
F R O N T M A T T E R

An Exact Accelerated Stochastic Simulation Algorithm
Eric MjolsnessH1,2L, David OrendorffH2L, Philippe ChatelainH3L , and Petros Koumoutsakos H3L

H1L Institute for Genomics and Bioinformatics, and 
H2L Department of Computer Science, University of California, Irvine, USA

H3L Computational Science, ETH Zürich, CH-8092, Switzerland 

UCI ICS TR # 08-09
November 2008

B O D Y

Abstract
An exact method for stochastic simulation of chemical reaction networks, which accelerates the Stochas-

tic  Simulation  Algorithm  (SSA),   is  proposed.  The  present  “ER-leap”  algorithm  is  derived  from  analytic
upper  and  lower  bounds  on  the  multi-reaction  probabilities  sampled  by  SSA,  together  with  rejection
sampling and an adaptive multiplicity for reactions. The algorithm is tested on a number of well-quantified
reaction  networks  and  is  found  experimentally  to  be  very  accurate  on  test  problems  including  a  chaotic
reaction network. At the same time ER-leap offers a substantial speed-up over SSA with a simulation time
proportional to the 2/3 power of the number of reaction events in a Galton-Watson process.

1 Introduction

The Stochastic  Simulation  Algorithm (SSA) [1] is  a widely  used method  for  simulating  the  stochastic
dynamics of chemical reaction networks. SSA executes every reaction event,  and provides an accurate view of the
system  dynamics,  albeit  at  a  significant  computational  cost  over  the  corresponding  mass-action  differential
equations  that  approximate  the  mean  numbers  of  each  molecular  species.  A  number  of  algorithms  have  been
proposed for the acceleration of the SSA at the expense of its accuracy. The t-leaping algorithm [2] and its recent
variants   [3-5]  simulate  leaps  over  several  reaction  events  during a  preselected  time  increment.  Further  develop-
ments  include multiscale  stochastic  simulation  algorithms  such  as  "Nested Stochastic  Simulation''  [6],  the multi-
scale methods [7] and [8], and the “slow-scale  stochastic simulation”  algorithm [9]. Another  acceleration method
[10]  uses  rejection  sampling  to  achieve  constant  time  scaling  with  the  number  of  reaction  channels;  this  differs
from present work which uses rejection sampling to improve scaling with respect to the number of reaction events.

A related work is the R-leaping algorithm [11] which proposes the simulation of preselected numbers of
reaction  firings  that  occur  over  time  intervals  sampled  from  an  Erlang  distribution.  An  essential  aspect  of  these
approximate  methods is the requirement that the changes to the reaction rate or “propensity” functions  are small
during each step.

We  present  a  stochastic  simulation  algorithm  which,  similar  to  R-leap,  accelerates  SSA  by  executing
multiple  reactions  per  algorithmic  step,  but  which  samples  the  reactant  trajectories  from  the  same  probability
distribution  as  the  SSA.  This  “Exact  R-leap”  or  “ER-leap”  algorithm  is  a  modification  of  the  R-leap  algorithm
which is both exact and capable of substantial speedup over SSA. The simplest versions of both t-leap and R-leap
have  difficulties  with the potential  of  producing  negative numbers  of reactants,  which  can be fixed by modifica-
tions  such  as  Binomial  tau-leap  [3] and  modified  tau-leap  [4].  Since  ER-leap  is exact,  it  intrinsically  avoids this
potential  pitfall;  stochastic  moves  to  negative  reactant  states  have  zero  probability  and  will  be  rejected.  We

1

emj
Text Box
In press, Journal of Chemical Physics, 2009



demonstrate  by  computational  experiments  that  ER-leap  can  execute in  time sublinear  in the  number  of reaction
events  to  be  simulated,  while  remaining  exact.  The  algorithm  is  based  on  the  rejection  sampling  concept,  using
efficiently computable bounds on the SSA probability distribution.

The paper is organized as follows : In Section 2 we derive upper and lower bounds on the SSA reaction
probabilities  after  multiple  reactions,  expressed  using  matrix  notation  for  Markov  processes,  and   use  rejection
sampling  to  derive  the  ER-leap  algorithm.   The  algorithm  itself  is  stated,  analyzed  for  cost,  and  illustrated  in
Section 2.5 .  In Section 3 we report  on a series of numerical  experiments  designed to evaluate the accuracy and
speedup  of  the  ER-leap  algorithm.  In  Section  4  we  discuss  the  results,  and  conclude  with  an  assessment  of  the
method in the  context of related works and an outline of directions for future work.

2 Theory

This  section  is  organized  as  follows:  Section  2.1,  Section  2.2,  and  Section  2.3  introduce  the  required
notations,  reaction  probabilities,  and  bounds  on  these  probabilities,  respectively.  The  ER-leap  algorithm’s  key
update  equations  are  derived  from  these  probability  bounds  in  the  calculations  of  Section  2.4  .  The  resulting
algorithm  is  assembled  from the  key  update  equations,  analyzed  for  cost,  and  illustrated  in  the  case  of  a  simple
reaction network in Section 2.5 . 

We consider a set of reactions, indexed by r , among chemical species Ca , indexed by a :

(1)8ma
r Ca < ö 8 m£

a
r Ca < with reaction rate rr

Here mr = @ma
r D  and m£ r = @m£

a
r D  are the input and output stoichiometries of the reaction r . In the following we

derive an expression for the probability of states after a number of such reaction events.

2.1 Notations

We  introduce  the  following  notations.  The  definition  of  a  version  of  the  indicator  function  1  from
Boolean values to integers is:

1 HPL ª ; 1 if predicate P is true
0 otherwise .

The Kronecker delta function dHa, bL  or dHa - bL  is:

dHa - bL = da b = 1 Ha = bL = ; 1 if a = b
0 otherwise

The  function  V = diagHvL  turns  a  d -dimensional  vector  v  into  a  d äd  square  matrix  V  with  components
Vi j = di j  vi ,  i.e.  zero everywhere  except the diagonal  which contains  the components  of v .  Given an ordered list
of noncommuting matrices V HkL  indexed by integers k , we defined the ordered product notation 

‰
k=Kmax äKmin

V HkL = V HKmax L ÿ V HKmax -1L ÿ ... ÿ V HKmin +1L ÿ V HKmin L

In  addition  to  the  standard  set-builder  notation  8x » PHxL<  for  defining  the  members  of  a  set  from  a
predicate  P ,  we  will  build  ordered  sets  or  lists  in  a  similar  way  using  square  brackets:  @xHiL » PHxHiL, iL »» i œ D
imposes the image of a preexisting ordering on the index set  (such as the ordering of natural numbers if Œ )
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onto any  elements  xHiL  selected  for  inclusion  by  the optional  predicate  P ,  and  thus  denotes  a set  together  with  a
total ordering. For example, the B-tuple @nb »» b œ 81, ... B<D  denotes the components of a vector n. 

2.2 Markov chain and multi-reaction probabilities

We denote states of the chemical reaction network by I, J, K,  time by t , and algorithm step number by
k . Let na  be the number of reactant molecules of type a  present in a given state I  at time t , so that I  corresponds
to  the  vector  or  ordered  list  of  nonnegative  integers   n = @nb »» b œ 81, ... B<D .  Likewise  if  we  are  discussing  are
several such states that are present at different times t£  and t≥ , we may denote them by n£  and  n≥  or correspond-
ingly by J   and K . The time interval between successive reactions is denoted by t .

