
A SOFTWARE ARCHITECTURE FOR DEVELOPMENTAL
MODELING IN PLANTS: THE COMPUTABLE PLANT PROJECT
1Gor, V.,*1Shapiro, B.E., 2Jönsson, H., 1Heisler, M, 1Venugopala Reddy, G.,
1Meyerowitz EM, and 3Mjolsness E

1California Institute of Technology, Pasadena, CA, USA; 2Lund University, Lund,
Sweden; 3University of California, Irvine, CA, USA
email: bshapiro@caltech.edu
*Corresponding Author

Keywords: Arabidopsis, Cellerator, developmental modeling, Mathematica, meristem,
SBML, systems biology

Summary

Motivation. We present the software architecture of the Computable Plant Project, a
multidisciplinary computationally based approach to the study of plant development.
Arabidopsis thaliana is used as a model organism, and shoot apical meristem
development as a model process. Meristems are the plant tissues where regulated cell
division and differentiation lead to plant parts such as flowers and leaves. We are using
green fluorescent proteins to mark specific cell types and acquire time series of three-
dimensional images via laser scanning confocal microscopy. To support this we have
developed an interoperable architecture for experiment design that involves automated
code generation, computational modeling, and image analysis.

Results. Automated image analysis, model fitting, and code generation allow us to
explore alternative hypothesis in silico and guide in vivo experimental design. These
predictions are tested using standard techniques such as mutants and altered hormone
gradients. The present paper focuses on the automated code generation architecture.

Availability. http://www.computableplant.org

Introduction

Scientists who probe the functionality of dynamic developmental systems often express
their models mathematically; to make precise system-specific predictions these models
are typically encoded with high-level computer languages and standard support libraries
and solved numerically. However, high-level languages and libraries typically trade
efficiency for generality, and thus may not be appropriate for large hybrid dynamical
systems. They also typically lack state-of-the-art technologies in such computationally
intensive areas as model optimization and fitting. Finally, custom designed systems are
rarely interoperable, making it difficult for researchers to disseminate models.

We have developed an architecture aimed at production-scale model inference. We
generate simulation code from models specified in biological and/or mathematical
language. Other computational tools are used to analyze expression imagery and other
data sources, and the simulator combined with nonlinear optimization is used to fit the
models to the data. Key elements include: a mathematical framework combining
transcriptional regulation, signal transduction, and dynamical mechanical models; a
model generation package (Cellerator) based on a computer algebra representation;
extensions to SBML (Systems Biology Modeling Language), an exchangeable model
representation format, to include dynamic objects and relationships; a C++code gen-

erator to translate SBML into highly efficient simulation modules; a simulation engine
including standard numerical solvers and plot capability; a nonlinear optimizer; and ad
hoc image processing and data mining tools. This architecture is capable of simulating
processes such as intercellular signaling, cell cycling, cell birth and death, dynamic
cellular geometry, changing topology of neighborhood relationships, and the
interactions of mechanical stresses.

Methods and Algorithms

Models are input in Systems Biology Markup Language (SBML), an XML-based
language for exchanging biological models. SBML is currently supported by more than
fifty different software packages used by biological modelers and has become the de
facto standard for exchanging models among the systems biology community [Hucka et
al 2003; Finney and Hucka 2003]. The modeling interface is provided by Cellerator
[Shapiro et al 2003], which allows users to specify models in an arrow-based biochem-
ical notation, and translates them automatically to differential equations using a variety
of different schemes. Cellerator produces extended SBML Level 2 code utilizing
MathSBML [Shapiro et al 2004]. SBML encoded models are parsed into internal data
structures with a libSBML-based parser [Bornstein et al 2004].

Several extensions to SBML have been proposed and will likely be adopted in SBML
Level 3 [Finney et al 2004]. In particular, SBML Level 2 does not support spatially-
dependent models where each biological entity is individually defined and enumerated,
and further, does not provide any easy way to describe dynamic geometry and variable
size models resulting from cell birth, death, and differentiation. Therefore we have
adopted [Finney et al 2003] to describe dynamic topology and connectivity in terms of
arrays, and have extended Cellerator, MathSBML and libSBML accordingly.

