribution.

Exact_R_LeapTR08_09V2.nb

18

Figure 2. Distribution of Zt for the four algorithms under consideration. ER-leap and SSA demonstrate a standard normal
distribution whereas the approximate methods show Zt values far outside the expected range. Reactions 8X ö2 X, X ö «< with
rate parameters {0.11, 0.1} and XH0L = 1.0ä10 5 . For ER-leap L=30. For R-leap q=0.1 and ∂=0.01. For t-leap ∂=0.01. Each Zt
calculated from 1000 time points for one second intervals up to time t = 50. The number of runs for each method varies in order
to get smooth distributions and ranges from 1.0ä10 5 to 2.0ä10 5 .

To demonstrate the sensitivity of this test we also compute Zt and Yt for the approximate algorithms.
Interestingly, all algorithms do not show strong errors in Yt . However, the absolute values of Zt for R-leap and t
-leap are mostly greater than 3 [Figure 2]. This test indicates that SSA and ER-leap are equivalent with high
certainty and it was sensitive enough to discover the error resulting from the assumptions made by R-leap and t
-leap.

3.2 CaliBayes validation

Similar analysis as above is performed on several models in the CaliBayes test suite version DSMTS 21
[17]. Three models with solvable mean and standard deviation are tested: the birth-death process, dimerization
process and immigration-death process. Of these a total of 9 variations in initial conditions and parameters are
simulated (the others not being tested due to limited ER-leap SBML support). The tested models are: 1-01, 1-03,
1-04, 1-05, 2-01, 2-02, 2-04, 3-01, 3-02.

Each test case has 50 time points where Zt and Yt values are calculated. A test is considered passing if
» Zt » b 3.0 for all 50 Zt values with one exception per run. Likewise, since the standard devation normal assump-
tion is not as strong, we require » Yt » b 5.0 for all but one of the Yt scores per test. This pass/fail criteria was also
suggested in the CaliBayes documentation.

Furthermore, since the tests are made at discrete time points, a large leap may create a small but
nonzero bias if we test at a state preceding the desired time t. To alleviate this problem we ‘leap’ to a time before t
and then perform small SSA (L = 1) steps until t is reached. The SSA steps begin when the time is within
Lu ë IDè + Dè M of t, with u = 7. In practice these small steps do not significantly affect running time.

Using the above criteria, we found all tested variations from the CaliBayes suite to pass, using ER-leap
with L = 3 or automatically-selected L , and 20,000 simulations per model.

Exact_R_LeapTR08_09V2.nb

19

3.3 Williamowski-Rössler Model

The Williamowski-Rössler model [18], which contains several bi-moleclar reactions, is explored to
demonstrate the usefullness of the ER-leap algorithm. Results indicate that the approximate methods do not model
well the true stochastic behavior for particular instances of the system. Consider the following set of reactions:

X õ
k2

k1 2 X Y õ
k6

k5
« Z õ

k10

k9 2 Z

X + Y õ
k4

k3 2 Y X + Z õ
k8

k7
«.

We can numerically solve for the corresponding set of deterministic mass action differential equations

x° = k1 x - k3 xy - k2 x2 + k4 y2 - k7 xz + k8

y° = k3 xy - k5 y - k4 y2 + k6

z° = -k7 xz + k9 z - k10 z2 + k8

and plot the solution of X vs. Y as in Figure 3.

Figure 3: Mass-action deterministic solution of X vs. Y from time t=0 to t=0.2 for Williamowski-Rössler model. k1=900,
k2=8.3ä10-4 , k3 =0.00166, k4=3.32ä10-7 , k5=100, k6 =18.06, k7 =0.00166, k8=18.06, k9 =198, k10 = 0.00166. X(0)=39570.
Y(0)=511470. Z(0)=0.

As time progresses the mean trajectory spirals in towards an attraction point near 96.0ä 10 4, 5.1 ä 10 5= .
However, once the inner region is reached, the trajectory falls towards another attraction point around
96.0 ä10 4, 4.5 ä10 5= . The stochastic algorithms are run and we can observe the density plots over time for the
exact and approximate algorithms in Figure 4.

Exact_R_LeapTR08_09V2.nb

20

Figure 4: Comparing log probability densities for various simulation methods over time t=0 to t=0.2. Same parameters as Figure 3
. SSA and ER-leap appear identical. Total of 1,500 samples for each simulator. For ER-leap L was chosen automatically and
averaged L=23. For t-leap and R-leap ∂=0.01. For R-leap q=0.1. Measurement taken every 10-4 sec.

As Figure 4 and Figure 5 demonstrate, there is a substantial difference between the probability densities
from the exact and approximate simulation methods. However, ER-leap is able to produce an answer similar to
that of SSA and is about 4.5 times faster on this example.