We  wish  to  track  the  time  evolution  of  the  probabilities  PrHI, tL ,  for  all  possible  system  states  I  by
employing  the  governing  Master  (or  Chapman-Kolmogorov)  equation  [12].  which  we  shall  use here.  We  define
PrHI, t » J, kL  as the “just-reacted  state probability”:  the probability of being in state I  at  time t  immediately after
the k -th reaction  event,  given  that the  state is  J  at  time  zero.  The Chapman-Kolmogorov  equation  [12] for  such
just-reacted state probabilities follows from taking k  to be a discrete time coordinate, and can be written:

(2)PrHI, t » J, kL º ‚
K

‡
0

t
d t PrHI, t » K, 1L PrHK, t - t » J, k - 1L

A key  quantity  in this  equation  is  the  “kernal” PrHI, t » K, 1L :  the probability  that  if   k = 1  reaction  event  has
just occurred, and if the previous state was K , then a time t has elapsed since the last reaction event and the new
state is I . This kernal also provides the linear weights that advance the quantity PrHK, t - t » J, k - 1L , whis is the
probability  distribution over states K  just after k - 1  reactions, to produce the probability distribution over states
I  after k  reactions, PrHI, t » J, kL . So we can rename this kernal the conditional distribution

HI, t£ » J, tL = PrHI, t£ - t » J, 1L
using notation similar to that of [13]. This  is analogous to a matrix with two indices, each of which is a pair

consisting of a discrete-valued systems state (such as I  or J ) and a continuous-valued time (such as t£  or t ).
Under the SSA algorithm  must factor into an update from time t to t£  and then from state J  to state

I :

(3)HI, t£ » J, tL º W`
I,J expH-Ht£ - tL DJ J L 1 Ht£ r tL .

with

(4)D = diagIh ÿ W` M

where  h  is  the  vector  whose  components  are  all  1,  and “diag”  turns  a vector  into the  corresponding  diagonal
matrix.  This  result  is  derived  in  more  detail  in  [14]  and  [13].  The  state  space  transition  matrix  W`

 contains  the
summed probability rates or “propensities” for all reactions that could move the system from state J  to state I . The
expenential  term  governs  the  distribution  of  waiting  times  between  reaction  events.  The  I ’th  component  of  the
vector h ÿ W` , which is defined as DI I , is the the total probability per unit time for the system to leave state I . (In
many papers the summed reaction rate DI I  is denoted as a0  HnL  instead.) 

Continuing with the matrix analogy for , and assuming that t < 0Ô k r 0 fl PrHI, t » J, kL = 0,

(5)PrHI, t » J, kL º ‚
K

‡
-¶

¶

d t HI, t » K, t - tL PrHK, t - t » J, k - 1L
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Using vector notation PrH. » J, kL  for the HI, tL  parameters, we may write

(6)PrH. » J, kL ª ÎPrH. » J, k - 1L
 where the matrix-vector inner product Î  is both a sum over states and an integral over all times t , as in Equa-

tion 5, and where

(7)= W`
 expH-D t DL 1 HD t r 0L .

Equation 7 expresses the Markov chain for the change of both chemical state and total time, after one reaction
event. The matrix W`

 contains probability rates or “propensities”, the much larger matrix  contains only normal-
ized probability densities for the combination of a discrete state change and a continuous time change D t .

From Equation 6 and Equation 7, after k  reaction events, 

(8)PrH. » J, kL = k ÎPrH. » J, 0L = AW`
 expH-D t DL 1 HD t r 0LE

k
ÎPrH. » J, 0L

This  expression  is in  accord  with,  for  example,  Theorem 10.1  of [14].  Furthermore  it  expresses  concisely  the
SSA algorithm for sampling from PrHI, t » J, kL  by alternately updating the time t  of most recent reaction, and the
molecular state I .

The aim of the SSA algorithm is to sample from this distribution PrHI, t » J, kL . Equation 6 may be taken
as a concise statement of the SSA algorithm update: it is a product of two conditional distributions,  one (W`

 D-1 )
for molecular  state I  given state J ,  and another one which samples time t£  given time t  and state J  according to
conditional  distribution  D expH-D t DL 1 HD t r 0L ,  evaluated  at  state  J .  These  two  sampling  steps  are  alternated
and iterated k  times as in Equation 6.

To derive D  and , and therefore (by Equation 7) the detailed SSA simulation process, we need only
define the matrix W`

 of probability rates  for a chemical reaction network. For the reaction network of Equation 1,
defining the net stoichiometry

D ma
r = m£

a
r - ma

r ,

the usual mass-action assumption for stochastic reactions corresponds to

W`
 Hn£ » nL = ‚

r
 W` HrL

 Hn£ » nL

where the probability rate matrix W` HrL
for reaction r  has elements given by a product of factors for all the input

reactants  (all a  for which ma
r ∫ 0),  times a product  of Kronecker  delta functions  that enforce the net stoichiome-

tries on the system state:

W`
n£ ,n
HrL

= rr
i

k

jjjjjj ‰
8a»ma

r ∫0<

na !
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHna - mar L !

y

{

zzzzzz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
‰

8a»D ma
r ∫0<

dHna
£ - na - D ma

r L
É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
;

the corresponding diagonal matrix DHrL  is

DHrL  In£ » nM = rr
i

k

jjjjjj ‰
8a»ma

r ∫0<

na !
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHna - mar L!

y

{

zzzzzz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
‰

8a»D ma
r ∫0<

dHna
£ - na L

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
,

with  D =⁄r DHrL .  (The  elements  of  W` HrL
 of  are  essentially  reaction  “propensity  functions”,  with  a  constant

coefficient ¤a H1 ê Hma
r L!L  that can be absorbed into the definition of rr  to maintain notational consistency with the

law of mass action,  as discussed in Section 3.4 of [15] which  also uses notation  similar  to that used here.)  If we
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define  W = W`
- D ,  SSA  dynamics  simulates  trajectories  drawn  from  the  solution  to  the  Master  Equation,

d p êd t = W ÿ p  [12].

2.3 Upper and Lower Bounds

In  order  to  derive  a  new  simulation  algorithm,  equivalent  to  SSA,  using  rejection  sampling  [16],  we
now seek simplified  upper  and  lower  bounds  on  the probability  rate  W`

I,J
HrL

expH-D t DJ J L  (from Equation  7) for  a
single  reaction  event.  However,  we  will  assume  that  the  reaction  event  to  be  bounded  occurs  within  a  run  of  L
events in the SSA algorithm, in order to execute L  reactions at once in the manner of the R-leap algorithm[11]. As
we will see, this essentially comes down to bounding each combinatorial factor  na ! ê Hna - ma

r L!  with a constant
bound, even though it may change throughout the run of L events.

For step number l  within the run we must find a simplifying upper bound for the key expression

FnHrL ª Â
8a»ma

r ∫0<

 
i

k
jjjj
loom
noo

na !ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHna -mar L! if na r ma
r

0 otherwise

y

{
zzzz

that occurs in W`
 and D , and also to find a simplifying lower bound for its contribution to D , in order to lower-

bound both factors in  under Equation 3. The products rr  FnHrL  are usually called “propensity functions” denoted
ar  HnL  for all R  reaction channels:

(9)

ar  HnL ª rr  FnHrL ,

a0  HnL ª ‚
r=1

R
 ar  HnL

possibly with a different normalization convention as a function of ma
r  if ma

r ∫ 1  as mentioned in the previous
section.  In  this  work  it  is  more  convenient  to  keep  separate  the  structural  terms  FnHrL  and  the  reaction  rates  rr ,
rather  than  combining  them  as  in  Equation  9.  Fortunately  every  FnHrL  is  monotonic  in  each  na ,  so  we  may  find
upper and lower bounds on FnHrL  by finding upper and lower bounds on each na .

A very simple, though not very tight, set of bounds is:

(10)na + l minr 8D ma
r < b na

£ b na + l maxr 8D ma
r <

The corresponding upper and lower bounds Fè  and Fè  on F  for the l + 1-st reaction event (after l  reaction events
have already occurred) within a run of L  events is:

Fè n, l
HrL b Fn£

HrL b Fè n, l
HrL

where

(11)
Fè n, l

HrL ª F@na +l minr 8D ma
r < »»1babAD

HrL

Fè n, l
HrL

ª F@na +l maxr 8D ma
r < »»1babAD

HrL

The sparsity structure of W` HrL
 is given by SHrL œ 80, 1< :
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S`n£ ,n
HrL

= 1 JW`
n£ ,n
HrL

> 0N œ 80, 1<

=
i

k

jjjjjj ‰
8a»ma

r ∫0<
 1 Hna r ma

r L
y

{

zzzzzz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ
‰

8a»D ma
r ∫0<

 dHna
£ - na - D ma

r L
É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

S` I,J = 1 
i

k
jjjjj‚

r
SI,J

HrL y

{
zzzzz = 1 IW`

I,J > 0M

We will assume that reactions have unique outcomes (or, redefine the states I  so this becomes true):

(12)‚
I

S` I,J
HrL

= 1 .

Taking l  consecutive steps of this chain results in another sparsity structure of “reachability”:

RI»J l ª HS`
l
LI,J = 1 JHW` l

LI,J > 0N ª
loom
noo

1 if HW` l
LI,J > 0,

0 otherwise

We now start the reactions from state K = n = @na »» a œ 81, ... A<D . Since

W`
n£ ,n
HrL

= rr  FnHrL  S`n£ ,n
HrL

,

we have the bounds

RJ»K l = 1 fl Wè I,J»K l
HrL b W`

I,J
HrL
b Wè

I ,J»K l
HrL

where

Wè I,J»K, l
HrL ª rr  Fè K,l

HrL  S` I ,J
HrL

Wè
I,J»K, l
HrL

ª rr  Fè K,l
HrL

 S` I,J
HrL

.