Implementation and Results

The automatic code generator is central to the architecture. It consists of an inferencer,
a rule segmenter and optimizer, and application code writer modules (Fig. 1). It queries
the parser for SBML structures and produces efficient C++ application code. The
resulting C++ code is then compiled into object code
optimized for the desired application. The first two
modules of the automatic code generator – the
inferencer and rule segmenter – are pre-processors.
They are called once for each SBML model,
independent of the application software to be
generated. The inferencer receives parsed SBML
structures from the parser and infers element attributes
given the element name. This reflects the inverse
relationships between SBML elements and their
attributes. For example, the extended SBML has a
parameter attribute foreach that indicates the
compartment; the inferencer creates a list of inferred
elements, such as the list of parameters in each
compartment.

The rule segmenter and optimizer translates SBML
rules (which represent mathematical equations using a
subset of MATHML) into C++ and performs all

Cellerator

SBML

Automatic
Code

Generator

C++ Source Code
Solver/

Application

Executable

Simulation

Prediction

Compile/Link

Experiment
Design

Experiment
Results

iteration

Inferencer

Rule
Segmenter

& Optimizer

Application
Code

Writer

Fig. 1. System architecture.

necessary renaming of SBML model objects into C variables. Portions of SBML
formulas that have no immediate C++ representation, such as the MATHML function
sum (which sums a formula over an index) are broken up into sub-rules with
intermediate variables; these are later translated into loops or other appropriate control
and data structures. Future enhancements will include formula optimization. Identical
portions of the formula will be separated into intermediate rules that are only executed
once; scalar formulas inside loops will be pre-evaluated outside of the loop. The
renaming function completes the work of this module. For example, individual array
elements are referenced by index with an SBML model utilizing the MATHML
selector operator; this is replaced by the appropriate C array reference such as
name[j].

The application code writer takes as input the C++ model representation generated by
the rule segmenter and inferencer, along with an application request, chosen from a
menu of available applications. The output is application source code that can be
compiled and linked with the chosen application. The application code writer consists
of a three-level library. The top level contains all of the application-dependent code.
This application level software is high-level code that is updated as new applications are
added. Applications that exist or are being developed include various forward develop-
mental simulators including genetic regulatory network (GRN) temporal synthesis; 4th

and 5th order Runge-Kutta differential equation solvers; and optimizers such as Lam-
Delosme simulated annealing. In addition, this top level includes overloaded routines
that originate at the second level thereby allowing the top level to access this lower level
functionality. The second level, SBML level software, contains all processes that are not
application dependant. This library has entry points for accessing all SBML attributes
and elements. The third, and lowest level, is the utility library, which contains common
operations such as vector algebra and memory maintenance.

Discussion

We are using this simulation environment to extend and enhance our previously
reported developmental simulations of the shoot apical meristem (SAM) [Jönsson et al
2003; Mjolsness et al 2004]. Our working hypothesis is that SAM development can be
described by the differential expression of key regulatory proteins such as CLV1 (a
receptor kinase), CLV3 (thought to be the CLV1 ligand), WUS (a transcription factor
negatively regulated by CLV1), and a layer-1 specific protein (L1SP). The dependence
of CLV1 and CLV3 on WUS, perhaps through a hypothetical diffusible intermediary X,
has been inferred from experiments. A second diffusive signal originates from L1SP
and diffuses into the rest of the meristem via messenger Y. CLV3 is turned on only if
the sum X+Y exceeds threshold. Finally, an unknown diffusible messenger Z creates a
surface specific expression pattern for L1SP, which is itself inhibited by STEM, a
hypothetical gene expressed only in the lowest meristem layer.

