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SUMMARY 

Motivation: Regulation of transcription has been modeled in a variety of ways in 
cellular and developmental systems.  

Results: Here we apply a method for creating equilibrium models of hierarchical 
statistical systems, the Equilibrium Molecular Complex Composition (EMCC) family of 
models, to the problem of modeling the rate of initiation of transcription in the presence 
of overlapping binding sites, synergistic binding interactions in one dimension, and 
modular activation of a transcription complex. 

INTRODUCTION 

The essential steps for modeling a hierarchical system in equilibrium using the 
Equilibrium Molecular Complex Composition (EMCC) family of models are to (1) 
identify the hierarchical levels; (2) model each level with a partition function Z for a 
Boltzmann distribution, as a function of fugacity parameters z for constituent molecules 
or subcomplexes; (3) perform any possible model reduction (including justifiable 
approximations) on the resulting partition functions Z(z); (4) compose the partition 
functions, substituting partition functions Z from a finer scale for fugacities z at a coarser 
scale.  The validity of this procedure follows from an EMCC “Composition Theorem”.  
We will illustrate this procedure in the case of the Monod Wyman Changeaux model of 
allosteric enzymes, and then apply it to the case of a hierarchical model of transcriptional 
regulation (Mjolsness, 2001) here generalized to the case of transcription factor binding 
sites with optional overlaps with their nearest neighbors in one dimension, and optional 
interaction energies with their second nearest neighbors, and hierarchical activation in 
terms of transcriptional regulatory modules. 

Assume we have a molecular complex defined at each level by a set of binary 
occupancy variables ∈{0,1}is , related through a high-order Ising model. For each slot 

there is a fugacity variable iz . We can define a multidimensional array J of interaction 
energies, whose elements are indexed by the ordered set of indices ( )ρ σ : 

< <= ∈( ) ( (1) (2) ... ( ))i i i lJ Jρ σ  
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with the convention that any other values of J are 0. Defining =00 1, the partition 
function for equilibrium statistical mechanics is 

σ σ∈ ∈

σ
= −β∑ ∏ ∏ ∏( )

{ | {0,1}} { | {0,1}}
( | ) ( ) exp[ ( ) ]ji

j
s s ii i j

sZ z J z J si ρ σ  (1) 

Considered as a function of the fugacities z, Z(z) is a high-order polynomial and it is a 
generating function for the (unnormalized) probabilities of all configurations s. However, 
many J’s can tend towards ∞ in such a way as to prohibit particular combinations of 
values of si by giving them zero probability. Also many J’s can be exactly zero, so that 
particular interactions are absent.  These possibilities can be encoded by the predicates 
P(s) and Q(σ), respectively, in the following expression for the partition function: 
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As a trivial example, a heterodimer of species 1 and 2 with no internal states would 
have Z(z1, z2) = ω1,2z1 z2. A protein with a single binding site that can be empty or 
occupied by species 1 or 2 would have Z(z1, z2) = 1+ω1z1+ω2z2. If the protein is itself 
regarded as one of the species that can be present or absent, with fugacity z0, then it must 
be present and the partition function is Z(z1, z2) = z0(1+ω1z1+ω2z2). In each case, as for 
any probability generating function, the coefficients can be normalized to give the 
probabilities of each possible configuration of bindings. 

Such partition functions can be put into a form with homogeneous degree by 
introducing the complementary fugacity variables zi = zi

+zi
-: 

+ − + − −ω = ω ∏homog homog( , | ) ( / | )( ).iZ z z Z z z zi  No information is lost since 
+ −ω = = = ωhomog homog( | ) ( , 1 | )Z z Z z z z . 

METHODS AND ALGORITHMS  

Composition Theorem. Suppose we have a two-level hierarchical system, with a top 
level (coarse-scale) partition function Z0 and a set of lower-level (finer-scale) partition 
functions. Given partition top-level internal state variables {s0} that can interact with 
lower-level systems, and lower-level activation variables pi that can interact with higher-
level systems, we can define lower-level partition functions ω0([ ], ) ( , )j is p

iZ z . Without the 
indices s0 and pi, generating functions for discrete-time branching processes (birth-and-
death processes) are obtained by function composition from the generating functions at 
each succeeding generation, with the first generation as the outermost composition 
(Athreyea, Ney, 1972). A similar result holds in the present situation. 