These quantities bound W`
I,J
HrL

, in the circumstance that l  reaction events have occurred since the system was in
state K .

We also need to bound -D  in Equation 3. To this end, note from Equation 4 that

DI J = dI J  ‚
I£

‚
r

W`
I£ ,J
HrL

= dI J  DI I .

Then

RJ»K l = 1 fl

-Dè K l = -‚
r

‚
I£

Wè
I£ ,J»K l
HrL

b -DJ J b -‚
r

‚
I£

Wè I£ ,J»K l
HrL = -Dè K l

where

(13)

Dè K l ª ‚
r

rr  Fè K , l
HrL

Dè K l ª ‚
r

rr  Fè K , l
HrL
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Thus, assuming RJ»K l = 1and D t r 0, upper and lower bounds on the elements of the Markov process  given
by Equation 3 are determined as follows:

(14)rr  FK ,l
HrL  S` I,J

HrL
 expI-D t Dèè K l M b W`

I,J
HrL

expH-D t DJ J L b rr  Fè K , l
HrL

 S` I,J
HrL

 expI-D t Dè K l M .

These  desired  bounds  on  reaction  probability  rates  W`
I,J
HrL

expH-D t DJ J L follow  from  the  simple  bounds  of
Equation 10 on na

£  as a function of na  and l .

2.4 Exploitation of probability bounds

We  now  use  the  bounds  of  Equation  14  to  derive  the  key  update  equations  of  the  ER-Leap  algorithm.  The
resulting  ER-leap  algorithm  will  be  assembled  from  these  equations  and  discussed  in  Section  2.5,  followed  by
computational  experiments  in  Section  3.  In  this  Section  we  perform  the  required  calculations  to  derive  the  key
update equations..

2.4.1 Rejection sampling

Rejection sampling [16] allows one to exploit probability bounds in exact sampling, as follows: given a
target  distribution  PHxL  and  an  algorithm  for  sampling  from  a  related  distribution  P£ HxL  and  from  the  uniform
distribution UHuL  on [0,1], and if 

PHxL < M P£ HxL
for some constant M > 1, then PHxL  satisfies

PHxL = P£ HxL PHxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅM P£ HxL + H1 - 1 ê ML PHxL

and therefore also

(15)PHxL = ‡ P£ Hx£ L d x£  ‡ UHuL d u C1 Ku <
PHx£ L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅM P£ Hx£ L O ÿ dHx - x£ L + 1 Ku r PHx£ L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅM P£ Hx£ L O ÿ PHxLG

which  constitutes  a  mixture  distribution,  that  can  be  applied  recursively  as  needed  to  sample  from  PHxL .
Pseudocode for sampling PHxL  according to Equation 15 is as follows (where "//" introduces a comment):

while not accepted {
sample P£ HxL  and UHuL ;    // P£ HxL  only approximates PHxL
compute AcceptHxL = PHxL ê HM P£ HxLL ;    // acceptance probability
if  u < AcceptHxL  then accept x ;

}  // now PHxL  is sampled exactly
What  is  essential  in  applying  this  algorithm  is  to  find  a  provable  strict  upper  bound  Pè HxL = M P£ HxL  for  PHxL

(where M > 1), which is not a probability distribution but which when normalized yields a probability distribution
P£ HxL  that  is  easier  to  sample  than PHxL .  We  also want  acceptance  to  be likely,  for  computational  efficiency;  for
that  reason  M should  be  as  close  to  1  as  possible,  so  that  the  bound  on  PHxL  is  as  tight  as  possible  for  a  given
computational cost.

But  what  if  PHxL  is  expensive  to  compute?  Then  AcceptHxL  will  also  be  expensive  to  compute  and
rejection  sampling  may  be  prohibitively  expensive,  even  for  a  good  approximating  P£ HxL .  A  solution  to  this
problem is possible if a cheap lower bound for PHxL  is available. Suppose there is a function Aè HxL  such that
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(16)0 b Aè HxL b AcceptHxL ª PHxL ê HM P£ HxLL < 1 .

Then

AcceptHxL = Aè HxL ÿ 1 + H1 - Aè HxLL ÿ QHxL, where

QHxL ª
i
k
jjj

AcceptHxL - Aè HxL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

1 - Aè HxL
y
{
zzz ,

and  AcceptHxL  becomes  a  mixture  of  probabilities  defined  over  the  pair  of  actions  (accept,  reject).  Then  we
have the following “accelerated rejection sampling algorithm”, in pseudocode:

while not accepted {
sample P£ HxL  and UHuL ;    // cheap but approximate
compute Aè HxL ;   // cheap
if  u < Aè HxL  then accept x ;
else {

compute AcceptHxL = PHxL ê M P£ HxL ;   // expensive
compute QHxL = HAcceptHxL - Aè HxLL ê H1 - Aè HxLL ;   // Aè HxL < 1 fl 1 - Aè HxL ∫ 0 
sample UHuL ;
if  u < QHxL  then accept x ; 
else reject x ;

}
}
Again,  the  bound  Aè HxL b AcceptHxL  should  be  as  tight  as  possible  for  a  given  level  of  computational  cost,  to

maximize  the  probability  of  early  and  therefore  low-cost  acceptance.  A  natural  measure  of  the  tightness  of  this
bound  is  Ÿ Aè HxL d x b 1,  which  should  be  as  close  to  1  as  possible  given  cost  considerations.  However,  even  if
Aè HxL = 0 for some values of x , the algorithm still samples the distribution PHxL  exactly.

We now seek M , P£ HxL , and Aè HxL  for a run of L  successive reaction events in the SSA algorithm. 

2.4.2 Equivalent Markov process

In this section we will  use algebraic manipulations  to transform the formula for SSA (Equation 8) into
an  equivalent  form  (Equation  18)  that  represents  an  accelerated  rejection  sampling  algorithm,  as  outlined  in  the
previous section.

The first step in the algebraic derivation is to identify a probability distribution equivalent to L  steps of
the  original  SSA Markov  process,  which  can  itself  be  iterated  to  create  a  new,  equivalent  Markov  process.  The
target distribution P  is (from Equation 8)

AW`
 expH-D t DLE

L
ÎPrH. » K, 0L

From Equation 14,

W`
I,J expH-tk  DJ J L =

i

k

jjjjjjjj„
r

rr  S` I,J
HrL i

k

jjjjjj
FI

HrL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè K , l-1

HrL

y

{

zzzzzz Fè K , l-1
HrL

y

{

zzzzzzzz
 expI-tk IDJ J - Dè K l MM expI-tk  Dè K l M

Expand out the ordered matrix product for states J  reachable from K  after L  steps:
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RJ»K L = 1 fl
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=L-1ä0

W`
expH-tk  DL

É

Ö

ÑÑÑÑÑÑÑÑÑÑIL , I0

= „
8Ik »k=1 .. L-1<

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=L-1ä0

W`
Ik+1 ,Ik expH-tk  DIk ,Ik L

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

= „
8Ik »k=1 .. L-1<

„
8rk <

Â
k=L-1ä0

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

i

k

jjjjjjrrk  S` Ik+1 ,Ik

Hrk L i

k

jjjjjj
FIk

Hrk L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 , L-1

Hrk L

y

{

zzzzzz Fè I0 , L-1
Hrk L y

{

zzzzzz expI-tk IDIk ,Ik - Dè I0 L-1 MM expI-tk  Dè I0 L-1 M
É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

= „
8rk »k=1 .. L-1<

„
8Ik <

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=L-1ä0

S` Ik+1 ,Ik

Hrk L
É

Ö

ÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=L-1ä0

rrk  Fè I0 , L-1
Hrk L

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

ä

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k=L-1ä0

i

k

jjjjjj
FIk

Hrk L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 , L-1

Hrk L

y

{

zzzzzz expI-tk IDIk ,Ik - Dè I0 L-1 MM

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
 exp

i

k
jjjjj-

i

k
jjjjj‚

k
tk

y

{
zzzzz Dè I0 L-1

y

{
zzzzz

Now ⁄I S` I,J
HrL

= 1 allows a change of representation to eliminate the inner state sums:

Ik = Ik Hrk-1 , Ik-1 L = Ik  Hr = @r0 , ... rl D, I0 L
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=l-1ä0

W` expH-tk  DL
É

Ö

ÑÑÑÑÑÑÑÑÑÑIl , I0

= „
8rk »k=1 .. L-1<

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=l-1ä0

rrk  Fè I0 , L-1
Hrk L

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
 exp

i

k
jjjjj-

i

k
jjjjj‚

k
tk

y

{
zzzzz Dè I0 L-1

y

{
zzzzz

ä

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k=L-1ä0

 
i

k

jjjjjj
i

k

jjjjjj
FIk  Hr,I0 L

Hrk L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 ,L-1

Hrk L

y

{

zzzzzz
y

{

zzzzzz expI-tk  IDIk  Hr,I0 L,Ik  Hr,I0 L - Dè I0 L-1 MM

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ

Define new rule probabilities

(17)pr»K , l = rr  Fè K , l
HrL ê Dè K l ª

rr  Fè K , l
HrL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
‚

r
rr  Fè K, l

HrL .

