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3.6 Analytical Mean For Chaotic System . . . . . . . . . . . . . . . . . . 57
3.7 Comparison of CPU Running Time . . . . . . . . . . . . . . . . . . . 58
3.8 L vs Achievalbe Speedup . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.9 Leap vs CPU Time and Model Evolution . . . . . . . . . . . . . . . . 59
3.10 ER-leap Speedup over SSA . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Spatial Replicates with 2D Diffusion . . . . . . . . . . . . . . . . . . 80
4.2 Spatial Replicates with 1D Diffusion . . . . . . . . . . . . . . . . . . 81
4.3 Log CPU Time vs Leap and Hierarchical Structure . . . . . . . . . . 82

v



List of Tables

Page

4.1 Notation, Accents and Meaning . . . . . . . . . . . . . . . . . . . . . 65

vi



ACKNOWLEDGMENTS

Foremost, I would like to thank my wife for her unabating support, patience and
editorial commentary. Without her this thesis may not have come to fruition. I would
like to thank my advisor Eric Mjolsness for his expertise and mentorship during these
past six years. He has done his job tirelessly, and I am extremely grateful to have
worked with him. My thanks extend to my officemate, Todd Johnson, for useful
discussions and for showing me that finishing is possible. Furthermore, I am grateful
for my peer lunch group including, but not limited to, Lars Otten, Jimmy Folds, Drew
Frank, Darren Davis, Chris DuBois, Matt Kayala and Levi Boyles for the interesting
discussions. I am thankful for the Bayes Allstars. I am thank for my family and their
heartfelt support. I am thankful for exemplary teachers throughout my formative
years, including Sherry Leake and Sherry Bigham, for giving me the confidence to
pursue difficult paths. I am thankful for our collaborators from ETH Zürich: Petros
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ABSTRACT OF THE DISSERTATION

Exact and Hierarchical Reaction Leaping:
Asymptotic Improvements to the Stochastic Simulation Algorithm

By

David Orendorff

Doctor of Philosophy in Computer Science

University of California, Irvine, 2012

Professor Eric Mjolsness, Chair

An exact method for stochastic simulation of chemical reaction networks, which ac-

celerates the Stochastic Simulation Algorithm (SSA), is proposed. The present “ER-

leap” algorithm is derived from analytic upper and lower bounds on the multi-reaction

probabilities sampled by SSA, together with rejection sampling and an adaptive mul-

tiplicity for reactions. The algorithm is tested on a number of well-quantified reaction

networks and is found experimentally to be very accurate on test problems including

a chaotic reaction network. At the same time, ER-leap offers a substantial speed-up

over SSA with a simulation time proportional to the 2/3 power of the number of

reaction events in a Galton-Watson process. A second algorithm, “HiER-leap”, is

derived using some of the same principles used in the ER-leap derivation. HiER-leap

utilizes a hierarchical organization of reaction channels into tightly coupled “blocks”.

Large portions of inter-block sampling may be done in parallel. An accept/reject step

is used to synchronize across blocks. This method scales well when many reaction

channels are present and has desirable asymptotic properties. The algorithm is ex-

act, parallelizable and offers a significant speedup over SSA and ER-leap on certain

problems. These two proposed algorithms offer a significant step towards efficient in

silico modeling of entire organisms.

ix



Chapter 1

Introduction

The world today is being assailed by a slew of problems: climate change, energy

shortages, diseases, food shortage and overpopulation to name a few. These challenges

touch all of humanity in one way or another. Without intervention, any one of these

problems could have cataclysmic results.

Scientific inquiry represents a principled methodology to understand and eventually

mitigate many of these global scale technical issues. Biology, in particular, has great

promise for solving some of the more difficult problems. For example, the work

of [3] rewrites some of the genetic circuitry in yeast to produce ethanol suitable

for use as a petroleum substitute. The work of [40] aims to engineer S. cerevisiae

to inexpensively produces an anti-miliaria drug. The World Health Organization

estimates that 33.9% of American adults are obese [1]. Obesity has been linked to

noncommunicable diseases such as cardiovascular disease, some cancers, diabetes and

musculoskeletal disorders [1]. Genetic links have been found to be correlated with

obesity [27], but relatively little is known about the consequences of these genetic

links. Personalized medicine suggests a drastically increased efficacy in treatment
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and prevention of most diseases. Finally, the future leveraging of biology extends to

even more dramatic possibilities. Space colonization and terraforming will likely rely

heavily on genetically modified organisms: oxygen producing bacteria could one day

blanket Mars, and space travelers may have in their bodies proteins and enhanced

repair mechanisms built to resist the harmful effects of solar radiation. In these ways,

the fate of humanity is closely linked to our understanding of biology.

All of the aforementioned examples have in common the need to understand and

manipulate complex biological systems. Over the previous decade high throughput

assays have become commonplace [33]. These technologies will often produce hun-

dreds or thousands of indicators, the underlying system mechanics of which are rarely

directly inferable. Instead, computational learning and inference techniques must hy-

pothesise the underlying mechanisms.

The biological models of tomorrow will have a complexity that will likely yield present

inference algorithms practically intractable. Maximum likelihood inference algorithms

such as [53] and Bayesian inference algorithms such as [41], have in common the

need for a great many simulations in their inner loops. Thus simulation is a major

bottleneck for the computational inference of biological mechanisms. Overcoming this

obstacle is the focus of this thesis.

A popular method for modeling biological systems describes a system in terms of

‘chemically reacting species’. These models are independent of the exact inference

algorithms used. In fact, the model may represent different distributions depending

on the assumptions one makes about the underlying system as will be shown in section

2.1.

When molecule counts are low for species, it can be useful to describe reactions as

occurring stochastically. This assumption may be especially useful when modeling
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regulatory networks, where particular protein or mRNA quantities are often very

low.

A great deal of research has focused on understanding the stochastic behavior of

these systems. Around 1976, Daniel Gillespie developed the Stochastic Simulation

Algorithm (SSA) to exactly sample these systems [20]. Since then, this line of research

has branched into various directions in order to speed up this sampling.

Accelerating the SSA algorithm has proven to be difficult. It has been shown that

general chemically reacting networks are Turing complete [48] with error that is ar-

bitrarily close to 0. By the halting problem, this implies that general chemically

reacting models cannot be solved analytically.

One class of acceleration methods utilizes approximations. For example, [19, 10, 32,

24, 28, 8] assume reaction propensities do not change over short time periods. [5, 58]

assume propensities do not change while time delayed reactions occur.

Another more recent class of SSA acceleration algorithms uses parallel architectures to

accelerate SSA. There has been work on the parallelization of SSA via GPUs [31][28,

30] and multicore CPUs [18]. Significant speedup has been achieved by concurrently

sampling SSA trajectories. This speedup is important if many samples from the

posterior distribution need to be sampled.

Additionally, there has been work in speeding up the sampling of single trajectories

with GPUs using approximate methods [56].

However, multicore GPUs and CPUs have not been effectively used to speed up

the sampling of one Chemical Master Equation trajectory exactly. Arguably, this

becomes the dominant problem when extremely large systems are being studied. For

example, an E. coli’s genome contains between 4,000 to 5,500 genes [7]. This fact,

3



in addition to the large number of non-genetic species present, suggests that tens of

thousands of species will needed to be present if an E. coli specimen is to ever be

comprehensively modeled in silico. If eukaryotic cells are ever to be fully modeled,

the complexity will further increase by orders of magnitude. Using current technology

and a standard implementation of SSA, the time required to simulate one trajectory

for any meaningful duration becomes prohibitive.

This thesis demonstrates novel ways to algorithmically accelerate SSA without ap-

proximation, as we have reported for the first time in [37], and additionally utilizes

parallel architecture and a hierarchical divide-and-conquer algorithm strategy to ac-

celerate serial sampling of SSA.

These algorithms are found by manipulating the Chemical Master Equation to more

efficiently sample from SSA equivalent distributions. Results indicate an efficiency

not achievable by existing techniques that scales well across variables pertinent to

organism scale simulation.
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Chapter 2

Related Work

2.1 Modeling Chemically Reacting Species

A great deal of effort has been put into understanding the dynamics of chemically

reacting species. Understanding the properties of reacting systems elucidates the

study of chemistry, biochemistry, many components of intercellular processes, and

microbiology.

For chemically reacting systems, we define a set of species types {Ca}, the amount

of the corresponding species in solution as {Ca}, and set of reactions {Rj}. Each

reaction takes a set of input species and instantaneously transforms these species into

a set of output species. For example,

R1 : C3 −→ C1

defines a process that converts one molecule of type C3 into one of type C1. A real-

world example which creates water is H+ +OH− ←→ H2O. The general form, which
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also requires a kinetic rate, of the kth reaction occurring with rate ρk is

Rk = {mk
iCi} −→ {m′

k
jCj}, with ρk (2.1)

where mk
i and m′kj are the stoichiometries for the input and output of the ith species

respectively in the kth reaction channel. The stoichiometric constants will be reex-

amined in section 3.2.2. The rate at which the reaction occurs is proportional to the

rate ρk times the combinatorial number of ways the reactants may combine.

Assumptions are made which will determine the mathematical content of the resulting

model.

2.1.1 Differential Equations

In the limit of a large number of reacting molecules, the law of mass action applies

in differential form [25]. Instead of modeling individual molecules we look at concen-

trations {[ca]}. The instantaneous rate for each reaction is the product of the input

concentrations multiplied by the rate constant. The reactant and product concen-

trations change accordingly. This gives rise to a system of differential equations that

can be solved analytically and/or numerically. For example, consider the chemically

reacting system defined by

R1 : C1 −→ C1 + C2, with ρ1

R2 : C1 + C2 −→ C2, with ρ2 .

(2.2)

6



The expected concentrations at time t can be found by solving for the concentrations

given the differential equations,

d[c1]

dt
= −ρ2[c1][c2]

d[c2]

dt
= ρ1[c1] ,

and initial conditions.

A more thorough treatment of the system calls for the consideration of stochastic

effects.

2.1.2 Stochastic Differential Equations

Stochastic differential equations (SDEs) [22] begin to address the inherent stochas-

ticity of the system by adding random variables to the differential equation terms.

For example, the system in 2.1.1 could be modeled with the stochastic differential

equations in the form of the Langevin equation,

d[n1]

dt
= −[n1][n2]ρ2 + ησ1

√
[n1][n2]ρ2

d[n2]

dt
= [n1]ρ1 + ησ2

√
[n1]ρ1 ,

that add zero mean independent Guassian random variables, ησk , with standard de-

viation σ.

SDEs may be solved numerically [36] although methods to do so are still an active

area of research.
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2.1.3 Master Equation

A more thorough treatment of the stochasticity in chemically reacting systems uti-

lizes the master equation [50]. The master equation (ME) is a general formulation

describing the continuous-time, discrete-state evolution of a random process.

We describe a state space, J , where individual states are indexed by J . Furthermore,

we define the column vector P (t), indexed by Pi(t), as the instantaneous probability

at time t of being in state Ii.

Pi(t) = Prob(J |t)

Therefore, J and P (t) are equinumerous.

Finally, we define a |J | × |J | matrix A(t) as the instantaneous ‘flow’ of probability

between states. Ajk(t) is the instantaneous rate of going from J to K. This yields

the time evolution equation:

dP (t)

dt
= A(t) · P (t). (2.3)

If A(t) = A is constant for all t, this is a continuous-time, discrete-state Markov

process and sometimes called a kinetic scheme. The waiting time between state tran-

sitions will be exponentially distributed. A sampled sequence of state and transition

time pairs {(J, τk)} is called a trajectory. For the duration of this thesis, we will only

consider constant A.
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Chemical Master Equation (CME)

When applying the ME to chemically reacting systems, we assume the molecules are

homogenously distributed and internally at thermal equilibrium [21]. The molecules

collide often. However, a reaction event occurs only if the molecules collide at the

correct orientation and speed. Therefore, reactions occur much less often than colli-

sions.

The rate at which a reaction event occurs (the propensity) is proportional to the

number of ways the molecules of the required species may interact. This value will

be described precisely in section 3.2.2.

Simulating atom locations and electron orbitals [35, 17], as many protein folding

prediction algorithms do, does very little to help us if we already know which reactions

occur and the kinetic rates at which they occur. In fact, for efficiency we do not

model the location of reactant molecules. Instead, we keep track of the counts of each

molecule species. This treatment is only valid for well “well-stirred” solutions.

It is assumed that effects which may invalidate the homogeneity distribution assump-

tion, such as diffusion and just-reacted-locality, occur much faster than the rate at

which species reactions occur. However, intermediate reaction channels may be added

if these assumptions are not reasonable. For example, if the rate of diffusion is im-

portant, we can model spatial systems [15]. Here a common approach is to parse the

reactant medium into a D-dimensional grid of separate and identical reacting systems

connected by diffusion ‘reactions’.

To use equation 2.3 for a spatially homogenous chemically reacting system, we con-

struct A using the following formulation [55]. Each state J is one of a combinatorial

number of possible sorted z-tuples of species C1 . . . CN . For example, J = (n1 =
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4, n2 = 2). Note that J may have infinite cardinality, but the following method still

works. The transition rate of J to K is non-zero if and only if there is exactly one

reaction which can transform the species of J into the species of K. If we call such a

reaction Rv, the rate of transition from J to K will be the possible number of ways

that the input species of Rv may interact, times the rate constant ρv.

Going back to equation 2.2, we can derive P (t) and A as follows:

P (t) =



P (J(t) = (0, 0))

P (J(t) = (1, 0))

P (J(t) = (0, 1))

P (J(t) = (2, 0))

P (J(t) = (1, 1))

P (J(t) = (0, 2))

P (J(t) = (3, 0))

P (J(t) = (2, 2))

. . .



,

A =



0 0 0 0 0 0 0 0 0

0 −ρ1 0 0 ρ1 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 −2ρ1 0 0 0 0 2ρ1 · · ·

0 0 ρ2 0 −(ρ1 + ρ2) 0 0 ρ1 0

...
. . .


.

Notice the sparsity in A. This property is common to chemically reacting systems

and may be exploited for speedup purposes. Additionally, there will be at most two

positive entries in each row. This is because there are two reaction channels and thus

two viable state transitions. Finally, the negative diagonal terms make it so the rows
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add up to 0. This way probability will not be created or destroyed. The diagonal

elements can be thought of as the waiting time rate for staying in state J .

Only for a few special models may P (t) be solved analytically. By far the most used

method to determine P (t) is by sampling trajectories many times. Statistics are

then accrued for P (J |t) until a sufficient amount of confidence in the measurement

is established. Existing methods to do so exactly (section 2.2) or with some error

(section 2.3.1, section 2.3.2) are described in the following sections.

2.2 SSA

The Stochastic Simulation Algorithm (SSA) [20] is a widely used method for sim-

ulating trajectories of chemical reaction networks using a CME formulation. SSA

executes every reaction event and provides an accurate view of the system dynamics,

although the computational cost of doing so is high compared to the corresponding

mass action differential equations.

The SSA samples a trajectory of the Chemical Master Equation (CME) 2.3 by re-

peatedly sampling the next reaction channel to fire and the amount of time τ that

passes between reaction events. This process is seen in algorithm 2.1.