The computable plant architecture provides a systematic, highly automated technique
for predictive model generation. The approach combines computer-algebraic represen-
tations of biological and mathematical models to produce efficient and problem-specific
simulation code. This code can be immediately linked with a menu of external solvers
and quantitative predictions generated from the resulting simulations. This architecture
is scalable and directly applicable to large-scale developmental systems such as the
SAM. The use of extended SBML ensures that models will be interoperable, reusable,
and readable by others. Novel to this approach are connections to external solvers by

way of automatic code generation and the ability to interpret and solve any biological
developmental or cellular process via automatic generation of mathematical and
computational tools. Thus no labor is expended writing and debugging problem-specific
code, allowing researchers to spend more time on the wet bench.

Acknowledgments

This work was supported by the United States National Science Foundation (NSF)
under a Frontiers in Integrative Biological Research (FIBR) grant. HJ was in part
supported by the Knut and Alice Wallenberg Foundation through Swegene. Portions of
the research described in this paper was performed at the California Institute of
Technology.

References

1. Bornstein, B., Keating, S. Hucka, M., and Finney, A. (2004) "libSBML: A Software
Toolkit for the Systems Biology Markup Language (SBML)". Poster presentation at
Pacific Symp. Biocomp. (PSB-2004), http://www.sbml.org/libsbml.html

2. Finney, A. and Hucka, M. (2003) Systems Biology Markup Language: Level 2 and
Beyond. Biochem. Soc. Trans, 31: 1472-1473.

3. Finney, A., Gor, V., Bornstein, B., and Mjolsness, E. (2003). Systems Biology
Markup Language (SBML) Level 3 Proposal: Array Features,
http://www.sbml.org/wiki/arrays.

4. Finney, A., Hucka. M., Bornstein, B.J., Keating, S., Shapiro, B.E., Matthews, J.,
Kovitz, B., Funahashi, A., Schilstra, M., Doyle, J.C., and Kitano, H. (2004)
Evolving a Lingua Franca and Accompanying Software Infrastructure for
Computational Systems Biology: The Systems Biology Markup Language (SBML)
Project. IEE Systems Biology (in press).

5. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin,
A.P., Bornstein, B.J., Bray, D., Cornish-Bowden, A., Cuellar, A.A., Dronov, S.,
Gilles, E.D., Ginkel, M., Gor, V., Goryanin, II., Hedley, W.J., Hodgman, T.C.,
Hofmeyr, J.H., Hunter, P.J., Juty, N.S., Kasberger, J.L., Kremling, A., Kummer, U.,
Le Novere, N., Loew, L.M., Lucio, D., Mendes, P., Mjolsness, E.D., Nakayama, Y.,
Nelson, M.R., Nielsen, P.F., Sakurada, T., Schaff, J.C., Shapiro, B.E., Shimizu, S.,
Spence, H.D., Stelling, J., Takahashi, K., Tomita, M., Wagner, J., and Wang, J.
(2003) The systems biology markup language (SBML): a medium for representation
and exchange of biochemical network models. Bioinformatics 19:513-523

6. Jönsson, H., Shapiro, B.E., Meyerowitz, E.M., and Mjolsness E. (2003) Signaling in
Multicellular Models of Plant Development, in On Growth, Form, and Computers,
ed. Bentley P and Kumar S, Academic Press.

7. Mjolsness, E., Jönnson, H., Shapiro, B.E., and Meyerowitz, E.M. (2004) Modeling
plant development with gene regulation networks including signaling and cell
division, in Bioinformatics of Genome Regulation and Structure, ed. N. A.
Kolchanov, Kluwer Publications.

8. Shapiro, B.E., Hucka, M., Finney, A., and Doyle, J. (2004) MathSBML: A package
for manipulating SBML-based biological models. Bioinformatics. (In press).

9. Shapiro, B.E., Levchenko, A., Wold, B.J., Meyerowitz, E.M., and Mjolsness, E.D.
(2003) Cellerator: Extending a computer algebra system to include biochemical
arrows for signal transduction modeling. Bioinformatics 19: 677-678.

	Text1: Preprint of a paper to be presented at the Fourth International Conference on Bioinformatics of Genome Regulation and Structure (BGRS-2004), Novosibirsk, Russia, July 2004.
(c) 2004.All rights reserved.