Then,
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=l-1ä0

W`
exp H-tk  DL

É

Ö

ÑÑÑÑÑÑÑÑÑÑIl ,I0

= „
8rk »k=1 .. L-1<

 

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=L-1ä0

prk »I0 , L-1

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
 HDè I0 L-1 L

l
 exp

i

k
jjjjj-

i

k
jjjjj‚

k
tk

y

{
zzzzz Dè I0 L-1

y

{
zzzzz

ä

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k=L-1ä0

 
i

k

jjjjjj
i

k

jjjjjj
FIk  Hr,I0 L

Hrk L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 ,L-1

Hrk L

y

{

zzzzzz expI-tk  IDIk  Hr,I0 L,Ik  Hr,I0 L - Dè I0 L-1 MM
y

{

zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ

= ‚
8rk »k=1 .. L-1<

 e1  HrL e2  HrL

where
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e1  HrL ª

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=L-1ä0

prk »I0 , L-1

É

Ö

ÑÑÑÑÑÑÑÑÑÑ
 HDè I0 L-1 L

l
 exp

i

k
jjjjj-

i

k
jjjjj‚

k
tk

y

{
zzzzz Dè I0 L-1

y

{
zzzzz

e2  HrL ª Â
k=L-1ä0

 
i

k

jjjjjj
i

k

jjjjjj
FIk  Hr,I0 L

Hrk L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 ,L-1

Hrk L

y

{

zzzzzz expI-tk  IDIk  Hr,I0 L,Ik  Hr,I0 L - Dè I0 L-1 MM
y

{

zzzzzz

We define an arbitrary ordering “b” on the reaction types or channels indexed by r , so the reactions events are
“sorted”  by  type  iff  r0 b r1 b ... b rL-1 .  Let  s  denote  a  permutation  on  L  elements  which  we  may apply  to this
ordering to get an unordered sequence of rules r = 8rk » k = 0 .. L - 1< . For a given unordered r  we further restrict
the permutations s  to be those which do not interchange equal r’s; this will avoid double-counting.

Then  in  the  foregoing  expression  ⁄8rk »k=1 .. L-1<  e1  HrL e2  HrL  we  may  replace  the  multiple  sum  over
reactions  with  a  sum  over  permutations  s  that  order  the  reactions,  and  an  outer  sum  over  the  possible  ordered
reaction sets:

‚
8rk »k=1 .. L-1<

 eHrL = ‚
8r0b...brL-1 <

 ‚
8s » s permutes unequal r  s<

e1  HsHrLL e2  HsHrLL

The  number  of  r’s  taking each  possible  value  1. .. R   is  denoted  @s1 , ... sR D = sHrL ;  these  are  the  number  of
times each type of reaction occurs in the sequence r . The components of s  and r  are therefore related as follows:

sr = ‚
k=0

L-1

dHrk - rL, which satisfies

sr œ and ‚
r

 sr = L

Also the ordered list of r’s is determined by the vector s :

rk = min 
loom
n
oor

ƒƒƒƒƒƒƒƒƒƒƒƒ
k b ‚

i=0

r
 si

|oo}
~
oo.

Hence we may replace the sum over ordered r  with a sum over constrained s  :

‚
8rk »k=1 .. L-1<

 eHrL = ‚
9s » sr œ , ⁄r  sr =L=

‚
8s » s permutes unequal r  s » s<

e1  HsHrLL e2  HsHrLL

e1  HrL  however depends on r  only through s , which is permutation invariant:

e1  HrL ª eè1  HsHrLL = eè1  HsHsHrLLL = e1  HsHrLL

Hence
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‚
8rk »k=1 .. L-1<

 e1  HsHrLL e2  HsHrLL = „
9s » sr œ , ⁄r  sr =L=

eè1  HsHrLL ‚
8s » s permutes unequal r  s » s<

e2  HsHrLL

= „
9s » sr œ , ⁄r  sr =L=

eè1  HsHrLL 
i

k

jjjjjj ‚
8s » s permutes unequal r  s » s<

e2  HsHrLL
y

{

zzzzzz

= ‚
9s » sr œ , ⁄r  sr =L=

eè1  HsHrLL K L
s1 ... sR

O Xe2  HsHrLL\8s permutes unequal r  s » s<

where X ...\ denotes averaging over the given set . On the other hand, e2  HrL  is invariant under any permuta-
tion s  which only exchanges equal r’s, so

Xe2  HsHrLL\8s permutes unequal r  s » s< = Xe2  HsHrLL\8s permutes integers 1..L<

and we find

‚
8rk »k=1 .. L-1<

 e1  HsHrLL e2  HsHrLL = ‚
9s » sr œ , ⁄r  sr =L=

K L
s1 ... sR

O eè1  HsHrLL Xe2  HsHrLL\8s permutes r  s » s<

Consequently,
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=l-1ä0

W`
exp H-tk  DL

É

Ö

ÑÑÑÑÑÑÑÑÑÑIL ,I0

= „
9s » sr œ , ⁄r  sr =L=

K L
s1 ... sR

O
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰
r=1

R
Hpr»I0 , L-1 Lsr

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
 HDè I0 L-1 L

l
 exp

i

k
jjjjj-

i

k
jjjjj‚

k
tk

y

{
zzzzz Dè I0 L-1

y

{
zzzzz

ä [

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k=L-1ä0

 
i

k

jjjjjj
FIk  HsHrL,I0 L

Hrk L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Fè I0 ,L-1
Hrk L

y

{

zzzzzz expI-tk  IDIk  HsHrL,I0 L,Ik  HsHrL,I0 L - Dè I0 L-1 MM

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
_
8s»s<

.

This can be decomposed into more elementary probability distributions:

(18)

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
‰

k=L-1ä0

W`
exp H-tk  DL

É

Ö

ÑÑÑÑÑÑÑÑÑÑIL ,I0

=
HDè I0 L-1 L

L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
HDè I0 L-1 L

L  ‚
9s » sr œ , ⁄r  sr =L=

MultinomialHs » p, LL

ä Erlang 
i

k
jjjjj‚

k
tk

ƒƒƒƒƒƒƒƒƒƒƒƒ
L, Dè I0 L-1

y

{
zzzzz UniformSimplexHt; LL AcceptHs, L, tL

where

MultinomialHs » p, LL = K L
s1 ... sR

O
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
‰
r=1

R
Hpr»I0 , L-1 Lsr

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
, with

pr»I0 , L-1 =
rr  Fè I0 , L-1

HrL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
‚

r
rr  Fè I0 , L-1

HrL ;

ErlangHt; l, lL ª ll  e-l t  tl-1 ë Hl - 1L!

where Xt\Erlang = l ê l ;
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We  note  that  the  Erlang  distribution  is  the  Gamma  distribution  specialized  to  integer-valued  shape
parameter, l ,

UniformSimplexHt; LL = 1ìi
k
jjj

tL-1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHL - 1L !

y
{
zzz ;

and the acceptance probability

AcceptHs, l, tL ª XPs \8s»s< ,

where

(19)Ps =

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â

k=L-1ä0

 
i

k

jjjjjj
FIk  HsHrL,I0 L

Hrk L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 ,L-1

Hrk L

y

{

zzzzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
 exp

i

k
jjjjj-‚

k
 tk  IDIk  HsHrL,I0 L,Ik  HsHrL,I0 L - Dè I0 L-1 M

y

{
zzzzz .

From  the  definition  of  Ps  in  Equation  19  and  the  fact  that  Fè  and  Dè  are  bounds,  it  follows  that
Accept Hs, l, tL b 1. Also,  if  RJ»K L-1 = 0  (so  that state  J  is  not reachable  from state K  after L - 1  steps of  SSA)
then Ps = 0, so  that  Equation  18 still  agrees with  Equation 8  despite  the  restriction  to RJ»K L-1 = 1  stated  in  the
foregoing calculation.

Thus, Equation 18 provides an equivalent probability distribution and Markov process to Equation 8 .