2.3 SSA Acceleration Techniques

A number of algorithms have been proposed for the acceleration of the SSA. Some

of these do so at the expense of accuracy [19, 10, 32, 24, 28, 8, 5, 58, 37]. The τ -

leaping algorithm [23] and its recent variants [14, 11, 13] simulate leaps over several

11



Algorithm 2.1 Stochastic Simulation Algorithm

Require: R reaction channels that involve only state C.
Require: ni ≥ 0|i = 1 . . . |s|. T ≥ 0.
Ensure: Returns sample of n after ‘evolving’ for duration T .

function SSA(R, n, T )
t← 0
while t ≤ T do

a← CalculatePropensities(R,n)
τ ← Exponential(Sum(a))
r ← Discrete (a) . Same as Multinomial(a, k = 1)
t← t+ τ . Update time and state.
n← ExecuteReaction(r, R, n)

end while
return n

end function

The stochastic simulation algorithm was the first popularized method to exactly sam-
ple from the CME. The While loop executes once per reaction event.

reaction events during a preselected time increment. Further developments include

multiscale stochastic simulation algorithms such as “Nested Stochastic Simulation”

[54], the multiscale methods [44] and [43], and the “slow-scale stochastic simulation”

algorithm [12]. A different method finds cycles during simulation and skips over them

to accelerate SSA [39]. Another acceleration method [47] uses rejection sampling to

achieve constant time scaling with the number of reaction channels; this differs from

the present work which uses rejection sampling to improve scaling with respect to the

number of reaction events.

A related work is the R-leaping algorithm [4] which proposes the simulation of pre-

selected numbers of reaction firings that occur over time intervals whose duration is

then sampled from an Erlang distribution. An essential aspect of these approximate

methods is the requirement that the changes to the reaction rate or “propensity”

functions are small during each step.

Multicore CPU and GPU architectures have additionally been used to speed up SSA

[31, 28, 30, 28, 18].
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Those acceleration methods most relevant to our work will be discussed in the fol-

lowing sections.

2.3.1 τ−leaping

The first popularized attempt to speed up SSA via approximation was called τ− leap.

This algorithm accelerates SSA by assuming stationarity during a predetermined

interval τ . It is assumed that P (J |t+ dτ,K(t)) is constant for dτ = 0 . . . τ . Multiple

reactions events can then be sampled from a Poisson process without recalculating

propensities after every channel is sampled. After time is progressed to t′ = t + τ ,

all the sampled reaction channels are simultaneously fired, the state is updated and

propensities recalculated. When τ is large a greater speedup is achieved at the cost

of accuracy. As τ → 0 this becomes an SSA-equivalent algorithm in accordance with

equation 2.3.

The stationarity assumption breaks down more severely when species counts are low.

This is because small changes in species molecule counts can drastically change event

propensities. This becomes a serious problem when molecule counts become negative,

as they may if the propensity is overestimated as positive when it should be zero.

Numerous techniques have since been proposed to allow τ -leap to work under these

conditions [11]. However, acceleration methods derived from τ -leap remain inexact.

2.3.2 R-leaping

R-leaping [4] is similar to τ -leap in that stationarity is assumed for a predefined

interval. However, instead of time, a constant number of L reaction events occur

between state update and propensity recalculation. See algorithm 2.2 for pseudocode.
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Delta time is sampled as a sum of L exponentially distributed random variables with

rate equal to the total propensity of the system. This distribution is equivalent to

an Erlang distribution or equivalently a Gamma distribution with ‘shape’ parameter

being an integer. Finally, the sampled reaction channels come from a multinomial

distribution in which the probability of choosing reaction channel k is equal to its

propensity normalized by the sum of all reaction channel propensities.

Like τ -leap, the exactness in R-leaping increases as we decrease its ‘leaping’ parame-

ter. In this case when L = 1 R-leaping is equivalent to SSA.

A strong understanding of the R-leaping method [4] will facilitate the understanding

of the algorithms proposed in chapters 3 and 4. These novel algorithms are based on

R-leaping.

Algorithm 2.2 R-leaping Algorithm

Require: R reaction channels that involve only states C.
Require: ni ≥ 0|i = 1 . . . |n|. T ≥ 0. L ≥ 1.
Ensure: Returns (approximate) sample of n after ‘evolving’ for time duration T .

function RLeaping(R, n, T , L)
t← 0
while t ≤ T do

a← CalculatePropensities(R,n)
. Equivalent to sampling L exponential random variables with λ =Sum(a)
τ ← RandomErlang(Sum(a), L)
r← Multinomial (a, L)
t← t+ τ . Update time and state.
n← ExecuteReactions(r, R, n)

end while
return n

end function

The R-leaping algorithm is similar to SSA. The difference is that L reaction events
are sampled per iteration. Since propensities do not need to be calculated during
these L steps, R-leaping can efficiently sample the L reactions from a Multinomial.
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2.3.3 SSA on Parallel Hardware

Another class of SSA acceleration methods use parallel hardware.

Current consumer level GPUs have hundreds of cores. This results in a new form

of inexpensive desktop supercomputer many times faster than a CPU of comparable

cost. Petzold et. al. [31] have had success speeding the simultaneous sampling of

many SSA trajectories by an order of 200x. This work has helped spur a flowering

of GPU SSA acceleration research. The work of Jenkins et. al. [28] offers a refined

toolkit to produce ensembles of CME sampled trajectories. This software works with

MPI or, for the direct method, simulates on GPUs using CUDA and here averages

about a 30x speedup [28]. This work [28] does not provide any new algorithms, but

instead optimizes existing ones as well as simulates ensembles on parallel architecture.

Furthermore, the work of [56] has implemented τ − leaping on the GPU with some

success.

The work of [46] interestingly aims to speedup single kinetic Monte Carlo trajectory

sampling using multiple cores with MPI. However, their speedup comes at a minor

loss of accuracy, although their methods find ever increasing acceleration when the

number of processors goes up [45]. Their work simulates reaction on a lattice (spatial

grid) and uses this as a basis for parallelization. In a similar way, our algorithm of

chapter 4 distributes the sampling of reaction channels based on spatial location.
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Chapter 3

ER-Leap

3.1 Introduction

We present a stochastic simulation algorithm which, similar to R-leap, accelerates

SSA by executing multiple reactions per algorithmic step, but samples the reactant

trajectories from the same probability distribution as the SSA. This “Exact R-leap”

or ER-leap algorithm is a modification of the R-leap algorithm. Unlike R-leap or

any previous algorithms, ER-leap is both exact and capable of substantial speedup

over SSA. The simplest versions of both τ -leap and R-leap have difficulties with

the potential of producing negative numbers of reactants, which can be fixed by

modifications such as Binomial tau-leap [14] and modified tau-leap [11]. Since ER-

leap is exact, it intrinsically avoids this potential pitfall; stochastic moves to negative

reactant states have exactly zero propensity and will be rejected. We demonstrate by

computational experiments that ER-leap can execute in time sublinear in the number

of reaction events to be simulated, while remaining exact. The algorithm is based on

the rejection sampling concept, using efficiently computable upper and lower bounds
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on the SSA propensities and therefore probability distributions.

The ER-leap algorithm was first presented in [37], which this chapter follows very

closely. All ER-leap computer experiments were first down by the present author.

Confirmatory computer experiments were done by P. Chatelain, coauther of [37] and

[4].

This chapter is organized as follows: in section 3.2 we derive upper and lower bounds

on the SSA reaction probabilities after multiple reactions, expressed using matrix

notation for Markov processes, and use rejection sampling to derive the ER-leap

algorithm. The algorithm itself is stated, analyzed for cost, and illustrated in section

3.2.5 . In section 3.3 we report on a series of numerical experiments designed to

evaluate the accuracy and speedup of the ER-leap algorithm. In section 3.4 we

discuss the results, and conclude with an assessment of the method in the context of

related works and an outline of directions for future work.

3.2 Theory

This section is organized as follows: section 3.2.1, section 3.2.2, and section 3.2.3

introduce the required notations, reaction probabilities, and bounds on these proba-

bilities, respectively. The ER-leap algorithm’s key update equations are derived from

these probability bounds in the calculations of section 3.2.4. The resulting algorithm

is assembled from the key update equations, analyzed for cost, and illustrated in the

case of a simple reaction network in section 3.2.5.
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3.2.1 Notations

We consider a set of reactions, indexed by r, among chemical species Ca, indexed by

a:

{mr
aCa} −→

{
m′

r
aCa
}

with reaction rate ρr (3.1)

Here mr = [mr
a] and m′r = [m′ra] are the input and output stoichiometries of the

reaction r. In the following we derive an expression for the probability of states after

a number of such reaction events.

We introduce the following notations. The definition of a version of the indicator

function 1 from Boolean values to integers is:

1 (P ) ≡


1 if predicate P is true

0 otherwise

.

The Kronecker delta function δ(a, b) or δ(a− b) is:

δ(a− b) = δab = 1 (a = b) =


1 if a = b

0 otherwise

The function V = diag(v) turns a d-dimensional vector v into a d×d square matrix V

with components Vij = δijvi, i.e. zero everywhere except the diagonal which contains

the components of v. Given an ordered list of noncommuting matrices V (k) indexed

by integers k, we define the ordered product notation

∏
k=Kmax↘Kmin

V (k) = V (Kmax) · V (Kmax−1) · ... · V (Kmin+1) · V (Kmin)
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In addition to the standard set-builder notation {x|P (x)} for defining the members

of a set from a predicate P , we will build ordered sets or lists in a similar way using

square brackets: [x(i)|P (x(i), i)||i ∈ I] imposes the image of a preexisting ordering

on the index set I (such as the ordering of natural numbers if I ⊆ N) onto any

elements x(i) selected for inclusion by the optional predicate P , and thus denotes a

set together with a total ordering. For example, the B-tuple [nb||b ∈ {1, ...B}] denotes

the components of a vector n.

3.2.2 Markov chain and multi-reaction probabilities

We denote states of the chemical reaction network by I, J,K, time by t, and algorithm

step number by k. Let na be the number of reactant molecules of type a present in

a given state I at time t, so that I corresponds to the vector or ordered list of

nonnegative integers n = [nb||b ∈ {1, ...B}]. Likewise if we are discussing several

such states that are present at different times t′ and t′′, we may denote them by

n′ and n′′ or correspondingly by J and K. The time interval between successive

reactions is denoted by τ .

We wish to track the time evolution of the probabilities Pr(I, t), for all possible system

states I by employing the governing Master (or Chapman-Kolmogorov) equation [50],

which we shall use here. We define Pr(I, t|J, k) as the “just-reacted state probability”:

the probability of being in state I at time t immediately after the k-th reaction event,

given that the state is J at time zero. The Chapman-Kolmogorov equation [50]

for such just-reacted state probabilities follows from taking k to be a discrete time

coordinate, and can be written [57]:

Pr(I, t|J, k) ≈
∑
K

∫ t

0

dτ Pr(I, τ |K, 1) Pr(K, t− τ |J, k − 1) (3.2)
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A key quantity in this equation is the “kernel” Pr(I, τ |K, 1): the probability that if

k = 1 reaction event has just occurred, and if the previous state was K, then a time

τ has elapsed since the last reaction event and the new state is I. This kernel also

provides the linear weights that advance the quantity Pr(K, t − τ |J, k − 1), which

is the probability distribution over states K just after k − 1 reactions, to produce

the probability distribution over states I after k reactions, Pr(I, t|J, k). So we can

rename this kernel the conditional distribution

W(I, t′|J, t) = Pr(I, t′ − t|J, 1)

using notation similar to that of Ref. 57. This W is analogous to a matrix with two

indices, each of which is a pair consisting of a discrete-valued systems state (such as

I or J) and a continuous-valued time (such as t′ or t).

Under the SSA algorithm W must factor into an update from time t to t′ and then

from state J to state I:

W(I, t′|J, t) ≈ ŴI,J exp(− (t′ − t)DJJ)1 (t′ > t) . (3.3)

with

D = diag(h · Ŵ ) (3.4)

where h is the vector whose components are all 1, and “diag” turns a vector into the

corresponding diagonal matrix. This result is derived in more detail in Ref. 55 and

Ref. 57. The state space transition matrix Ŵ contains the summed probability rates

or “propensities” for all reactions that could move the system from state J to state

I. The exponential term governs the distribution of waiting times between reaction

events, as in the SSA [14, 11, 13] and R-leap [4] algorithms. The I’th component of
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the vector h · Ŵ , which is defined as DII , is the the total probability per unit time

for the system to leave state I. (In many papers the summed reaction rate DII is

denoted as a0(n) instead.)

Continuing with the matrix analogy for W , and assuming that t < 0 ∧ k > 0 ⇒

Pr(I, t|J, k) = 0,

Pr(I, t|J, k) ≈
∑
K

∫ ∞
−∞

dτW(I, t|K, t− τ) Pr(K, t− τ |J, k − 1) (3.5)

Using vector notation Pr(.|J, k) for the (I, t) parameters, we may write

Pr(.|J, k) ≡ W ◦ Pr(.|J, k − 1) (3.6)

where the matrix-vector inner product ◦ is both a sum over states and an integral

over all times t, as in equation 3.5, and where

W = Ŵ exp(−∆tD)1 (∆t > 0) . (3.7)

Equation 3.7 expresses the Markov chain for the change of both chemical state and

total time, after one reaction event. The matrix Ŵ contains probability rates or

“propensities”, the much larger matrix W contains only normalized probability den-

sities for the combination of a discrete state change and a continuous time change

∆t.

From equation 3.6 and equation 3.7, after k reaction events,

Pr(.|J, k) =Wk ◦ Pr(.|J, 0) =
[
Ŵ exp(−∆tD)1 (∆t > 0)

]k
◦ Pr(.|J, 0) (3.8)

This expression is in accord with, for example, Theorem 10.1 of Ref. 55.
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The aim of the SSA algorithm is to sample from the distribution Pr(I, t|J, k). Equa-

tion 3.6 may be taken as a concise statement of a single SSA algorithm update: it is

a product of two conditional distributions, one (ŴD−1) for molecular state I given

state J , and another one which samples time t′ given time t and state J according

to conditional distribution D exp(−∆tD)1(∆t > 0), evaluated at state J . These two

sampling steps are alternated and iterated k times as in equation 3.8.

To derive D and W , and therefore (by equation 3.7) the detailed SSA simulation

process, we need only define the matrix Ŵ of probability rates for a chemical reaction

network. For the reaction network of equation 3.1, defining the net stoichiometry

∆mr
a = m′

r
a −mr

a,

the usual mass-action assumption for stochastic reactions corresponds to

Ŵ (n′|n) =
∑
r

Ŵ (r)(n′|n) and D̂(n′|n) =
∑
r

D̂(r)(n′|n)

where the probability rate matrix Ŵ (r) for reaction r has elements given by a product

of factors for all the input reactants (all a for which mr
a 6= 0), times a product of

Kronecker delta functions that enforce the net stoichiometries on the system state:

Ŵ
(r)
n′,n = ρr

 ∏
{a|mra 6=0}

na!