Exact_R_LeapTR08_09V2.nb

21

Figure 5. Another look at the differences in trajectories. Distribution of 50 runs for the four algorithms. Same network as Figure 4
. X(0)=30,000. Y(0)=300,000. (So we start further out in the spiral). Simulate from time t=0 to t=0.13, before the “escape” shown
in Figure 4. A constant amount of time passes between time samples. Each cluster of points represents a group of trajectories that
started at the same initial condition and has run for the same amount of time, varying only stochastically, ie. by the choice of the
seed for a random number generator.

We modify the foregoing Williamowski-Rössler model to have rate parameters in the chaotic regime as
described in [18]. The idea is that small simulation errors may grow into large errors as time progresses. The SSA
mean of X vs. Y over 1,150 runs is shown in Figure 6. Notice the erratic behavior, which deterministic analysis
may have difficulty capturing [18].

Figure 6. Mean number of molecules on chaotic system over 1,150 SSA runs from time t=0 to t=30. k1 =30, k2 =8.3ä10-4 ,
k3=0.00166, k4 =3.32ä10-7 , k5=10, k6 =0.602 k7 =0.00166, k8=0.602, k9 =16.58, k10 = 0.00166. X(0)=7800. Y(0)=11500
Z(0)=0.

Exact_R_LeapTR08_09V2.nb

22

 When we examine log-densities accumulated over time we observe that ER-leap and SSA have densi-
ties that appear very similar whereas the approximate methods display greater departures from SSA.

Figure 7. Comparing X vs. Y log probability density for various simulation methods over time t=0 to t=30. Same parameters as
in Figure 6. Total of 1,150 samples runs for each simulator. ER-leap L was chosen automatically and averaged around 11.5. For t
-leap and R-leap ∂=0.01. For R-leap q=0.1. Measurement taken every 0.1 sec.

 In the corresponding mass action ODE’s in the chaotic regime, small simulation errors grow exponen-
tially. Furthermore, mass action analysis has sometimes proven insufficient to model the system even for a large
number of molecules [18]. To elucidate model dynamics stochastic simulation methods need to be applied. To our
knowledge ER-leap is the fastest such algorithm to do this exactly.

3.4 Scaling of computational cost with reaction events

The acceleration of SSA by ER-leap depends on the number of molecules n (along with other factors
not explored here). We run the Galton-Watson model with initial molecule number n ranging from 10 to 9ä107.
As expected the SSA CPU running time scales linearly with n . The ER-leap CPU time appears to scale as O(na)
where a>2/3 [Figure 8]. R-leap and t-leap scale much better to large number of molecules, but are not exact
algorithms. Notice that the slope of the approximating methods is nearly 0. This is due to the fact that the leap
sizes are determined from bounds on relative propensity changes. Because this system only involves first order
reactions, this leap control results in sizes that are proportional to n . Substantial room remains for the improve-
ment of exact algorithms.

Exact_R_LeapTR08_09V2.nb

23

Figure 8. Log-log scaling of CPU running times for various stochastic simulation algorithms. The left panel plots results obtained
for the Galton-Watson model with birth rate 0.101, death rate 0.10. Each test is simulated for 30 seconds. The slope of the ER-
leap line is 0.65, and SSA is 0.99, about 1.0 as expected. Ratio is 0.66 . L is chosen automatically for ER-leap. R-leap has
accuracy parameters q=0.1 and ∂=0.01. t-leap has parameter ∂=0.01. The right panel plots results obtained for the dimerization
process {2XöS, Sö2X} with rate parameters {0.001 / u, 0.01} respectively, initial values SH0L = n , singleton molecule
XH0L = n /2, and volume u = n ê100 . Slope of ER-leap line is 0.58 and slope of SSA line is 0.86 with a ratio of 0.68. Error bars
represent one standard deviation.

Additionally, we can explore the trade-off between the potential gain of large L and loss of efficiency
from rejecting samples from too-ambitious L values. There is an optimal L that is model- and time-specific. We
explore this relationship by varying L for a particular simulation and observing the CPU cost, as plotted in Figure
9.

Figure 9: Varying L for birth/death process with rate of birth 0.1 and death 0.11. X(0)=1ä107 . X(0)=5ä106 . Simulation from t=0
to t=5. Initially as we increase L, CPU runtime drops dramatically until the optimum at about L=115 which is about 22x faster
than SSA. For larger L , the rejection of proposed samples starts to decrease performance and there is a monotonic increase in
CPU computation time.

Exact_R_LeapTR08_09V2.nb

24

This tradeoff can also be explored with a log-contour plot of CPU time and L [Figure 10]. Notice that
as simulation time increases, the optimal L changes. This fact is due to a change in the value of Equation 21 as
reactant numbers change. The lack of multiple local minima in Figure 10 suggests that dynamic optimization of L
is not a hard problem.