2.4.3 Efficient rejection sampling algorithm

We now seek M  and P£  and Aè HxL  among the factors of Equation 18. We can  upper-bound and lower-
bound Ps  of Equation 19:

(20)Pè  
i

k
jjjjjs, ‚

k
tk , L

y

{
zzzzz b Ps b 1

where

(21)Pè  
i

k
jjjjjs, ‚

k
tk , L

y

{
zzzzz ª

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Â

r=1

R i

k

jjjjjj
Fè I0 , L-1

HrL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 , L-1

HrL

y

{

zzzzzz

sr
É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑ
 exp

i

k
jjjjj-

i

k
jjjjj‚

k
tk

y

{
zzzzz IDè I0 L-1 - Dè I0 L-1 M

y

{
zzzzz

Note that Pè  does not depend on s . This allows us to use rejection sampling [16] to transform samples
of the bounding distribution

gHs, tL = MultinomialHs » p, LL Erlang
i

k
jjjjj‚

k
tk

ƒƒƒƒƒƒƒƒƒƒƒƒ
L, Dè I0 L-1

y

{
zzzzz UniformSimplex

i

k
jjjjjt; l, ‚

k=0

L-1

tk
y

{
zzzzz

into samples of the target distribution 

f Hs, tL = gHs, tL HD
è

I0 l L
L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
HDè I0 l L

L  AcceptHs, L, tL

since the ratio f Hs, tL êgHs, tL  is bounded  above by M = IDè I0 L-1 êDè I0 L-1 M
L
r 1. gHs, tL  plays the role of P£ HxL

in the rejection sampling  algorithm of Section 2.4.1, f Hs, tL  plays the role of PHxL , and M  has just been defined.
This bound is independent of all randomly chosen variables s, t, t, s  and just restores the probability otherwise
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lost in rejection  sampling due to the AcceptHs, L, tL  factor being b 1. It remains to define Aè HxL  for the “efficient
rejection sampling” algorithm.

In order to apply the “efficient rejection sampling” algorithm of Section 2.4.1, we need to find a lower
bound  Aè HxL  for  AcceptHs, l, tL = XPs\8s»s< .  Fortunately  PHs, ⁄k tk , LLè  is  a  lower  bound  for  Ps ,  so  we  can  just
average over s  compatible with s . Then Ps  may be expressed as a mixture distribution:

Ps = Pè ÿ 1 + H1 - Pè L ÿ Qs , where

(22)Qs = i
k
jjj

Ps - PèÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - Pè

y
{
zzz b 1

and thus

XPs \8s»s< = Pè ÿ 1 + H1 - Pè L ÿ XQs \8s»s<

However, instead of numerically averaging over s  to compute XQs \8s»s< in each iteration,  we will instead draw
a  single  sample  of  s  and  use  that  sample's  value  of  Qs .  This  step  is  also  exact  since  we  can  just  define
AcceptHs, L, tL = AcceptHs, L, tL ÿ PrHs » sL ,  where  PrHs » sL  is  uniform,  and  apply  accelerated  rejection  sampling
to f Hs, tL PrHs » sL  using the corresponding bounds f  Hs, tL PrHs » sLfor P£ HxL  and Ps  for Aè HxL .

Algorithmically  this expression  can be sampled from as follows. First  compute Pè . Then with probabil-
ity  Pè ,  accept  the  “current”  candidate  move  determined  by  all  the  other  distributions.  In  the  relatively  unlikely
event  (probability  1-Pè )  that  the  move  is  not  immediately  accepted  this  way,  we  then  draw  a  random  s » s  and
compute its Qs . Then, accept the current move with probabilty Qs , and with probability 1 - Qs  reject the current
move,  draw  a  new  one,  and  iterate.  For  computational  efficiency  the  initial  acceptance  rate  Pè  should  be  high.
Pseudocode for the resulting algorithm will be presented in the next section.

2.5 Exact R-leap algorithm

We now assemble the ER-leap algorithm from the key update equations derived in previous sections: Equation
11, Equation 13, Equation 17, Equation 18, Equation 21, Equation 19, and Equation 22 .

2.5.1 Algorithm summary

We  adapt  the  efficient  rejection  sampling  algorithm  of  Section  2.4.1,  with  the  random  variables
s, s, and t,  and the expressions for P , P£ , M  and Aè  of Section 2.4.3, into pseudocode for the core of the result-
ing Exact R-leap algorithm:

set counters , ⁄k Pè k , ⁄k Pè k
2  to zero

starting at state I0 , initial time t0 , and user-specified initial leap L
while t § T  {

if L  equals 1  then perform one SSA step, set Pè =1 (for dynamic L  update counter) ;
else repeat {

compute or update the bounds on F ’s, D’s for I0 ,
by Equation 11 and Equation 13;

compute p : pr»I0 , l-1 = rr  Fè I0 , l-1
HrL ê Dè I0 l  ;
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sample s  from MultinomialHs » p, lL  
(using sorted sequential Binomials, for efficiency, as in R-leap) ;

sample ⁄k tk  from ErlangI⁄k tk » L, Dè I0 l M  ;

compute Pè  Hs, ⁄k tk , LL  by Equation 21 ; // cheap 
with probability Pè  {

accept step;
if first-rejection-iteration then increment early-acceptance counter;

} otherwise {
// expensive
sample s from permutations consistent with s ;
compute Ps œ @Pè , 1D  by Equation 19 ;

compute Qs = J Ps -PèÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ1-Pè
N  ;

with probability Qs  accept step otherwise reject step;
}

} until step accepted ;
update I0 ;
increment  , ⁄k Pè k =⁄k Pè k + Pè , ⁄k Pè k

2 =⁄k Pè k
2 + Pè 2  ;

if n r b then compute maximal L  by  Equation 25.
 if L changed or Uniform œ @0, 1D  is below 1/L2 then set counters , ⁄k Pè k , ⁄k Pè k

2  to zero ;
} until done
The  implementation  used  in  this  paper  is  written  in  C++  and  contains  around  600  lines  of  code  for  the  core

components. 

2.5.2 Acceptance ratio analysis

A preliminary analysis looks very permissive of large L :

(23)
Dè a ª minr D ma

r mè a ª maxr ma
r

D
è

a ª maxr D ma
r mè ª maxr ⁄a ma

r

Then for large na , such that

na p HL - 1L » Dè a » +mè a ,

we further insist that

LHL - 1L b mina naÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
mè maxa IDè a - Dè a + mè a M

 logH1 ê aL

where  a œ @0, 1D  is  the  minimal  early-acceptance  rate  (should  be  close  to  1  for  efficiency).  If  a = 1 - e ,  this
becomes roughly

L b &'''''''''''''''''''''''''''''''''''''''''''''''''
e mina naÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

mè maxa IDè a - Dè a + mè a M
.
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2.5.3 Asymptotic cost of update

The asymptotic computational cost of simulating with ER-leap can be analyzed. The amount of computa-
tion required to calculate and sample Pè  is dominated by the time required to calculate the reaction probability rates
or propensities. The asymptotic cost of this will be OHRL , where R  is the number of reaction types or channels. In
the  event  that  an  “early”  sample  is  rejected,  the  more  thorough  sampling  and  calculation  of  Ps ,  that  becomes
necessary,  will  be  dominated  by  the  recalculation  of  the  reaction  probability  rates  for  each  of  the  L  reaction
events. Therefore, computing Ps  will have asymptotic cost OHL RL . Thus, during simulation the expected computa-
tion per attempted leap will be the inevitable cost of calculating Pè  plus the cost of calculating Ps , which is occurs
with probability (1 - XPè \ ). So the computational cost for one leap attempt can be estimated as

(24)OHR + H1 - XPè \L L RL

To  calculate  the  expected  CPU  cost  per  reaction  event,  we  assume  that  all  Ps  samples  are  rejected.
This  yields  a  lower  bound  on  the  expected  number  of  accepted  reaction  events  per  leap,  which  will  be  XPè \ L .
Additionally, the cost for one SSA step will be OHR ) and the number of reactions events per step will be one. Thus
the per-event costs for ER-leap and SSA will be

ERleap cost =
ERleap leap cost
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
reaction events

§
R + H1 - XPè \L L R
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅXPè \ L ,

SSA cost =
SSA step cost

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
reaction events

=
R
ÅÅÅÅÅÅ
1

.

The cost ratio between SSA and ER-leap is therefore

cost ratio =
ERleap cost
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

SSA cost
§

1 + H1 - XPè \L L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅXPè \ L .