(na −mr
a)!

 ∏
{a|∆mra 6=0}

δ(n′a − na −∆mr
a)

 ;

the corresponding diagonal matrix D(r) is

D(r)(n′|n) = ρr

 ∏
{a|mra 6=0}

na!

(na −mr
a)!

 ∏
{a|∆mra 6=0}

δ(n′a − na)

 .

(The elements of Ŵ (r) of are essentially reaction “propensity functions”, with a con-
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stant coefficient
∏
a

(1/(mr
a)!) that can be absorbed into the definition of ρr to maintain

notational consistency with the law of mass action, as discussed in section 3.4 of [38]

which also uses notation similar to that used here.) If we define W = Ŵ −D, SSA

dynamics simulates trajectories [50] drawn from the solution to the Master Equation,

dp/dt = W · p.

3.2.3 Upper and Lower Bounds

In order to derive a new simulation algorithm, equivalent to SSA, using rejection

sampling [51], we now seek simplified upper and lower bounds on the probability

rate Ŵ
(r)
I,J exp(−∆tDJJ) (from equation 3.7) for a single reaction event. However, we

will assume that the reaction event to be bounded occurs within a run of L events

in the SSA algorithm, in order to execute L reactions at once in the manner of the

R-leap algorithm[4]. As we will see, this essentially comes down to bounding each

combinatorial factor na!/(na−mr
a)! with a constant bound, even though it may change

throughout the run of L events.

For step number l within the run we must find a simplifying upper bound for the key

expression

F (r)
n ≡

∏
{a|mra 6=0}




na!
(na−mra)!

ifna > mr
a

0 otherwise


that occurs in Ŵ and D, and also to find a simplifying lower bound for its contribution

to D, in order to lower-bound both factors in W under equation 3.3. The products

ρrF
(r)
n are usually called “propensity functions” denoted ar(n) for all R reaction
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channels:

ar(n) ≡ ρrF
(r)
n ,

a0(n) ≡
R∑
r=1

ar(n) (3.9)

possibly with a different normalization convention as a function of mr
a if mr

a 6= 1 as

mentioned in the previous section. In this work it is more convenient to keep separate

the structural terms F
(r)
n and the reaction rates ρr, rather than combining them as in

equation 3.9. Fortunately every F
(r)
n is monotonic in each na, so we may find upper

and lower bounds on F
(r)
n by finding upper and lower bounds on each na.

A very simple, though not very tight, set of bounds is:

na + lminr {∆mr
a} 6 n′a 6 na + lmaxr {∆mr

a} (3.10)

The corresponding upper and lower bounds F̃IJ and F˜ IJ on F for the l+1-st reaction

event (after l reaction events have already occurred) within a run of L events is:

F˜ (r)

n,l
6 F

(r)
n′ 6 F̃

(r)
n,l

where

F˜ (r)

n,l
≡ F

(r)
[na+lminr{∆mra}||16a6A]

F̃
(r)
n,l ≡ F

(r)
[na+lmaxr{∆mra}||16a6A]

(3.11)
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The sparsity structure of Ŵ (r) is given by S(r) ∈ {0, 1}:

Ŝ
(r)
n′,n = 1

(
Ŵ

(r)
n′,n > 0

)
∈ {0, 1}

=

 ∏
{a|mra 6=0}

1 (na > mr
a)

 ∏
{a|∆mra 6=0}

δ(n′a − na −∆mr
a)



ŜI,J = 1

(∑
r

S
(r)
I,J

)
= 1

(
ŴI,J > 0

)
We will assume that reactions have unique outcomes (or, redefine the states I so this

becomes true):

∑
I

Ŝ
(r)
I,J = 1. (3.12)

Taking l consecutive steps of this chain results in another sparsity structure of “reach-

ability”:

RI|Jl ≡
(
Ŝl
)
I,J

= 1

((
Ŵ l
)
I,J

> 0

)
≡


1 if

(
Ŵ l
)
I,J

> 0,

0 otherwise

We now start the reactions from state K = n = [na||a ∈ {1, ...A}]. Since

Ŵ
(r)
n′,n = ρrF

(r)
n Ŝ

(r)
n′,n,

we have the bounds

RJ |Kl = 1 ⇒ W˜(r)

I,J |Kl 6 Ŵ
(r)
I,J 6 W̃

(r)
I,J |Kl
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where

W˜(r)

I,J |K,l
≡ ρrF˜ (r)

K,l
Ŝ

(r)
I,J

W̃
(r)
I,J |K,l ≡ ρrF̃

(r)
K,lŜ

(r)
I,J .

These quantities bound Ŵ
(r)
I,J , in the circumstance that l reaction events have occurred

since the system was in state K.

We also need to bound −D in equation 3.3. To this end, note from equation 3.4 that

DIJ = δIJ
∑
I′

∑
r

Ŵ
(r)
I′,J = δIJDII .

Then

RJ |Kl = 1 ⇒

−D̃Kl = −
∑
r

∑
I′

W̃
(r)
I′,J |Kl 6 −DJJ 6 −

∑
r

∑
I′

W˜(r)

I′,J |Kl
= −D˜Kl

where

D˜Kl ≡
∑
r

ρrF˜ (r)

K,l

D̃Kl ≡
∑
r

ρrF̃
(r)
K,l

(3.13)

Thus, assuming RJ |Kl = 1 and ∆t > 0, upper and lower bounds on the elements of

the Markov process W given by equation 3.3 are determined as follows:

ρrF˜ (r)
K,lŜ

(r)
I,J exp(−∆tD̃Kl) 6 Ŵ

(r)
I,J exp(−∆tDJJ) 6 ρrF̃

(r)
K,lŜ

(r)
I,J exp(−∆tD˜Kl) . (3.14)

These desired bounds on reaction probability rates Ŵ
(r)
I,J exp(−∆tDJJ) follow from

the simple bounds of equation 3.10 on n′a as a function of na and l.
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3.2.4 Exploitation of probability bounds

We now use the bounds of equation 3.14 to derive the key update equations of the

ER-Leap algorithm. The resulting ER-leap algorithm will be assembled from these

equations and discussed in section 3.2.5, followed by computational experiments in

section 3.3. In this section we perform the required calculations to derive the key

update equations.

Rejection sampling

Rejection sampling [51] allows one to exploit probability bounds in exact sampling,

as follows: given a target distribution P (x) and an algorithm for sampling from a

related distribution P ′(x) and from the uniform distribution U(u) on [0,1], and if

P (x) < MP ′(x)

for some constant M > 1, then P (x) satisfies

P (x) = P ′(x)
P (x)

MP ′(x)
+ (1− 1/M)P (x)

and therefore also

P (x) =

∫
P ′(x′)dx′

∫
U(u)du[

1

(
u <

P (x′)

MP ′(x′)

)
· δ(x− x′) + 1

(
u >

P (x′)

MP ′(x′)

)
· P (x)

]
(3.15)

which constitutes a mixture distribution, that can be applied recursively as needed

to sample from P (x). Pseudocode for sampling P (x) according to equation 3.15 is as

follows (where “//” introduces a comment):
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while not accepted {

sample P ′(x) and U(u); // P ′(x) only approximates P (x)

compute Accept(x) = P (x)/(MP ′(x)); // acceptance probability

if u < Accept(x) then accept x;

} // now P (x) is sampled exactly

What is essential in applying this algorithm is to find a provable strict upper bound

P̃ (x) = MP ′(x) for P (x) (where M > 1), which is not a probability distribution but

which when normalized yields a probability distribution P ′(x) that is easier to sample

than P (x). We also want acceptance to be likely, for computational efficiency; for

that reason M should be as close to 1 as possible, so that the bound on P (x) is as

tight as possible for a given computational cost.

But what if P (x) is expensive to compute? Then Accept(x) will also be expensive

to compute and rejection sampling may be prohibitively expensive, even for a good

approximating P ′(x). A solution to this problem is possible if a cheap lower bound

for P (x) is available. Suppose there is a function A˜(x) such that

0 6 A˜(x) 6 Accept(x) ≡ P (x)/ (MP ′(x)) < 1. (3.16)

Then

Accept(x) = A˜(x) · 1 +
(

1− A˜(x)
)
·Q(x),where

Q(x) ≡

(
Accept(x)− A˜(x)

1− A˜(x)

)
,

and Accept(x) becomes a mixture of probabilities defined over the pair of actions (ac-
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cept, reject). Then we have the following “accelerated rejection sampling algorithm”,

in pseudocode:

while not accepted {

sample P ′(x) and U(u); // cheap but approximate

compute A˜(x); // cheap

if u < A˜(x) then accept x;

else {

compute Accept(x) = P (x)/MP ′(x); // expensive

compute Q(x) = (Accept(x)−A˜(x))/(1−A˜(x)); // A˜(x) < 1⇒ 1−A˜(x) 6= 0

sample U(u);

if u < Q(x) then accept x;

else reject x;

}

}

Again, the bound A˜(x) 6 Accept(x) should be as tight as possible for a given level

of computational cost, to maximize the probability of early and therefore low-cost

acceptance. A natural measure of the tightness of this bound is
∫
A˜(x)dx 6 1, which

should be as close to 1 as possible given cost considerations. However, even if A˜(x) = 0

for some values of x, the algorithm still samples the distribution P (x) exactly.

We now seek M , P ′(x), and A˜(x) for a run of L successive reaction events in the SSA
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algorithm.

Equivalent Markov process

In this section we will use algebraic manipulations to transform the formula for SSA

(equation 3.8) into an equivalent form (equation 3.18) that represents an accelerated

rejection sampling algorithm, as outlined in the previous section.

The first step in the algebraic derivation is to identify a probability distribution

equivalent to L steps of the original SSA Markov process, which can itself be iterated

to create a new, equivalent Markov process. The target distribution P is (from

equation 3.8)

[
Ŵ exp(−∆tD)

]L
◦ Pr(.|K, 0)

From equation 3.14,

ŴI,J exp(−tkDJJ) =

(∑
r

ρrŜ
(r)
I,J

(
F

(r)
I

F̃
(r)
K,l−1

)
F̃

(r)
K,l−1

)

exp(−tk(DJJ − D˜Kl)) exp(−tkD˜Kl)
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Expand out the ordered matrix product for states J reachable from K after L steps:

RJ |KL = 1 ⇒[ ∏
k=L−1↘0

Ŵ exp(−τkD)

]
IL,I0

=
∑

{Ik|k=1..L−1}

[ ∏
k=L−1↘0

ŴIk+1,Ik exp(−τkDIk,Ik)

]

=
∑

{Ik|k=1..L−1}

∑
{rk}

∏
k=L−1↘0

[(
ρrk Ŝ

(rk)
Ik+1,Ik

(
F

(rk)
Ik

F̃
(rk)
I0,L−1

)
F̃

(rk)
I0,L−1

)]

× exp(−τk(DIk,Ik −D˜ I0L−1
)) exp(−τkD˜ I0L−1

)

=
∑

{rk|k=1..L−1}

∑
{Ik}

[ ∏
k=L−1↘0

Ŝ
(rk)
Ik+1,Ik

][ ∏
k=L−1↘0

ρrkF̃
(rk)
I0,L−1

]

×

[ ∏
k=L−1↘0

(
F

(rk)
Ik

F̃
(rk)
I0,L−1

)

× exp(−τk(DIk,Ik −D˜ I0L−1
))

]
exp

(
−

(∑
k

τk

)
D˜ I0L−1

)

Now
∑
I

Ŝ
(r)
I,J = 1 allows a change of representation to eliminate the inner state sums:

Ik = Ik(rk−1, Ik−1) = Ik(r = [r0, ...rl] , I0)

[ ∏
k=l−1↘0

Ŵ exp(−τkD)

]
Il,I0

=
∑

{rk|k=1..L−1}

[ ∏
k=l−1↘0

ρrkF̃
(rk)
I0,L−1

]

× exp

(
−

(∑
k

τk

)
D˜ I0L−1

)

×

[ ∏
k=L−1↘0

((
F

(rk)
Ik(r,I0)

F̃
(rk)
I0,L−1

))
exp(−τk(DIk(r,I0),Ik(r,I0) −D˜ I0L−1

))

]
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Define new rule probabilities

pr|K,l = ρrF̃
(r)
K,l/D̃Kl ≡

ρrF̃
(r)
K,l∑

r

ρrF̃
(r)
K,l

. (3.17)

Then,

[ ∏
k=l−1↘0

Ŵ exp (−τkD)

]
Il,I0

=

∑
{rk|k=1..L−1}

[ ∏
k=L−1↘0

prk|I0,L−1

](
D̃I0L−1

)l
exp

(
−

(∑
k

τk

)
D˜ I0L−1

)

×

[ ∏
k=L−1↘0

((
F

(rk)
Ik(r,I0)

F̃
(rk)
I0,L−1

)
exp(−τk(DIk(r,I0),Ik(r,I0) −D˜ I0L−1

))

)]
=

∑
{rk|k=1..L−1}

e1(r)e2(r)

where

e1(r) ≡

[ ∏
k=L−1↘0

prk|I0,L−1

](
D̃I0L−1

)l
exp

(
−

(∑
k

τk

)
D˜ I0L−1

)

e2(r) ≡
∏

k=L−1↘0

((
F

(rk)
Ik(r,I0)

F̃
(rk)
I0,L−1

)
exp

(
−τk

(
DIk(r,I0),Ik(r,I0) −D˜ I0L−1

)))

We define an arbitrary ordering “6” on the reaction types or channels indexed by r,

so the reactions events are “sorted” by type iff r0 6 r1 6 ... 6 rL−1. Let σ denote a

permutation on L elements which we may apply to this ordering to get an unordered

sequence of rules r = {rk|k = 0..L− 1}. For a given unordered r we further restrict

the permutations σ to be those which do not interchange equal r’s; this will avoid

double-counting.
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Then in the foregoing expression
∑

{rk|k=1..L−1}
e1(r)e2(r) we may replace the multiple

sum over reactions with a sum over permutations σ that order the reactions, and an

outer sum over the possible ordered reaction sets:

∑
{rk|k=1..L−1}

e(r) =
∑

{r06...6rL−1}

∑
{σ|σ permutes unequal r’ s}

e1(σ(r))e2(σ(r))

The number of r’s taking each possible value 1...R is denoted [s1, ... sR] = s(r);

these are the number of times each type of reaction occurs in the sequence r. The

components of s and r are therefore related as follows:

sr =
L−1∑
k=0

δ(rk − r),which satisfies

sr ∈ N and
∑
r

sr = L

Also the ordered list of r’s is determined by the vector s:

rk = min

{
r|k 6

r∑
i=0

si

}
.