Figure 10. ER-leap contour plot of Log CPU time per unit simulation time vs. simulation time and leap size, L . Overlay of
optimal and heuristic choice of L (from one run). Notice that the optimal leap L* changes during simulation from L* = 34 at
t = 0 to about L* = 8 at t = 6 . Basic cascading network {S1öS2, S2 ö S3, S3öS4} and all rates 1.0. Initial values: S1=4.2ä
104 , S2=4.0ä104 , S3=3.5ä104 and S4=0. Results averaged over 500 runs.

3.5 Scaling of computational cost with reaction channels

The acceleration of ER-leap over SSA is explored as a function of the number of reaction channels. The
Williamowski-Rössler model is replicated over a d-dimensional grid. In each compartment of the grid there is a
copy of the Williamowski-Rössler reaction network, including all of its chemical species and their intracompart-
mental reactions. In additiion, molecules diffuse (stochastically) between adjacent grid compartments. This is
accomplished by replicating all WR reactions over the set of compartments, and adding new reactions of the form
:Xc Ø

r Xc£ > where c is the grid coordinate for molecules of type X and c£ is any neighboring compartment.
Diffusion is to adjacent compartments only, so the L1 distance between c and c£ is one. In the experiments shown
below, d = 3.

Exact_R_LeapTR08_09V2.nb

25

Figure 11: Speedup up is calculated as SSA wall clock time divided by ER-leap wall clock time. It increases monotonically from
a one-cell system with 10 reaction channels to a 4ä4ä4 grid with 1504 reaction channels. In ER-leap L was chosen automatically,
and averaged 23 over all experiments. Error bars are one standard deviation. Same rate parameters as Figure 3. Rate of diffusion

is 0.01 and the initial number of molecules in each cell is X0=5.0ä104 , Y0 =4.5ä105 , Z0 =3.0ä104 .

As Figure 11 demonstrates, ER-leap may be used to accelerate systems with many reaction channels. It also
demonstrates the feasability of applying ER-leap to spatially structured models.

4 Conclusions

We have derived an exact accelerated algorithm for stochastic simulation of chemical reactions, using
rejection sampling together with upper and lower bounds on the probability of an outcome of a run of L reactions.
We have demonstrated a speedup to sublinear time for simulating a large number of reactions. We have verified
the accuracy of the method with senstive tests including examples from the Calibayes test suite and a chaotic
reaction network.

We note that the SSA has also been accelerated, without approximation, by executing one reaction
event at a time, lowering the cost of simulating each reaction event when there are many possible reaction to
choose from [19]. An alternative acceleration of SSA has been proposed [20] based on exploiting cycle structure.
The present ER-leap algorithm is based on the R-leap algorithm [11] that accelerates the SSA by specifying a
number of reaction firings, and does not exploit a large number of reaction types as in [19-20]. Instead, it exploits
the scaling possible for large numbers of reactant particles (molecules) and of reaction events. In these conditions,
and for reaction networks (such as the Williamowski-Rossler oscillator) for which high-accuracy or exact simula-
tion is necessary to find the correct long-time behavior, ER-leap may turn out to be the currently preferred algo-
rithm. In any case, the existence of ER-Leap demonstrates that it is possible to create exact, accelerated stochastic
simulation algorithms which scale better than SSA with respect to the number of reactant particles and reaction
events. Among these exact methods, only ER-leap has been demonstrated to have an asymptotically sublinear
(roughly 2/3 power of SSA) simulation time as a function of the number of reaction events for a regular family of
simulation problems, namely two exactly solvable networks (Galton-Watson and dimerization) in a test suite for
stochastic simulation algorithms.

Future work includes the hybridization of the present ER-algorithm with techniques from other exact
simulation algorithms that more directly address scaling with the number of reaction channels, as well as improve-
ments in the extension of the ER-algorithm to spatially dependent stochastic simulations. The numerical experi-
ments of Section 3.5, along with previous work such as the use of tau-leap [21] and R-leap [22] in spatial models,

Exact_R_LeapTR08_09V2.nb

26

show the feasability of spatial stochastic simulations but do not, we think, exhaust the avenues for their accelera-
tion.

Software for the ER-leap algorithm is provided at http://computableplant.ics.uci.edu/erleap.

4.1 Acknowledgements

EM wishes to thank ETH and Prof. Joachim Buhman for supporting a visit to ETH Zürich. Other
support was provided by NSF’s Frontiers in Biological Research (FIBR) program award number #EF-0330786,
and NIH P50-GM76516.