When this cost ratio  is  less than one,  ER-leap  will  be asymptotically  faster  than SSA.  This is the case
whenver XPè \ > H1 + LL ê 2 L  which in turn is > 1 ê 2  . Finally, taking the inverse of the cost ratio  gives us the lower
bound on the speedup of ER-leap over SSA, which is

speedup ∂
XPè \ L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 + H1 - XPè \L L

.

The required data structures and space requirements for ERLeap do not go significantly beyond what is
conventional for SSA simulation: Each reaction needs a list of input/output species, so an array is used to remem-
ber the state of the system as well as a temporary state copy when calculating Ps , and arrays are used to store s,  t
, and the maximal and minimal Dè a  values.

2.5.4 Dynamic choice of L

ER-leap efficiency depends  on finding an L  which optimally balances the benefits of having a large L
versus the potential inefficiencies that would result from sample rejections. Our heuristic is described here.

Recall  from  Equation  24  the  the  cost  of  calculating  early  acceptance  samples  will  be  OHR)  and  the
expected cost of calculating the late acceptance samples is OHH1 - XPè \L L RL  for each leap attempt. Balancing these
costs  yields  L = 1 ê H1 - XPè \L ,  or  XPè \ = HL - 1L ê L .  So,  during  simulation  the  goal  is  to  chose  an  L  satisfying
XPè \ º HL - 1L ê L . This is done by sampling Pè  to obtain an estimate of the ‘true’ value of XPè \  (for which we take at
least  five  samples).  Then  L  is  increased  or  decreased  by  at  most  one,  to  minimize  the  error  in  the  condition
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XPè \b º HL - 1L ê L , where the b parameter is introduced to tune differences in CPU running time between the Pè  and
Ps  calculations.  Experiments  (not  presented)  show good  performance  when b=2/3  and  this  is  used  in  all  subse-
quent experiments. 

Confidence intervals for our estimate of m , the mean of Pè , come from the central limit theorem:

m = mêê ≤ z $%%%%%%%%s2
êêêêê
ÅÅÅÅÅÅÅÅn

= mêê ≤ Error

where  statistics  for  calculating  the  sample  mean  and  sample  variance  I mêê , s2
êêêê

M  are  gathered  from  Pè  during
simulatiion, z  is a ‘confidence factor’ (we used z=1.7 in experiments),  and n  is the number of samples. Given the
goal XPè \  for a given L ,  namely hHLL = HHL - 1L ê LL1ê b , the  rule for updating L  to a new L£  is

(25)L£ =

loooom
n
ooo

L + 1, if hHLL < mêê - Error and hHL + 1L < mêê + Error

L - 1, if mêê - Error < hHL - 1L and mêê + Error < hHLL
L, otherwise

which  changes  L  whenever  the  interval  8mêê - Error , mêê + Error <  doesn’t  contain  hHLL ,  and  changing  L  by  one
would either (a) put h (L£ ) within this interval, or (b) put h (L£ ) in between hHLL  and this interval, thereby bringing
it closer to the desired interval.

2.5.5 An Illustrative Example

As  a  specific  example  of  the  use  of  the  ER-leap  algorithm,  consider  the  two-reaction  dimerization

process ;2 S1  V
r1

r2
 S2?  with forward and reverse reactions r = 1 and r = 2. Recall from Equation 9 that the instanta-

neous rates of firing, also called propensities, for each reaction are given by

a1  HnL = r1  n1 Hn1 - 1L, a2  HnL = r2  n2 .

(Some authors  divide a1  HnL  by two to “avoid double  counting”,  but our  convention is to absorb this factor  of
two into r1 and  thereby remain  notationally  consistent  with  the law of mass  action.)  ER-leap  requires  upper  and
lower bounds on the propensities for each reaction at any of L reaction event “steps”. The bounds are not required
to be tight, but here it is easy to find the tightest bounds using Equation 11: 

aè1  HnL = r1  Hn1 + 2 HL - 1LL HHn1 + 2 HL - 1L - 1LL, aè 1  HnL = r1  Hn1 - 2 HL - 1LL HHn1 - 2 HL - 1L - 1LL
aè2  HnL = r2  Hn2 + HL - 1LL, aè 2  HnL = r2  Hn2 - HL - 1LL.

The  upper  bound  aè 1 comes  from the  extreme  situation  in  which  all  L reactions  are  of  type  r = 2.  Two S1 are
produced  every  time  r = 2  fires.  So  we  calculate  the  upper  bounding  propensities  with  an  upper  bound  for  S1 :
n1
è = n1 + 2 HL - 1L . Recall that HL - 1L  is used instead of L  because about the bounds apply just before the Lth  step

occurs. The other bounds are calculated in the same way. 
Given  bounds  on  a1  and  a2 ,  we  can  sample  the  reactions  and  time  step.  First,  the  number  of  times

r = 1  and r = 2  are fired Hs1 , s2 L  is sampled from a multinomial distribution (here equivalent to a binomial) with
parameters II aè 1 HnLÅÅÅÅÅÅÅÅÅÅÅÅÅaè 0 HxL , aè 2 HnLÅÅÅÅÅÅÅÅÅÅÅÅÅaè 0 HnL M, LM , where aè0 HnL = aè1 HnL + aè2 HnL . Next, the total time step t is sampled from the gamma
distribution with parameters Iaè0 HnL, LM . 

To compute the probability of early acceptance, Equation 21 is used. This simplifies to
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Probearly  Hs, tL =
i

k

jjjjjj
Fè I0 , L-1

H1L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 , L-1

H1L

y

{

zzzzzz

s1

 
i

k

jjjjjj
Fè I0 , L-1

H2L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 , L-1

H2L

y

{

zzzzzz

s2

 expI-Ht1 + t2 L ID
è

I0 L-1 - Dè I0 L-1 MM

=
i
k
jjj

aè1  HnL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅaè1  HnL

y
{
zzz

s1

 
i
k
jjj

aè2  HnL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅaè2  HnL

y
{
zzz

s2

 expI-tIaè0  HnL - aè0  HnLM.

We accept the sample Hs, tL  early, and with little computational cost, with Probearly . If there is no early accep-
tance, the probability of late acceptance must be calculated. To calculate this first we must sample an ordering of
reactions,  s .  This  ordering  is  just  a  random  shuffling  of  the  L  reactions.  So  our  sample  may  look  like
s = 8r = 1, r = 1, r = 2, ... r = 1< .  Next,  we need to sample  the  length  of individual  time steps  for  each  reaction,
8t1 , t2 , ..., tL < .  This  can  be  done  by  independently  sampling  L  unit  exponential  random  variables  and
“normalizing”  them  so  their  sum  is  t.  It  is  now  possible  to  calculate  the  true  probability  of  acceptance  from
Equation 19:

Probaccept  Hs, 8ti<L =
i

k

jjjjjj
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 , L-1

H1L

y

{

zzzzzz

s1

 
i

k

jjjjjj
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Fè I0 , L-1

H2L

y

{

zzzzzz

s2

 ‰
i=1

L
Fè Ii , L-1

Hsi L  exp I-ti  IDIi L-1 - Dè I0 L-1 MM

= K 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅaè1  HnL O

s1

 K 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅaè2  HnL O

s2

 ‰
i=1

L
 asi  Hni L expI-ti  Ia0  Hni L - aè0  HnLMM.

Here aè  HnL  and aè0  HnL  are held constant during the calculation, but the true propensities asi  Hni L  are recalculated
after  each reaction si  occurs. State I0  corresponds to state vector n , and Ii  corresponds  to ni , where i œ 81. .. L<
indexes the step number. With probability HProbaccept - Probearly L ê H1 - Probearly L  we accept the sample and update
n . Otherwise the sample is rejected. 

In general  calculating  the propensity  bounds  with Equation  11 and  Equation 13 can be made  efficient
by noting that the maximum and minimum amounts by which a species may change in one reaction event remains
constant  throughout  the  simulation.  These  D

è
a  and  Dè a  values  (defined  in  Equation  23)  are  calculated  prior  to

simulation,  and  the  bounding  nè a  is  calculated  as  nèa = na + HL - 1L Dè a ,  from  Equation  10.  Then  the  propensity
upper and lower bounds  are calculated  as conventional  propensities  except that the bounding nè a  and nèa  are used
for each reactant instead of na .