Hence we may replace the sum over ordered r with a sum over constrained s :

∑
{rk|k=1..L−1}

e(r) =
∑

{s|sr∈N,∑r sr=L}

∑
{σ|σ permutes unequal r’s|s}

e1(σ(r))e2(σ(r))

e1(r) however depends on r only through s, which is permutation invariant:

e1(r) ≡ ẽ1(s(r)) = ẽ1(s(σ(r))) = e1(σ(r))
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Hence

∑
{rk|k=1..L−1}

e1(σ(r))e2(σ(r)) =
∑

{s|sr∈N,∑r sr=L}
ẽ1(s(r))

∑
{σ|σ permutesr’ s|s}

e2(σ(r))

=
∑

{s|sr∈N,∑r sr=L}
ẽ1(s(r))

 ∑
{σ|σ permutes unequal r’ s|s}

e2(σ(r))


=

∑
{s|sr∈N,∑r sr=L}

ẽ1(s(r))

(
L

s1 ... sR

)
〈e2(σ(r))〉{σ permutes unequal r’ s|s}

where 〈...〉S denotes averaging over the given set S. On the other hand, e2(r) is

invariant under any permutation σ which only exchanges equal r’s, so

〈e2(σ(r))〉{σ permutes unequal r’ s|s} = 〈e2(σ(r))〉{σ permutes integers1..L}

and we find

∑
{rk|k=1..L−1}

e1(σ(r))e2(σ(r))

=
∑

{s|sr∈N,∑r sr=L}

(
L

s1 ... sR

)
ẽ1(s(r))〈e2(σ(r))〉{σ permutes r’ s|s}

Consequently,

[ ∏
k=l−1↘0

Ŵ exp (−τkD)

]
IL,I0

=
∑

{s|sr∈N,∑r sr=L}

(
L

s1 ... sR

)

×

[
R∏
r=1

(
pr|I0,L−1

)sr]

×
(
D̃I0L−1

)l
exp

(
−

(∑
k

τk

)
D˜ I0L−1

)

×

〈[ ∏
k=L−1↘0

(
F

(rk)
Ik(σ(r),I0)

F̃
(rk)
I0,L−1

)
exp(−τk(DIk(σ(r),I0),Ik(σ(r),I0) −D˜ I0L−1

))

]〉
{σ|s}

.
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This can be decomposed into more elementary probability distributions:

[ ∏
k=L−1↘0

Ŵ exp (−τkD)

]
IL,I0

=

(
D̃I0L−1

)L
(
D˜ I0L−1

)L
×

∑
{s|sr∈N,∑r sr=L}

Multinomial(s|p, L)

× Erlang

(∑
k

τk|L,D˜ I0L−1

)
UniformSimplex(τ ;L) Accept(s, L, τ ) (3.18)

where

Multinomial(s|p, L) =

(
L

s1 ... sR

)[ R∏
r=1

(
pr|I0,L−1

)sr]
,with

pr|I0,L−1 =
ρrF̃

(r)
I0,L−1∑

r

ρrF̃
(r)
I0,L−1

;

Erlang(t; l, λ) ≡ λle−λttl−1/ (l − 1)!

where 〈t〉Erlang = l/λ ;

We note that the Erlang distribution is the Gamma distribution specialized to an

integer-valued shape parameter, l,

UniformSimplex(τ ;L) = 1/

(
tL−1

(L− 1)!

)
;

and the acceptance probability

Accept(s, l, τ ) ≡ 〈Pσ〉{σ|s},
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where

Pσ =

[ ∏
k=L−1↘0

(
F

(rk)
Ik(σ(r),I0)

F̃
(rk)
I0,L−1

)]
exp

(
−
∑
k

τk(DIk(σ(r),I0),Ik(σ(r),I0) −D˜ I0L−1
)

)
.

(3.19)

From the definition of Pσ in equation 3.19 and the fact that F̃ and D˜ are bounds,

it follows that Accept(s, l, τ ) 6 1. Also, if RJ |KL−1 = 0 (so that state J is not

reachable from state K after L− 1 steps of SSA) then Pσ = 0, so that equation 3.18

still agrees with equation 3.8 despite the restriction to RJ |KL−1 = 1 stated in the

foregoing calculation.

Thus, equation 3.18 provides an equivalent probability distribution and Markov pro-

cess to equation 3.8.

Efficient rejection sampling algorithm

We now seek M and P ′ and A˜(x) among the factors of equation 3.18. We can upper-

bound and lower-bound Pσ of equation 3.19:

P˜
(
s,
∑
k

τk, L

)
6 Pσ 6 1 (3.20)

where

P˜
(
s,
∑
k

τk, L

)
≡

[
R∏
r=1

(
F˜ (r)

I0,L−1

F̃
(r)
I0,L−1

)sr]
exp

(
−

(∑
k

τk

)(
D̃I0L−1 −D˜ I0L−1

))
(3.21)

Note that P˜ does not depend on σ. This allows us to use rejection sampling [51] to
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transform samples of the bounding distribution

g(s, τ ) = Multinomial(s|p, L) Erlang

(∑
k

τk|L,D˜ I0L−1

)

× UniformSimplex

(
τ ; l,

L−1∑
k=0

τk

)

into samples of the target distribution

f(s, τ ) = g(s, τ )

(
D̃I0l

)L
(
D˜ I0l

)L Accept(s, L, τ )

since the ratio f(s, τ )/g(s, τ ) is bounded above by M = (D̃I0L−1/D˜ I0L−1
)
L
> 1.

g(s, τ ) plays the role of P ′(x) in the rejection sampling algorithm of section 3.2.4,

f(s, τ ) plays the role of P (x), and M has just been defined. This bound is inde-

pendent of all randomly chosen variables s, t, τ , σ and just restores the probability

otherwise lost in rejection sampling due to the Accept(s, L, τ ) factor being 6 1. It

remains to define A˜(x) for the “efficient rejection sampling” algorithm.

In order to apply the “efficient rejection sampling” algorithm of section 3.2.4, we need

to find a lower bound A˜(x) for Accept(s, l, τ ) = 〈Pσ〉{σ|s}. Fortunately P(s,
∑
k

τk,L)

is a lower bound for Pσ, so we can just average over σ compatible with s. Then Pσ

may be expressed as a mixture distribution:

Pσ = P˜ · 1 +
(

1− P˜
)
·Qσ,where

Qσ =

(
Pσ − P˜
1− P˜

)
6 1 (3.22)
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and thus

〈Pσ〉{σ|s} = P˜ · 1 +
(
1− P˜) · 〈Qσ〉{σ|s}

However, instead of numerically averaging over σ to compute 〈Qσ〉{σ|s} in each itera-

tion, we will instead draw a single sample of σ and use that sample’s value of Qσ. This

step is also exact since we can just define Accept(σ, L, τ ) = Accept(s, L, τ ) ·Pr(σ|s),

where Pr(σ|s) is uniform, and apply accelerated rejection sampling to f(s, τ ) Pr(σ|s)

using the corresponding bounds f(s, τ ) Pr(σ|s) for P ′(x) and Pσ for A˜(x).

Algorithmically this expression can be sampled from as follows. First compute P˜ .

Then with probability P˜ , accept the “current” candidate move determined by all the

other distributions. In the relatively unlikely event (probability 1−P˜) that the move

is not immediately accepted this way, we then draw a random σ given s, and compute

its Qσ. Then, accept the current move with probabilty Qσ, and with probability 1−Qσ

reject the current move, draw a new one, and iterate. For computational efficiency

the initial acceptance rate P˜ should be high. Pseudocode for the resulting algorithm

will be presented in the next section.

3.2.5 Exact R-leap algorithm

We now assemble the ER-leap algorithm from the key update equations derived in

previous sections: equation 3.11, equation 3.13, equation 3.17, equation 3.18, equation

3.21, equation 3.19, and equation 3.22.

38



Algorithm summary

We adapt the efficient rejection sampling algorithm of section 3.2.4, with the random

variables s, σ and τ , and the expressions for P , P ′, M and A˜ of section 3.2.4, into

pseudocode (see algorithm 3.2.5) for the core of the resulting Exact R-leap algorithm.

Algorithm 3.1 ER-leap Algorithm

Require: R reaction channels that involve only states C.
Require: ni ≥ 0|i = 1 . . . |n|. T ≥ 0. L > 1.
Ensure: Returns sample of n after ‘evolving’ for time duration T .

function ER-Leap(R, n, T , L)
t← 0
while t ≤ T do

. By equation 3.11 and equation 3.13.
{F̃ , F˜} ← ComputeBounds(n, L, R)

. Equivalent to sampling L exponential random. . .
τ ← Erlang(τ ;D̂ (I0,L), L) . . . . variables with λ =Sum(a)

s←Multinomial(s;

{
pi =

ρiF̂
ri
(I0L)∑

r′ F̂
r′
(I0L)

}
, L)

z ← UniformRandom(0,1)
. Compute by equation 3.21, a fast computation.

p←EarlyAcceptanceProbability(τ, D̃(I0,L), D̂ (I0,L)), s)
if p ≤ z then

. Early acceptance too small, calculate entire probability.
σ ← RandomPermutation(s)

. By equation 3.19; more involved computation.
p← AcceptanceProbability (τ , D̃(I0,L), D̂ (I0,L), s, σ)

end if
if p ≥ z then

t← t+ τ . Accept sample: update time and state.
n← ExecuteReactions(r, R, n)

end if
end while
return n

end function

If it is required to update L automatically, the appropriate variables and counters
from section 3.2.5 need to be added.

The implementation used in this paper is written in C++ and contains around 600

lines of code for the core components. The code is available at the ER-leap web site,
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http://computableplant.ics.uci.edu/erleap/.

Acceptance ratio analysis

A preliminary analysis looks very permissive of large L:

∆˜ a ≡ minr∆m
r
a m̃a ≡ maxrm

r
a

∆̃a ≡ maxr∆m
r
a m̃ ≡ maxr

∑
a

mr
a

(3.23)

Then for large na, such that

na � (L− 1) |∆˜ a|+ m̃a,

we further insist that

L(L− 1) 6
minana

m̃maxa

(
∆̃a −∆˜ a + m̃a

) log(1/α)

where α ∈ [0, 1] is the minimal early-acceptance rate (should be close to 1 for effi-

ciency). If α = 1− ε, this becomes roughly

L 6

√√√√ εminana

m̃maxa

(
∆̃a −∆˜ a + m̃a

) .

Asymptotic cost of update

The asymptotic computational cost of simulating with ER-leap can be analyzed. The

amount of computation required to calculate and sample P˜ is dominated by the time

required to calculate the reaction probability rates or propensities. The asymptotic

cost of this will be O(R), where R is the number of reaction types or channels. In the
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event that an “early” sample is rejected, the more thorough sampling and calculation

of Pσ, that becomes necessary, will be dominated by the recalculation of the reaction

probability rates for each of the L reaction events. Therefore, computing Pσ will

have asymptotic cost O(LR). Thus, during simulation the expected computation per

attempted leap will be the inevitable cost of calculating P˜ plus the cost of calculating

Pσ, which occurs with probability (1− 〈P˜〉). So the computational cost for one leap

attempt can be estimated as

O(R +
(
1−

〈
P˜〉)LR) (3.24)

To calculate the expected CPU cost per reaction event, we assume that all Pσ samples

are rejected. This yields a lower bound on the expected number of accepted reaction

events per leap, which will be 〈P˜〉L. Additionally, the cost for one SSA step will be

O(R) and the number of reactions events per step will be one. Thus the per-event

costs for ER-leap and SSA will be

ERleap cost =
ERleap leap cost

reaction events
≤
R +

(
1−

〈
P˜
〉)

LR〈
P˜
〉
L

,

SSA cost =
SSA step cost

reaction events
=
R

1
.

The cost ratio between SSA and ER-leap is therefore

cost ratio =
ERleap cost

SSA cost
≤

1 +
(
1−

〈
P˜〉)L〈

P˜〉L .

When this cost ratio is less than one, ER-leap will be asymptotically faster than SSA.

This is the case whenever 〈P˜〉 > (1 + L)/2L which in turn is > 1/2 . Finally, taking

the inverse of the cost ratio gives us the lower bound on the speedup of ER-leap over
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SSA, which is

speedup ∝
〈
P˜〉L

1 +
(
1−

〈
P˜〉)L.

The required data structures and space requirements for ER-leap do not go signifi-

cantly beyond what is conventional for SSA simulation: Each reaction needs a list of

input/output species, so an array is used to remember the state of the system as well

as a temporary state copy when calculating Pσ, and arrays are used to store σ, τ ,

and the maximal and minimal ∆̃a and ∆˜ a values.

Dynamic choice of L

ER-leap efficiency depends on finding an L which optimally balances the benefits

of having a large L versus the potential inefficiencies that would result from sample

rejections. Our heuristic is described here.

Recall from equation 3.24 that the cost of calculating early acceptance samples will

be O(R) and the expected cost of calculating the late acceptance samples is O((1−

〈P˜〉)LR) for each leap attempt. Balancing these costs yields L = 1/(1 − 〈P˜〉), or

〈P˜〉 = (L − 1)/L. So, during simulation the goal is to chose an L satisfying 〈P˜〉 ≈
(L − 1)/L. This is done by sampling P˜ to obtain an estimate of the ‘true’ value of

〈P˜〉 (for which we take at least b = 5 samples). Then L is increased or decreased by

at most one, to minimize the error in the condition 〈P˜〉β ≈ (L − 1)/L, where the β

parameter is introduced to tune differences in CPU running time between the P˜ and

Pσ calculations. Experiments (not presented) show good performance when β = 2/3

and this is used in all subsequent experiments.

Confidence intervals for our estimate of µ, the mean of P˜ , come from the central limit
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theorem:

µ = µ± z
√

σ2

n

= µ± Error

where statistics for calculating the sample mean and sample variance (µ, σ2) are

gathered from P˜ during simulation, z is a ‘confidence factor’ (we used z=1.7 in

experiments), and n is the number of samples. Given the goal 〈P˜〉 for a given L,

namely h(L) = ((L− 1)/L)1/β, the rule for updating L to a new L′ is

L′ =


L+ 1, if h(L) < µ− Error and h(L+ 1) < µ+ Error

L− 1, if µ− Error < h(L− 1) and µ+ Error < h(L)

L, otherwise

(3.25)

which changes L whenever the interval {µ−Error, µ+Error} doesn’t contain h(L), and

changing L by one would either (a) put h(L′) within this interval, or (b) put h(L′) in

between h(L) and this interval, thereby bringing it closer to the desired interval.

Finally, to avoid getting ‘stuck’ on a particular L, the counters are occasionally reset

with probability 1/L2.

An Illustrative Example

As a specific example of the use of the ER-leap algorithm, consider the two-reaction

dimerization process {2S1

ρ1
�
ρ2

S2} with forward and reverse reactions r = 1 and r = 2.

Recall from equation 3.9 that the instantaneous rates of firing, also called propensities,

for each reaction are given by

a1(n) = ρ1n1(n1 − 1), a2(n) = ρ2n2 .
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(Some authors divide a1(n) by two to “avoid double counting”, but our convention

is to absorb this factor of two into ρ1and thereby remain notationally consistent with

the law of mass action.) ER-leap requires upper and lower bounds on the propensities

for each reaction at any of L reaction event “steps”. The bounds are not required to

be tight, but here it is easy to find the tightest bounds using equation 3.11:

ã1(n) = ρ1(n1 + 2 (L− 1)) ((n1 + 2 (L− 1)− 1)) ,

a˜1
(n) = ρ1(n1 − 2 (L− 1)) ((n1 − 2 (L− 1)− 1)) ,

ã2(n) = ρ2(n2 + (L− 1)),

a˜2
(n) = ρ2(n2 − (L− 1)).