B A C K M A T T E R

References
[1] Gillespie, D. T. (1976). Exact Stochastic Simulation of Coupled Chemical Reactions. Journal of Computa-

tional Physics, 22, 403–434.
[2] Gillespie, D. T. (2001). Approximate Accelerated Stochastic Simulation of Chemically Reacting Systems.

Journal of Chemical Physics, 115, 1716–1733.
[3] Chatterjee, A. , Mayawala, K. , Edwards, J. S. , & Vlachos, D. G. (2005). Time accelerated Monte Carlo

simulations of biological networks using the binomial tau -leap method. Bioinformatics, 21(9), 2136–2137.
[4] Cao, Y., Gillespie, D. T. , & Petzold, L. R. (2005). Avoiding Negative Populations in Explicit Tau Leaping.

Journal of Chemical Physics, 123, 054104–054112.
[5] Cao, Y., Gillespie, D. T. , & Petzold, L. R. (2006). Efficient Stepsize Selection for the Tau-Leaping Method.

Journal of Chemical Physics, 124, 044109–144109-11.
[6] E, W., Liu, D. , & vanden-Eijnden, E. (2005). Nested stochastic simulation algorithm for chemical kinetic

systems with disparate rates. J. Chem. Phys., 123, 194107.
[7] Samant, A. , & Vlachos, D. G. (2005). Overcoming stiffness in stochastic simulation stemming from partial

equilibrium: A multiscale Monte Carlo algorithm. Journal of Chemical Physics, 123, 144114.
[8] Salis, H. , & Kaznessisa, Y. N. (2005). An equation-free probabilistic steady-state approximation: Dynamic

application to the stochastic simulation of biochemical reaction networks. Journal of Chemical Physics, 123,
214106.

[9] Cao, Y., Gillespie, D. T. , & Petzold, L. R. (2006). The slow-scale stochastic simulation algorithm. Journal
of Chemical Physics, 122, 014116.

[10] Slepoy, A., Thompson, A. P. , & Plimpton, S. J. (2008). A constant-time kinetic Monte Carlo algorithm for
simulation of large biochemical reaction networks. Journal of Chemical Physics, 128, 205101.

[11] Auger, A. , Chatelain, P. , & Koumoutsakos, P. (2006). R-leaping: Accelerating the stochastic simulation
algorithm by reaction leaps. Journal of Chemical Physics, 125, 084103.

[12] van Kampen, N. G. (1981). Stochastic Processes in Physics and Chemistry. North-Holland.
[13] Yosiphon, G. , & Mjolsness, E. (2008). Towards the Inference of Stochastic Biochemical Network and

Parameterized Grammar Models. In N. Lawrence et al., eds., Learning and Inference in Computational
Systems Biology (title with MIT Press), to appear 2009. UCI ICS TR # 08-07.
http://computableplant.ics.uci.edu/papers .

[14] Wilkinson, D. J. (2006). Stochastic Modelling for Systems Biology. Boca Raton: Chapman and Hall/CRC.

Exact_R_LeapTR08_09V2.nb

27

[15] Mjolsness, E. , & Yosiphon, G. (2006). Stochastic process semantics for dynamical grammars. Annals of
Mathematics and Artificial Intelligence, 47(Issue 3-4), 329–395.

[16] von Neumann, J. (1951). Various Techniques Used in Connection with Random Graphs. In
A. S. Householder , G. E. Forsythe & H. H. Germond (Ed.), Monte Carlo Method (pp. 36–38). Washington:
US Government Printing Office.

[17] Evans, T. W., Gillespie, C. S. , & Wilkerson, D. J. (2008). The SBML discrete stochastic models test suite.
Bioinformatics, 24(2), 285–286.

[18] Wang, H., & Li, Q. (1998). Master equation analysis of deterministic chemical chaos. J. Chem. Phys.,
108(18), 7555–7559.

[19] Gibson, M. A. , & Bruck, J. (2000). Efficient exact stochastic simulation of chemical systems with many
species and many chanels. Journal of Physical Chemistry, 104(9), 1876–1889.

[20] Riedel, M. D., & Bruck, J. (2006). Exact Stochastic Simulation of Chemical Reactions with Cycle Leaping.
http://paradise.caltech.edu/bruck_etr.html

[21] Rossinelli, D. , Bayati, B. , & Koumoutsakos, P. (2008). Accelerated stochastic and hybrid methods for
spatial simulations of reaction–diffusion systems. Chemical Physics Letters, 451, 136–140.

[22] Bayati, B. , Chatelain P., & Koumoutsakos, P. (2008). Multiresolution stochastic simulations of reaction-
diffusion processes. Physical Chemistry Chemical Physics, 10,5963-5966.

Exact_R_LeapTR08_09V2.nb

28