3 Numerical Simulations

The  above  stochastic  algorithms  are  implemented  in  the  C++  programming  language  and  run  on  a
MacBook  running  OS X v10.5  with  an Intel  dual-core  1.83Ghz  processor  and  2.0GB of  RAM.  Experiments  are
performed  with  emphasis  on  exploring  accuracy  and  speedup.  We  compare  the  present  algorithm  with  the  soft-
ware developed for the t-leap and R-leap algorithms as reported  in the R-leap paper [11]. 
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3.1 Accuracy

Here  we  verify  ER-leap  equivalence  to  SSA  via  numerical  experiments.  As  an  example  of  the  tests
performed  in  the  CaliBayes  test  suite  [17],  we  consider  the  Galton-Watson  stochastic  process  where  analytic
solutions  for  the  mean  and  standard  deviation  are  known.  Mass-action  stochastic  kinetics  are  assumed.  The
solutions are compared to trajectories of many runs of SSA, ER-leap, t-leap and R-leap.  

Algorithm accuracy was validated  using a statistical  test  as performed in CaliByaes.  The ith  sample at
time t  will be denoted Xt

HiL and is drawn from the random variable Xt . The analytic mean and standard deviation at
time  t  are  mt  and  st .  Additionally,  Xt

êêêê  is  the  sample  mean  and  St
êêê  is  the  sample  standard  deviation  assuming

E@Xt D = mt . Using the central limit theorem, we eventually arrive to:

Zt =
è!!!n Xt

êêêê
-mtÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅst

, Yt = $%%%%%%n
ÅÅÅÅÅ
2

 
i

k
jjjjj

St
êêê2

ÅÅÅÅÅÅÅÅÅÅÅÅ
st 2 - 1

y

{
zzzzz .

Under  the  null  hypothesis  that  the  simulator  is  correct,  the  Zt  and  Yt  values  should  have  a  standard
normal distribution. So most Zt  values are expected to lie in the range H-3, 3L . We further relax this constraint for
Yt  to lie in the range H-5, 5L  because the standard deviation is less likely to be normally distributed. 

Figure 1. ER-leap (·) with L = 4 and SSA (Û) compared with the analytical (–––) mean and standard deviation. Y-axis in units
of molecules. The Zt  and Yt  values will be normally distributed, assuming SSA equivalence. Therefore values in the range (-3,3)
are considered reasonable. Galton-Watson stochastic process 8X ö2 X, X ö«<  with rate parameters {1.0, 1.1} respectively and
XH0L = 100. Simulation time is 50 seconds. Results from 20,000 runs. 

We  performed  this  analysis  on  SSA  and  ER-leap.  As  Figure  1  indicates,  Zt  and  Yt  are  within  the
expected range for both simulation algorithms. This supports the notion that SSA and ER-leap draw from the same
distribution. 
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Figure 2. Distribution  of  Zt  for  the  four  algorithms  under  consideration.  ER-leap  and  SSA  demonstrate  a  standard  normal
distribution whereas the approximate methods show Zt  values far outside the expected range. Reactions 8X ö2 X, X ö «<  with
rate parameters {0.11,  0.1} and XH0L = 1.0ä10 5 . For ER-leap L=30.  For R-leap  q=0.1 and ∂=0.01. For t-leap ∂=0.01. Each Zt
calculated from 1000 time points for one second intervals up to time t = 50. The number of runs for each method varies in order
to get smooth distributions and ranges from 1.0ä10 5  to 2.0ä10 5 .

To demonstrate  the sensitivity  of this test  we also  compute Zt  and Yt  for  the approximate  algorithms.
Interestingly,  all algorithms do not show strong errors  in Yt . However,  the absolute  values of Zt for R-leap and t
-leap  are  mostly  greater  than  3  [Figure  2].  This  test  indicates  that  SSA  and  ER-leap  are  equivalent  with  high
certainty  and it  was sensitive  enough to discover  the error  resulting from the assumptions  made by R-leap and  t
-leap. 

3.2 CaliBayes validation

Similar analysis as above is performed on several models in the CaliBayes test suite version DSMTS 21 
[17].  Three  models  with  solvable  mean  and  standard  deviation  are  tested:  the  birth-death  process,  dimerization
process  and  immigration-death  process.  Of  these  a  total  of  9  variations  in  initial  conditions  and  parameters  are
simulated (the others not being tested due to limited ER-leap SBML support).  The tested models are: 1-01, 1-03,
1-04, 1-05, 2-01, 2-02, 2-04, 3-01, 3-02. 

Each test case has 50 time points where Zt  and Yt  values are calculated. A test is considered passing if
» Zt » b 3.0  for all 50 Zt  values with one exception per run. Likewise, since the standard devation normal assump-
tion is not as strong, we require » Yt » b 5.0 for all but one of the Yt  scores per test. This pass/fail criteria was also
suggested in the CaliBayes documentation.

Furthermore,  since  the  tests  are  made  at  discrete  time  points,  a  large  leap  may  create  a  small  but
nonzero bias if we test at a state preceding the desired time t. To alleviate this problem we ‘leap’ to a time before t
and  then  perform  small  SSA  (L = 1)  steps  until  t  is  reached.  The  SSA  steps  begin  when  the  time  is  within
Lu ë IDè + Dè M  of t, with u = 7. In practice these small steps do not significantly affect running time.

Using the above criteria, we found all tested variations from the CaliBayes suite to pass, using ER-leap
with L = 3 or automatically-selected L , and 20,000 simulations per model. 
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3.3 Williamowski-Rössler Model

The  Williamowski-Rössler  model  [18],  which  contains  several  bi-moleclar  reactions,  is  explored  to
demonstrate the usefullness of the ER-leap algorithm. Results indicate that the approximate methods do not model
well the true stochastic behavior for particular instances of the system. Consider the following set of reactions: 

X õ
k2

k1 2 X Y õ
k6

k5
« Z õ

k10

k9 2 Z

X + Y õ
k4

k3 2 Y X + Z õ
k8

k7
«.

We can numerically solve for the corresponding set of deterministic mass action differential equations 

x° = k1  x - k3  xy - k2  x2 + k4  y2 - k7  xz + k8

y° = k3  xy - k5  y - k4  y2 + k6

z° = -k7  xz + k9  z - k10  z2 + k8

and plot the solution of X vs. Y as in Figure 3.

Figure 3: Mass-action  deterministic  solution  of  X vs.  Y  from  time  t=0  to  t=0.2  for  Williamowski-Rössler  model.  k1=900,
k2=8.3ä10-4 , k3 =0.00166, k4=3.32ä10-7 , k5=100, k6 =18.06, k7 =0.00166, k8=18.06, k9 =198, k10 = 0.00166. X(0)=39570.
Y(0)=511470. Z(0)=0.

As time progresses the mean trajectory spirals in towards an attraction point near 96.0ä 10 4, 5.1 ä 10 5= .
However,  once  the  inner  region  is  reached,  the  trajectory  falls  towards  another  attraction  point  around
96.0 ä10 4, 4.5 ä10 5= .  The  stochastic  algorithms  are  run  and  we  can  observe  the  density  plots  over  time  for  the
exact and approximate algorithms in Figure 4. 
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Figure 4: Comparing log probability densities for various simulation methods over time t=0 to t=0.2. Same parameters as Figure 3
.  SSA  and  ER-leap  appear  identical.  Total  of  1,500  samples  for  each  simulator.  For  ER-leap  L  was  chosen  automatically  and
averaged L=23. For t-leap and R-leap ∂=0.01. For R-leap q=0.1. Measurement taken every 10-4  sec. 

As Figure 4 and Figure 5 demonstrate, there is a substantial difference between the probability densities
from  the  exact  and  approximate  simulation  methods.  However,  ER-leap  is  able  to produce  an  answer  similar  to
that of SSA and is about 4.5 times faster on this example.
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Figure 5. Another look at the differences in trajectories. Distribution of 50 runs for the four algorithms. Same network as Figure 4
. X(0)=30,000. Y(0)=300,000. (So we start further out in the spiral). Simulate from time t=0 to t=0.13, before the “escape” shown
in Figure 4. A constant amount of time passes between time samples. Each cluster of points represents a group of trajectories that
started at the same initial condition and has run for the same amount of time, varying only stochastically, ie. by the choice of the
seed for a random number generator.

We modify the foregoing Williamowski-Rössler  model to have rate parameters in the chaotic regime as
described in [18]. The idea is that small simulation errors may grow into large errors as time progresses. The SSA
mean of X vs. Y over 1,150  runs is shown in Figure 6. Notice  the erratic  behavior,  which deterministic  analysis
may have difficulty capturing [18]. 

Figure 6. Mean  number  of  molecules  on  chaotic  system  over  1,150  SSA  runs  from  time  t=0  to  t=30.   k1 =30,  k2 =8.3ä10-4 ,
k3=0.00166,  k4 =3.32ä10-7 ,  k5=10,  k6 =0.602  k7 =0.00166,  k8=0.602,  k9 =16.58,  k10 =  0.00166.  X(0)=7800.  Y(0)=11500
Z(0)=0.
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  When we examine log-densities  accumulated over time we observe that ER-leap and SSA have densi-
ties that appear very similar whereas the approximate methods display greater departures from SSA.