The upper bound ã1 comes from the extreme situation in which all L reactions are of

type r = 2. Two S1 are produced every time r = 2 fires. So we calculate the upper

bounding propensities with an upper bound for S1: ñ1 = n1 + 2(L− 1). Recall that

(L− 1) is used instead of L because about the bounds apply just before the Lth step

occurs. The other bounds are calculated in the same way.

Given bounds on a1 and a2, we can sample the reactions and time step. First, the

number of times r = 1 and r = 2 are fired (s1, s2) is sampled from a multinomial

distribution (here equivalent to a binomial) with parameters (( ã1(n)
ã0(x)

, ã2(n)
ã0(n)

), L), where

ã0(n) = ã1(n)+ã2(n). Next, the total time step τ is sampled from the Erlang (gamma

with an integer second argument) distribution with parameters (a˜0
(n), L) such that

τ ∼ Gamma(a˜0
(n), L) .

To compute the probability of early acceptance, equation 3.21 is used. This simplifies
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to

Probearly(s, τ ) =

F˜ (1)

I0,L−1

F̃
(1)
I0,L−1

s1F˜ (2)

I0,L−1

F̃
(2)
I0,L−1

s2

exp

(
− (τ1 + τ2)

(
D̃I0L−1 −D˜ I0L−1

))

=

(
a˜1

(n)

ã1(n)

)s1(a˜2
(n)

ã2(n)

)s2

exp(−τ (ã0(n)− a˜0
(n)).

We accept the sample (s, τ ) early, and with little computational cost, with Probearly.

If there is no early acceptance, the probability of late acceptance must be calculated.

To calculate this first we must sample an ordering of reactions, σ. This ordering is

just a random shuffling of the L reactions. So our sample may look like σ = {r =

1, r = 1, r = 2, ...r = 1}. Next, we need to sample the length of individual time steps

for each reaction, {τ1, τ2, ..., τL}. This can be done by independently sampling L unit

exponential random variables and “normalizing” them so their sum is τ . It is now

possible to calculate the true probability of acceptance from equation 3.19

Probaccept(σ, {τi})

=

(
1

F̃
(1)
I0,L−1

)s1(
1

F̃
(2)
I0,L−1

)s2 L∏
i=1

F˜ (σi)

Ii,L−1
exp

(
−τi

(
DIi L−1 −D˜ I0L−1

))

=

(
1

ã1(n)

)s1( 1

ã2(n)

)s2 L∏
i=1

aσi(ni) exp(−τi(a0(ni)− a˜0
(n))).

Here ã(n) and a˜0
(n) are held constant during the calculation, but the true propen-

sities aσi(ni) are recalculated after each reaction σi occurs. State I0 corresponds to

state vector n, and Ii corresponds to ni, where i ∈ {1...L} indexes the step number.

With probability (Probaccept − Probearly)/(1 − Probearly) we accept the sample and

update n. Otherwise the sample is rejected.

In general, calculating the propensity bounds with equation 3.11 and equation 3.13

can be made efficient by noting that the maximum and minimum amounts by which a
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species may change in one reaction event remains constant throughout the simulation.

These ∆̃a and ∆˜ a values (defined in equation 3.23) are calculated prior to simulation,

and the bounding ña is calculated as ña = na + (L− 1)∆̃a, from equation 3.10. Then

the propensity upper and lower bounds are calculated as conventional propensities

except that the bounding ña and n˜a are used for each reactant instead of na.

3.3 Numerical Simulations

The foregoing stochastic algorithms are implemented in the C++ programming lan-

guage and run on a MacBook running OS X v10.5 with an Intel dual-core 1.83Ghz

processor and 2.0GB of RAM. Experiments are performed with emphasis on explor-

ing accuracy and speedup. We compare the present algorithm with the software

developed for the τ -leap and R-leap algorithms as reported in the R-leap paper [4].

3.3.1 Accuracy

Here we verify ER-leap equivalence to SSA via numerical experiments. As an example

of the tests performed in the CaliBayes test suite [16], we consider the Galton-Watson

stochastic process where analytic solutions for the mean and standard deviation are

known. Mass-action stochastic kinetics are assumed. The solutions are compared to

trajectories of many runs of SSA, ER-leap, τ -leap and R-leap.

Algorithm accuracy was validated using a statistical test as performed in CaliBayes.

The ith sample at time t will be denoted Xt
(i)and is drawn from the random variable

X t. The analytic mean and standard deviation at time t are µt and σt. Additionally,

Xt is the sample mean and St is the sample standard deviation assuming E[Xt] =µt.
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Using the central limit theorem, we eventually arrive to:

Zt =
√
n
Xt − µt
σt

, Yt =

√
n

2

(
St

2

σt2
− 1

)
.

Under the null hypothesis that the simulator is correct, the Zt and Yt values should

have a standard normal distribution. So most Zt values are expected to lie in the

range (−3, 3). We further relax this constraint for Yt to lie in the range (−5, 5)

because the standard deviation is less likely to be normally distributed.

We performed this analysis on SSA and ER-leap. As figure 3.1

Figure 3.1: ER-leap (�) with L = 4 and SSA (4) compared with the analytical
(–––) mean and standard deviation. Y-axis in units of molecules. The Zt and Yt
values will be normally distributed, assuming SSA equivalence. Therefore values
in the range (−3, 3) are considered reasonable. Galton-Watson stochastic process
{X −→ 2X,X −→ ∅} with rate parameters {1.0, 1.1} respectively and X(0) = 100.
Simulation time is 50 seconds. Results from 20, 000 runs.
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indicates, Zt and Yt are within the expected range for both simulation algorithms.

This supports the notion that SSA and ER-leap draw from the same distribution.

To demonstrate the sensitivity of this test we also compute Zt and Yt for the ap-

proximate algorithms. Interestingly, all algorithms do not show strong errors in Yt.

However, the absolute values of Zt for R-leap and τ -leap are mostly greater than 3

(see figure 3.2).

Figure 3.2: Distribution of Zt for the four algorithms under consideration. ER-
leap and SSA demonstrate a standard normal distribution whereas the approximate
methods show Zt values far outside the expected range. Reactions {X −→ 2X,X −→
∅} with rate parameters {0.11, 0.1} and X(0) = 1.0 × 105. For ER-leap L=30. For
R-leap θ = 0.1 and ε = 0.01. For τ -leap ε = 0.01. Each Zt calculated from 1000 time
points for one second intervals up to time t = 50. The number of runs for each method
varies in order to get smooth distributions and ranges from 1.0× 105 to 2.0× 105.

This test indicates that SSA and ER-leap are equivalent with high certainty and it

was sensitive enough to discover the error resulting from the assumptions made by

R-leap and τ -leap.
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3.3.2 CaliBayes validation

Similar analysis as above is performed on several models in the CaliBayes test suite

version DSMTS 21 [16]. Three models with solvable mean and standard deviation are

tested: the birth-death process, dimerization process and immigration-death process.

Of these a total of 9 variations in initial conditions and parameters are simulated (the

others not being tested due to limited ER-leap SBML support). The tested models

are: 1-01, 1-03, 1-04, 1-05, 2-01, 2-02, 2-04, 3-01, 3-02.

Each test case has 50 time points where Zt and Yt values are calculated. A test

is considered passing if |Zt| 6 3.0 for all 50 Zt values with one exception per run.

Likewise, since the standard deviation normal assumption is not as strong, we require

|Yt| 6 5.0 for all but one of the Yt scores per test. This pass/fail criteria was also

suggested in the CaliBayes documentation.

Furthermore, since the tests are made at discrete time points, a large leap may create

a small but nonzero bias if we test at a state preceding the desired time t. To alleviate

this problem we ‘leap’ to a time before t and then perform small SSA (L = 1) steps

until t is reached. The SSA steps begin when the time is within Lυ/(D˜ + D̃) of t,

with υ = 7. In practice these small steps do not significantly affect running time.

Using the criteria above, we found all tested variations from the CaliBayes suite to

pass, using ER-leap with L = 3 or automatically-selected L, and 20,000 simulations

per model.

3.3.3 Williamowski-Rössler Model

The Williamowski-Rössler model [52], which contains several bi-molecular reactions,

is explored to demonstrate the usefulness of the ER-leap algorithm. Results indicate
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that the approximate methods do not model well the true stochastic behavior for

particular instances of the system. Consider the following set of reactions:

X
k1←→
k2

2X Y
k5←→
k6
∅ Z

k9←→
k10

2Z

X + Y
k3←→
k4

2Y X + Z
k7←→
k8
∅.

We can numerically solve for the corresponding set of deterministic mass action dif-

ferential equations

ẋ = k1x− k3xy − k2x
2 + k4y

2 − k7xz + k8

ẏ = k3xy − k5y − k4y
2 + k6

ż = −k7xz + k9z − k10z
2 + k8

and plot the solution of X vs. Y as in figure 3.3.

Figure 3.3: Mass-action deterministic solution of X vs. Y from time t = 0 to t = 0.2
for Williamowski-Rössler model. k1 = 900, k2 = 8.3 × 10−4, k3 = 0.00166, k4 =
3.32× 10−7, k5 = 100, k6 = 18.06, k7 = 0.00166, k8 = 18.06, k9 = 198, k10 = 0.00166.
X(0) = 39570. Y (0) = 511470. Z(0) = 0.

50



Figure 3.4: Comparing log probability densities for various simulation methods over
time t = 0 to t = 0.2. Same parameters as figure 3.3. SSA and ER-leap appear
identical. Total of 1, 500 samples for each simulator. For ER-leap L was chosen
automatically and averaged L = 23. For τ -leap and R-leap ε = 0.01. For R-leap
θ = 0.1. Measurement taken every 10−4 sec.

As time progresses the mean trajectory spirals in towards an attraction point near

{6.0 × 104, 5.1 × 105}. However, once the inner region is reached, the trajectory

falls towards another attraction point around {6.0 × 104, 4.5 × 105}. The stochastic

algorithms are run and we can observe the density plots over time for the exact and

approximate algorithms in figure 3.4.

As figure 3.4 and figure 3.5 demonstrate, there is a substantial difference between the

probability densities from the exact and approximate simulation methods. However,

ER-leap is able to produce an answer similar to that of SSA and is about 4.5 times

faster on this example.

We modify the foregoing Williamowski-Rössler model to have rate parameters in the
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chaotic regime as described in Ref. 52. The idea is that small simulation errors may

grow into large errors as time progresses. The SSA mean of X vs. Y over 1,150 runs

is shown in figure 3.6. Notice the erratic behavior, which deterministic analysis may

have difficulty capturing [52].

When we examine log-densities accumulated over time we observe that ER-leap and

SSA have densities that appear very similar whereas the approximate methods display

greater departures from SSA.

In the corresponding mass-action ODE’s in the chaotic regime, small simulation errors

grow exponentially. Furthermore, deterministic mass action analysis has sometimes

proven insufficient to model the system even for a large number of molecules [52]. To

elucidate model dynamics stochastic simulation methods need to be applied. To our

knowledge ER-leap is the fastest such algorithm to do this exactly.

3.3.4 Scaling of computational cost with reaction events

The acceleration of SSA by ER-leap depends on the number of molecules n (along

with other factors not explored here). We run the Galton-Watson model with initial

molecule number n ranging from 10 to 9×107. As expected the SSA CPU running

time scales linearly with n. The ER-leap CPU time appears to scale as O(nα) where

α'2/3 (see figure 3.7). R-leap and τ -leap scale much better to large number of

molecules, but are not exact algorithms. Notice that the slope of the approximating

methods is nearly 0. This is due to the fact that the leap sizes are determined from

bounds on relative propensity changes. Because this system only involves first order

reactions, this leap control results in sizes that are proportional to n. Substantial

room remains for the improvement of exact algorithms.
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Additionally, we can explore the trade-off between the potential gain of large L and

loss of efficiency from rejecting samples from too-ambitious L values. There is an

optimal L that is model- and time-specific. We explore this relationship by varying

L for a particular simulation and observing the CPU cost, as plotted in figure 3.8.

This tradeoff can also be explored with a log-contour plot of CPU time and L (see

figure 3.9). Notice that as simulation time increases, the optimal L changes. This

fact is due to a change in the value of equation 3.21 as reactant numbers change.

The presence of just a single local minimum in figure 3.9 suggests that dynamic

optimization of L is not a hard problem.

3.3.5 Scaling of computational cost with reaction channels

The acceleration of ER-leap over SSA is explored as a function of the number of re-

action channels. The Williamowski-Rössler model is replicated over a d-dimensional

grid. In each compartment of the grid there is a copy of the Williamowski-Rössler

reaction network, including all of its chemical species and their intracompartmen-

tal reactions. In addition, molecules diffuse (stochastically) between adjacent grid

compartments. This is accomplished by replicating all WR reactions over the set of

compartments, and adding new reactions of the form {Xc
ρ→ Xc′} where c is the grid

coordinate for molecules of type X and c′ is any neighboring compartment. Diffusion

is to adjacent compartments only, so the L1 distance between c and c′ is one. In the

experiments shown, d = 3. As figure 3.10 demonstrates, ER-leap may be used to

accelerate systems with many reaction channels. It also demonstrates the feasibility

of applying ER-leap to spatially structured models.
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Although the three-dimensional grid of compartments simulated here results in effi-

cient simulation on a relatively highly connected network of reactions and reactants,

with a graph diameter proportional to the cube root of the number of nodes, the ER-

leap algorithm could be stressed to the point of inefficiency by other topologies. For

example, a fully connected (diameter one) compartment graph, or a scale-free (log-

arithmic or sublogarithmic diameter) compartment graph, each have much higher

connectivity than was tested here. Further work will be required to evaluate and pos-

sibly adapt the ER-leap algorithm for such alternative large-scale network structures.

3.4 Conclusions

We have derived an exact accelerated algorithm for stochastic simulation of chemical

reactions, using rejection sampling together with upper and lower bounds on the

probability of an outcome of a run of L reactions. We have demonstrated a speedup

to sublinear time for simulating a large number of reactions. We have verified the

accuracy of the method with sensitive tests including examples from the CaliBayes

test suite and a chaotic reaction network.

We note that the SSA has also been accelerated, without approximation, by execut-

ing one reaction event at a time, lowering the cost of sampling each reaction event

when there are many possible reactions to choose from [19]. An alternative accelera-

tion of SSA has been proposed [39] based on exploiting cycle structure. The present

ER-leap algorithm is based on the R-leap algorithm [4] that accelerates the SSA by

efficiently executing a number of reaction firings together. ER-leap offers an acceler-

ation that is more general than the efficient sampling of many reaction channels or

types [19], or the exploitation of cycles [39]. Instead, like an approximate accelera-

tion scheme, it exploits the scaling possible for large numbers of reactant particles
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(molecules) and of reaction events. In these conditions, and for reaction networks

(such as the Williamowski-Rossler oscillator) for which high-accuracy or exact simu-

lation is necessary to find the correct long-time behavior, ER-leap may turn out to be

the currently preferred algorithm. In any case, the existence of ER-Leap demonstrates

that it is possible to create exact, accelerated stochastic simulation algorithms which

scale better than SSA with respect to the number of reactant particles and reaction

events. Among these exact methods, only ER-leap has been demonstrated to have an

asymptotically sublinear (roughly 2/3 power of SSA) simulation time as a function

of the number of reaction events for a regular family of simulation problems, namely

two exactly solvable networks (Galton-Watson and dimerization) in a test suite for

stochastic simulation algorithms.