A “Composition Theorem” gives conditions under which partition functions Z0(z) at 
the top level and ≥{ ( ) | 1}iZ iiz at the next lower level in a scale hierarchy, all of which 
are in the form of  (Equation 2), may be composed to give the partition function 

− ζ ≥2 level ([ ( ) | 1])i i iZ Z iz , also in the form of  (Equation 2), for the composite molecular 

complex. Optionally some of the ζi  may be set to 1 if we do not need to differentiate 
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with respect to them. For example, if = 2

1( ) ( )i i iZ zz  then there is a model level 
corresponding to obligatory homodimerization in binding to the top-level complex at 
position i.  Likewise if = + ω + ω1 1 2 2( ) (1 ),i i i iZ z zz  then there is a binding site which can 
be empty, or occupied by just one of two competing factors.  The composition theorem 
may be used recursively to model many levels of complex composition. 

IMPLEMENTATION AND RESULTS 

MWC Example. A simple example is given by the Monod-Wyman-Changeaux model 
of allosteric enzymes. 

Level 1 (top): global activation/inactivation: + −= ζ ω +1 2 2
0iZ Z Z . 

Level 2: Independent identical subunits: ± ±=2 3( )nZ Z . 
Note: levels 1 and 2 are ordinarily combined.  
Level 3: Independent binding heterogeneous sites within each subunit: 

±
α= α

± = ∏ 4
1

3 ( )A nZ Z . The simplest case is α ∈{1, 2, 3} for substrate/product, activator, and 
inhibitor respectively. 

Level 4: Mutual exclusion (MutEx) for occupation: α α
± ±

= α α
± ±= ω + ω∑ 5

1
4 n

i i iZ Z . 

Without loss of generality, take α
±ω =1 since empty binding sites are never prohibited. 

Level 5: Convergence through sharing of fugacity variables, each of which is (for a 
dilute well-stirred solution in a fixed macroscopic volume) proportional to the number of 
molecules present and therefore to concentration: α

± =5
iZ z .  

Composition of all levels: + −
= =α= α=α α= ω + ω + + ω∑ ∑∏ ∏1 11 10 0 (1 ) (1 ) .n nA An n

i ii i i iZ z z z  

The original MWC model has α
±ω = 0i  unless I = α and the following condition: 

= + ∧ α = ∨ α = ∨ = − ∧ α = ∨ α =( 1 ( 1 2)) ( 1 ( 1 3))s s  where α = (1, 2, 3) for substrate, 
activator, and inhibitor respectively.  In that case we recover the original MWC model: 

= =
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Clearly this model can be generalized to multiple substrates, activators and inhibitors 
on each subunit, as demonstrated and applied in (Tarek et al., 2006) to amino acid 
synthesis pathways. 

EMCC application to transcriptional regulation. With this apparatus we can rederive 
and extend a model similar to Hierarchical Cooperative Activation (Mjolsness, 2001) for 
transcriptional regulation. Transcription factors bind, alone or in multimers such as 
homodimers or heterodimers, to DNA binding sites that can overlap with their one-
dimensional neighbors (in which case they can’t be occupied simultaneously) or be 
sufficient close to their nearest nonoverlapping neighboring sites in one dimension that 
energetic interactions occur. These possibilities are summarized by allowing overlap with 
nearest neighbors to either side, interaction with next nearest neighbors to either side, and 
missing sites that break chains of overlap and/or interaction. At a coarser level, activation 
occurs in modules or cassettes (such as the Drosophila even-skipped minimal stripe three 
element) which contribute to overall activation of transcriptional initiation. Within these 
limitations, we can formulate an equilibrium complex model similar to MWC at several 
levels. The novel part of this model compared to HCA is the one-dimensional interactions 
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through site overlap and synergy: second nearest neighbors (odd or even) interact 
energetically with factor ω. Therefore each successive pair of sites has three possible 
states. The model can be solved using 3 × 3 transfer matrices on site pairs: 

+ + − +
=

+ + + +

= ⋅ ⋅∏

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ω⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ω ⎝ ⎠⎝ ⎠

2 1 2 1 2 1,2 1 1
1

2 2 2 2 2 2 2 ,2 2 2

1 1 1 1
(1,1,1) { 0 }i i i i

i k

i i i i i

Z z
z

z z
z z z

 

Any site can be omitted (removing its overlap constraints and interaction energies) by 
setting its zi to be 1 and ωi*= ω*I =1. 
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