Figure 7. Comparing X vs. Y log probability density for various simulation methods over time t=0 to t=30. Same parameters as
in Figure 6. Total of 1,150 samples runs for each simulator. ER-leap L was chosen automatically and averaged around 11.5. For t
-leap and R-leap ∂=0.01. For R-leap q=0.1.  Measurement taken every 0.1 sec. 

 In the corresponding  mass action ODE’s in the chaotic regime, small simulation errors grow exponen-
tially. Furthermore,  mass action analysis  has sometimes  proven insufficient  to model  the system even for a large
number of molecules [18]. To elucidate model dynamics stochastic simulation methods need to be applied. To our
knowledge ER-leap is the fastest such algorithm to do this exactly. 

3.4 Scaling of computational cost with reaction events

The acceleration  of SSA by ER-leap  depends  on the  number of  molecules  n  (along with other factors
not explored here). We run the Galton-Watson model with initial molecule number n  ranging from 10  to 9ä107.
As expected the SSA CPU running time scales linearly with n . The ER-leap CPU time appears to scale as O(na )
where  a>2/3  [Figure  8].  R-leap  and  t-leap  scale  much  better  to  large  number  of  molecules,  but  are  not  exact
algorithms.  Notice  that  the  slope  of  the  approximating  methods  is  nearly  0.  This  is  due  to  the  fact  that  the  leap
sizes  are  determined  from  bounds  on  relative  propensity  changes.  Because  this  system  only  involves  first  order
reactions,  this  leap  control  results  in sizes  that  are  proportional  to n .  Substantial  room remains  for  the  improve-
ment of exact algorithms.
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Figure 8. Log-log scaling of CPU running times for various stochastic simulation algorithms. The left panel plots results obtained
for the Galton-Watson model with birth rate 0.101, death rate 0.10.  Each test  is simulated for 30 seconds. The slope of the ER-
leap  line  is  0.65,  and  SSA  is  0.99,  about  1.0  as  expected.  Ratio  is  0.66  .  L  is  chosen  automatically  for  ER-leap.  R-leap  has
accuracy parameters q=0.1 and ∂=0.01. t-leap has parameter ∂=0.01.  The right  panel plots  results obtained for the dimerization
process  {2XöS,  Sö2X}  with  rate  parameters  {0.001  /  u,  0.01}  respectively,  initial  values  SH0L = n ,  singleton  molecule
XH0L = n /2, and volume u = n ê100 . Slope  of ER-leap line is 0.58 and slope of SSA line is 0.86 with a ratio of 0.68. Error bars
represent one standard deviation. 

Additionally,  we can explore the trade-off between the potential gain  of large L  and loss of efficiency
from rejecting samples  from too-ambitious L  values.  There  is an optimal L  that is model-  and time-specific.  We
explore this relationship by varying L  for a particular simulation and observing the CPU cost, as plotted in Figure
9. 

Figure 9: Varying L  for birth/death process with rate of birth 0.1 and death 0.11. X(0)=1ä107 . X(0)=5ä106 . Simulation from t=0
to t=5. Initially as we increase L,  CPU runtime drops dramatically until the optimum at about L=115 which is about 22x faster
than  SSA. For  larger L ,  the rejection  of  proposed  samples  starts  to  decrease  performance and  there  is  a monotonic  increase  in
CPU computation time.
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This tradeoff can also be explored with a log-contour  plot of CPU time and L  [Figure 10]. Notice that
as simulation  time  increases,  the  optimal L  changes.  This fact  is due  to a  change  in the value of Equation  21 as
reactant numbers change. The lack of multiple local minima in Figure 10 suggests that dynamic optimization of L
is not a hard problem. 

Figure 10.  ER-leap  contour  plot  of  Log  CPU  time  per  unit  simulation  time  vs.  simulation  time  and  leap  size,  L .  Overlay  of
optimal  and  heuristic  choice  of  L  (from one  run).  Notice  that  the optimal  leap  L*  changes  during  simulation  from L* = 34  at
t = 0  to about L* = 8  at t = 6 . Basic cascading network {S1öS2, S2 ö S3, S3öS4} and all rates 1.0. Initial values: S1=4.2ä
104 , S2=4.0ä104 , S3=3.5ä104  and S4=0. Results averaged over 500 runs. 

3.5 Scaling of computational cost with reaction channels

The acceleration of ER-leap over SSA is explored as a function of the number of reaction channels. The
Williamowski-Rössler  model  is  replicated  over  a d-dimensional  grid.  In  each  compartment  of  the grid  there  is a
copy of the Williamowski-Rössler  reaction  network,  including  all  of its  chemical  species  and their  intracompart-
mental  reactions.  In  additiion,  molecules  diffuse  (stochastically)  between  adjacent  grid  compartments.  This  is
accomplished by replicating all WR reactions over the set of compartments, and adding new reactions of the form
:Xc Ø

r Xc£ >  where  c  is  the  grid  coordinate  for  molecules  of  type  X  and  c£  is  any  neighboring  compartment.
Diffusion is to adjacent compartments only, so the L1  distance between c  and c£  is one. In the experiments shown
below, d = 3.
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Figure 11: Speedup up is calculated as SSA wall clock time divided by ER-leap wall clock time. It increases monotonically from
a one-cell system with 10 reaction channels to a 4ä4ä4 grid with 1504 reaction channels. In ER-leap L  was chosen automatically,
and averaged 23 over all experiments. Error bars are one standard deviation. Same rate parameters as Figure 3. Rate of diffusion

is 0.01 and the initial number of molecules in each cell is X0=5.0ä104 , Y0 =4.5ä105 , Z0 =3.0ä104 .

As  Figure  11 demonstrates,  ER-leap  may  be  used  to  accelerate  systems  with  many  reaction  channels.  It  also
demonstrates the feasability of applying ER-leap to spatially structured models.

4 Conclusions

We have derived an exact  accelerated  algorithm  for  stochastic  simulation  of chemical  reactions,  using
rejection sampling together with upper and lower bounds on the probability of an outcome of a run of L  reactions.
We have demonstrated  a speedup to sublinear  time for  simulating  a large number of reactions.  We have verified
the  accuracy  of  the  method  with  senstive  tests  including  examples  from  the  Calibayes  test  suite  and  a  chaotic
reaction network. 

We  note  that  the  SSA  has  also  been  accelerated,  without  approximation,  by  executing  one  reaction
event  at  a  time,  lowering  the  cost  of  simulating  each  reaction  event  when  there  are  many  possible  reaction  to
choose from [19]. An alternative  acceleration of SSA has been proposed [20] based on exploiting cycle structure.
The  present  ER-leap  algorithm  is  based  on  the  R-leap  algorithm  [11]  that  accelerates  the  SSA  by  specifying  a
number of reaction firings,  and does not exploit a large number of reaction types as in [19-20]. Instead, it exploits
the scaling possible for large numbers of reactant particles (molecules) and of reaction events. In these conditions,
and for reaction networks (such as the Williamowski-Rossler  oscillator) for which high-accuracy or exact simula-
tion is necessary  to find the correct  long-time behavior,  ER-leap  may turn out to be the currently  preferred algo-
rithm. In any case, the existence of ER-Leap demonstrates that it is possible to create exact, accelerated stochastic
simulation  algorithms  which  scale  better  than SSA  with respect  to  the  number  of  reactant  particles  and  reaction
events.  Among  these  exact  methods,  only  ER-leap  has  been  demonstrated  to  have  an  asymptotically  sublinear
(roughly 2/3 power of SSA) simulation time as a function of the number of reaction events for a regular family of
simulation  problems,  namely two exactly  solvable  networks  (Galton-Watson  and dimerization)  in a  test  suite for
stochastic simulation algorithms.

Future  work  includes  the  hybridization  of  the  present  ER-algorithm  with  techniques  from  other  exact
simulation algorithms that more directly address scaling with the number of reaction channels, as well as improve-
ments  in  the extension  of  the  ER-algorithm  to  spatially  dependent  stochastic  simulations.  The numerical  experi-
ments of Section 3.5, along with previous work such as the use of tau-leap [21] and R-leap [22] in spatial models,
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show the feasability  of spatial  stochastic simulations but do not, we think, exhaust the avenues for their accelera-
tion.

Software for the ER-leap algorithm is provided at http://computableplant.ics.uci.edu/erleap.
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