Future work includes the hybridization of the present ER-algorithm with techniques

from other exact simulation algorithms that more directly address scaling with the

number of reaction channels, as well as improvements in the extension of the ER-

algorithm to spatially dependent stochastic simulations. The numerical experiments

of section 3.3.5, along with previous work such as the use of tau-leap [42] and R-leap

[6] in spatial models, show the feasibility of spatial stochastic simulations but do not,

we think, exhaust the avenues for their acceleration.

Software for the ER-leap algorithm is provided at

http://computableplant.ics.uci.edu/erleap.
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Figure 3.5: Another look at the differences in trajectories. Distribution of 50 runs for
the four algorithms. Same network as figure 3.4. X(0) = 30, 000. Y (0) = 300, 000.
(So we start further out in the spiral). Simulate from time t = 0 to t = 0.13, before
the “escape” shown in figure 3.4. A constant amount of time passes between time
samples. Each cluster of points represents a group of trajectories that started at
the same initial condition and has run for the same amount of time, varying only
stochastically, ie. by the choice of the seed for a random number generator.
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Figure 3.6: Mean number of molecules on chaotic system over 1, 150 SSA runs from
time t = 0 to t = 30. k1 = 30, k2 = 8.3×10−4, k3 = 0.00166, k4 = 3.32×10−7, k5 = 10,
k6 = 0.602, k7 = 0.00166, k8 = 0.602, k9 = 16.58, k10 = 0.00166. X(0) = 7800.
Y (0) = 11500. Z(0) = 0.
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Figure 3.7: Log-log scaling of CPU running times for various stochastic simulation
algorithms. The left panel plots results obtained for the Galton-Watson model with
birth rate 0.101, death rate 0.10. Each test is simulated for 30 seconds. The slope
of the ER-leap line is 0.65, and SSA is 0.99, about 1.0 as expected. Ratio is 0.66.
L is chosen automatically for ER-leap. R-leap has accuracy parameters θ = 0.1 and
ε = 0.01. τ -leap has parameter ε = 0.01. The right panel plots results obtained for
the dimerization process {2X −→ S, S −→ 2X} with rate parameters {0.001/υ, 0.01}
respectively, initial values S(0) = n, singleton molecule X(0) = n/2, and volume
υ = n/100. Slope of ER-leap line is 0.58 and slope of SSA line is 0.86 with a ratio of
0.68. Error bars are small compared to algorithm marks but represent one standard
deviation.
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Figure 3.8: Varying L for birth/death process with rate of birth 0.1 and death 0.11.
X(0) = 1 × 107. X(0) = 5 × 106. Simulation from t = 0 to t = 5. Initially as we
increase L, CPU runtime drops dramatically until the optimum at about L = 115
which is about 22x faster than SSA. For larger L, the rejection of proposed samples
starts to decrease performance and there is a monotonic increase in CPU computation
time.
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Figure 3.9: ER-leap contour plot of Log CPU time per unit simulation time vs.
simulation time and leap size, L. Overlay of optimal and heuristic choice of L (from
one run). Notice that the optimal leap L∗ changes during simulation from L∗ = 34
at t = 0 to about L∗ = 8 at t = 6. Basic cascading network {S1 −→ S2, S2 −→
S3, S3 −→ S4} and all rates 1.0. Initial values: S1 = 4.2 × 104, S2 = 4.0 × 104,
S3 = 3.5× 104 and S4 = 0. Results averaged over 500 runs.
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Figure 3.10: Speedup is calculated as SSA wall clock time divided by ER-leap wall
clock time. It increases monotonically from a one-cell system with 10 reaction chan-
nels to a 4×4×4 grid with 1504 reaction channels. In ER-leap L was chosen automat-
ically, and averaged 23 over all experiments. Error bars are one standard deviation.
Same rate parameters as figure 3.3. Rate of diffusion is 0.01 and the initial number
of molecules in each cell is X(0) = 5.0× 104, Y (0) = 4.5× 105, Z(0) = 3.0× 104.
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Chapter 4

HiER-Leap

4.1 Introduction

Computational biology is moving toward ever more complex, comprehensive and de-

tailed biological models. It is becoming increasingly important to simulate and un-

derstand these models computationally.

There have been recent advances in consumer level multi-core CPU technology. There

are indications that next generation CPU technology is moving from maximizing

single core speed to increasing the number of cores by orders of magnitude.

The work of [30] suggests a great potential for parallel SSA algorithms. However, the

parallelization was used to speedup sampling of many trajectories. In addition, the

parallelization and acceleration of a single trajectory becomes a dominant problem

when very large systems are modeled.

This chapter describes a new SSA-equivalent algorithm that can take advantage of

parallel hardware, and additionally provides an algorithmic speedup for systems with

61



many reaction channels. This “HiER-Leap” (Hierarchical Exact Reaction-Leaping)

algorithm achieves these advancements without the loss of accuracy. This work there-

fore presents an important step towards organism-scale simulation.

4.2 Theory

4.2.1 Hierarchical Notation

The HiER-Leap algorithm uses a divide and conquer strategy to accelerate SSA.

Evidence suggests that protein-protein interaction (PPI) networks tend to be modular

[34]. These networks contain submodule clusters that interact heavily inside the

cluster. Interactions with other clusters of proteins are less common. Although still

an active area of research, the work of [26] suggests that similar modularity may

exist in genetic regulatory networks as well. Additionally, when modeling spatial

interactions, events spatially distant must interact through intermediate diffusion

reaction channels. In this way, it is probably common that many reaction channels

are weakly coupled to the majority of other channels. This observation suggests a

potential avenue towards algorithm acceleration and parallelization for large biological

networks.

Notation is introduced to describe a hierarchical organization of reaction channels.

Next, following and generalizing the strategy of chapter 3, we will derive bounds on

propensities and species. The bounds will be essential for deriving an algorithm for

exact speedup of SSA for systems amenable to hierarchical organization.

Reaction channels must belong to exactly one block. A block is defined as a set of

reaction channels. If reactions are “connected” by shared reactants, it is preferred
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that reactions should be more strongly connected within than between blocks. For

this work, a two level hierarchy of reactions and blocks is used. However, it should

be straightforward to expand our work to multiple levels.

Each reaction channel is indexed by its block ID r1, and its within-block ID r2, and

will be designated as R = (r1r2) for r1 ∈ {1 . . . b} and r2 ∈ {1 . . . br1}. The “block

propensity” for block r1 and state I, denoted D
(r1)
I is the sum of propensities of

constituent reaction channels. Specifically, using the notation of section 3.2.3 this

means

D
(r1)
I =

∑
r2∈r1

ρr1r2F
(r1r2)
I . (4.1)

Furthermore, we denote the number of reaction events occuring within block r1 as

ur1 . Finally, the number of events for the reaction channel indexed by R = (r1r2) is

denoted by vr1r2 .

4.2.2 Bounds on Propensities and Species Counts

Similar to equation 3.14, we now develop bounds on species counts and propensities.

This enables us to derive a rejection sampling algorithm in many ways analogous to

ER-leap. For reasons that will become evident in section 4.2.3, we first derive bounds

on the block propensities given L and I0. Afterwards, bounds will be developed on

the species molecule counts and reaction channel propensities given u.

First, recall that in equation 3.10 we argued that species counts during the next L

reaction events are bounded as

na + l minr {∆mr
a} 6 n′a 6 na + l maxr {∆mr

a} (4.2)
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which yields corresponding upper and lower bounds

F̃
(r)
(I0,L) ≡ F

(r)
[na+l maxr{∆mra}||16a6A]

F˜ (r)

(I0,L)
≡ F

(r)
[na+l minr{∆mra}||16a6A]

(4.3)

and can be calculated exactly as done in chapter 3. Additionally, note that the bound

on the propensity of block r1 is defined as

D̃r1
(I0,L) =

∑
r2∈r1

F̃
(r1r2)
(I0,L)

which is similarly used for calculating the total network propensity bound D̃(I0,L).

Optimized Block Level Bounds

If it is the case that we only need bounds on the block propensities, and not individual

reaction channels, then we can take advantage of reaction event exclusion. Specifically,

we no longer need to assume that all species counts are at the most extreme value

possible after L reaction events.

We want to find a bound close to the optimal block propensity

D̂r1
(I0L)

∗
= max

vr1 ||ur1=L

∑
r2∈r1

F r1r2
I(n0,vr1 ). (4.4)

Unfortunately, näıvely solving this exactly for r1 requires enumerating (br1)
L possible

choices for vr1 upon every iteration. Fortunately the bound we seek, D̂r1
(I0L), is not

required to be exactly optimal. Instead we only require that

D̂r1
(I0L)

∗
≤ D̂r1

(I0L) ≤ D̃r1
(I0L) (4.5)
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Symbol Meaning

x̃
Upper bounding value for x after L− 1 reaction events.
Calculated by assuming each species type will be maximal.

x̂
Upper bounding value for x after L− 1 reaction events.
May not depend on bounding all species values and
therefore may be tighter than x̃.

x̄
Upper bounding value given u.
Will often involve inner block calculations.

x˜, x̂, x Lower bounding versions of the above definitions.
x∗ The optimal value of x with respect to some objective function.

Table 4.1: Notation, Accents and Meaning

such that D̂r1
(I0L)

∗
≤ D̂r1

(I0L) is required for algorithmic correctness and D̂r1
(I0L) ≤ D̃r1

(I0L)

is needed for improved efficiency.

A heuristic algorithm for D̂r1
(I0L) is developed. We demonstrate this falls between the

requisite values and has ‘nice’ asymptotic properties that will be discussed later.

Derivation The idea is to find the maximum ∆D̂r1
(I0L) possible resulting from one

reaction channel firing sometime during the next L reaction events. If we determine

this value, we can upper bound Dr1
(I0...IL−1) with

Dr1
(I0,L) ≤ Dr1

I0
+ (L− 1)∆D̂r1

(I0L)

∗
(4.6)

with

∆D̂r1
(I0L)

∗
= max

Rr1r2||I0..IL−1

∆D̂r1
(I0L).

Note how this is an upper bound on Dr1
(I0,L). By construction, ∆D̂r1

(I0L)

∗
is the largest

amount that the block propensity may change for any of the upcoming possible (L−1)

reaction events in r1. Since there are (L − 1) reaction events, and the most any of
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them may increase Dr1
(I0,L) is ∆D̂r1

(I0L)

∗
, (equation 4.6) will always bound Dr1

(I0,L).

This method improves upon our previous methods, which found the maximum ña

for all species and then calculates the block propensity. Each within-block reaction

channel propensity will be larger when ña vs na is used to calculate the propensity.

Therefore, using the increased bound will result in a block’s propensity being O(br1∗L)

larger than Dr1
I0

. However, by calculating using the above ∆D̂r1
(I0L) method will have

the bound will be just O(L) larger than Dr1
I0

.

Again, näıvely solving for ∆D̂r1
(I0L)

∗
requires an impractical amount of work. But as

with our previous argument, we can upper bound ∆D̂r1
(I0L)

∗
and still achieve an upper

bound for Dr1
(I0,L). To upper bound ∆D̂r1

(I0L)

∗
we use the monotonic nature of Dr1

Ik
. If

any species increases to n′a ≥ na we know that Dr1
n′a
≥ Dr1

na . Therefore, if we find the

reaction channel that increases the block propensity the most when ñI0,L is used for

positive ∆m
(r1r2)
a , we are guaranteed that there does not exist a larger ∆D̂r1

(I0L).

This yields

∆D̂r1
(I0L) = max

r2∈r1
[Dr1(q(ñ, r2))−Dr1(ñ)] (4.7)

where

q(n, r2)a =


na + ∆m

(r1r2)
a if ∆m

(r1r2)
a > 0,

na otherwise

(4.8)

as our final equation for ∆D̂r1
(I0L). A proof that this will be the maximum delta

possible can be found in appendix A.

This tighter bound will result in a greater acceptance ratio. The basic reason for this

improvement is that we need not overestimate every propensity in r1 by O(L), and
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add the overestimates up, since only L and not b1L reactions will occur.

Näıvely finding the reaction channel R = (r1r2) that will increase Dr1(ñI0,L) by a max-

imal amount will cost O(|Rr1|) to compute. To accelerate this step further blockwise

priority queues (PQ) are used to find this R efficiently. Nodes in the PQ are reaction

channels and values are the ∆Dr1
(I(ñ,br1 )) caused by each reaction channel firing. Upon

acceptance of L reaction events we must update the priority queue for each block.

Only nodes that interact with the species, which have changed, need to be adjusted.

This, at worst, will be O(log br1) work for each node, although in practice the order

rarely needs to change.

Propensity Bounds Given u

If we know u, the number of reaction events for r1 and adjacent blocks, we can derive

even tighter bounds on the reaction channels Rr1∗. In fact, these tighter bounds help

us to efficiently increase L when larger systems are considered, as will be demonstrated

in section 4.2.3.

We determine F̄ (r1∗) by finding bounds on species counts given u. In other words, we

want to find

nA(r, n0, k) ≤ n̄Ar1(u, n0), for k = 0..[(index of final r1 event)− 1]

which is the maximum possible value of nAr1 prior to the last event in r1 occurring.

In this way nA(r, n0, k) will never exceed the propensity calculated from n̄Ar1(u, n0).

Finding the optimal value for n̄Ar1(u, n0) is straightforward. We first need to consider

blocks other than r1 which may change nAr1 . Since the order of reactions is unknown,

we must assume that all u\{ur1} reactions occur prior to those in ur1 . It is desired
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that the number of neighbors relative to the total number of blocks will be small. This

will decrease nA(r, n0, k) and ultimately lead to a more efficient algorithm. Secondly,

we need to consider reactions in r1. In calculating the bound, it is assumed that

all (ur1 − 1) reaction events chosen will behave adversarially. This is analogous to

the method considered in section 4.2.2, with the modification that we will consider a

subset of reaction channels. Thus

n̄Ar1(u, n0) ≡ nA +
∑
r1′

(ur1′ − δr1r1′) max
r2′

∆m
(r1′r2′)
(a1a2)

will bound each nAr1 with respect to r1 and u. Finally, the propensities of reaction

channels inside of block r1 are bound as,

F̄ (r1r2)(u, n0) = F (r1r2)(u, n̄Ar1).

Lower bounding the propensities and species is done with the same techniques as that

used for upper bounding. These derived bounds are used in the following sections.

4.2.3 Equivalent Markov Process

Similar to section 3.2, we want to algebraically manipulate the distribution repre-

sented by the Chemical Master Equation (a special case of the Kolmogorov-Chapman

equation [49]) into a form suitable for parallelization and acceleration. The hierar-

chical description from section 4.2.1 will aid us in this transformation.

Using the matrix notation of 3.2.2 we begin with the SSA equivalent distribution for

I and τ after L reaction events,

P (.|I, L) =
[
Ŵ exp(−∆tD)

]L
◦ Pr(.|K, 0)
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using the unique transformation of each reaction on state I0 → I1(R, I0) we can write[
Ŵ exp(−∆tD)

]L
in terms of ordered reaction sequences

[ ∏
k=l−1↘0

Ŵ exp(−τkD)

]
Il,I0

=

=
∑

{Rk|k=1..L−1}

[ ∏
k=L−1↘0

ρRkF
(Rk)
Ik(R,I0) exp(−τk(DIk(R,I0),Ik(R,I0)))

]
(4.9)

First, we impose an ordering on {Rk|k = 1..L− 1}. Next, denote the number of R’s

being from block r1 as [ur1 , . . . u
′
r1

] = u(R) being the number of times reactions occur

in block r1 in the sequence of reactions R. Finally, inside each block there will be ur1

reactions events. These are further proportioned to reaction channels in block ur1 as

[vr2 , . . . v
′
r2

] = v(R; r1). Finally, as in ER-leap 3.2.4 it was shown that (in ER-leap

notation)

∑
{rk|k=1..L−1}

e(r) =
∑

{s|sr∈N,∑r sr=L}

∑
{σ|σ permutes unequal r’s|s}

e(σ(r))

which can be converted to our hierarchical version with u’s and v’s strictly ordered

∑
{Rk|k=1..L−1}

e(R) =
∑

{u|uR∈N,∑R uR=L}

∑
{
vr1 |vR∈N,

∑
r′2
vr1r′2

=ur1

}
∑

{σ1|σ1 permutes unequal R′s|u}

∑
{σ2|σ2 permutes unequal R′s|vr1}

e(σ1(σ2(R)))

by taking an average of e(σ(R)) and weighting by the number of ways the selection
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may occur we get

=
∑

{u|uR∈N,∑R uR=L}

∑
{
vr1 |vR∈N,

∑
r′2
vr1r′2

=ur1

}
(

L

R1R2 . . . Rn

)〈
〈e(σ1(σ2(R)))〉σ2

〉
σ1

and analogous to the way shuffling a deck of cards is the same as shuffling by suit

and then, maintaining that order, shuffling by value independently for each suit

(
L

R1R2 . . . Rn

)
=

L!

R1!R2! . . . Rn!

=
L!

ur1 !ur′1 ! . . . ur′′1

∏
r1

ur1 !

vr1r2 !vr1r′2 ! . . . vr1r′′2 !

=

(
L

ur1 . . . ur′1

)∏
r1

(
ur1

vr1r2 . . . vr1r′2

)

we arrive at an interesting form for our distribution, which is already suggestive of a

parallel algorithm.

∑
{rk|k=1..L−1}

e(r) =
∑

{u|uR∈N,∑R uR=L}

(
L

ur1 . . . ur′1

) ∑
{
vr1 |vR∈N,

∑
r′2
vr1r′2

=ur1

}
∏
r1

(
ur1

vr1r2 . . . vr1r′2

)〈
〈e(σ1(σ2(R)))〉σ2

〉
σ1

(4.10)

To go further, we need to re-examine e(. . .).
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Introduction of Probability Bounds

We now make use of our previously derived propensity bounds to derive a parallel

algorithm. From 4.9 we have,

〈
〈e(σ1(σ2(R)))〉σ2

〉
σ1

=

〈〈 ∏
k=L−1↘0

ρRkF
(Rk)
Ik(R,I0) exp(−τk(DIk(R,I0),Ik(R,I0)))

〉
σ2

〉
σ1

with inclusion of derived bounds,

=

〈〈 ∏
k=L−1↘0

F
(Rk)
Ik(R,I0)

F̄ (r1r2)(u, I0)

ρRkF̄
(r1r2)(u, I0)

D̄(r1)(u, I0)

D̄(r1)(u, I0)

D̂r1
(I0L)

D̂r1
(I0L)×

exp(−τk(DIk(R,I0),Ik(R,I0) −D̂ (I0L)) exp(−τkD̂ (I0L))

〉
σ

〉
σ1

we can immediately begin to separate out terms based on independence of σ1, σ2 and

v, arriving at

= exp(−τD̂ (I0L))

(∏
r1

D̂r1
(I0L)

ur1

)(∏
r1

∏
r2

(
ρRkF̄

(r1r2)(u, I0)

D̄(r1)(u, I0)

)vr2)
×(∏

r1

(
D̄(r1)(u, I0)

D̂r1
(I0L)

)ur1
)
×〈 ∏

k=L−1↘0

F
(Rk)
Ik(R,I0)

F̄ (r1r2)(u, I0)

〈
exp(−τk(DIk(R,I0),Ik(R,I0) − D̂(I0L))

〉
σ2

〉
σ1
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We now plug in our expression for
〈
〈e(σ1(σ2(R)))〉σ2

〉
σ1

into 4.10, combining terms

where appropriate:

[ ∏
k=l−1↘0

Ŵ exp(−τkD)

]
Il,I0

=

∑r′1
D̂
r′1
(I0L)

D̂ (I0,L)

L ∑
{u|uR∈N,∑R uR=L}

( L

ur1 . . . ur′1

)∏
r1

 D̂r1
(I0L)∑

r′1
D̂
r′1
(I0L)

ur1
×

∑
{
vr1 |vR∈N,

∑
r′2
vr1r′2

=ur1

}
[∏
r1

(
ur1

vr1r2 . . . vr1r′2

)∏
r2

(
ρRkF̄

(r1r2)(u, I0)

D̄(r1)(u, I0)

)vr2]
×

(
D̂ (I0,L)

)L
exp(−τD̂ (I0L))× AcceptCoarse(u; I0, L)×(∏

r1

AcceptBlock(vr1 , σ2;u)

)
× AcceptF ine(σ1;u, v, I0, σ2) (4.11)

The acceptance probabilities are as follows:

AcceptCoarse(u; I0, L) =
∏
r1

(
D̄(r1)(u, I0)

D̂r1
(I0L)

)ur1

(4.12)

AcceptBlock(vr1 , σ2;u, r1) =
∏
k∈r1

F
(Rk)
Ik(R,I0)

F̄ (r1r2)(u, I0)
(4.13)

AcceptF ine(σ1;u, v, I0, σ2) =
∏

k=L−1↘0

exp(−τk(DIk(R,I0),Ik(R,I0) − D̂(I0L))) (4.14)

Furthermore, prior to turning these equations into an algorithm, we note that we

can lower-bound these acceptance probabilities. This will enable us to do an early

acceptance or rejection without always doing all of the work to calculate these values
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exactly.

Lower Bounding Acceptance Probabilities

We begin by lower bounding AcceptF ine(. . .). This probability requires the most

work to calculate and as we will see may be bound fairly tightly. The bound only

requires that τ has been sampled.

The lower bound AcceptF ine
̂

(. . .) is sought such that

AcceptF ine
̂

(. . .) ≤
∏

k=L−1↘0

exp(−τk(DIk(R,I0),Ik(R,I0) −D̂ (I0L))).

In the above, note that D̂ (I0L) is constant with respect to k. Therefore, when we also

upper bound

D̂I0L ≥ DIk(R,I0),Ik(R,I0)

this creates an easily computable expression for our lower bound

AcceptF ine(σ1;u, v, I0, σ2, τ) ≥
∏

k=L−1↘0

exp(−τk(D̂I0L −D̂ (I0L)))

so that

AcceptF ine
̂

(τ ; I0, L) = exp(−τ(D̂I0L −D̂ (I0L))) (4.15)

Furthermore, recall that E[τ ] = L
D̂(I0,L)

. If we assume that ∆D̂(I0L) ∝ L when comput-

ing D̂ (I0L) and D̂(I0L) (see Eq. 4.6) in the limit of many non-zero propensity reaction
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channels

E

[
lim
|R|→∞

exp(−τ(D̂I0L −D̂ (I0L)))

]
→ 1

which implies that both AcceptF ine
̂

(. . .) and AcceptF ine(. . .) tend to unity as the

number of reaction channels increases.

Next, we set out to lower bound AcceptBlock(. . .). This acceptance probability de-

pends on σ2. Therefore, work will be saved if we can calculate the lower bound

without sampling σ2. This can be accomplished by noting that AcceptBlock(. . .) is a

product of fractions. If we have a numerator and denominator that are independent

of σ2 we can re-write this equation in terms of r2. Specifically, using F
(r1r2)
u,I0

allows us

to bound the equation.

AcceptBlock(vr1 , σ2;u, r1) =
∏
k∈r1

F
(Rk)
Ik(R,I0)

F̄ (r1r2)(u, I0)
≥
∏
k∈r1

F (r1r2)(u, I0)

F̄ (r1r2)(u, I0)

yielding

AcceptBlock
̂

(vr1 ;u) =
∏
r2∈r1

(
F (r1r2)(u, I0)

F̄ (r1r2)(u, I0)

)vr2
(4.16)

4.2.4 Algorithm

The above equations, along with rejection sampling, allow us to create an efficient

algorithm that will allow much of the work be done in parallel. From equation 4.11

observe there are two pmf expressions for a multinomial distribution. Specifically,

Multinomial(u;

pr1 =
D̂r1

(I0L)∑
r′1
D̂
r′1
(I0L)

 , L) =

(
L

ur1 . . . ur′1

)∏
r1

 D̂r1
(I0L)∑

r′1
D̂
r′1
(I0L)

ur1
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is the multinomial distribution for sampling u. And for each r1 the vector vr1 is

sampled as

Multinomial(vr1 ;

{
pr1r2 =

ρRkF̄
(r1r2)(u, I0)

D̄(r1)(u, I0)

}
, ur1) =(

ur1
vr1r2 . . . vr1r′2

)∏
r2

(
ρRkF̄

(r1r2)(u, I0)

D̄(r1)(u, I0)

)vr2

which is interesting and implies (vr1 ⊥⊥ vr′1)|u for all blocks.

We now present algorithm 4.2.4, which is a realization of the aforementioned equa-

tions. First, note that if we have an early global acceptance, then most of the com-

putational effort will be put into line 10. The subroutine from this line is shown in

algorithm 4.2.4. Notice that this function is independent for all blocks and needs to

be done for all blocks with at least one reaction event. This is an ideal scheme for

parallelization and is done so with good efficacy as shown in figure 4.1. Furthermore,

for the tests in in section 4.3.2 the full calculation AcceptF ine(. . .) was rare because

in general AcceptF ine
̂

(. . .) ≥ 0.995.
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Algorithm 4.1 HiER-Leap L SSA Steps

Require: D̂(I0,L), D̂ (I0,L), {D̂r1
(I0,L)} precomputed for L ≥ 1 and I0.

Ensure: Return (IL,∆t) . return updated state and duration of L steps
function HiER-Leap(I0, L)

τ ← Erlang(τ ;D̂ (I0,L), L)

u←Multinomial(u;

{
pr1 =

D̂
r1
(I0L)∑

r′1
D̂
r′1
(I0L)

}
, L)

Compute D̄’s
5: . In accordance with equation 4.12.

if UniformRandom(0,1) ≥AcceptCoarse(u; I0, L) then
return HiER-Leap(I0, L) . Early Rejection. Try again.

end if

10: for all r1 ∈ R do
. See algorithm 4.2.4.

(vr1 , σ2)← SampleBlock(r1, u, I0) . May be done in parallel.
end for
z ← UniformRandom(0,1)

15: if z ≤ AcceptF ine
̂

(τ ; I0, L) then . See equation 4.15.

return (IL(I0, v, u), τ) . Early Acceptance.
end if

. Computation should be rare; see equation 4.14.
if z ≤ AcceptFine(σ1;u, v, I0, σ2, τ) then

20: return (IL(I0, v, u), τ)
else

return HiER-Leap(I0, L) . Try again.
end if

end function
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Algorithm 4.2 HiER-Leap Sample Block

function SampleBlock(r1, u, I0)

vr1 ←Multinomial (vr1 ;
{
pr1r2 =

ρRk F̄
(r1r2)(u,I0)

D̄(r1)(u,I0)

}
, ur1)

pBlockEarly ← 1
for r2 ∈ r1 and v(r1r2) ≥ 1 do

pBlockEarly ← pBlockEarly ×
(
F (r1r2)(u,I0)

F̄ (r1r2)(u,I0)

)vr2
end for
z ← UniformRandom(0,1)
if z ≤ pBlockEarly then

return (vr1 , σ2) . Early Accept.
end if
. If neighboring blocks do not early accept will need to do the following jointly.
pBlock ← 1
σ2 ← Permutation(ur1) . Must compute exact acceptance probability.
for all k = 1 . . . ur1 do

r′2 ← σ2(vr1 , k)

pBlock ← pBlock ×
F

(r1r
′
2)

Ik(σ2(vr1 ),I0)

F̄ (r1r
′
2)(u,I0)

. Calculating Ik takes the most work.

end for
if z ≤ pBlock then

return (vr1 , σ2) . Accept sample.
else

return SampleBlock(r1, u, I0) . Sample rejected, try again.
end if

end function
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4.3 Numerical Experiments

4.3.1 CaliBayes Validation

We test the HiER-leap algorithm correctness with the CaliBayes test suite similar to

the work in section 3.3.1. If is possible to solve analytically for P (X|t), this allows

us to compare many simulated trajectories to the true distribution defined by the

CME. Since HiER-leap reduces to ER-leap when the number of blocks goes to one,

and it has already been show that ER-leap samples the correct distribution, we are

required to test across a large variety of reaction channel quantities and organization

structure.

The reaction networks for which we know the analytical solution involve at most

two species types. However, simulating many replicates of these networks on a grid,

not connected with diffusion, will allow us to treat each block as an independent

sample. We can then treat the simulation of many network replicates as many sampled

trajectories of a single network.

We perform tests over a number of network replicates m = 2 . . . 1000. The number

of blocks range from b = 1 . . .m. The leap is in the range L = 3 . . . 18, where the

leap used depends on the specific reaction network, m and b, but is held constant

throughout the simulation.

CaliBayes models 1-01, 1-03, 1-04, 2-01, 2-02, 3-01 and 3-02 [16] are tested, on the

spaced defined by the Cartesian product of the possible values for the m, b and L

parameters as described above, for parameters which result in an acceptance proba-

bility greater than about 0.05. These tests pass on these cases using the criteria of

section 3.3.1.
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4.3.2 Acceleration

Being an exact algorithm, the key performance metric of relevance to HiER-leap is

the amount of acceleration achievable. As discussed earlier, in principle, adding more

reaction channels and processors should increase the relative speedup over SSA. We

can see this trend experimentally in figure 4.1 and figure 4.2.

The following tests are all run on an Apple Macintosh Pro with a Quad-Core In-

tel Xeon processes running a total of 8 cores at 2.26 GHz and 13 GB of RAM us-

ing OS X 10.6.8. The algorithms are coded in C++ and Boost.Thread [29] and

the Intel Threading Building Blocks [2] are used for multithreading. We compiled

the code using the LLVM compiler 1.0.2. The HiER-leap code may be found at

http://computableplant.ics.uci.edu/hierleap/.

4.3.3 HiER-Leap Properties

The algorithm parameters, such as leap and hierarchical organization, require tweak-

ing before the fastest possible execution time is achieved. To find the ideal methods

with which to optimize our algorithm, we explore various trade-offs here.

In looking at figure 4.3 we observe that the optimal b and L are interdependent for

a given network. However, it is interesting to note that for this experiment, there

is a relatively large plateau of nearly equivalent optimal running times. This means

that the range of reasonably good parameters is large. Furthermore, the contour plot

of figure 4.3 indicates that there is only one global optimum. This seemingly convex

behavior indicates that finding the optimum should require only a simple hill climbing

algorithm.
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Figure 4.1: The Williamoski-Rossler model as seen in section 3.3.3 is used for this
experiment. There are different number of network replicates on a 2D square grid
with diffusion rate of 0.1. The number of replicates ranges from 4 . . . 8649 which
equates to 64 . . . 189612 reaction channels.

The results from figure 4.3 indicate that finding the optimal L and hierarchical orga-

nization for a spatially distribution system is an easy optimization problem. These

results, and those from ER-leap, suggest that L will always have a local optimum that

is also a global optimum. However, the optimal configuration of the blocks and reac-

tion channels for networks not specifically representing a spatial distribution remains

an open problem.
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Figure 4.2: The same experimental setup as used for figure 4.1 except 1D diffusion is
used.
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Figure 4.3: The Williamoski-Rossler model as seen in section 3.3.3 is used for this
experiment. There are 400 network replicates on a 1D grid with diffusion rate of
0.1. The model execution time depends on leap and hierarchical organization. As
leap increases the amount of work per iteration goes up but the acceptance ratio
goes down. Furthermore, if there are many reaction channels per block the total
acceptance probability of the system goes down. However, in this situation the inner-
block acceptance probability goes up. When the number of reaction channels per
block goes down, the opposite trends occur. In this way the chosen leap and block
organization will determine the total execution time.
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4.4 Summary

We have presented a novel algorithm which has demonstrated an ability to sam-

ple from the CME without a loss of accuracy. Due to the hierarchical design, this

method scales very well with the number of reaction channels and simultaneously

takes advantage of parallel hardware for single trajectory samples. Our literature

search suggests this is the first algorithm to do both of those tasks and is therefore

of potential significance to the computational biology community.

Open questions and future work abound. For example, it is not know how well

this method works on ‘real networks’ of substantial complexity. We believe that

modular structure in biological networks will make this method particularly useful.

Additionally, it is unknown how substantial increases in the number of cores of next

generation CPUs will increase performance.
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Chapter 5

Conclusion

We have derived two new algorithms to accelerate SSA sampling, and validated them

with computer experiments.

Our first algorithm, Exact R-Leap or ER-Leap, is the first known algorithm to exactly

accelerate SSA in time sub-linear to the number of reaction events. This algorithm is

derived from the Chemical Master Equation and is accelerated using rejection sam-

pling with an early acceptance step. It has been commonly assumed that approximate

methods are sufficient for systems with a large number of molecules. However, our

experiments in section 3.3.3 demonstrate otherwise. This makes the ER-Leap algo-

rithm relevant to simulation and inference on virtually any reaction network that is

representable by chemically reacting species.

Our work next generalizes ER-Leap to a hierarchical version, HiER-Leap. HiER-Leap

begins with the Chemical Master Equation and algebraically arrives at an algorithm

which is naturally suitable for parallelization. For each iteration of sampling L reac-

tion events HiER-Leap uses multiple independent acception/rejection steps, one per

reactions block. In this it is unlike ER-Leap which has one acception/rejection step
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per iteration. By essentially ‘factoring out’ the accept/reject steps we are able to use

a larger L with greater efficiency than that found in ER-Leap. In fact, the experiment

shown in figure 4.1 demonstrates a scenario where HiER-Leap is around 70x faster

than SSA and 5.1x faster than ER-Leap.

The reasons for the speedup are twofold. First, by taking advantage of loosely cou-

pled modules in the reaction network, we are able to achieve much tighter bounds on

individual reaction channel propensities. This is especially important when the num-

ber of molecules is small and the difference between L and the number of inner-block

events is large. Additionally, when considering network-wide dynamics, we only need

to bound block propensities. We have found an algorithm to solve for these bounds,

which results in the width of the block level propensity bound on the order of O(L).

This is independent of the number of reaction channels and leads to greater acceler-

ation when the number of reaction channels goes to infinity. Also implied is that for

fixed L the global level acception/rejection step will accept with very high probability.

This means most of the work will be done on the inner-block level, leading to the sec-

ond reason for speedup. Secondly, HiER-Leap allows us to use parallel hardware on

an algorithm which has traditionally been serially implemented. When the number

of reaction channels goes to infinity, the majority of work is done independently for

each block. Since these are independent operations, we can theoretically increase per-

formance linearly when increasing the number of processors up to the total number

of blocks.

The wide variety of possible network topologies presents several opportunities for

future work. Currently little is known about how to organize reaction channels that

are not on a spatial grid to achieve maximal speedup using HiER-Leap. It may

be possible to infer optimal topologies using concepts from information theory. For

example, it is likely desirable for reaction channels that are tightly coupled to be in
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the same block to achieve high efficiency. Mostly uncorrelated reaction channels, on

the other hand, do not need to know much about distant channels in order to sample

from the correct distribution. This idea might be the basis for hierarchy optimization.

Additionally, some work has sped up SSA using the notion of multiscale simulation

[9]. In this work one makes a distinction between fast and slow reactions. The

fast reactions are sped up using approximation and the slow reactions are simulated

accurately. Our HiER-Leap algorithm may be amenable to this optimization. We may

then be able to introduce a two-tiered hierarchy: one tier separates reactions based

on speed and the next separates reactions based on proximity to one another similar,

to HiER-Leap. These ideas are speculation at this point, although the possibilities

are interesting.

Additionally, there are potential “tweaks” to HiER-Leap which could lead to an even

more accelerated algorithm. For example, if two adjacent blocks are sampled and

neither one changes a species relevant to the propensities in the other one, we should

be able to accept/reject them independently. This concept may be difficult to trans-

late into the algorithm, and it is currently unknown how to prove this algebraically.

However, further improvements in parallelization and a higher acceptance ratio could

be found if this were true.

The algorithms we have presented speed up SSA in a way, using rejection sampling,

that has not been seen before. The proofs and experimental validation with CaliBayes

show correctness. In the limit of many reaction channels or many molecular species,

we are guaranteed compounding acceleration over SSA. It is our hope that these

algorithms will help make biological modeling of highly complex systems a reality.
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Appendices

A Appendix A

We will show that for ∆D̂r1
(I0L)

∗
from equation 4.6 and ∆D̂r1

(I0L) from equations 4.7

and 4.8, it is the case that ∆D̂r1
(I0L)

∗
≤ ∆D̂r1

(I0L).

Proof by contradiction. Assume there is some r2 ∈ r1 and state I ′ = n′ with ∀an′a ≤

ña and ∃an′a < ña, reachable from I0 in at most L − 1 reaction events used to find

∆D̂r1
(I0L)

∗
such that ∆D̂r1

(I0L)

∗
> ∆D̂r1

(I0L). Plugging in our definitions for ∆D̂r1
(I0L)

∗

and ∆D̂r1
(I0L) , using equation 4.1, and introducing the notation that I(r2) will be the

results of r2 applied to I and I(r2
+) is the result of r2 applied to I only for species

which have net gain (∆m
(r1r2)
a > 0), yeilds

∆D̂r1
(I0L)

∗
= Dr1

I′(r2) −D
r1
I′

=
∑
r′′2∈r1

ρ(r1r′′2 )F
(r1r′′2 )

I′(r2) −
∑
r′′2∈r1

ρ(r1r′′2 )F
(r1r′′2 )

I′

=
∑
r′′2∈r1

ρ(r1r′′2 )

(
F

(r1r′′2 )

I′(r2) − F
(r1r′′2 )

I′

)
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and

∆D̂r1
(I0L) =

∑
r′′2∈r1

ρ(r1r′′2 )

(
F

(r1r′′2 )

Ĩ(r2+)
− F (r1r′′2 )

Ĩ

)
.

Therefore, we can equivalently say that we are trying to disprove

∑
r′′2∈r1

ρ(r1r′′2 )

(
F (r1r′′2 )(n′ + ∆m(r1r2))− F (r1r′′2 )(n′)

)
>

∑
r′′2∈r1

ρ(r1r′′2 )

(
F (r1r′′2 )(ñ + ∆m(r1r2))− F (r1r′′2 )(ñ)

)
. (A.1)

Note that by grouping terms by r′′2 , there is a one-to-one correspondence between the

summation terms on each side of the inequality.

If true, equation A.1 implies that there is at least one reaction channel r′2 ∈ r1 for

∆m
(r1r2)
a > 0 such that

F (r1r′2)(n′ + ∆m(r1r2))− F (r1r′2)(n′) > F (r1r′2)(ñ + ∆m(r1r2))− F (r1r′2)(ñ) (A.2)

but we will show that this is impossible for any ña > n′a ≥ 0. Note that we do not

need to consider ∆m
(r1r2)
a ≤ 0 because F is monotonic, the LHS will be decreased

and the RHS will not change as per the definition of ∆D̂r1
(I0L) (negative ∆m

(r1r2)
a are

ignored).

Before proceeding we will introduce the forward difference operator, ∆F (i), such that

∆F (i)f(z) ≡ f(z + i)− f(z) (A.3)

for any function f(z).

Furthermore, F (r1r2)(n) can be decomposed by species into terms including chemical
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species Ca and those which do not. Following from section 3.2.3, this allows us to

rewrite F (r1r2)(n) as

F (r1r′2)(n) = G(r1r′2)(n\{na})× (na)k

for some constant G(r1r2)(n\{na}) ≥ 0 which does not depend on na, where k = m
r1r′2
a

is the input stoichiometry for reaction r′2 and species Ca, and

(n)k ≡
n!

(n− k)!
.

For equation A.2 to be true there must exist a Ca such that

F (r1r′2)(n′a + ∆mr1r2
a )− F (r1r′2)(n′a) > F (r1r′2)(ña + ∆mr1r2

a )− F (r1r′2)(ña) (A.4)

is true. All of the above F (r1r2) are calculated using nb = n′\{na} and na ∈ {n′a, ña}.

When we show that n′a will not result in a greater delta than that offered by using

ña instead, this implies that equation A.2 may never be true.

Equivalent to equation A.4, by dividing out G(r1r2)(n′) ≥ 0, using equation A.3, and

setting m = ∆mr1r2
a we arrive at

∆F (m)(ña)k −∆F (m)(n
′
a)k < 0. (A.5)

However, because n′a < ña, if it is shown that ∆F (m)(n)k is monotonic in n then this

will imply equation A.5 is false.

Therefore, it just remains to be shown that ∆F (m)(n)k is monotonic in n. Consider
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the following equation which tests for monotonicity

∆F (m)(n+ 1)k −∆F (m)(n)k

=
[
∆F (1)(n+m)k + . . .+ ∆F (1)(n+ 1)k

]
−[

∆F (1)(n+m− 1)k + . . .+ ∆F (1)(n)k
]

= ∆F (1)(n+m)k −∆F (1)(n)k

= k(n+m)k−1 − k(n)k−1

= k

[
(n+m)!

(n+m− k + 1)!
− n!

(n− k + 1)!

]
= k

n!

(n− k + 1)!

[
n+m

n+m− k + 1
× . . .× n+ 1

n− k + 2
− 1

]
≥ 0

because k ≥ 1 implies every factor in the long product is ≥ 1. This implies mono-

tonicity. Therefore equation A.4 is false for all Ca, implying equations A.2 is false.

Proof by contradiction. Assume there is some 0 ≤ n′a < ña and reaction r2 such that

∆Dr1
r2

(n′a) > ∆Dr1
r2

(ña).

That means there is at least on reaction channel r′2 for which

F (r1r′2)(n′a + ∆m(r1r2)
a )− F (r1r′2)(n′a) > F (r1r′2)(ñ′a + ∆m(r1r2)

a )− F (r1r′2)(ña)

where, assuming at most two reactants, there are three possible forms for F (r1r′2)(. . .).

If F is of the form

1 : ∅→ X
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then the propensity is independent of na and therefore is constant with respect to na.

If F is of the form:

2 : Ca + Cb → Z

then we have

∆F (r1r′2)(n′a) > ∆F (r1r′2)(ña)

(n′a + ∆m(r1r2)
a )(nb + ∆m

(r1r2)
b )− n′anb > (ña + ∆m(r1r2)

a )(ñb + ∆m
(r1r2)
b )− ñañb

n′a∆m
(r1r2)
b + ∆m(r1r2)

a nb + ∆m(r1r2)
a ∆m

(r1r2)
b > ña∆m

(r1r2)
b + ∆m(r1r2)

a ñb + ∆m(r1r2)
a ∆m

(r1r2)
b

n′a∆m
(r1r2)
b + ∆m(r1r2)

a nb > ña∆m
(r1r2)
b + ∆m(r1r2)

a ñb

for m constant and supposing n′a < ña and nb ≤ ñb. However, we know ña > n′a by

construction, therefore this statement cannot be true.

Finally, F could be of the form

3 : Ca + Ca → X

which represents a dimerization process. Setting q = ∆m
(r1r2)
a for notational brevity

this implies that

∆F (r1r′2)(n′a) > ∆F (r1r′2)(ña)

(n′a + q)(n′a + q − 1)− n′a(n′a − 1) > (ña + q)(ña + q − 1)− ña(ña − 1)

n′aq + qn′a + q2 − q > ñaq + qña + q2 − q

2n′aq > 2ñaq
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which is impossible when ña > n′a and q ≥ 0 is constant.

Since none of the three possible scenarios support the assumed hypothesis, the propo-

sition that our supposition is false has been proven false.

97


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Related Work
	Modeling Chemically Reacting Species
	Differential Equations
	Stochastic Differential Equations 
	Master Equation

	SSA
	SSA Acceleration Techniques
	lleaping
	R-leaping
	SSA on Parallel Hardware


	ER-Leap
	Introduction
	Theory
	Notations
	Markov chain and multi-reaction probabilities
	Upper and Lower Bounds
	Exploitation of probability bounds
	Exact R-leap algorithm

	Numerical Simulations
	Accuracy
	CaliBayes validation
	Williamowski-Rössler Model
	Scaling of computational cost with reaction events
	Scaling of computational cost with reaction channels

	Conclusions

	HiER-Leap
	Introduction
	Theory
	Hierarchical Notation
	Bounds on Propensities and Species Counts
	Equivalent Markov Process
	Algorithm

	Numerical Experiments
	CaliBayes Validation
	Acceleration
	HiER-Leap Properties

	Summary

	Conclusion
	Bibliography
	Appendices
	Appendix A


